
PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

Compilation of a simple chemistry application to quantum error correction primitives

Nick S. Blunt , György P. Gehér , and Alexandra E. Moylett *

Riverlane, St Andrews House, 59 St Andrews Street, Cambridge, CB2 3BZ, United Kingdom

(Received 4 September 2023; revised 16 January 2024; accepted 26 February 2024; published 26 March 2024)

A number of exciting recent results have been seen in the field of quantum error correction. These include
initial demonstrations of error correction on current quantum hardware and resource estimates which improve
understanding of the requirements to run large-scale quantum algorithms for real-world applications. In this
work, we bridge the gap between these two developments by performing careful estimation of the resources re-
quired to fault-tolerantly perform quantum phase estimation (QPE) on a minimal chemical example. Specifically,
we describe a detailed compilation of the QPE circuit to lattice surgery operations for the rotated surface code, for
a hydrogen molecule in a minimal basis set. We describe a number of optimizations at both the algorithmic and
error correction levels. We find that implementing even a simple chemistry circuit requires 1000 qubits and 2300
quantum error correction rounds, emphasising the need for improved error correction techniques specifically
targeting the early fault-tolerant regime.

DOI: 10.1103/PhysRevResearch.6.013325

I. INTRODUCTION

Quantum error correction (QEC), the study of how many
noisy physical qubits are used to represent a smaller num-
ber of less noisy logical qubits, has seen significant recent
developments in a number of directions. One such success
is experimental demonstrations of error correction success-
fully suppressing errors on a real-world quantum device [1].
Another recent development is in careful resource estimates,
which have allowed for more accurate estimates of the re-
sources a quantum computer requires to solve problems of
significant interest, from estimating chemical properties [2–6]
to factoring RSA integers [7,8]. These developments together
have helped define both the current state of our abilities to
suppress noise on quantum devices, and where we need to get
to in order to solve key industrial problems.

There are some natural next steps following the experi-
mental demonstration of a logical quantum memory. Natural
follow-ups include implementing basic logical gates: imple-
menting Pauli gates through transversal operations, non-Pauli
Clifford gates through lattice surgery techniques [9–15], and
non-Clifford gates initially through error mitigation tech-
niques [16] and later through magic state distillation [17–19].
Eventually, a natural goal will be to demonstrate small-scale
quantum algorithms, showing that these logical operations
can be used to solve a toy application. Understanding the
resources required for such an algorithm is important for
knowing the point at which small applications can start being

*alex.moylett@riverlane.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

solved on fault-tolerant quantum computers, as well as help-
ing us understand the constant factors in the scaling of large
quantum algorithms. A number of algorithms have recently
been proposed that are aimed specifically at this regime, re-
ferred to as “early fault-tolerant” algorithms [20–24]; it is
therefore particularly relevant to assess how challenging even
minimal applications will be to perform using fault-tolerant
operations.

In this work, we estimate the resources required for im-
plementing a small quantum algorithm on a fault tolerant
quantum computer, including detailed consideration of how
to perform each required operation using lattice surgery. The
application we choose is quantum phase estimation (QPE)
applied to finding the ground-state energy of the hydrogen
molecule. This application is sufficiently small that related
circuits without QEC have already been successfully run
on current quantum hardware [25,26]. We investigate opti-
mizations of this algorithm at a variety of levels, including
algorithmic [2,27–29], gate decompositions [30], compilation
to lattice surgery primitives [9–14] and generation of magic
states [19]. Our final resource estimates are presented in
Fig. 1, looking at different physical error rates and techniques
which trade off time and space resource requirements. It is
worth noting that when implemented on the surface code, even
this small application requires hundreds of physical qubits and
thousands of QEC rounds. This shows the significant prefactor
associated with quantum error correction, and suggests that
in early fault-tolerance further techniques will be required to
yield small-scale algorithmic demonstrations [16].

The rest of this paper is laid out as follows. In Sec. II, we
review the algorithms and chemical system to be considered,
and present the logical quantum circuit. In Sec. III, we de-
scribe how to decompose the logical quantum circuits into
operations from the Clifford +T gate set and how to imple-
ment these gates on the surface code using lattice surgery
primitives. In Sec. IV, we estimate the overhead introduced

2643-1564/2024/6(1)/013325(20) 013325-1 Published by the American Physical Society

https://orcid.org/0000-0002-2284-6969
https://orcid.org/0000-0003-1499-3229
https://orcid.org/0000-0003-0163-5262
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013325&domain=pdf&date_stamp=2024-03-26
https://doi.org/10.1103/PhysRevResearch.6.013325
https://creativecommons.org/licenses/by/4.0/

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 1. Estimated cost in physical qubits and time for calculating the ground-state energy of a hydrogen molecule on an error-corrected
quantum computer with varying physical error rates, using iterative quantum phase estimation. Methods for implementing logical gates through
either directly implementing Clifford and T gates or moving Clifford gates through the circuit are described in Secs. III B and III C, respectively.
Further details about estimating these resource requirements are presented in Sec. IV C.

by quantum error correction. Finally, we conclude with some
open questions and further directions for research in Sec. V.

II. LOGICAL QUANTUM CIRCUIT

A. Quantum phase estimation

We begin with a brief introduction to the quantum al-
gorithms considered in this study, which are two types of
quantum phase estimation (QPE) [31]. QPE is one of the
key proposed quantum algorithms for calculating ground
and excited-state energies in electronic structure problems.
Provided an initial trial state can be prepared that has a suf-
ficiently good overlap with the true ground state (which is
usually the case for molecular systems), QPE is capable of
obtaining energy estimates to a desired precision in polyno-
mial time with system size. However, the algorithm requires
high circuit depths for nontrivial examples, and so has seen
less attention compared to variational quantum algorithms
in current NISQ applications. For fault-tolerant applications,
however, it is often regarded as the algorithm of choice.

We focus on the “textbook” [32] and iterative (semiclassi-
cal) QPE algorithms [33–36]. The textbook QPE algorithm is
perhaps the best known QPE approach, the circuit for which
is presented in Fig. 2(a). The algorithm allows one to measure
the eigenphases of some unitary U up to m bits of precision;
doing so requires m ancilla qubits, in addition to the n data
qubits needed to represent U . At the end of the circuit, an
inverse quantum Fourier transform (QFT) is performed and
the ancilla qubits are measured. If the input state |ψ〉 is an
exact eigenstate of U , then the measured bits will yield the bits
of the corresponding eigenphase. For a nonexact |ψ〉, the
probability of obtaining the desired phase will depend on the
overlap between |ψ〉 and the corresponding exact eigenstate.

The inverse QFT can also be performed in a semiclassical
manner [37]. Using such a semiclassical QFT, the resulting
phase estimation algorithm is performed iteratively, obtaining
one bit of information about the phase from each itera-
tion. We refer to this approach as iterative quantum phase

estimation [36]. Iterative QPE has many of the benefits of the
textbook approach, including a Heisenberg-limited running
time O(ε−1) for a precision of ε, but has the significant benefit
that it uses only a single ancilla qubit.

We briefly give some analysis of the iterative QPE ap-
proach here. We are interested in estimating the eigenvalues
of a Hamiltonian

H =
L∑

j=1

c jPj, (1)

FIG. 2. QPE circuits used in this paper. In both cases, the state
|ψ〉 is over n qubits. In (b), the circuit is iterated backwards from k =
m (in the initial iteration) to k = 1 (in the final iteration). The rotation
angle in iteration k is ωk = −π (0.xk+1xk+2 . . . xm), with ωm = 0 in
the initial iteration. While the ancilla is measured at the end of each
iteration, the data qubits remain coherent throughout.

013325-2

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

where Pj are n-qubit Pauli operators and c j are coeffi-
cients. We denote the eigenvalues and eigenvectors of H by
{λ j ; |� j〉}. We multiply H by a constant t such that −0.5 �
λ jt � 0.5 for all j, which can always be achieved by choosing
1/t = 2

∑
j |c j |. We then work with the unitary

U = e2π i Ht . (2)

The eigenvalues of U are e2π iφ j , where the range 0 � φ j � 1
can be chosen. It is then simple to obtain λ jt from φ j , which
only differ due to the wrapping of phases; the normalization
of Ht above is chosen to avoid potential ambiguity in this
wrapping. Therefore each φ j can be written in binary as

φ j = 0.φ j1φ j2 . . . φ jm . . . (3)

In iterative QPE, the bits φ jk are measured directly using the
circuit in Fig. 2(b). The circuit is performed for m iterations
in order to obtain m bits of precision for φ j , starting with k =
m and iterating backwards to k = 1. After each controlled-
unitary operation, an Rz(ωk) gate is applied to the ancilla with
angle

ωk = −π (0.xk+1xk+2 . . . xm), (4)

which depends on the measurement results from previous
iterations (and ωm = 0 in the initial iteration).

The data qubits are prepared in an initial state |ψ〉, which
should be an approximation to the exact state whose energy is
to be estimated. We write |ψ〉 in the eigenbasis of H by

|ψ〉 =
∑

j

ν j |� j〉. (5)

The state of the qubits before the first measurement (k =
m) is then

1

2

∑
j

ν j[(1 + ei2mπφ j)|0〉 + (1 − ei2mπφ j)|1〉] ⊗ |� j〉. (6)

Consider the simple case where φ j can be represented by
exactly m bits, so that φ j = 0.φ j1φ j2 . . . φ jm00 . . . In this case
exp(i2mπφ j) = exp(iπφ jm) exactly, and the state of the sys-
tem before measurement is

1

2

∑
j

ν j[(1 + eiπφ jm)|0〉 + (1 − eiπφ jm)|1〉] ⊗ |� j〉. (7)

Thus the probabilities of measuring the ancilla as 0 or 1 are

P0 =
∑

j

|ν j |2cos2

(
πφ jm

2

)
, (8)

P1 =
∑

j

|ν j |2sin2

(
πφ jm

2

)
. (9)

Provided that |ν j | is sufficiently large for the desired state
|� j〉, the desired bit will be measured with high probability.
The measurement will also project away the contribution from
those states |� j〉 for which φ jm does not match the measured
result. It is simple to continue this process for subsequent iter-
ations to k = 1. After the final iteration, the probability that all
of the bits for the desired φ j were measured is |ν j |2. Therefore,
for a sufficiently good initial state, and a sufficient number
of repetitions, the ground-state energy can be measured with
high probability. Further clear analysis is given in [36].

