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Anderson localization has been widely studied in low-dimensional aperiodic electronic, photonic, and acoustic
systems. However, the disorder effect in the plasmonic system, where retardation and long-range couplings
interact in complex ways, remains an open question. In this work, we investigate the localization properties
of one-dimensional quasiperiodic plasmonic chains using the coupled dipole method and linearized Green’s
function. Our models, which incorporate nearest-neighbor or long-range dipole interactions, reveal localization
transitions, mobility edges, and intermediate phases. It is found that long-range dipole interactions and non-
Hermiticity due to retardation both play crucial roles in Anderson localization, yielding the emergence of
intermediate phases with varying widths. A link between non-Hermiticity and Anderson transition is established
by the mean phase rigidity, revealing strong non-Hermiticity along the phase boundary. The plasmonic model
involving long-range interplay and retarded effect presents richer localization phenomena than the electronic
counterpart that usually includes only nearest-neighbor coupling, laying a foundation for experimental observa-
tions of Anderson localization on plasmonic platforms.
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I. INTRODUCTION

Anderson localization, the phenomenon of the localization
of electronic Bloch waves due to the presence of uncorre-
lated disorders, has long been the hot spot of theoretical
and experimental investigation [1]. It is an underlying scat-
tering mechanism behind metal-insulator phase transitions in
three-dimensional (3D) solids. In one-dimensional (1D) and
two-dimensional (2D) noninteracting systems, all eigenstates
become localized as long as infinitesimal random disorder
strengths are introduced in the thermodynamic limit [2,3].
In 3D, however, localized and extended states can coexist
at different energies with critical energy separating localized
and delocalized eigenstates, which is dubbed as the mobility
edge [4,5]. While the typical Anderson transition occurs in
3D, a similar effect can be observed in 1D due to so-called
quasidisorders [6–9]. The paradigmatic Aubry-Andr-Harper
(AAH) model is a well-known case that exhibits a transi-
tion between a localized and an extended phase when the
strength of the quasiperiodic potential exceeds a critical point
determined by the self-duality condition [10–13]. By intro-
ducing short-range [14–16] and long-range hopping processes
[17,18], or modified quasiperiodic potentials [19–21], various
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extensions of the AAH model can possess energy-dependent
mobility edges, resulting in intermediate phases where ex-
tended and localized states coexist [22–24]. Additionally, it
has been discovered that in the presence of nonreciprocal hop-
ping terms [25–28] or complex onsite potentials [29–31], the
non-Hermitian AAH model can also exhibit mobility edges
and undergo exotic localization transitions that coincide with
topological phase transitions and/or real-complex transitions
[29]. The recent advancements in the study of quantum gases
of ultracold atoms trapped in optical lattices [32–34] have
sparked a growing interest in the localization transition and
the potential existence of mobility edges in quasiperiodic
systems, leading to their experimental detections [23,35–37].
Despite extensive studies on Anderson localization transition
across a plethora of domains such as electronics [38–40],
photonics [41–43], and acoustics [44–46], explorations for
this phenomenon in plasmonic systems remain limited owing
to the intrinsic field leakage [47].

Surface plasmon polaritons are electromagnetic waves that
propagate evanescently along a metal-dielectric interface, re-
sulting from the coupling of the electric fields with the
conduction electrons in the metal [48,49]. They can squeeze
electromagnetic fields to subwavelength scales and enhance
light-matter interactions at visible and near-infrared frequen-
cies [50–53]. These waves can also be localized on the sur-
faces of metallic nanoparticles, where a localized surface plas-
mon (LSP) resonance between the electric field and electrons
is formed, leading to strong near fields and large scattering
cross sections [54,55]. Therefore, surface plasmon polaritons
hold great potential in nanophotonic applications such as sens-
ing [56–58], lasing [59], tuning of optical response [60,61],
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and radiative heat transport [62,63]. Furthermore, plasmonic
systems, such as arrays of metallic nanoparticles that sup-
port surface plasmons, provide a powerful platform to mimic
electronic tight-binding models and explore novel physics
beyond the limitation of Fermi level and the complication
of interacting particles [64–67]. They also embed interest-
ing additional properties such as long-range interactions and
non-Hermiticity. Recently, plasmonic analogies of topological
electronic systems, including 1D and 2D Su-Schrieffer-
Heeger models [68–70], honeycomb lattices [71–73], and
breathing kagome lattices [74,75], have been proposed to
investigate subwavelength topological edge, corner, and val-
ley modes, along with energy transfer dominated by them.
In addition to topological physics, the localization properties
of plasmonic systems have been studied in various dipolar
arrays, including geometries with random [76–79], quasiran-
dom [80–82], and correlated random position orders [83,84].
Particularly, the Anderson localization of dipolar modes in
plasmonic planar composites filled with random scatterers has
been extensively studied [85]. However, there is still a lack
of understanding regarding mobility edges and the resulting
intermediate phases among these plasmonic eigenmodes.

In this work, we utilize a 1D quasiperiodic plasmonic
dipolar array to mimic the incommensurate AAH model with
off-diagonal modulation. By exploiting the coupled dipole
method, which naturally incorporates full electromagnetic in-
teractions, we investigate the Anderson localization in this
quasiperiodic model. We first demonstrate the existence of
intermediate phase hosting mobility edges in the quasistatic
approximation. Then, to accurately capture the physical be-
havior of the plasmonic array, we include retarded effects
and move to a non-Hermitian scheme, which results in the
relaxation of localization, shift of phase boundary, and inter-
mediate phases with all sorts of widths. Finally, we reveal
the strong non-Hermiticity of dipole eigenmodes along the
phase boundary with the aid of phase rigidity. Our findings
not only shed light on the understanding of mobility edges
and intermediate phases in the field of plasmonics, but also
propose an alternative candidate for observing localization
transitions and bound modes via photothermal probes in low
dimensions.

The rest of the paper is organized as follows. In Sec. II,
we introduce the quasi-1D model, the coupled dipole method,
the linearized Green’s function method, and some localization
quantities. Afterward, we present and discuss the results in
Sec. III. Finally, a conclusion is made in Sec. IV.

II. MODEL AND THEORY

A. Model

We consider a quasi-1D chain composed of spherical plas-
monic nanoparticles aligned along the x axis (Fig. 1). The
quasiperiodicity is introduced through incommensurate mod-
ulations of the spacings between nanoparticles as [15,86]

xn+1 − xn = d[1 + η cos(2πβn + φ)], (1)

where xn is the position of the nth particle, d is the mean
distance of every two adjacent particles, η is the amplitude
of the incommensurate modulation, and β denotes an irra-
tional number controlling the quasiperiodicity. Parameter φ

x

z

y

xn-1 xn xn+1

a

Longitudinal
Transverse

FIG. 1. Schematic plot of a quasiperiodic 1D InSb nanoparticle
chain and decoupled polarizations of plasmonic modes. The nanopar-
ticles in the chain are identical, characterized by a uniform radius a
and polarizability α(ω). The spacings between the nanoparticles are
modulated by the Aubry-André-Harper model [Eq. (1)].

acts as a global phase shift of the modulation, which is crucial
for topological edge states, but it does not affect localiza-
tion properties [7]. Without loss of generality, we choose
β = (

√
5 − 1)/2 and φ = 0 throughout the paper.

The nanoparticles in the chain are composed of doped
InSb, which can be characterized by the electric dipole re-
sponse due to the localized surface plasmon. This material
exhibits localized plasmonic polariton resonances in the in-
frared region around ωLSP = 1.7516×1014 rad/s, with the
permittivity described by the Drude model [70]

ε = ε∞

[
1 − ω2

p

ω(ω + i	)

]
, (2)

where ω is the angular frequency, ε∞ = 15.68 is the high-
frequency-limit permittivity, ωp = 1.86×1014 rad/s is the
plasma frequency, and the damping constant 	 = 1×1012

rad/s accounts for Ohmic losses in a metal [87]. If the
nanoparticle size is much smaller than the incident light’s
wavelength, i.e., in the quasistatic regime, then the InSb
nanoparticles can be approximately regarded as electric
dipoles according to Mie theory [88]. In this scenario, the
optical response of an individual nanoparticle in the vacuum
can be described by the quasistatic polarizability α0, which is
given by [67]

α0 = 4πa3ε0
ε − 1

ε + 2
, (3)

with particle radius a and vacuum permittivity ε0. To balance
scattering and extinction, radiative correction to polarizability
should be taken into account as follows [89]:

α(ω) = α0(ω)

1 + iγα0(ω)
, (4)

where k = ω/c is the free-space wave number, γ = −k3/

(6πε0) is the radiative loss, and c is the speed of light. It
should be noted that the inclusion of radiative and Ohmic
losses introduces non-Hermiticity into the plasmonic system.
However, we expect that this non-Hermiticity imposed by
damping only determines the quality factor of leaky modes,
and does not alter their spatial localization natures [81]. In ad-
dition, the modified long-wavelength approximation [90,91],
originating from the dynamic depolarization due to retarda-
tion, is incorporated into the polarizability commonly, and it
can cause a redshift of the dipole resonances, which increases
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as the nanoparticle grows larger, but this effect does not cor-
rect the spatial distribution of dipole modes either.

B. Coupled dipole method

If a system of nanoparticles is sufficiently spaced such that
radius a and nearest-neighbor spacing d satisfy d > 3a, each
nanoparticle can be treated as a point dipole validly [92]. A
nanoparticle at position rn with polarizability α supports a
dipole moment pn when excited by an external electric field.
For a lattice of nanoparticles, a coupled dipole equation can
be written to describe the dipole moment of a nanoparticle
induced by an external field and the sum of all neighboring
dipole moments [67]

1

α(ω)
pn = E(rn) + k2

ε0

∑
n′ �=n

G(rn − rn′ , ω)pn′ , (5)

where pn is the dipole moment at site n, k = ω/c, n′ ∈
{1, 2, . . . , N}, N is the number of the nanoparticles, E(rn) is
the incident electric field at site n, and G is the free-space
dyadic Green’s function describing the interactions between
point dipoles, which is given by [89]

G(rn − rn′ , ω) = exp(ikr)

4πr

[(
i

kr
− 1

k2r2
+ 1

)
I

+
(

− 3i

kr
+ 3

k2r2
− 1

)
r̂ ⊗ r̂

]
(6)

with r = |r| = |rn − rn′ | being the distance between two
nanoparticles and r̂ = r/r being the unit vector parallel to r.
Note that I is an identity matrix and the symbol ⊗ represents
the Kronecker product. For this quasiperiodic 1D array, there
are two types of electromagnetic modes, including longitu-
dinal (x) and transverse (y or z) ones. In this way, Green’s
functions can be decoupled into the longitudinal and trans-
verse mode parts as

Gxx(x, ω) = 2eikx

4πk2x3
(1 − ikx), (7)

Gyy/zz(x, ω) = −eikx

4πk2x3
(1 − ikx − k2x2). (8)

For the longitudinal polarization, the Green’s function
[Eq. (7)] can be broken up into near-field and intermediate-
field components, which decay at 1/x3 and 1/x2 rates
individually. The third term in the transverse Green’s func-
tion [Eq. (8)] is the far-field term and can be regarded as
long-range interaction since it decays as 1/x resembling
the Coulomb potential. In the quasistatic approximation, ne-
glecting retardation by taking the limit of kd → 0, Green’s
functions can be further simplified to

GQS
xx (x, ω) = 2

4πk2x3
, (9)

GQS
yy/zz(x, ω) = − 1

4πk2x3
. (10)

In this regime, it can be inferred from Green’s functions that
the interaction between collective dipoles is governed by the
near-field term that decays as 1/x3. In addition, to determine
the spectral response of a finite array of nanoparticles, we

can set the incident field E to be zero, and then solve the
eigenvalue equation [Eq. (5)] [93].

C. Linearized Green’s function

In order to fully capture the non-Hermitian behavior of the
plasmonic chain, we can utilize the linearized Green’s func-
tion method to incorporate the retarded interactions. However,
when the full Green’s function and radiative polarizability
are used, the coupled dipole equation of the system becomes
a nonlinear eigenvalue problem. Calculating the eigenmodes
of this system in the nonlinear regime requires searching
for zeros in the complex plane, which can be computation-
ally demanding. To avoid this difficulty, we can linearize
the dyadic Green’s function by letting ω = ωLSP and remov-
ing the ω dependence of the Green’s function as follows
(v = x, y, z) [67]:

E pv,n = d3

α(ω)
pv,n = k2

LSP

ε0

∑
n′ �=n

G̃vv (x̃nn′ )pv,n′ , (11)

with

G̃xx(x̃nn′ ) = 2eikLSPdx̃nn′

4πk2
LSPx̃3

nn′
[1 − ikLSPdx̃nn′ ],

G̃yy/zz(x̃nn′ ) = −eikLSPdx̃nn′

4πk2
LSPx̃3

nn′

[
1 − ikLSPdx̃nn′ − (kLSPd )2x̃2

nn′
]
,

(12)

where x̃nn′ = |xn − xn′ |/d is the spacing between two nanopar-
ticles scaled by d and kLSP = ωLSP/c is regarded as the
magnitude of the wave vector of light with the same frequency
as the single-particle surface plasmon resonance. The symbols
n and n′ label the nanoparticle site. We can then diagonalize
the linearized Green’s matrix to obtain the eigenpairs E and p.
Additionally, we can find the eigenfrequencies of the modes
by letting E = d3/α(ω) and then solving for ω, which is a
valid approximation for small nanoparticles. This is because
the frequency in the polarizability varies more rapidly than
the frequency in the Green’s function [94]. Although the
approximation is less valid for larger nanoparticles, particu-
larly at the light line, it still allows us to touch the boundary
of the large-particle scheme. Note that the solved eigenfre-
quencies are commonly represented in the complex form of
ω = Re(ω) + i Im(ω), where the real part Re(ω) encapsulates
the natural frequency of a plasmonic eigenmode, and the
imaginary part Im(ω) provides insight into its decay rate. To
assess the quality of a specific mode, we can examine the
mode quality, which is defined as the inverse of the magnitude
of Im(ω), i.e., 1/|Im(ω)|. A high value of 1/|Im(ω)| indicates
a favorable mode quality for the corresponding eigenmode.