In addition to the textbook and iterative QPE methods,
there has been recent progress on statistical phase estimation
methods [21,23,38–40]. Compared to the above approaches,
such statistical methods allow shorter circuit depth [22,23]
and ready combination with error mitigation techniques [26],
in exchange for performing many circuits. It has been sug-
gested that these methods are particularly appropriate for
early-fault tolerant quantum computers. We do not consider
such methods here, but note that they would be interesting to
investigate further in the context considered here.

B. Hamiltonian simulation via Trotterization

In this section, we briefly discuss first and second-order
Trotterization, and present an optimization to the latter.

We consider n-qubit Hamiltonians of the form of Eq. (1).
We specifically denote Hj = c jPj , so that

H =
L∑

j=1

Hj . (10)

In Trotter schemes more generally, each Hj might correspond
to a sum of commuting Pauli terms, rather than a single Pauli
contribution.

We are concerned with implementing an operator U =
eiHt , controlled on an ancilla qubit. The well-known first- and
second-order Trotter approximations, U1 and U2, are

U1 =
L∏

j=1

eiHjt (11)

and

U2 =
L∏

j=1

eiHjt/2
1∏

j=L

eiHjt/2, (12)

which have errors O(t2) and O(t3) compared to the exact U ,
respectively.

Let us consider the number of single-qubit rotations needed
to implement the controlled U1 and U2 unitaries, as required to
perform QPE. Each controlled Pauli rotation, which we shall
denote by Wj , can be rewritten as

Wj = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ exp(iθ jPj), (13)

= exp(iθ j |1〉〈1| ⊗ Pj), (14)

= exp(i(θ j/2)(1 − Z) ⊗ Pj), (15)

= exp(i(θ j/2)1 ⊗ Pj) exp(−i(θ j/2)Z ⊗ Pj), (16)

which is a product of two multiqubit Pauli rotations. These can
be reduced to a single-qubit rotation each after conjugation
through an appropriate Clifford [40]. Therefore the cost of
each controlled Pauli rotation is 2 single-qubit rotations plus
Cliffords, and the number of single-qubit rotations for U1 is
2L per Trotter step.

At first glance it appears that for a given t , the second-order
formula requires 4L single-qubit rotations to implement. In
fact in QPE circuits this is not the case, and the second-
order formula can also be implemented with 2L rotations,
as for the first-order formula, but with better error suppres-
sion. This trick was introduced in Ref. [27] and is known as

013325-3

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 3. Circuit diagrams demonstrating reduction of the controlled time evolution operator in QPE with second-order Trotterization.
(a) The time evolution operator controlled on an ancilla, and acting on an initial trial state |ψ〉, which can be equivalently replaced by (b) in
phase estimation circuits. For the second-order Trotter formula, this can be further reduced to the circuit (c). Lastly, each pair of boxed terms
can be expressed as a single multiqubit Pauli rotation (d).

directionally-controlled phase estimation. It was expanded on
in Refs. [2,28] and also used in Ref. [29].

We briefly give a derivation of the directionally controlled
approach. The general procedure is presented in Fig. 3. We
consider the controlled time evolution operator in Fig. 3(a).
The state of the qubits at the end of this circuit is

|�〉 = 1√
2

(|0〉 ⊗ |ψ〉 + |1〉 ⊗ eiHt |ψ〉). (17)

Now, note that we can apply e−iHt/2 to the data qubits in
Fig. 3(a) without affecting any measurement outcomes; since
this operator commutes with all controlled-eiHt gates, it can
be moved to the end of the circuit where it has no effect on
the measurement of the ancilla. With this additional operator
applied, the final state of the qubits is

|�〉 = 1√
2

(|0〉 ⊗ e−iHt/2|ψ〉 + |1〉 ⊗ eiHt/2|ψ〉), (18)

and we see that we can work with circuit in Fig. 3(b) instead.
We next expand eiHt/2 via its Trotter formula,

eiHt/2 ≈ VK . . .V2V1, (19)

where K is the number of terms in the Trotter product formula,
equal to L for the first-order formula and 2L for second-order
formula. Then,

|�〉 = |0〉 ⊗ (VK . . .V2V1)†|ψ〉 + |1〉 ⊗ (VK . . .V2V1)|ψ〉
= |0〉 ⊗ V †

1 V †
2 . . .V †

K |ψ〉 + |1〉 ⊗ VK . . .V2V1|ψ〉. (20)

For even-order Trotter formulas the string of operators
VK . . .V2V1 is symmetric, so that Vj = VK− j+1, and the expan-
sion is unchanged when the order of the terms is reversed.
Therefore, for the second-order Trotter formula (but not the
first-order formula), we can write

|�〉 = |0〉 ⊗ V †
K . . .V †

2 V †
1 |ψ〉 + |1〉 ⊗ VK . . .V2V1|ψ〉, (21)

which is equivalent to the circuit in Fig. 3(c). Lastly, note that
the paired operators in Fig. 3(c) can each be expressed as

ei|1〉〈1|⊗Hit/4e−i|0〉〈0|⊗Hit/4 = e−iZ⊗Hit/4, (22)

which can be reduced to a rotation on a single qubit plus Clif-
ford gates. Therefore, application of the second-order Trotter
formula in QPE can be performed with 2L rotations, which
is equal to the number required for the first-order Trotter

formula. In addition, the Trotter expansion is applied to the
operator eiHt/2 instead of eiHt , resulting in lower Trotter error.

C. The hydrogen molecule

We next define the Hamiltonian that we will consider
throughout this paper. As an application of QPE, we will
consider the common task of finding the ground-state energy
of an electronic structure Hamiltonian. Such a Hamiltonian
can be defined in second-quantized form as

H = h0 +
∑

pq

hpqa†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qasar, (23)

where p, q, r, and s label spin orbitals. The coefficient h0

defines the nuclear-nuclear contribution (which is just a num-
ber due to the Born-Oppenheimer approximation), and hpq

and hpqrs are one- and two-body integrals, respectively. The
form of these integrals are well known from quantum
chemistry [41].

In this paper, we are concerned with compiling a minimal
chemistry problem to lattice surgery operations, including
visualization of the patch layout. We therefore consider
the hydrogen molecule H2 in a STO-3G basis, which is a
prototypical minimal molecular example, consisting of two
electrons in two spatial orbitals, or four spin orbitals. We
use an equilibrium geometry with an internuclear distance of
0.7414 Å.

The fermionic Hamiltonian in Eq. (23) must be mapped
to a qubit Hamiltonian for use in QPE. Because the minimal
basis for H2 consists of four spin orbitals, direct mappings
will result in a Hamiltonian with four qubits. However, as
shown by Bravyi et al. [42], the qubit Hamiltonian for this
problem can be reduced to just a single-qubit operator. This
can be seen from symmetry arguments; the H2 Hamiltonian
(in this nonrelativistic approximation) commutes with spin
and particle-number operators, and also has spatial symmetry.
Each of these symmetries allows one qubit to be tapered. More
precisely, labeling the bonding and antibonding orbitals as
ψg and ψu, and ordering the spin orbitals as ψg↑, ψg↓, ψu↑,
ψu↓ (that is, using a spin-interleaved arrangement), the only
determinants that contribute to the ground-state wave function
are |1100〉 and |0011〉, and these two states can be represented
by a single qubit. A more general approach for tapering qubits
due to Z2 symmetries is given in Ref. [42].

013325-4

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

The Hamiltonian used takes the form

H = c1Z + c2X, (24)

with c1 = 0.78796736 and c2 = 0.18128881, and we have ne-
glected the identity contribution. Note that an identical qubit
Hamiltonian was considered in Ref. [25], which performed
textbook QPE on a neutral-atom quantum computer.

D. Overall logical circuit

Using the second-order Trotter formula techniques de-
scribed in Sec. II B, we derive logical circuits for both
textbook and iterative quantum phase estimation. We choose
a time step t = π/(c1 + c2), where c1 and c2 are defined in
Eq. (24), in order to ensure that eigenvalues of Ht are in
the range [−π, π]. In this simple application, we take just
a single time step in the Trotter expansion of eiHt . We also
perform QPE for just three bits of accuracy in the energy.
These simplifications will of course lead to large errors in the
final energy estimate; indeed, after removing rescaling factors,
using three bits of precision means that the energy can only
be estimated to precision (c1 + c2)/4 = 0.242 Ha. Here, we
are primarily interested in understanding the required circuits
in terms of lattice surgery primitives. Increasing the number
of Trotter steps, or bits of precision, does not provide further
insight beyond increasing the circuit depth (and number of
ancilla qubits, in the case of textbook QPE).

To implement e−ic1 Z⊗Zt/4 and e−ic2 Z⊗Xt/2 we use rotation
operations RZ⊗Z and RZ⊗X , defining RP(θ) = e−iPθ/2. Thus
we have rotation angles θ1 = tc1/2 and θ2 = tc2 for the Z ⊗ Z
and Z ⊗ X rotations, respectively. We also make a minor
optimization by combining pairs of RZ⊗Z (θ1) rotations into
a single RZ⊗Z (2θ1) rotation where possible. Figures for the
logical circuits are provided in Appendix A.

For both iterative and textbook QPE circuits, the gates
can be grouped into three types: Pauli gates such as the X
gate, non-Pauli Clifford gates such as the Hadamard and S†

gates, and non-Clifford gates such as the two-qubit rotations
and T † gates. These different types of gates require different
techniques to be implemented on the surface code, which we
shall detail further in Sec. III.

III. IMPLEMENTING LOGICAL GATES

In this section, we discuss how to implement the logical
circuits presented in Sec. II D using operations available on
the surface code. The surface code represents logical qubits
as patches of d × d data qubits, where d is the distance of
the code [43,44]. Stabilizers consist of weight-4 X and Z
measurements on the patch, and logical X and Z observables
are defined along the horizontal and vertical boundaries of the
patch [9]. The surface code has proven to be a popular candi-
date for fault tolerant quantum algorithms, due to both its high
threshold and low connectivity requirements. In particular, a
number of resource estimation papers use the surface code
as the basis for estimating the overhead from quantum error
correction [4–8].