D. Localization quantities

In order to measure the localization nature of states in
the quasiperiodic plasmonic chain, we study the inverse and
normalized participation ratios of our system. The presence of
an intermediate phase, for which phase localized and extended
eigenmodes coexist in the spectrum, can be demonstrated
by simultaneously calculating the mean inverse participation
ratio (IPR) and the mean normalized participation ratio (NPR)
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TABLE I. Values of 〈IPR〉, 〈NPR〉, and � for localized, ex-
tended, and intermediate phases in a 1D disordered chain with N
nanoparticles.

Phase 〈IPR〉 〈NPR〉 Quantity �

Localized ∼O(1) ∼N−1 � < − log10 N
Extended ∼N−1 ∼O(1) � < − log10 N
Intermediate ∼O(1) ∼O(1) −2 � � � −1

of the eigenmodes [23]. For the lth dipole eigenmode pl
n, they

are defined as [22]

IPRl =
∑N

n=1

∣∣pl
n

∣∣4

(∑N
n=1

∣∣pl
n

∣∣2
)2 , NPRl =

[
N

N∑
n=1

∣∣pl
n

∣∣4

]−1

, (13)

where N is the size of the lattice, and the sum is over the
lattice sites denoted by n. Furthermore, by averaging these
two quantities over all eigenmodes, we can define the mean
IPR and NPR of the plasmonic system:

〈IPR〉 = 1

N

N∑
l=1

IPRl ,

〈NPR〉 = 1

N

N∑
l=1

NPRl . (14)

Generally, we have 〈IPR〉 ∼ N−1 or O(1) if the eigenmode is
an extended or localized mode, respectively. As for 〈NPR〉,
we can conclude a contrary interpretation, i.e., 〈NPR〉 ∼ O(1)
or N−1 if the eigenmode is an extended or localized mode,
respectively. Moreover, we define the intermediate phase as
the regimes in which 〈IPR〉 and 〈NPR〉 are finite in the
thermodynamic limit (N → +∞). To figure out whether the
intermediate, fully extended, and localized phases exhibit in
the system conveniently, we calculate the quantity � as [95]

� = log10[〈IPR〉×〈NPR〉]. (15)

When the values of both 〈IPR〉 and 〈NPR〉 are finite, we get
−2 � � � −1. Specifically, we have � < − log10 N when
either of them is ∼N−1. For convenience, we conclude the
typical orders of 〈IPR〉, 〈NPR〉, and the main range of � for
different phases in Table I.

III. RESULTS AND DISCUSSION

A. Quasistatic regime

We first investigate the plasmonic AAH model for a
small chain geometry (a = 50 nm, d = 1 µm) with N = 100
nanoparticles under the quasistatic approximation and dis-
cuss how the localization properties vary as a function of
the disorder modulation amplitude η. To recognize the ef-
fect of full pair dipole interactions, we account for only the
nearest-neighbor (NN) interactions and omit the higher-order
interplay artificially to make an approximate model. We force
the model to be chiral and then compare it with the physical
full-dipole (FD) model. In this regard, we display the mean
IPR and NPR of all transverse eigenmodes with increasing
values of η for these two different cases, i.e., NN and FD

Intermediate

Intermediate

(a)

(b)

(c)

(d)

FIG. 2. Mean inverse participation ratio (〈IPR〉, red lines) and
mean normalized participation ratio (〈NPR〉, blue lines) of trans-
verse eigenmodes as a function of the modulation amplitude η

under the quasistatic regime considering (a) the nearest-neighbor
and (b) full-dipole interactions. The gray-shaded regions suggest the
intermediate phases. (c), (d) The real parts of the eigenfrequency
spectra versus η with the nearest-neighbor and full-dipole interac-
tions, respectively. The colors are rendered with their respective IPR
values. The material parameters for the InSb nanoparticle chain are
set as a = 50 nm, d = 1 µm, and N = 100.

interactions in Figs. 2(a) and 2(b), respectively. We can see
that there exist three distinct phases depending on the modu-
lation amplitude η. In the case of FD interactions, showed in
Fig. 2(b), when η is smaller than the threshold ηc1 ≈ 0.2, all
the eigenmodes are extended, as indicated by a vanishing IPR.
Each of the eigenmodes is localized, as suggested by a finite
IPR when η exceeds the second threshold ηc2 ≈ 0.4. When η

lies in-between two thresholds (gray-shaded region), an inter-
mediate regime hosting a mobility edge characterized by the
coexistence of extended and localized states shows up. This
mobility edge, also known as the hierarchy of localization
transitions, is driven by the intrinsic full dipole-dipole interac-
tions of the plasmonic system exactly. It is interesting to note
that, differing from the electronic AAH model with a diagonal
modulation, even for very large η values the NN case still
cannot enter the regime where all eigenmodes are localized
[Fig. 2(a)]. Hence, the NN plasmonic system exhibits an ul-
trawide intermediate phase for η > ηc ≈ 0.25. We stress that
the ultrawide intermediate phase observed in the plasmonic
systems is not caused by finite-size effects. To rule out this
possibility, we perform the remaining finite values of 〈IPR〉
and 〈NPR〉 for different system sizes described by a sequence
of Fibonacci numbers when η is above ηc in Appendix A. The
results clearly indicate the existence of the ultrawide inter-
mediate phase even in ultralong nearest-neighbor plasmonic
systems.

To reveal the mechanisms and mobility edges behind the
ultrawide intermediate phase clearly, we plot all the transverse
eigenfrequencies encoded with the corresponding IPR for the
above two cases as shown in Figs. 2(c) and 2(d). For clarity,
we normalize the frequency in a unit of ωLSP and depict only
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the spectra within a normalized frequency window of [0.9995,
1.0005]. After a comparison with the case considering the FD
interactions as presented in Fig. 2(d), it is found that the spec-
tral structure under the NN approximation [Fig. 2(c)] is almost
symmetric with respect to ωLSP and the IPR distribution of the
eigenmodes is also symmetric, which is enforced by the chiral
symmetry of the NN system. An asymmetric spectrum, as
well as an asymmetric IPR distribution, due to the breaking of
chiral symmetry introduced by full dipole-dipole interactions,
is exhibited in the circumstance of the FD interactions, which
can be observed in a series of modified electronic AAH mod-
els with higher-order hopping terms [14,17,27]. Moreover, the
spectral gaps at specific band fillings l/N separate different
band sets and correspond to different topological numbers
(see Appendix C for details), where l is the mode index, and
N is the total number of modes or sites. We also find that
the IPR of all three main bands separated by two gaps with
fillings β and 1 − β exhibits a higher value with η beyond
a critical value in both cases, but the critical value shifts
with the frequencies if considering the FD interactions, which
exactly suggests a mobility edge. However, we note that all
the main bands in the NN case undergo sharp localization
transitions at the critical point ηc ≈ 0.25 but the moderate
main bands around ωLSP, corresponding to 1 − β < l/N < β,
which could result in two symmetric mobility edges dividing
the spectrum into a hierarchy where extended eigenmodes
appear in the middle while the localized ones appear near
two edges (see an analytical solution in Appendix B) and the
ultrawide intermediate phase as demonstrated in Fig. 2(a).