This section proceeds as follows. First, we approximately
decompose the logical gates into a sequence of Clifford
and T gates. Then we consider two potential methods for

FIG. 4. Decompositions of parameterized (a) Z ⊗ Z rotations,
(b) Z ⊗ X rotations, and (c) controlled-phase gates into Clifford
operations and single-qubit Z rotations. Note that while single-qubit
Z rotations are equivalent to single-qubit phase gates up to a global
phase, the two-qubit Z ⊗ Z rotation is different from a controlled
phase gate due to local phases.

implementing these gates: in Sec. III B, we implement the
Clifford and T gates directly using native lattice surgery op-
erations; whereas in Sec. III C, we use commutation relations
to remove Clifford operations from the circuit, at the cost of
needing to implement more general T -like operations.

A. Decomposition to Clifford and T gates

Ideally we would want to implement logical quantum oper-
ations transversely on our error-correcting code, applying the
operation to each physical qubit(s) in turn. Unfortunately, the
Eastin-Knill theorem shows that this is not possible for any
quantum error-correcting code [45]. In the case of the surface
code, the logical gates which can be implemented transversely
are single-qubit Pauli gates if the code distance is odd. Other
gates within the Clifford group can be implemented on the
surface code via lattice surgery operations such as patch de-
formation [9], but non-Clifford gates such as the T gate cannot
be implemented in an error-corrected fashion.

However, it is possible to approximately decompose an ar-
bitrary unitary operation into a sequence consisting of Clifford
gates and the single-qubit T gate. This was shown for arbitrary
gates originally using the Solvay-Kitaev theorem [46], and a
number of improvements have been subsequently shown for
both single- and multiqubit gates [30,47].

In the case of the QPE circuits in Sec. II D, the circuits
contain a mixture of Clifford and non-Clifford gates. As Clif-
ford gates can be implemented on the surface code via lattice
surgery and patch-deformation techniques, such as the ones
that we shall describe in Sec. III B, we only need to decom-
pose the non-Clifford gates. Both the textbook and iterative
QPE circuits consist of a series of two-qubit Pauli rotations as

013325-5

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 5. Example approximate decomposition of a π/8 Z rotation into a sequence of single-qubit Clifford gates and T gates using the
GRIDSYNTH software package with three bits of precision. Global phases have been omitted, and some optimizations have been applied to
combine multiple S and T gates.

part of the Trotter expansion. In textbook QPE, there are con-
trolled phase gates after the two-qubit rotations, to implement
the inverse quantum Fourier transform. In iterative QPE, the
two-qubit rotations are followed by (classically conditioned)
single-qubit phase gates to implement a semiclassical version
of the inverse Fourier transform.

We decompose the non-Clifford gates in two steps. First,
we exactly compile the two-qubit operations into Clifford
gates and single-qubit Z rotations and phase gates using
circuit identities presented in Fig. 4. Second, we use the
GRIDSYNTH software package to approximately decompose
the single-qubit Z rotations into sequences of one-qubit Clif-
ford and T gates [30]. Note that the two-qubit Z ⊗ Z rotations
require a different decomposition to the controlled phase
gates, due to differences in local phases. In comparison,
single-qubit Z rotations are equivalent to single-qubit phase
gates up to a global phase RZ (θ) = e−iθ/2P(θ), and can there-
fore be decomposed using the same techniques. An example
of using GRIDSYNTH to approximately decompose a single-
qubit Z rotation into the Clifford and T gate set is provided in
Fig. 5.

There is a trade-off to be made between the accuracy
of decompositions generated by GRIDSYNTH and the number
of gates required. GRIDSYNTH approximates a single rota-
tion RZ (θ) up to error ε in the operator norm with typically
3 log2(1/ε) + O(ln(ln(1/ε))) non-Clifford gates [30]. To get
an understanding of how this extends to a whole circuit, we
ran simulations of the textbook and iterative QPE circuits with

GRIDSYNTH decompositions of varying accuracy, from 1 bit to
32 bits. For each number of bits of accuracy, we generate 1000
circuits with the single-qubit rotations decomposed to that
degree of accuracy, and simulate each circuit 10,000 times.

The results are presented in Fig. 6. In Fig. 6(a), we take
the total variation distance between the output distributions of
the decomposed circuits with that of the perfect QPE circuit.
From this we see that for both textbook and iterative QPE,
the total variation distance reduces quickly to approximately
8.3 × 10−3 at 10 bits of precision per gate decomposition, but
tails off beyond this value. This is due to finite precision used
when estimating the total variation distance from samples. In
the following results, we choose 10 bits of precision for the
decomposition of phase gates, as it provides sufficient overall
total variation distance for purpose of this circuit.

We also present the number of gates required for each gate
decomposition accuracy in Fig. 6(b). For 10 bits of preci-
sion, there are approximately 1300 and 1000 logical gates for
textbook and iterative QPE, respectively. Fewer logical gates
can also be used at the cost of increased error; for example,
fewer than 1,000 logical gates can be achieved with 5 bits of
precision per rotation: 870 gates for textbook QPE, and 740
gates for iterative QPE. The total variation distance at 5 bits
of precision is 2.4%.

The results in Fig. 6(b) also show that for this particu-
lar circuit iterative QPE requires fewer gates than textbook
QPE regardless of decomposition accuracy. This is due to
the fact that the inverse QFT step of textbook QPE requires

FIG. 6. Performance of GRIDSYNTH on textbook and iterative QPE, for increasing bits of precision in the GRIDSYNTH decomposition (with
3 bits of precision used in each QPE circuit). (a) Comparison of the decomposed circuits to the exact circuits in terms of total variation distance
of the output distributions. (b) The number of gates in the overall circuit.

013325-6

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

two-qubit controlled phase rotations around fixed angles θ .
These are subsequently decomposed into smaller rotations
θ/2 and −θ/2, which are then approximately decomposed
using GRIDSYNTH. In comparison, iterative QPE works with
single qubit phase rotations θ which are classically controlled.
As these single angles are larger than those used for the single-
qubit rotations in textbook QPE, fewer gates are required to
decompose them up to a desired accuracy. For this particular
QPE circuit, which is only performed to three bits of accuracy,
the smallest rotation angle required beyond the Hamiltonian
simulation step in the iterative QPE circuit is −π/4, which
can be implemented as a single T † gate. Hence for the rest of
this paper we shall primarily focus on iterative QPE.

Finally, for anyone curious to see an example of the
complete logical circuit, we have included example QASM
circuits in the supplementary material to this paper [48], in-
cluding an iterative QPE circuit with phase gates decomposed
up to 10 bits of precision. This circuit features a total of 1029
operations, of which there are 13 X gates, 169 Z gates, 34
CNOT gates, 411 Hadamard gates, 13 S/S† gates, 386 T/T †

gates, and three measurements in the Z basis. This is the
circuit we will estimate the resources for in Sec. IV. Note
that GRIDSYNTH is a randomized process, and so different runs
might produce different gate decompositions than presented
here.

B. Directly implementing Clifford and T gates

Next, we consider methods to implement Clifford and T
gates in the logical circuit. These can either be applied di-
rectly, or can be moved to the end of the logical circuit [12].
In this section, we first discuss the time and space cost of
directly implementing both Clifford and T gates. Both of these
estimates will be calculated in terms of the code distance
d . The approach of moving Clifford operations will then be
considered in Sec. III C.

The simplest gates to implement on the surface code are
single-qubit Pauli gates. These operations can be implemented
by either applying the corresponding Pauli gate to all data
qubits if the distance d is odd, or, if the distance d is even,
by tracking their values in software. Due to their simplicity,
we shall not focus on how to implement them in this section.
Likewise, preparation and measurement of a logical qubit in
either the Z or X basis can be done in a single QEC round
by preparing or measuring all data qubits in that basis. In
many cases these operations can even be implemented at a
cost of no additional QEC rounds, by preparing the data qubits
at the start of the following round or measuring the data
qubits at the end of the preceding round. Note however that
preparing or measuring a logical qubit in the Y basis is more
complicated [14].

It is important to note that not every Clifford gate presented
in Sec. III will be directly implemented. Any sequence con-
sisting of only Z , S/S†, and T/T † gates can be implemented
at the cost of implementing a single T gate (as shown in
Appendix B). Thus we can think of the sequences of gates
generated by GRIDSYNTH such as those shown in Fig. 5 as
equivalent to sequences of alternating Hadamards and T -like
gates.

FIG. 7. Layout of logical qubits as distance d = 3 surface code
patches which can be used when directly implementing Clifford
and T operations. Orange dots represent qubits used for measuring
stabilizers, which are represented by squares and triangles. X and Z
stabilizers are coloured in grey and blue, respectively. Data qubits are
not shown, but lie on the corners of the stabilizers. Additional qubits
lie outside this space for generating states required for T gates, as
detailed in Sec. IV A.

Before discussing how to implement non-Pauli gates, we
present how our logical qubits are arranged on a quantum pro-
cessor with nearest-neighbor connectivity. For iterative QPE,
we have two logical qubits, each of which is represented by a
d × d patch. The primary lattice surgery operations we utilize
are for implementing joint Z ⊗ Z measurements. We arrange
our logical qubits as d × d patches such that performing joint
measurements with the horizontal observable is easy. We also
introduce two additional spaces of d × d data qubits, which
can be used as both routing space for performing joint mea-
surements with the vertical operator, and for additional qubits
required for implementing logical gates. We have the layout
in Fig. 7, which for distance d uses a total of (2d + 2)2 data
qubits, or 2(2d + 2)2 physical qubits including those used for
measurement.

1. CNOT gate

A CNOT gate between a control qubit c and target qubit
t can be implemented based on two-qubit joint Pauli mea-
surements [9,11], see Fig. 8. Namely, an auxiliary qubit a is
initialized in the |+〉 state, followed by two joint measure-
ments: Zc ⊗ Za and Xt ⊗ Xa. Finally, the auxiliary qubit is
measured out in the Z basis, and Pauli corrections are applied
based on the outcomes.

This operation can be implemented on our patches via the
protocol shown in Fig. 9. In Fig. 9(b), we use the routing
space to initialize an additional patch in the |+〉 state. We
then use a merge-and-split operation between the horizontal
boundaries of the control patch and the auxiliary patch to
perform the Z ⊗ Z measurement, and at the same time grow
and shrink the target patch to move it into the routing space.
Next, we use another merge-and-split operation between
the vertical boundaries of the target patch and the auxiliary

013325-7

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 8. Circuit for implementing a CNOT gate through joint Z ⊗
Z and X ⊗ X measurements. An additional qubit initialized in the
|+〉 state is required.

patch to implement the X ⊗ X measurement. Finally, we
measure out the auxiliary patch and at the same time use
patch growing and shrinking to move the target qubit back to
its original space. The remaining Pauli operations can either
be applied transversely at the start of the next operation if the
distance d is odd, or simply tracked in software if the patch
distance d is even. The operations for growing and joining

patches require d QEC rounds in order to protect the code
from both qubit and measurement errors, the operations for
splitting and shrinking patches as well as the single-qubit
logical X measurement each require a single QEC round, and
the Pauli operations at the end of the circuit are effectively
free, meaning a total of 3d + 4 QEC rounds are required to
implement the CNOT gate.

2. Hadamard gate

The Hadamard gate is a Clifford gate whose role is to
swap the X and Z observables of a qubit. Naïvely, this can
be achieved on a surface code patch by applying a Hadamard
operation transversely to all data qubits on the patch, as shown
in Fig. 10(a). However, this has the side-effect of swapping the
X and Z stabilizers as well as the logical observables, resulting
in a different patch to the one we started with and making
joint patch operations such as those used for the CNOT in
Sec. III B 1 more complicated. This effect of swapping the
stabilizers can be seen by comparing the patches in Figs. 10(a)
and 10(b).

FIG. 9. Implementation of a CNOT via lattice surgery operations, with the left patch of (a) being the control qubit and the right patch being
the target qubit. Green dots represent stabilizer measurements whose outcomes produce the result of the joint logical Pauli measurement.

013325-8

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 10. Implementation of a Hadamard gate on the right logical qubit via a transversal Hadamard gate, a series of patch deformations,
and two transversal SWAP gates. Arrows denote SWAP gates between pairs of neighboring qubits. In (f), the first QEC round is to shrink the
patch, and the subsequent two QEC rounds occur after each round of SWAP gates.

If we rotated the patch by 90◦ around the central data qubit
after applying the transversal Hadamard gates, then we would
have implemented the logical Hadamard gate. However, this
is not possible on a physical device. Instead, we use a patch
deformation technique, which we present in Figs. 10(b)–10(f),
to achieve the same effect [49]. First in Fig. 10(b), we grow the
patch into a longer one with length 2d + 1. At the same time
we move the corner at the top right in the original patch to the
top left in the longer patch. Next in Fig. 10(c), we use patch
deformation to move the corner on the bottom-right up to the
top-right. At this stage the logical observables have changed
directions from vertical to horizontal and vice versa. Next,
we shrink the patch down in Fig. 10(d). Now we have the
X and Z logical observables swapped, with the stabilizers in
their original positions, but the whole patch has been shifted
upwards.

To move this patch back to its original position, we start
by growing and shrinking the patch in Figs. 10(e) and 10(f),
but this leaves the patch one row of stabilizers higher than it
originally was. To correct this, we use two rounds of SWAP
gates to swap the data qubits with neighboring measurement
qubits, as shown in Fig. 10(f).

The most expensive parts of this process are the stages that
involve patch growing and corner movement, which require
d QEC rounds each. Since in general two-qubit gates are
much noisier than one-qubit gates, the transversal Hadamard
at the start of this sequence does not require any QEC rounds.
Finally, patch shrinking and transversal SWAP gates each
require a single QEC round, thus requiring a total of 3d + 4
QEC rounds.

3. S/S† gate

The S gate, also known as the
√

Z gate, is a Clifford gate
that applies a phase of i to the |1〉 state. Like the Hadamard
gate, this gate also cannot be implemented transversely on the
surface code.

There are various ways of implementing the S gate using
patch deformation, similarly to implementing the Hadamard
in Sec. III B 2 [14,49]. However, these require extending the
X observable of a patch, and therefore require moving the
patch into the routing space and back. Instead, we consider
a different technique, which uses an additional patch in the
|Y+〉 = (|0〉 + i|1〉)/

√
2 state [12]. We then perform a joint

013325-9

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 11. Circuit for implementing an S gate through a joint Z ⊗
Z measurement. An additional qubit initialized in the |Y+〉 = (|0〉 +
i|1〉)/

√
2 state is required. Note that the S† gate can be implemented

by inverting the condition under which the Z gate is applied.

Z ⊗ Z measurement between this qubit and our qubit, and
measure this auxiliary qubit in the X basis. Finally, we apply
a Z correction depending on the outcomes of the two mea-
surements. A circuit describing this operation is presented in
Fig. 11.

Note that unlike Z and X basis states, the |Y+〉 state cannot
be generated in a single QEC round. Instead, we utilize a dif-
ferent technique to generate Y basis states in d/2 + 2 rounds
with no additional qubits [14]. With this additional patch,
we can implement the logical S gate using the process de-
scribed in Fig. 12. Generating the |Y+〉 state in Fig. 12(a) takes
d/2 + 2 QEC rounds, the joint measurement in Fig. 12(b)
takes d QEC rounds, and measuring the |Y+〉 state in the X
basis takes a single QEC round. Any Z correction can be
applied in software at no additional cost, so the total number
of QEC rounds required is 3d/2 + 3. Finally, note that the
S† = SZ gate can also be implemented at no additional cost,
by simply inverting the conditions under which the Z correc-
tion is applied.

4. T/T † gate

The T gate is a nontrivial gate to implement on the sur-
face code as it cannot be performed either transversely or
via lattice surgery operations such as patch deformation. In-
stead, we introduce an auxiliary qubit initialized in the |T 〉 =
(|0〉 + eiπ/2|1〉)/

√
2 state. With this |T 〉 state prepared, we can

implement the T gate using techniques similar to those for im-
plementing the S gate in Sec. III B 3. The circuit is presented

FIG. 13. Circuit for implementing a T gate through a joint Z ⊗
Z measurement. An additional qubit initialized in the |T 〉 = (|0〉 +
eiπ/4|1〉)/

√
2 state is required.

in Fig. 13 [12]. First, we perform a joint Z ⊗ Z measurement
between the data qubit and the auxiliary qubit. Next, we per-
form an S gate conditioned on the result of this measurement
outcome. Finally, we measure out the auxiliary qubit in the X
basis, and depending on this measurement outcome apply a
final Z gate to the data qubit. However, while the |Y+〉 state
can be prepared on the surface code in a fault-tolerant way in
d/2 + 2 QEC rounds, the |T 〉 state cannot be prepared on the
surface code in an error-corrected fashion, and thus additional
work is required in order to prepare a high-quality |T 〉 state.
We shall detail this further in Sec. IV A.

We can implement this circuit on our patch layout using the
process shown in Fig. 14. Note that the patch for the |T 〉 state
is not stored in the routing space like the |Y+〉 is in Fig. 12.
This is because unlike the |Y+〉 state, the |T 〉 state cannot
be generated in a fault tolerant process, and instead needs to
be generated elsewhere and stored outside of the routing space
until it is required. Also note that the patch for the |T 〉 state
in Fig. 14(a) is rotated compared to the patches for our data
qubits, such that the vertical observable on the auxiliary patch
matches the horizontal observable on our data patches. We use
this to perform a joint Z ⊗ Z measurement between our aux-
iliary patch and our data patch via merge-and-split operations
in Fig. 14(b). Finally, in Fig. 14(c) we measure our auxiliary
patch in the X basis, and at the same time we potentially apply
an S correction using the methods described in Sec. III B 3. As
with the CNOT gate presented in Sec. III B 1, the Z operation
is effectively free as it can be either tracked in software or
implemented transversely. The joint measurement requires
d QEC rounds, the X measurement requires a single QEC

FIG. 12. Implementing an S gate on a logical patch. In (a), a patch in an S state has been initialized in the routing space using the methods
provided in Ref. [14]. Green dots represent stabilizer measurements whose outcomes produce the result of the joint logical Pauli measurement.

013325-10

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 14. Implementing a T gate on a logical patch. In (a), a patch in a T state has been provided in some additional space generated by a
magic state factory using methods described in Sec. IV A. Green dots represent stabilizer measurements whose outcomes produce the result of
the joint logical Pauli measurement. S correction is not shown, but occurs in (c) after the Pauli X measurement.

round, and the S correction requires 3d/2 + 3 QEC rounds,
leading to a total of 5d/2 + 4 QEC rounds to implement a
logical T gate.

Finally, it is worth noting that other sequences of gates
can also be implemented using these techniques with no extra
cost. In general, any sequence consisting of only T/T †, S/S†,
and Z gates can be implemented using the protocol above at
the cost of implementing a single T gate. Further details are
provided in Appendix B.

C. Moving Clifford gates

In this section, we will consider another way of implement-
ing the logical circuit from Sec. II on the surface code based
on Ref. [12]. This technique offers the benefit of only needing
to think about how to implement the non-Clifford gates, but
at the cost of increasing the complexity of implementing such
gates.

1. Pauli product rotations

The key to this implementation method is that the logi-
cal gates we want to implement can be realized as rotations
in a particular single- or multiqubit Pauli basis. More for-
mally, an n-qubit quantum gate can be implemented as a
sequence of rotations RPj (θ j) = e−iPjθ j/2 for suitably chosen
Pj ∈ {I, X,Y, Z}⊗n and θ j .1 The simplest example of this
phenomenon is the Pauli gates themselves, which can be im-
plemented as P = RP(π). Similarly, the T and S gates are both
single-qubit rotations in the Z basis, and can thus be realized
as T = RZ (π/4) and S = RZ (π/2), respectively. Single-qubit
Pauli measurements, although not rotations around a Pauli
basis, can also be seen as operations which project a state into
a Pauli basis. In the case of QPE for example, measurements
project a state into the Z basis.