To gain a more insightful visualization of the transition
between the extended and localized phases in both the NN
and FD cases, it is beneficial to examine the IPR distributions
of the individual eigenmodes identified by the filling indices
l/N , as depicted in Figs. 3(a) and 3(b). The deep blue patch
in Fig. 3(a) for η > 0.25 corresponds to the never localized
eigenmodes within the filling range of 1 − β < l/N < β in
the NN case. By contrast, there is a transition to the lo-
calized phase through the critical value ηc2 ≈ 0.4 for these
eigenmodes in the FD case [see Fig. 3(b)]. This crucial differ-
ence corroborates the emergence of the ultrawide intermediate
phase in the NN case. We further confirm the existence of
the ultrawide intermediate phase by inspecting the spatial
distribution of the dipole eigenmode at l/N = 0.5 with fixed η

ranging from 0.1 to 0.8 for these two cases. It can be seen from
Figs. 3(c) and 3(d) that localized and extended modes have
different forms of dipole moments. The dipole eigenmode
becomes rugged as η increases but is extended over the whole
chain for both cases at η < 0.4. However, for the FD case,
the mode shows a sharp transition once η > 0.4 and turns
to localize on a few lattice sites, while the mode is always
extended for the NN case.

B. Fully retarded regime

Within the quasistatic approximation, our investigation fo-
cuses mainly on transverse polarization. It is worth noting
that for longitudinal eigenmodes, the frequency spectrum
and band gaps are substantially wider due to the presence
of stronger dipole-dipole couplings, characterized by GQS

xx
[Eq. (9)]. Despite this difference, the localization hierarchy

(a)

(c) (d)

(b)

FIG. 3. Inverse participation ratio (IPR) associated with the fill-
ing indices l/N as a function of the disorder amplitude η for a
chain of N = 100 InSb nanoparticles with a = 50 nm and d = 1
µm under the quasistatic regime considering (a) nearest-neighbor and
(b) full-dipole interactions. The black dashed vertical lines indicate
the critical phases, while the black dotted horizontal lines separating
the band sets denote the fillings of l/N = β and 1 − β. (c), (d) The
spatial distribution of dipole moment intensities for those modes
marked by black diagonal cross markers in (a) and (b), respectively,
with varying η from 0.1 to 0.8. Colors in (a) and (b) are rendered by
IPR of each eigenmode.

of the longitudinal modes is almost identical to that of the
transverse modes. However, we expect a notable discrepancy
between these two polarizations in the retarded regime due
to the distinct decay terms between Eqs. (7) and (8). With
the retarded effect incorporated, non-Hermiticity manifests in
the quasiperiodic plasmonic model, hence, in the following,
we turn to investigate the impact of the retardation-induced
non-Hermiticity on the Anderson localization of this model.

The mean IPR of the longitudinal (LO) and transverse (TR)
eigenmodes with the NN or FD interactions in the retarded
regime are displayed in Fig. 4. Here, κ = kLSPd/π is a tuning
parameter, which can be varied by changing the mean distance
between nanoparticles, of the retarded effect. The case of
η = 0.15 shown in Fig. 4(a) reveals that a large part of the
longitudinal and transverse eigenmodes are extended, with the
mean IPRs for both NN and FD cases over the entire eigen-
modes in a system of N = 1000 showing fairly low values at
the κ = 0 limit. When κ > 0, under the retarded effect, the
longitudinal eigenmodes with both interactions are disturbed,
leading to the delocalization of initially localized modes on
the disordered chain, driving the plasmonic system with longi-
tudinal polarization toward a more extended phase as a whole.
The trend continues until κ ≈ 0.8, beyond which the extended
modes in the longitudinally polarized system gradually re-
turn to being localized due to the decoupling between the
dipoles. However, the localization behavior of the transverse
eigenmodes is rather complicated for the small η of 0.15. For
0 < κ < 0.28, the mean IPR of transverse eigenmodes in the
NN case forms a broad peak, slightly exceeding the counter-
part at κ = 0. After κ = 0.28, it varies in the same way as the
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(a) (b) (c)

FIG. 4. Mean inverse participation ratios (〈IPR〉) of the longitudinal (LO) and transverse (TR) eigenmodes for a chain of N = 1000 InSb
nanoparticles as a function of the tuning parameter κ for modulation amplitude (a) η = 0.15, (b) η = 0.45, and (c) η = 0.85. The results
obtained from both nearest-neighbor (NN) and full-dipole (FD) interactions are compared.

longitudinal modes. Furthermore, the 〈IPR〉 curve of eigen-
modes for transverse polarization in the FD case exhibits a
series of local peaks in the interval of κ ∈ (0, 0.5), particularly
the towering peaks after κ > 1/π ≈ 0.32 (for kLSPd > 1),
which may be attributed to the presence of abnormal edge
modes induced by far-field interactions at large spacings [94].

Similarly, for a moderate η value of 0.45 given in Fig. 4(b),
some localized modes of longitudinal polarization (solid
lines) in the cases of NN and FD become extended again and
then relocalized with increasing κ . Despite this modulation
due to retardation, the localization profiles of the longitu-
dinally polarized system, characterized by 〈IPR〉, are only
mildly affected. In the small η case (η = 0.15), the retarded
effect represented by κ has a more pronounced impact on
the localization properties of the transverse modes. Thus, a
similar behavior can be expected even when η is not small. As
can be seen from the 〈IPR〉 plot of transverse eigenmodes for
the NN and FD cases [dashed lines in Fig. 4(b)], the values
of 〈IPR〉 drop dramatically as κ increases and down to 0 at
κ = 0.6 eventually, because all NN couplings are mediated by
the far-field terms when κ is above 0.6. Additionally, for the
FD case, the 〈IPR〉 plot has two curious turning points near
κ ≈ 0.56 and 0.8.