The remaining gates to translate into this picture are the
CNOT and Hadamard gates. Although not as easy to see as

1An astute reader may notice that our definition of RPj (θ j), and by
extension our translation of Clifford and non-Clifford gates to Pauli
rotations, differs from that in Ref. [12] by a factor of 2. This is to
ensure correct periodicity, such that RP(θ + 2π) = RP(θ)∀P, θ . This
is also consistent with the definition of Pauli rotations in other texts
such as, for example, Ref. [32].

the gates listed above, both of these gates can be implemented
as sequences of Pauli π/2 rotations given in Fig. 15 [12].
The Hadamard gate can be decomposed as H = RZ (π/2) ·
RX (π/2) · RZ (π/2), up to a global phase. The CNOT can be
written as a joint π/2 Z ⊗ X rotation, followed by a −π/2 Z
rotation on the control qubit, and a −π/2 X rotation on the
target qubit. This is similar to the circuit used in Fig. 8, but
with Pauli π/2 rotations rather than Pauli measurements.

2. Moving Pauli rotations

The benefit of describing operations as rotations in a Pauli
basis is that it becomes easier to understand how to transform
them without modifying the outcome of the circuit. For exam-
ple, in Fig. 16, a π/2 rotation in the X basis is moved past a
π/4 rotation in the Z basis. The result is that the Z rotation
is transformed into a π/4 rotation in the iXZ = i(−iY) = Y
basis.

These transformations can be applied more generally as
well, the rules for which we discuss in Appendix C. The
benefit of these transformations to the circuit is that we can
move all π and π/2 Pauli rotations, which correspond to Pauli
and Clifford operations, past the final measurement operation
of the circuit. Operations beyond this point do not affect the
outcome of our circuit, and therefore do not need to be imple-
mented. Thus we have reduced our circuit to only involving
π/4 Pauli rotations, which correspond to a generalization of
T gates, and joint Pauli measurements. We shall now look at
how to implement these more general operations.

FIG. 15. Implementing (a) Hadamard and (b) CNOT gates as
Pauli π/2 rotations.

013325-11

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 16. Moving a π/2 X rotation past a π/4 Z rotation.

3. Implementing π/4 joint Pauli rotations

First we shall show how to reduce the π/4 joint Pauli
rotations to joint Pauli measurements. These will then be im-
plemented using a particular patch layout and lattice surgery
operations in Sec. III C 4.

A circuit for implementing π/4 rotations is presented in
Fig. 17. This can be seen as a generalization of the T gate
circuit in Fig. 13, where now the single-qubit Z basis has
been replaced with a general multiqubit basis P. The auxiliary
qubit required for this operation is the same |T 〉 = (|0〉 +
eiπ/4|1〉)/

√
2 state from Sec. III B 4.

Because the rotation basis has generalized, so too have
the corrective gates performed after the measurement. Now,
instead of single-qubit S and Z gates we have more general
π/2 and π rotations in an arbitrary Pauli basis P. The im-
plementation of the π rotation is still a Pauli operation, and
can be either tracked in software or implemented transversely
as before. As for the π/2 rotation, one can account for this
by employing the same techniques as described in Sec. III C 2
in an online fashion, moving the rotation past the final round
of measurements to effectively remove it from the circuit and
adjusting the subsequent operations accordingly [12].

4. Implementing joint Pauli measurements

Finally we discuss how to implement general Pauli mea-
surements between patches on a surface code. The specific
arrangement we use is given in Fig. 18(a). Note that this patch
has more routing space than the one in 7, this is because the
more general operations require access to both the horizontal
and vertical observables of the patches. This results in six
logical patches arranged on a grid of (3d + 4) × (2d + 2)
data qubits, or 2(3d + 4) × (2d + 2) physical qubits total.

The most challenging operations to implement are those
which include the Y basis of a qubit. This is because the Y
basis does not correspond to the horizontal or vertical ob-
servable on a surface code patch, but is instead a product of
both the horizontal and vertical observables. One option is
to decompose π/4 rotations which involve the Y basis of a
qubit into a sequence of π/4 and π/2 rotations which only
act on the X and Z bases [12]. However, doing so introduces
π/2 rotations which cannot be moved past the π/4 rotation

FIG. 17. Implementing a π/4 rotation on an n-qubit quantum
state |�〉 in a Pauli basis P using an auxiliary state |T 〉 = (|0〉 +
eiπ/4|1〉)/

√
2. This can be seen as a generalization of the T gate

circuit in Fig. 13.

without reintroducing the Y basis, so such rotations would
need to be implemented.

Instead, we utilize another technique from [13] to im-
plement Y basis measurements directly via lattice surgery
operations. Some example measurements for implementing
Pauli π/4 rotations in the Y ⊗ X and Z ⊗ Y bases are given
in Fig. 18. These joint measurements require d QEC rounds,
followed by a single QEC round to measure the auxiliary
patch in the X basis. These two sets of measurement results
give us the corrections to move past future operations.

Here we utilize some lattice surgery techniques not used in
Sec. III B. First, we add weight-five stabilizers, known as twist
defects, which involve a Y Pauli term on one of the qubits.
To ensure the surrounding stabilizers commute with the twist
defects, we utilize two other lattice surgery techniques: first,
we add domain walls, which are denoted by half-blue-half-
grey squares and act as a combination of X and Z stabilizers;
and second, we add elongated weight-four stabilizers, which
are denoted by blue and grey rectangles. It is important to
note that although these techniques allow for direct imple-
mentation of joint measurements involving the Y basis, there
is an additional cost in that measuring these longer stabilizers
requires additional connectivity compared to the layout used
in Sec. III B. These extra connections between measurement
qubits are not uniform, and shown by arrows in Fig. 18. In
general, for distance d a total of 4d extra connections are
required for implementing this algorithm, which connect four
columns of adjacent measurement qubits.

IV. ERROR CORRECTION OVERHEADS

We are now ready to discuss the cost of implementing
these logical gates on the surface code. There are two primary
sources of error which contribute to the probability of a failure
at the error-correction level: first, errors from generating |T 〉
states, which we shall explore in Sec. IV A; and second, errors
from a logical failure on a qubit, which we shall explore in
Sec. IV B.

A. Generating |T〉 states

Both of the methods used in Sec. III require additional
qubits initialized in the |T 〉 state. It is possible to initialize
a surface code patch into an arbitrary qubit state |ψ〉, by ini-
tialising one data qubit of the patch in the |ψ〉 state, followed
by d rounds of measurements [9]. However, initialising a data
qubit into an arbitrary state means that this qubit is initially un-
protected from errors, so this method cannot be implemented
in a way that reduces the logical error probability below the
physical error probability. In fact, it can be shown that there
is no fault-tolerant way of initialising nonstabilizer states such
as the |T 〉 state on the surface code.2

Even though patches cannot be initialized in the |T 〉 state
in a way that suppresses errors, it is possible to use distilla-
tion protocols to reduce the error probability of |T 〉 states.

2Note that there are other ways of initialising a |T 〉 state on the
surface code which are more immune to errors, however these rely
on post-selection and therefore might introduce additional overheads.
For simplicity we shall not focus on this method.

013325-12

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 18. Layout of logical patches for implementing joint Pauli measurements. In (a), the two qubits used in the logical circuit are at the
bottom, and an auxiliary qubit is initialized in the |T 〉 state at the top. Example joint measurements required for implementing π/4 Pauli Y ⊗ X
and Z ⊗ Y operations in d + 1 QEC rounds are presented in (b) and (c), respectively. The auxiliary |T 〉 state is always measured in the Z basis
as part of the joint measurement. Green dots represent stabilizer measurements whose outcomes produce the result of the joint logical Pauli
measurement. Twist defects are presented in yellow. Arrows between neighboring measurement qubits show extended connectivity than what
is required for the methods presented in Sec. III B.

These protocols take multiple noisy |T 〉 states and output a
smaller number of |T 〉 states with a reduced error probability
[12,17–19,50–53]. For example, if it is possible to generate
15 |T 〉 states each with error probability p, it is possible to
distill these into a single |T 〉 state with error probability 35p3

[17]. It is also possible to concatenate these factories to reduce
the error probability even further. For example, if the 15-to-1
protocol is used to generate 15 |T 〉 states each with error
probability 35p3, these can then be used in another 15-to-1
protocol to generate a single |T 〉 state with error probability
35(35p3)3 = 1, 500, 625p9 [12]. The cost with these proto-
cols is that reducing the error probability requires additional
resources in terms of both time and number of qubits. A
summary of several protocols and their associated costs is
provided in Ref. [19]. We also provide some example resource
estimates for 15-to-1 factories in Table I, generated using code
from Ref. [19].

When choosing a suitable protocol, there are multiple fac-
tors that we need to consider. First, we need to consider
the overall logical failure probability from faulty |T 〉 state
generation. This means that if our logical circuit uses m
T gates—and therefore requires m |T 〉 states—we need to
choose a probability of distilled state failure pdist such that
m × pdist is within our error bounds.

The second aspect we need to consider is the time required
to generate each |T 〉 state. In order to avoid logical qubits

TABLE I. Resource estimates for some example 15-to-1 |T 〉 state
factories at physical error rates 10−3 and 10−4.

Physical error probability 10−3 10−4

X error distance 11 5
Z error distance 5 3
Measurement error distance 5 3
Distillation error 8.66 × 10−6 4.68 × 10−6

Number of qubits 2066 522
Expected number of QEC rounds 31.30 18.05

remaining idle as we wait for |T 〉 states to be generated, we
need to ensure that |T 〉 states are generated fast enough that
they are available as and when they are needed. This depends
on both the number of QEC rounds required to generate the
|T 〉 states, but also the number of QEC rounds required to
implement these logical operations. If we implement Clifford
and T gates directly as described in Sec. III B, the circuit pri-
marily consists of alternating sequences of Hadamard gates,
which take 3d + 4 QEC rounds, and T -like gates, which
take between d + 1 and 5d/2 + 4 QEC rounds, depending on
whether or not an S gate correction is required. This means
that when implementing Clifford and T gates directly, a |T 〉
state needs to be produced at least once every 4d + 5 QEC
rounds. In comparison, when Clifford operations have been
moved through the circuit as described in Sec. III C, the only
operations required are a single joint Pauli measurement and
a single X basis measurement, meaning that a |T 〉 state must
be produced every d + 1 QEC rounds. If a single distillation
protocol cannot generate states fast enough, multiple instances
of the protocol can be run in parallel to generate states more
frequently, at the cost of increasing the number of physical
qubits [12]. As we show in Appendix D, up to four factories
can be placed around the two corners at the top of the routing
space. It is possible to add even more factories beyond these
four, but doing so could require additional space for routing
and storage of |T 〉 states. On the other hand, if a logical |T 〉
state can be generated faster than required, additional storage
space is required to protect the state from errors while it waits
to be consumed, which can be included as part of the routing
space estimates.

B. Estimating code distance

To reduce the probability of a logical error occurring on
one of our logical qubits, we can tweak the code distance
d . A higher distance will reduce the probability of getting a
sequence of physical errors which lead to a logical error, but
comes at the cost of increasing both the number of physical
qubits per logical qubit, and the number of QEC rounds per

013325-13

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

TABLE II. Detailed resource estimates required to perform the iterative QPE circuit described in the main text for the hydrogen molecule,
considering physical error rates of 10−3 and 10−4. Resource estimates for the |T 〉 state factories are in Table I.

Implementation method Direct implementation Move Cliffords

Physical error rate 10−3 10−4 10−3 10−4

Code distance 12 6 11 5
Number of qubits for logical circuit 1,352 392 1,776 456
Probability of logical error on any logical qubit 4.8 × 10−3 8.6 × 10−4 4.2 × 10−3 2.3 × 10−3

Number of QEC rounds between non-Clifford gates 53 29 12 6
Number of |T 〉 state factories 1 1 3 4
Number of qubits for generating |T 〉 states 2,066 522 6,198 2,088
Number of qubits for storing |T 〉 states 288 72 726 200
Probability of |T 〉 state error 3.1 × 10−3 1.8 × 10−3 3.1 × 10−3 1.8 × 10−3

Total number of physical qubits 3,706 986 8,700 2,744
Number of QEC rounds 31,179 17,271 4,665 2,331
Total error probability 8.1 × 10−3 2.6 × 10−3 7.3 × 10−3 4.1 × 10−3

logical operation. In the case of the surface code, the proba-
bility of a logical error on a single logical qubit per code cycle
assuming a depolarising noise model can be estimated as

pL(p, d) = 0.1(100p)(d+1)/2, (25)

where p is the physical error probability [10,12,52]. For the
purpose of this application, we want to choose a sufficiently
high d that the probability of a logical error occurring on any
qubit during any QEC round is within our error bound. We
use Eq. (25) to approximate our probability of a logical error
at any point in the computation as

(ndata + nroute) × nmeas × pL(p, d), (26)

where ndata is the number of surface code patches for our
data qubits, nroute is the number of additional patches used for
routing,3 and nmeas is the number of QEC rounds. Given these
parameters and physical error probability p, we can pick a
distance by choosing an appropriate d such that Eq. (26) is
within our target failure probability.

C. Results

We are now ready to estimate error correction overheads
for our iterative quantum phase estimation circuit. As a recap,
our circuit consists of 13 X gates, 169 Z gates, 34 CNOT
gates, 411 Hadamard gates, 13 S/S† gates, 386 T/T † gates,
and three Z basis measurements. As previously described, X
and Z gates are free as they can be implemented transversely
at the start of a QEC round. Of the S and S† gates, one is used
in a sequence of T gates, and can therefore be implemented as
a T -like gate. This leaves our costing as 411 Hadamard gates,
34 CNOT gates, 386 T -like gates, 12 S/S† gates, and three
measurements.

3Note that at various points of the computation these routing
patches are unused. This means that errors occurring on them will
not lead to an overall failure. However, in the worst case a logical
error occurs on one of these patches while it is in use, which can
in turn lead to a failure of the overall computation, hence why we
include both data patches and routing patches in this calculation.

We also need to make assumptions on the error correction
requirements of our algorithm. We assume physical errors cor-
respond to depolarising noise with a physical error probability
ranging between 10−4 and 2 × 10−3. We also assume a target
failure probability of 1%, though a higher target probability
can be used to reduce overheads [7,18]. This target failure
probability is split evenly, so the probability of errors occur-
ring from faulty |T 〉 state preparation is at most 0.5%, and the
probability of logical errors happening on the qubits used in
the logical circuit is also at most 0.5%. For 386 T -like gates,
the required error rate per T gate in order to meet this error
budget is 1.3 × 10−5. This is a higher error probability than
what is seen from many distillation techniques [18,19], so
instead we use code from [19] to look for smaller factories
which still fit within our target failure probability. Note that
both factories presented in Table I suffice at error rates 10−3

and 10−4.
Our results are presented in Fig. 1. To help explain these

resource estimates, the rest of this section will provide de-
tailed costings for physical error rates of 10−3 and 10−4. These
physical error rates are commonly used when estimating the
resource requirements of fault-tolerant quantum algorithms
[4,12,19]. For ease of reading, a summary of these results is
presented in Table II.

1. Cost of directly implementing Clifford and T gates

Using the estimates described in Sec. III B, we note that
there are four logical patches to consider when estimating
code distance. In terms of time requirements, CNOT and
Hadamard gates require 3d + 4 rounds, S/S† gates require
3d/2 + 3 rounds, T -like gates require up to 5d/2 + 4 rounds,
and Z basis measurements require a single round. This brings
our total number of rounds to 2318d + 3363.

Using Eq. (26), we find that for a physical error probability
of 10−3, distance d = 12 achieves a logical error probability
of 3.9 × 10−3, requiring 1,352 physical qubits for the patches
and 31,179 QEC rounds. The factory in Table I produces a |T 〉
state with error probability 8.1 × 10−6 on average once every
31.3 QEC rounds, meaning a single factory is sufficient. This
factory uses 2066 physical qubits, along with 288 physical
qubits for storing |T 〉 states. Combined with our 1352 qubits

013325-14

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

for the logical circuit and routing, this leads to a total of
3706 physical qubits. The additional logical qubit for stor-
ing |T 〉 states increases the probability of a logical error to
4.9 × 10−3, leading to a total error probability of 8.1 × 10−3.

For a physical error probability of 10−4, an error probabil-
ity of 6.9 × 10−4 can be achieved with distance d = 6, which
requires 14 953 QEC rounds and 288 physical qubits. A |T 〉
state needs to be generated every 29 rounds with an error
probability of 1.3 × 10−5. For this physical error probability,
the factory in Table I produces a |T 〉 state on average every
18.05 rounds with error probability 4.7 × 10−6. We use a
single factory, which requires 522 physical qubits, along with
72 physical qubits for storing |T 〉 states. Adding in our 392
qubits for the logical circuit and routing, this gives us a total
of 986 physical qubits. The additional storage space for data
qubits increases the probability of a logical error on qubits
used in the quantum circuit to 8.6355 × 10−4, leading to a
total error probability of 2.6 × 10−3.

2. Cost of moving Clifford gates

If we choose to move Clifford gates through the circuit,
we are left with a total of 386 Pauli π/4 rotations, each
of which requires d + 1 QEC rounds, and three joint Pauli
measurements, which require d QEC rounds each. Therefore
our total number of QEC rounds is 389d + 386. We also have
six logical patches allocated for both the logical circuit and
routing.

For a physical error probability of 10−3, distance d = 11
achieves a logical error probability of 2.8 × 10−3, requiring
1,776 physical qubits and 4,665 QEC rounds. A |T 〉 state
needs to be produced once every 12 QEC rounds. We use the
same 15-to-1 factory as in Table I, however a single factory
is not sufficient for producing one |T 〉 state every 12 rounds.
Instead, we use three factories, which produce a single |T 〉
state on average once every 10.4 QEC rounds and require
6,198 physical qubits for implementing the factories. The ad-
ditional three logical qubits for storing |T 〉 states increase the
probability of a logical error on a qubit used in the quantum
circuit to 4.2 × 10−3, leading to a total error probability of
7.3 × 10−3. The total number of physical qubits is 8700.

For a physical error probability of 10−4, distance d = 5
achieves a logical error probability of 1.4 × 10−3 at a cost of
2331 QEC rounds and 456 physical qubits. Using the same
factory as in Table I produces a |T 〉 state with sufficiently
low failure probability every 18.05 rounds, but a |T 〉 is re-
quired every 6 rounds. Arranging four factories around the
data qubits is sufficient to remove this bottleneck. These four
factories require 2088 physical qubits, and 200 physical qubits
for storing |T 〉 states. Adding this to our 456 physical qubits
for the logical patches and routing leads to a total of 2744
physical qubits. The extra four logical qubits for storing |T 〉
states increase the probability of a logical error on a qubit used
in the quantum circuit to 2.3 × 10−3, which means the total
error probability is 4.1 × 10−3.

D. Analysis

As we can see from Fig. 1, there are still some signifi-
cant overheads introduced from quantum error correction. The
most optimistic error rates still require hundreds of physical

qubits and thousands of QEC rounds, while at an error rate of
0.2% this circuit requires tens of thousands of qubits and QEC
rounds.

From the detailed costings of Sec. IV C, we can iden-
tify several bottlenecks with these approaches. For physical
qubits, the overhead mostly comes from |T 〉 state factories: at
a physical error rate p = 10−4 a single factory requires 522
physical qubits, nearly twice as many as required by the data
qubits when implementing Clifford and T gates directly. This
is even more prominent when moving Clifford gates through
the circuit, where of the 2,744 physical qubits required at
error rate 10−4, 2,288 are for preparing and storing |T 〉 states.
Although using fewer factories can reduce the number of
physical qubits, this creates time bottleneck as the data qubits
need to remain idle while |T 〉 states are prepared.

Although it is expected that the overhead from such facto-
ries will become a less significant factor as we move towards
larger quantum computations [19], for early fault-tolerant
quantum circuits these overheads are likely to be more costly.
This could be improved via more efficient small footprint
factories like the ones presented in Ref. [19], as well as the
use of error-mitigated T gates [16].