For a larger η value of 0.85 given in Fig. 4(c), one can see
that both cases of NN and FD get high values of 〈IPR〉 at the
beginning, indicating the localization of most modes in the
presence of strong disorder. Furthermore, when the system is
subjected to retardation, the 〈IPR〉 value of the eigenmodes,
excluding the transverse FD case, fluctuates around the initial
value observed at κ = 0. It is worth noting that there exists
a region in the transverse NN case where the 〈IPR〉 value
gradually ascends and eventually surpasses the value at κ = 0
after κ reaches approximately 0.6.

The features of 〈IPR〉 at various levels of disorder η can
be further understood by checking the IPR distributions for
each individual eigenmode (IPRl ). For η = 0.45, we take the
transverse-polarized eigenmodes with NN and FD interac-
tions and depict their IPRl in Figs. 5(a) and 5(c), respectively.
We successively define different blocks of IPRl by black dot-
ted lines for l/N = [{3(1 − β )}, {2β}, 1 − β, β, {4β}, {4(1 −
β )}, 2(1 − β ), {3β}] with {·} being the fractional part of a
real number, and each of these fillings corresponds to a gap
between sets of eigenfrequency bands as illustrated in Ap-
pendix C. From Fig. 5(a), it is clear that all localized modes

are destroyed after κ = 0.6, which means that the plasmonic
system is fully extended (〈IPR〉 ∼ 0) when κ > 0.6. Nonethe-
less, once taking the FD interactions, the system hosts two
bright patches appearing in Fig. 5(c) for 0.5 < κ < 0.6 and
κ > 0.8, indicating that some of the extended modes become
localized abruptly near κ ≈ 0.56 and 0.8. These observations
are consistent with the behavior of the transverse mode with
the NN and FD interactions in Fig. 4(b). We also observe that,
for the NN case in Fig. 5(a), the localized-to-extended edge
goes up (down) in steps as l/N increases (decreases) with κ

for l/N > β (l/N < 1 − β), which implies that the retarda-
tion can exhibit a new mobility edge resembling the role of
quasiperiodic disorder. The FD case shown in Fig. 5(c) also
presents a similar localized-to-extended mobility edge com-
pared to the extended-to-localized edge under the quasistatic
regime but a reverse transition priority before κ = 0.32. For
κ > 0.32, however, the in situ localization hierarchy is over-
turned by the retarded long-range interactions.

For η = 0.8, Fig. 5(b) shows that the originally extended
modes for 1 − β < l/N < {4β} and {4(1 − β )} < l/N < β

start to get localized when κ > 0.6 for the NN case.
Specifically, the 〈IPR〉 value for the FD case decreases
significantly as κ increases, which stems from Fig. 5(d) that
the originally localized modes are significantly affected and
delocalized gradually by the retarded long-range term in the
transverse Green’s function. We also see that both band sets
for l/N > β and 1/N < 1 − β in different blocks and within
the same blocks show nonuniform delocalization transitions.
This fact can be explained by the subdivision of the enlarged
minigaps within the same band set into multiple subsets at
the strong disorder level of η = 0.85. The above examples
demonstrate that the localization properties of our plasmonic
chain, when combined with retarded effects, generally exhibit
a nontrivial and nonmonotonic dependence on the retardation
parameter κ .

Having studied the impact of the retardation parameter κ

on the localization property of the plasmonic chain, we now
uncover the effect of varying η with different κ . In the limit of
κ = 0, which corresponds to the quasistatic regime as shown
in Fig. 2, the behavior of the plasmonic system is distinct for
the NN and FD cases as the disorder strength η varies. When
η is below the critical point, both NN and FD cases exhibit
extended modes. However, when η is beyond the critical point,
the modes in the NN case become partially localized. On the

013322-6



EMERGENT MOBILITY EDGES AND INTERMEDIATE … PHYSICAL REVIEW RESEARCH 6, 013322 (2024)

(a)

(c) (d)

(b)

FIG. 5. Inverse participation ratios (IPRs) of each individual
transverse eigenmode with increasing κ under different values
of η and interaction types. Specifically, four distinct scenarios
are considered: (a) nearest-neighbor interactions with η = 0.45,
(b) nearest-neighbor interactions with η = 0.85, (c) full-dipole inter-
actions with η = 0.45, and (d) full-dipole interactions with η = 0.85.
The 2D contour plots at the lower panels are projections of the corre-
sponding 3D surface graphs. In the contour plots, the black dotted
lines represent the band separations corresponding to the gap in-
dices of [{3(1−β )}, {2β}, 1−β, β, {4β}, {4(1−β )}, 2(1−β ), {3β}].
Note that both the heights and the colors of the 3D plots change
according to the value of IPRl .

other hand, by considering the FD interactions and further
increasing η, the modes become completely localized. As a
result, in the special limit of κ = 0, the plasmonic system
displays different mobility edges and intermediate phases in
these two distinct scenarios. That is exactly the moral of
the story in the quasistatic regime. Now, we can proceed to
study how the localization property of the plasmonic system
changes with varying η under a fixed value of κ .

In Fig. 6, we plot 〈IPR〉 and 〈NPR〉 as a function of η

with three given κ for different polarizations and interac-
tions. When κ is small (κ = 0.1), the appearance of localized
modes, mobility edge, and intermediate phase for all cases
is in accord with that discovered in the quasistatic scenario

(a)

(d)(c)

(b)

FIG. 6. The mean inverse participation ratio (〈IPR〉, solid lines)
and mean normalized participation ratio (〈NPR〉, dashed lines) of
the eigenmodes vary with η, while κ is fixed at 0.1 (blue lines), 0.5
(gray lines), and 0.9 (red lines) for four different cases: (a) longitu-
dinal polarization with nearest-neighbor interactions (LO and NN),
(b) longitudinal polarization with full-dipole interactions (LO and
FD), (c) transverse polarization with nearest-neighbor interactions
(TR and NN), and (d) transverse polarization with full-dipole inter-
actions (TR and FD).

(Fig. 2). In contrast, when κ takes a larger value (κ = 0.5),
there are several significant changes. First, for longitudinal
polarization, not only the localized modes with the NN in-
teractions but also the ones with the FD interactions appear at
a marginally larger η value [Figs. 6(a) and 6(b)], which can
be attributed to the fact that higher-order hoppings are small
enough at the moderate κ for the FD case. Yet, in the trans-
verse case, the critical value for the debut of localized modes
with the NN interactions increases apparently, as presented
by the gray lines in Fig. 6(c). If the long-range term is intro-
duced [Fig. 6(d)], there is a plateau in the 〈IPR〉 curve before
most modes turn to be localized, and a double-hump around
η ≈ 0.18, resembling the one observed in Fig. 4(a). Second,
in the case of longitudinal and transverse polarizations, the
ultrawide intermediate phase manifesting under the NN in-
teractions still exists. However, with the long-range hopping
allowed, the region of the intermediate phase with finite width
expands a little bit for the longitudinal polarization, while the
transverse modes feature a much wider intermediate phase
since the long-range term gets notable. Last, a more extended
phase merges at η = 0 as reflected by a higher 〈NPR〉 for the
transverse FD case, which can be understood by the fact that
the effective interferences between electromagnetic waves
generated by collective plasmons and photons would broaden
the spatial distribution of dipole moments for certain modes,
albeit the position order is periodic. As κ increases further
to κ = 0.9, we see that except for the narrower intermediate
phase under the long-range interactions, there is no important
change in longitudinally polarized modes. Likewise, there
also hosts a plateau and a very wide but shifted intermediate
phase in the transverse FD case. Meanwhile, a lower 〈NPR〉
is discovered at η = 0, implying the nonmonotonic tuning
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(a)