When moving Clifford operations through the circuit, an-
other space overhead comes from joint Pauli operations in the
Y basis. These require additional routing space and extra con-
nectivity. Optimising the circuit to remove such measurements
would also therefore reduce the routing overhead.

In time complexity, a significant bottleneck is the long
sequences of Hadamard and T gates which come from
GRIDSYNTH decompositions. Of the 846 logical operations
implemented in this circuit, 797 are either Hadamard or T
gates. The Hadamard gate is especially expensive, requiring
3d + 4 QEC rounds. In practice, this means that more than
half the QEC rounds are spent implementing Hadamard gates:
at a physical error rate of 10−4, 9,042 of the 17 271 QEC
rounds are spent implementing logical Hadamard gates. Time
requirements can also be further reduced in general by using
gate-based teleportation to execute gates in parallel, though
this comes at a cost of more physical qubits [12].

Finally it is worth emphasising that there are other ways
in which these resource estimates can be improved above the
quantum error correction layer, such as the use of different
quantum algorithms [54] and decomposition techniques [47].

V. CONCLUSION

As we enter the era of early fault-tolerant quantum comput-
ers, where quantum error correction is able to suppress errors
on a logical qubit and basic logical gates are demonstrable,
it is essential for us to understand the progress required for
large-scale fault-tolerant quantum algorithms. Understanding
the requirements of small applications is an important step
in the process. In this work, we have analysed a minimal
application: estimating the ground-state energy of the hydro-
gen molecule. We have used several techniques to reduce the
estimated resources to approximately 900 physical qubits and
15 000 QEC rounds through implementing Clifford and T
operations directly, and approximately 2700 physical qubits
and 2331 QEC rounds when implementing general Pauli π/4
rotations.

013325-15

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

It is worth emphasising that even for this small application,
the numbers of physical qubits and gates required is several
orders of magnitude larger than what has been performed
experimentally so far. There are a number of further optimiza-
tions which can be made across the quantum computing stack
in the hope of reducing these estimates. At the algorithmic
level, techniques such as qubitization have been shown to
produce asymptotically shorter quantum circuits [55–58], and
could potentially offer improvements even for this minimal
example [54]. Statistical phase estimation methods can al-
low reduced circuit depth in exchange for performing more
samples [22,23,40], and are often stated as being particularly
appropriate for the early fault-tolerant era for this reason. At
the gate synthesis level, alternative techniques have produced
circuits with a smaller T count, at the cost of additional logical
qubits [47]. When implementing π/4 joint Pauli rotations, the
number of QEC rounds can be further reduced by implement-
ing noncommuting rotations in parallel on separate patches
before using teleportation to combine them, though this comes
at a cost of more physical qubits [12]. Finally, improve-
ments can be made to the implementation of non-Clifford
gates which are more targeted towards early fault-tolerant
quantum devices, such as the use of error mitigation when
implementing faulty T gates [16], avoiding the need for magic
state distillation factories. Algorithms such as statistical phase

estimation may remain well suited even in the presence of
error mitigation [26].

A final note is that these estimates assume that quan-
tum computers are affected specifically by depolarising noise
[7,10,12]. While depolarising noise is easy to mathematically
model, the physical noise that affects real-world devices is
more complex and cannot necessarily be captured by such a
model. An important direction of future work is investigating
other more realistic noise models such as leakage and deriving
similar scaling formulas to that presented in Eq. (25).

The source code for generating and running the logical
circuits, and estimating resources, is available on GitHub [48].

ACKNOWLEDGMENTS

We thank Ophelia Crawford, Earl T. Campbell, Nicole
Holzmann, Jacob M. Taylor, and other Riverlane colleagues
for insightful discussions, and Daniel Litinski for making his
code for estimating the resource requirements of |T 〉 factories
publicly available.

APPENDIX A: LOGICAL CIRCUIT FIGURES

The complete logical circuits for estimating the ground-
state energy of the hydrogen molecule using textbook QPE

FIG. 19. Logical quantum circuit for textbook QPE to three bits of precision.

013325-16

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 20. Logical quantum circuit for iterative QPE to three bits of precision.

and iterative QPE are given in Figs. 19 and 20, respectively.
In the iterative QPE circuit, the classically controlled X gates
are used to reset the measured qubits to the |0〉 state.

APPENDIX B: IMPLEMENTATION OF T -LIKE GATES

Here we explain how to implement any sequence of T/T †,
S/S† and Z gates. This is done in three steps: first, by
removing inverse gates by noting that S† = ZS and T † =
ZST ; second, by combining the different phase gates into a

sequence consisting of at most one Z gate, one S gate, and
one T gate; and third, by absorbing the non-T gates into the
conditional operations in Fig. 13. In Figure 21(a), we give an
example of implementing a T gate followed by an S gate using
this procedure: we combine the S gate following the T gate
with the conditional S gate, to create a gate where either a Z
operation is applied at no extra cost, or an S gate is applied,
depending on the joint Z ⊗ Z measurement outcome. Similar
circuits can also be generated for T Z and T SZ gate sequences,
as shown in Fig. 21(b) and 21(c), respectively. Note that the

FIG. 21. Example circuits for implementing T -like gates through joint Z ⊗ Z measurements. In (a), a T gate followed by an S gate is
implemented with the same cost as computing a single T gate as shown in Fig. 13, by adjusting the Clifford operations performed after the
measurement. Note that in (a), either a Z gate is implemented or an S gate is implemented, depending on the outcome of the joint Z ⊗ Z
measurement. In (b) and (c), we use the same techniques for implementing a T gate followed by a Z gate, and a T gate followed by an S gate
and a Z gate, respectively. All circuits require an additional qubit initialized in the |T 〉 = (|0〉 + eiπ/2|1〉)/

√
2 state.

013325-17

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

FIG. 22. Moving n-qubit π/2 Pauli rotations past other Pauli
operations. (a) A π/2 rotation in Pauli basis P can be swapped with
a π/4 rotation in a commuting Pauli basis P′. (b) A π/2 rotation
in a Pauli basis P can also be swapped with a π/4 rotation in a
noncommuting basis P′, by modifying the basis of the π/4 rotation
to iPP′. These rules also apply to moving π/2 rotations past Pauli
measurements, as shown in (c) and (d).

Z operation on the auxiliary qubit in Figures 21(b) and 21(c)
can be implemented at no extra cost by simply inverting the
result of the X basis measurement.

APPENDIX C: TRANSLATION RULES
FOR PAULI ROTATIONS

Here we explain the rules for manipulating Pauli rotations
used in Sec. III C. In general, a π/2 rotation in some Pauli
basis P can be moved past a π/4 operation in some Pauli basis
P′ without modification to either basis if P and P′ commute,
or by modifying P′ to iPP′ if they do not commute. These
rules are presented graphically in Fig. 22.4 These rules can
also be used to move π rotations as well, by noting that
RP(π) = RP(π/2) · RP(π/2).

It is important however to note that these remaining non-
Clifford operations can be more complicated than the single-
qubit non-Clifford operations in the original logical circuit.
An example of this is shown in Fig. 23, where a π/2 Z ⊗ X
rotation, such as the one that shows up in the CNOT circuit
of Fig. 15(b), is moved past a π/4 Z rotation on the second
qubit. Noting that Z ⊗ X does not commute with I ⊗ Z , the
basis for the π/4 rotation becomes

i(Z · I) ⊗ (X · Z) = iZ ⊗ (−iY) = Z ⊗ Y,

thus what was originally a π/4 rotation across a single qubit
has now become a π/4 rotation across multiple qubits.

4Note that our rules for moving Pauli rotations past measurements
are slightly different from those presented in Ref. [12]. This is be-
cause unlike the circuits in Ref. [12] where there is a single layer of
measurement gates at the end of the circuit, the iterative QPE circuit
in Fig. 2(b) features mid-circuit measurements and therefore other
computations happen after a measurement gate.

FIG. 23. Moving a two-qubit π/2 Z ⊗ X rotation past a single-
qubit π/4 Z rotation leads to a two-qubit π/4 Z ⊗ Y rotation.

APPENDIX D: ARRANGEMENT
OF |T〉 STATE FACTORIES

In Fig. 24, we show how to arrange magic state factories
around the logical patches and routing space for both imple-
menting Clifford and T gates directly and moving Clifford
gates through the circuit. In both cases, it is easily possible
to arrange up to four factories around the logical patches.
It is also possible to arrange even more factories, however
this might come at the cost of additional routing space. For
simplicity we stick with up to four factories.

Note that in Fig. 24(b) there is some unused space at the
top of the arrangement. This space has been left empty for

FIG. 24. Arrangements of |T 〉 state factories around the routing
spaces for (a) implementing Clifford and T operations directly and
(b) commuting Clifford operations. Green space denotes storage
space for |T 〉 states produced by the factories, which are denoted
in yellow. Note that the full factories are not shown due to size.

013325-18

COMPILATION OF A SIMPLE CHEMISTRY APPLICATION … PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

ease of symmetry with the arrangement, but could be used as
additional factory space. Such unused qubits are not included
as part of the resource estimates presented in Sec. IV.

We also stress that the space in yellow is not the full
space required for the factories, but simply an indicator of

what space the factories can be placed in. The green lines
denoting the boundaries between the factories and routing
space should be seen as extending beyond the limits of
Fig. 24, to however much space is required for individual
factories.

[1] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann,
F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush, D. Bacon,
J. C. Bardin, J. Basso, A. Bengtsson, S. Boixo, G. Bortoli, A.
Bourassa, J. Bovaird, L. Brill, M. Broughton et al., Suppressing
quantum errors by scaling a surface code logical qubit, Nature
(London) 614, 676 (2023).

[2] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer,
Elucidating reaction mechanisms on quantum computers, Proc.
Natl. Acad. Sci. 114, 7555 (2017).

[3] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean,
N. Wiebe, and R. Babbush, Even more efficient quantum com-
putations of chemistry through tensor hypercontraction, PRX
Quantum 2, 030305 (2021).

[4] N. S. Blunt, J. Camps, O. Crawford, R. Izsák, S. Leontica, A.
Mirani, A. E. Moylett, S. A. Scivier, C. Sünderhauf, P. Schopf,
J. M. Taylor, and N. Holzmann, Perspective on the current
state-of-the-art of quantum computing for drug discovery ap-
plications, J. Chem. Theory Comput. 18, 7001 (2022).