(c) (d)

(b)

FIG. 7. The localization phase diagrams of an N = 1000 InSb-
nanoparticle quasiperiodic chain for four different cases: (a) longitu-
dinal polarization with nearest-neighbor interactions, (b) longitudinal
polarization with full-dipole interactions, (c) transverse polarization
with nearest-neighbor interactions, and (d) transverse polarization
with full-dipole interactions, in the η and κ planes. The black cross
markers in (b) and (d) stand for the selected candidate data points to
be examined in Figs. 8 and 9. The color code indicates the values of
the quantity �.

behavior of κ as those shown in Fig. 4. Still, for the transverse
NN case, some delocalized modes are no longer immune to
disorder, and therefore these modes enter the localized stage
when η > 0.8, the profile of which is consistent with what we
studied in Fig. 5(b).

C. Phase diagrams

Finally, we present the complete results using a phase
diagram by plotting the value of � in the η−κ grid of
[0, 0.9] × [0, 1]. The quantity η can help us segregate the
three distinct phase regions. Figure 7 depicts the phase dia-
gram of longitudinal and transverse eigenmodes with the two
kinds of interactions in our quasiperiodic plasmonic model.
We can identify and mark the three phases, i.e., the extended,
localized, and intermediate phases in the phase diagrams ac-
cording to Table I. It is discovered that in the limit of small
κ the retarded plasmonic system reduces to the quasistatic
model, which exhibits an ultrawide intermediate phase if the
NN approximation is taken, while a finitely wide intermedi-
ate phase if adding the FD interactions as discussed above.
Furthermore, moving away from this limit, it can be seen
from Figs. 7(a)–7(d) that the edge between the localized
phase and the intermediate phase is pushed toward larger η

and then progressively repelled back with an increase in κ ,
especially for the transverse polarization shown in Figs. 7(c)
and 7(d), suggesting that it is more difficult for the localized
eigenmodes with transverse polarization to emerge in the fre-
quency spectrum for a range of κ . In other words, for a range
of η, the eigenmodes can be switched from intermediate to
extended as κ increases, but further increasing κ can bring
them back to intermediate states. Even though these features

also appear in the longitudinal eigenmodes, the control of
retardation over them is less notable than the counterpart
over transverse eigenmodes. As shown in Fig. 7(a), the phase
edge of the longitudinal system in the NN case is pushed
slightly only. However, in Fig. 7(b), the size of the interme-
diate phase is stretched for the range of κ between 0.32 <

κ < 0.94 as long as the FD interactions are introduced. In
the meanwhile, for transverse polarization, the size of the
intermediate phase with the NN cutoff shrinks for κ > 0.26
in Fig. 7(c), and a bright orange patch appears in the re-
gions of strong disorder for κ > 0.5, which can be attributed
to the localization of specific extended modes as discussed
before [Fig. 5(b)]. Also, when considering the far-field in-
teraction term, the intermediate phase with a finite width
is quenched as κ goes larger, replaced by an ultrawide one
instead as depicted in Fig. 7(d). Interestingly, we note that
there is a bright orange spot in the vicinity of κ ≈ 0.5 and
η ≈ 0.18 in this case, demonstrating an early appearance
of the intermediate phase, which is distinct from the other
scenarios. This is due to the zooming peaks in the scenario
of transverse dipoles with full pair interactions as illustrated
in Fig. 4(a).

To illuminate the role of retarded long-range interactions
in mediating the phase boundary, we dwell into the complex
eigenfrequency spectra in three different phases highlighted
by the cross markers in Figs. 7(b) and 7(d) for both polariza-
tions, which are displayed in Figs. 8(a)–8(c) and 9(a)–9(c).
The pure Ohmic loss of −	/2 is marked by a dotted-dashed
line, serving as a baseline to discern between guided and leaky
modes. Furthermore, Figs. 8(d)–8(f) and 9(d)–9(f) show-
case the respective dipole moment intensity |pν (n)| (ν = x, z)
along the sites n of the chain for longitudinal (x) and trans-
verse polarizations (z) at three different filling indices, which
are indicated by a circle, triangle, and square in Figs. 8(a)–8(c)
and 9(a)–9(c), corresponding to different modes of interest
within the spectra. Here, we focus on a 1000-nanoparticle
chain perturbed by a moderate spacing disorder of η = 0.5,
and discuss the unperturbed case in Appendix C. In a periodic
1D array of nanoparticles, the plasmonic modes can be clas-
sified either as leaky or not by the light-line condition since
each mode has a well-defined Bloch wave vector. However,
such a prescription is unsuitable for quasiperiodic systems
due to the absence of translational symmetry. We can always
consider the mode quality by examining the imaginary part
of the eigenfrequency spectrum Im(ω), e.g., for the guided
modes outside the light line, they are immune to the radia-
tive losses, thereby possessing higher mode qualities than the
leaky modes.

In longitudinal polarization, from the frequency spectra
in Figs. 8(a)–8(c), we see three main clusters near the real
frequencies of 0.998ωLSP, ωLSP, and 1.002ωLSP divided by the
two fractal gaps at the fillings of β and 1 − β visible in gray-
shaded blocks. At a weak retardation strength of κ = 0.15
shown in Fig. 8(a), the values of Im(ω) for the modes in
the cluster near 1.002ωLSP (l/N > β) are larger than those
in clusters near 0.998ωLSP (l/N < 1 − β) and ωLSP (1 − β <

l/N < β), and distributed in the vicinity of −	/2, which
connotes that the modes with l/N > β are of higher quali-
ties and guided. As the retardation strength κ increases from
0.15 to 0.55 and subsequently to 0.95, the plasmonic system
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Longitudinal eigenfrequency spectra of a finite N = 1000 plasmonic chain under a quasiperiodic disorder of η = 0.5 with different
geometric configurations for (a) κ = 0.15, a = 100 nm, (b) κ = 0.55, a = 360 nm, and (c) κ = 0.95, a = 630 nm. These correspond to three
typical phases with different retardation strengths for a fixed disorder considering the full-dipole interactions in Fig. 7(b). The two main spectral
gaps with filling numbers l/N = 1 − β and β are indicated by gray-shaded blocks. The dotted-dashed line portrays the Ohmic loss of −	/2.
(d)–(f) Spatial decay profiles of three representative modes tagged by circle, triangle, and square markers at l/N = 0.9 (red), l/N = 0.5 (gray),
and l/N = 0.1 (blue) from the top to bottom rows.

undergoes a localized-intermediate-localized phase transition.
The modes with l/N > β go from being guided and weakly
leaky in Figs. 8(a) and 8(b) to attaining a fully leaky nature
in Fig. 8(c). In parallel, the modes with l/N < β display an
enhanced radiating behavior.

For these guided modes, just as quasistatic plasmons, they
can be subject to Anderson localization and well localized at
certain sites with very high IPRs, which is exemplified in the
top row of Fig. 8(d) by the spatial distribution of dipoles with
l/N = 0.9. The intensity of dipole moments is strongly con-
centrated on the localization center, and drops steeply to small
value with a exponential decay, crossing over to a power-law
tail from the near-field term decaying as 1/x3. In the same
vein, for the cases of weakly leaky modes, they can also
exhibit both exponential and power-law decaying behaviors,
as shown in the middle and bottom rows of Fig. 8(d) and in
the top row of Fig. 8(e), despite radiating a little energy into
the photonic background. We note that the same mechanism
occurs for leaky modes with l/N < 1 − β, which are highly
radiating and dominated by 1/x2 intermediate-field interac-
tions. These modes can still manifest a localization behavior
with a slower power-law decay as the case of l/N = 0.1
shown in the bottom row of Figs. 8(e) and 8(f). Interestingly,
at the retardation of κ = 0.55, the modes with 1 − β < l/N <

β that leak out less reveal a very low IPR and are extended
over the chain as suggested by the dipole distribution of l/N =
0.5 in the middle row of Fig. 8(e), which boils down to the
coupling with a retarded free-space radiation. The interference

effect from this radiation delocalizes the spatial localization
properties of these leaky modes, allowing the emergence of
the intermediate phase in Fig. 7(b). By further amplifying
the retardation strength to κ = 0.95 in the middle row of
panel 8(f), the modes come back to the localized state again,
therefore the plasmonic system acquires a localized phase in
the leaky sense.

Next, we take a look at transverse polarization, which
shares the same spectral structure with that of longitudinal
polarization at the weak retardation of κ = 0.05, except for
a reverse order with respect to the real frequency Re(ω) as
shown in Fig. 9(a). We can also obtain a cluster of guided
modes in proximity to 0.999ωLSP, corresponding to the filling
numbers of l/N > β. Additionally, two clusters of weakly
leaky modes manifest themselves in the vicinity of ωLSP with
1 − β < l/N < β and 1.001ωLSP with l/N > β. As we fur-
ther elevate the retardation tuning parameter, in the cases of
κ = 0.45 and 0.75 presented in Figs. 9(b) and 9(c), these
transversely polarized modes become more radiating progres-
sively as the longitudinal polarization, but we cannot delineate
them on the basis of filling numbers. This arises from the
retarded long-range interaction, which can close the in situ
spectral gaps, accordingly, disrupting the hierarchy of fractal
gaps. For example, the one located at l/N = β is closed as
indicated by the dotted vertical line in Figs. 9(b) and 9(c).
Likewise, this long-range interaction can destroy the in situ
localization hierarchy, that is, the mobility edge, as discussed
in Fig. 5(c).
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(d)

(a)

(e)

(b)

(f)

(c)

FIG. 9. Transverse eigenfrequency spectra of a finite N = 1000 plasmonic chain under a quasiperiodic disorder of η = 0.5 with different
geometric configurations for (a) κ = 0.05, a = 33 nm, (b) κ = 0.45, a = 300 nm, and (c) κ = 0.75, a = 500 nm. These also correspond to
three typical phases with different retardation strengths for a fixed disorder considering the full-dipole interactions on the cross markers in
Fig. 7(b). The two main spectral gaps with filling numbers l/N = 1 − β and l/N = β as well as the Ohmic loss of −	/2 are indicated in the
same way as Fig. 8. (d)–(f) Spatial decay profiles of three representative modes labeled by circle, triangle, and square markers at l/N = 0.1
(red), l/N = 0.5 (gray), and l/N = 0.9 (blue) from the top to bottom rows.

In Fig. 9(d), at the given retardation strength of κ = 0.05,
we show the decay profile of the transverse dipole eigenmodes
with l/N = 0.1, 0.5, and 0.9 ranging from the top to bottom
rows, respectively. It is found that these guided or weakly
leaky modes can be localized by a quasiperiodic disorder,
representing algebraic tails with longer decay lengths than
the longitudinal counterpart in addition to the exponential
peaks. Therefore, this case, free of the dictation of far-field
interactions, can present high IPRs and a localized phase. In
Figs. 9(e) and 9(f), we display the same quantities for the
transverse dipoles with the same fillings at κ = 0.45 and 0.75,
which are located in the intermediate and extended phases in-
dividually. We can see that the domination of slowly decaying
long-range interactions from the well coupling with photons
on the collective dipoles allows them to inherit the robust-
ness against localization, which causes them to be spatially
delocalized over the chain even for those modes with a few
radiative losses, as shown in the middle row of Fig. 9(e) and
the bottom rows of Figs. 9(e) and 9(f). Nevertheless, from
the upper row of Fig. 9(e), we note that a fully leaky mode
of l/N = 0.9 with a slightly high IPR is confined to multiple
nonadjacent sites followed by high-amplitude algebraic tails,
which is commonly referred to a semilocalized polaritonic
mode as studied in Refs. [96,97]. These semilocalized modes
can be regarded as spatially localized modes, characterized
by an exponential peak exhibiting a size-independent IPR,
accompanied by long-range tails that have undergone signif-
icant amplification to attain comparable magnitudes with the

central peak. In a nutshell, it can be confirmed by the above
mode-dependent decay behaviors that there is no specific law
between mode quality and spatial localization for both polar-
izations. More precisely, these longitudinally or transversely
polarized plasmonic dipoles can be localized in a highly or
lowly leaky sense, which was also discussed in a 2D 12-fold
quasicrystalline plasmonic lattice [81].