[5] I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, and
E. Lee, Fault-tolerant resource estimate for quantum chemical
simulations: Case study on Li-ion battery electrolyte molecules,
Phys. Rev. Res. 4, 023019 (2022).

[6] A. V. Ivanov, C. Sünderhauf, N. Holzmann, T. Ellaby, R. N.
Kerber, G. Jones, and J. Camps, Quantum computation for pe-
riodic solids in second quantization, Phys. Rev. Res. 5, 013200
(2023).

[7] C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in
8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).

[8] D. Litinski, How to compute a 256-bit elliptic curve private key
with only 50 million Toffoli gates, arXiv:2306.08585 [quant-
ph].

[9] D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface
code quantum computing by lattice surgery, New J. Phys. 14,
123011 (2012).

[10] A. G. Fowler and C. Gidney, Low overhead quantum computa-
tion using lattice surgery, arXiv:1808.06709 [quant-ph].

[11] D. Litinski and F. v. Oppen, Lattice surgery with a twist: Sim-
plifying Clifford gates of surface codes, Quantum 2, 62 (2018).

[12] D. Litinski, A game of surface codes: Large-scale quantum
computing with lattice surgery, Quantum 3, 128 (2019).

[13] C. Chamberland and E. T. Campbell, Circuit-level protocol
and analysis for twist-based lattice surgery, Phys. Rev. Res. 4,
023090 (2022).

[14] C. Gidney, Inplace access to the surface code y basis,
arXiv:2302.07395 [quant-ph].

[15] G. Watkins, H. M. Nguyen, V. Seshadri, K. Watkins, S. Pearce,
H.-K. Lau, and A. Paler, A high performance compiler for
very large scale surface code computations, arXiv:2302.02459
[quant-ph].

[16] C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and K.
Temme, Error mitigation for universal gates on encoded qubits,
Phys. Rev. Lett. 127, 200505 (2021).

[17] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[18] C. Gidney and A. G. Fowler, Efficient magic state factories
with a catalyzed |CCZ〉 to 2|T 〉 transformation, Quantum 3, 135
(2019).

[19] D. Litinski, Magic state distillation: Not as costly as you think,
Quantum 3, 205 (2019).

[20] E. T. Campbell, Early fault-tolerant simulations of the Hubbard
model, Quantum Sci. Technol. 7, 015007 (2022).

[21] L. Lin and Y. Tong, Heisenberg-limited ground-state energy
estimation for early fault-tolerant quantum computers, PRX
Quantum 3, 010318 (2022).

[22] G. Wang, D. Stilck-França, R. Zhang, S. Zhu, and P. D. Johnson,
Quantum algorithm for ground state energy estimation using
circuit depth with exponentially improved dependence on pre-
cision, Quantum 7, 1167 (2023).

[23] Z. Ding and L. Lin, Even shorter quantum circuit for phase
estimation on early fault-tolerant quantum computers with ap-
plications to ground-state energy estimation, PRX Quantum 4,
020331 (2023).

[24] S. Wang, S. McArdle, and M. Berta, Qubit-efficient random-
ized quantum algorithms for linear algebra, arXiv:2302.01873
[quant-ph] [PRX Quantum (to be published)].

[25] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn,
K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer,
M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette,
J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D.
Dahl et al., Multi-qubit entanglement and algorithms on a
neutral-atom quantum computer, Nature (London) 604, 457
(2022).

[26] N. S. Blunt, L. Caune, R. Izsák, E. T. Campbell, and N.
Holzmann, Statistical phase estimation and error mitigation on a
superconducting quantum processor, PRX Quantum 4, 040341
(2023).

[27] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C.
Nayak, and M. Troyer, Solving strongly correlated electron
models on a quantum computer, Phys. Rev. A 92, 062318
(2015).

[28] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
W. Sun, Z. Jiang, N. Rubin, A. Fowler, A. Aspuru-Guzik,
H. Neven, and R. Babbush, Improved fault-tolerant quantum
simulation of condensed-phase correlated electrons via Trotter-
ization, Quantum 4, 296 (2020).

[29] S. McArdle, E. Campbell, and Y. Su, Exploiting fermion num-
ber in factorized decompositions of the electronic structure
hamiltonian, Phys. Rev. A 105, 012403 (2022).

[30] N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+t
approximation of z-rotations, Quantum Inf. Comput. 16, 901
(2016).

[31] A. Y. Kitaev, Quantum measurements and the abelian stabilizer
problem, arXiv:quant-ph/9511026.

013325-19

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.1021/acs.jctc.2c00574
https://doi.org/10.1103/PhysRevResearch.4.023019
https://doi.org/10.1103/PhysRevResearch.5.013200
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/2306.08585
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/1808.06709
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1103/PhysRevResearch.4.023090
https://arxiv.org/abs/2302.07395
https://arxiv.org/abs/2302.02459
https://doi.org/10.1103/PhysRevLett.127.200505
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.22331/q-2019-04-30-135
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1088/2058-9565/ac3110
https://doi.org/10.1103/PRXQuantum.3.010318
https://doi.org/10.22331/q-2023-11-06-1167
https://doi.org/10.1103/PRXQuantum.4.020331
https://arxiv.org/abs/2302.01873
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1103/PRXQuantum.4.040341
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.22331/q-2020-07-16-296
https://doi.org/10.1103/PhysRevA.105.012403
https://dl.acm.org/doi/abs/10.5555/3179330.3179331
https://arxiv.org/abs/quant-ph/9511026

BLUNT, GEHÉR, AND MOYLETT PHYSICAL REVIEW RESEARCH 6, 013325 (2024)

[32] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, UK, 2010).

[33] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quan-
tum algorithms revisited, Proc. R. Soc. Lond. A. 454, 339
(1998).

[34] M. Mosca and A. Ekert, The hidden subgroup problem and
eigenvalue estimation on a quantum computer, in Quantum
Computing and Quantum Communications, edited by C. P.
Williams (Springer, Berlin, Heidelberg, 1999), pp. 174–188.

[35] A. M. Childs, J. Preskill, and J. Renes, Quantum information
and precision measurement, J. Mod. Opt. 47, 155 (2000).

[36] M. Dobšíček, G. Johansson, V. Shumeiko, and G. Wendin, Ar-
bitrary accuracy iterative quantum phase estimation algorithm
using a single ancillary qubit: A two-qubit benchmark, Phys.
Rev. A 76, 030306(R) (2007).

[37] R. B. Griffiths and C.-S. Niu, Semiclassical fourier transform
for quantum computation, Phys. Rev. Lett. 76, 3228 (1996).

[38] R. D. Somma, Quantum eigenvalue estimation via time series
analysis, New J. Phys. 21, 123025 (2019).

[39] T. E. O’Brien, B. Tarasinski, and B. M. Terhal, Quantum phase
estimation of multiple eigenvalues for small-scale (noisy) ex-
periments, New J. Phys. 21, 023022 (2019).

[40] K. Wan, M. Berta, and E. T. Campbell, Randomized quantum
algorithm for statistical phase estimation, Phys. Rev. Lett. 129,
030503 (2022).

[41] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory (Dover,
Mineola, New York, 1996).

[42] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme,
Tapering off qubits to simulate fermionic Hamiltonians,
arXiv:1701.08213 [quant-ph].

[43] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[44] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[45] B. Eastin and E. Knill, Restrictions on transversal encoded
quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).

[46] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algo-
rithm, Quantum Inf. Comput. 6, 81 (2006).

[47] V. Kliuchnikov, K. Lauter, R. Minko, A. Paetznick, and C. Petit,
Shorter quantum circuits, Quantum 7, 1208 (2023).

[48] Riverlane, Supplementary material for “compilation of a simple
chemistry application to quantum error correction primitives”,
https://github.com/riverlane/h2_compilation.

[49] H. Bombín, C. Dawson, R. V. Mishmash, N. Nickerson, F.
Pastawski, and S. Roberts, Logical blocks for fault-tolerant
topological quantum computation, PRX Quantum 4, 020303
(2023).

[50] S. Bravyi and J. Haah, Magic-state distillation with low over-
head, Phys. Rev. A 86, 052329 (2012).

[51] C. Jones, Multilevel distillation of magic states for quantum
computing, Phys. Rev. A 87, 042305 (2013).

[52] A. G. Fowler, S. J. Devitt, and C. Jones, Surface code imple-
mentation of block code state distillation, Sci. Rep. 3, 1939
(2013).

[53] J. Haah and M. B. Hastings, Codes and Protocols for Distilling
T , controlled-S, and Toffoli Gates, Quantum 2, 71 (2018).

[54] V. Graves, C. Sünderhauf, N. S. Blunt, R. Izsák, and M.
Szőri, The electronic structure of the hydrogen molecule:
A tutorial exercise in classical and quantum computation,
arXiv:2307.04290 [physics.chem-ph].

[55] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubiti-
zation, Quantum 3, 163 (2019).

[56] G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation
by quantum signal processing, Phys. Rev. Lett. 118, 010501
(2017).

[57] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: Exponential improvements
for quantum matrix arithmetics, in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019 (Association for Computing Machinery, New York,
NY, USA, 2019), pp. 193–204.

[58] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, Grand
unification of quantum algorithms, PRX Quantum 2, 040203
(2021).

013325-20

https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1080/09500340008244034
https://doi.org/10.1103/PhysRevA.76.030306
https://doi.org/10.1103/PhysRevLett.76.3228
https://doi.org/10.1088/1367-2630/ab5c60
https://doi.org/10.1088/1367-2630/aafb8e
https://doi.org/10.1103/PhysRevLett.129.030503
https://arxiv.org/abs/1701.08213
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.102.110502
https://dl.acm.org/doi/abs/10.5555/2011679.2011685
https://doi.org/10.22331/q-2023-12-18-1208
https://github.com/riverlane/h2_compilation
https://doi.org/10.1103/PRXQuantum.4.020303
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1038/srep01939
https://doi.org/10.22331/q-2018-06-07-71
https://arxiv.org/abs/2307.04290
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PRXQuantum.2.040203