In electronic systems, non-Hermiticity can compete with
the Anderson localization and lead to delocalization of bulk
states, and also enables a localization at edges due to the
non-Hermitian skin effect [98–100]. Very recently, it has been
argued that there is a duality between non-Hermitian Hamil-
tonians in flat spaces and their Hermitian counterparts in
curved spaces [101], which means that nonlinearity can serve
as an equivalent route toward non-Hermiticity. Meanwhile,
the generation of moving localized modes has been observed
in the nonlinear plasmonic arrays [102–104], therefore, we
expect a connection between non-Hermiticity and localization
transitions presented in the phase diagrams. To corroborate
that the localization transitions are tied to non-Hermiticity
induced by retardation, we measure the difference between
the right and left eigenmodes (|pl

R〉 and |pl
L〉) of the eigenvalue

l in the finite plasmonic chain through the phase rigidity
defined as [105]

rl
p =

∣∣〈pl
L

∣∣pl
R

〉∣∣√〈
pl

R

∣∣pl
R

〉〈
pl

L

∣∣pl
L

〉 (16)
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(a)

(c) (d)

(b)

FIG. 10. The mean phase rigidity 〈rp〉 of plasmonic eigenmodes
in the η−κ space for four distinct cases of polarization and interac-
tion schemes. These cases include (a) longitudinal polarization with
nearest-neighbor interactions, (b) longitudinal polarization with full-
dipole interactions, (c) transverse polarization with nearest-neighbor
interactions, and (d) transverse polarization with full-dipole interac-
tions. The black dashed lines mark the boundaries between the three
localization phases: extended, intermediate, and localized, which are
determined by the differential quantity |∂�/∂η|.

with 0 � rl
p � 1. For Hermitian systems, rigidity is exactly 1

for all eigenmodes, while for non-Hermitian systems where
|pl

L〉 �= |pl
R〉, we generally have rl

p < 1, and near the excep-
tional points, it approaches 0. Therefore, phase rigidity can
be regarded as an indicator of the strength of non-Hermiticity.
Also, we can define the mean phase rigidity of all N eigen-
modes as

〈rp〉 =
∑N

l=1 rl
p

N
. (17)

In Fig. 10, we show 〈rp〉 as functions of η and κ for transverse
and longitudinal polarizations under different interactions.
Notably, the bright grooves formed by the comparatively low
〈rp〉 values show a nonmonotonic dependence on κ , which
may be attributed to the competition between the localization
effect induced by the disorder and the non-Hermitian retarded
effect.

We also present the boundaries among the extended, inter-
mediate, and localized phases in Fig. 10, which are derived
from computing the maximum |∂�/∂η|. In all the cases in-
vestigated in this study, we find that 〈rp〉 shows lower values
along the phase boundaries, which means that the critical
regions possess strong non-Hermiticity. In addition, we find
that the FD interactions strengthen the diffusion of non-
Hermiticity, hence resulting in ambiguous phase boundaries
observed from 〈rp〉 in Figs. 10(b) and 10(d) and complicated
boundaries of phase transitions in Figs. 7(b) and 7(d). At last,
we stress that although the phase edge in the upper right corner
of Fig. 10(c) is determined due to relatively high values of
|∂�/∂η|, there are still some modes that remain extended
beyond this edge, indicating that the plasmonic system is still

in the intermediate phase. This is confirmed by the weaker
non-Hermiticity suggested by higher 〈rp〉 values. Therefore,
caution should be exercised when interpreting the phase tran-
sition based solely on the derived quantity |∂�/∂η|, and other
indicators should also be considered.

Before summarizing, we would like to make some re-
marks on the choice of particle size a in plasmonic chains.
Specifically, we require small particle sizes to ensure that
polarizability with and without radiative correction yields
similar results, although radiative correction allows for larger
particles. We choose a radius that is large enough for classical
treatment but small enough to linearize the dyadic Green’s
function. Qualitatively similar results are expected for larger
particles, although radiative effects would be more prominent.
This is because differences in particle size influence only the
fidelity and frequency spectrum profiles of modes, without
impacting their spatial localization within the framework of
linearized Green’s functions. Aside from that, there is a trade-
off between particle radius a and minimum spacing dmin. Due
to the dipole approximation constraint, calculations are lim-
ited to spacings d that satisfy dmin = minn(xn+1 − xn) > 3a.
However, larger a and d are experimentally favorable since the
difficulty of fabrication, and an optimal pair of a and d , should
be selected to observe the intermediate phase and mobility
edge in the plasmonic chains.

Regarding the experimental implementation of our model,
which has irrational-number interparticle spacings, we pro-
vide a quantitative estimation of the effective region for our
plasmonic AAH model as follows. Taking into account a
rational truncation of the irrational β = (

√
5 − 1)/2, which is

denoted as Tn(β ) = 10nβ�
10n with n being the remaining decimal

places and ·� being the ceiling function. From the spatial
distribution of the dipole moment amplitudes for the longitu-
dinal modes with N = 1000, η = 0.5, and κ = 0.5, it turns out
that the Anderson localization persists when the truncation is
n � 4. This result means that a position precision of 4 decimal
digits is enough for experimental observations of a finite chain
with 1000 nanoparticles.

IV. CONCLUSION

In this work, we used the coupled dipole method to
investigate localization properties including the localization
transition, mobility edge, and intermediate phases in
1D quasiperiodic plasmonic chains. We introduced a
quasiperiodic order by incommensurate modulations on
the distances between adjacent InSb nanoparticles in the
chains, leading to a mimicry of the off-diagonal AAH
model. Through analysis of IPR, NPR, frequency spectrum,
and spatial distribution of eigenmodes, we observed the
mobility edge and intermediate phase in the quasistatic
model with long-range dipole interactions. We also examined
the intermediate phase in the case of nearest-neighbor
approximation, which features an ultrabroad width.

Subsequently, we explored the impact of non-Hermiticity
on the localization properties of quasidisordered plasmonic
chains by including the effect of retardation and employing
the linearized Green’s function. We described in detail
how the localization properties of the retarded system depend
on the retardation tuning parameter κ and the modulation
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(a)

(c) (d)

(b)

FIG. 11. The mean inverse partition ratio (〈IPR〉), mean normalized partition ratio (〈NPR〉), and quantity � of transverse eigenmodes as a
function of η for different system sizes N ranging from 144 to 10 946 in the Fibonacci order (light to deep color). Here, the nearest-neighbor
(NN) and full-dipole (FD) interactions are considered. The critical point of the phase transition and the intermediate phase are marked by a
black-dashed line and a gray-shaded block, separately. (a), (b) 〈IPR〉, 〈NPR〉, and � with NN interactions. (c), (d) The same quantities with
FD interactions.

amplitude η, and mapped out the localization phase diagram
as a function of these parameters. In the retarded regime,
we found that significant differences emerge for diverse
polarizations and interactions, originating from the different
decay terms in Green’s functions. We observed that for
longitudinal polarization, Anderson localization is slightly
affected, and the extremely wide intermediate phase region
remains unchanged with nearest-neighbor interactions.
However, the presence of long-range interactions broadens
the initially narrow intermediate phase region for a range
of κ . In contrast, in the case of transverse polarization, the
phase transition undergoes a significant change even under
nearest-neighbor interactions, causing the extremely wide
intermediate phase to contract within a specific κ range.
Once long-range interactions are taken into account, the
previously intermediate phase with a finite width disappears
and is replaced by an extremely wide intermediate phase. We
also elaborated the role of retarded long-range interactions in
mediating localization phases by showcasing mode qualities
and decay profiles in distinct phases. For mode quality and
localization profile, there is no specific law between them,
that is, plasmonic modes could be localized in a highly or
lowly leaky state for both polarizations.

Finally, we established a connection between non-
Hermiticity and phase transition by the mean phase rigidity

〈rp〉, which revealed that strong non-Hermiticity is built along
the phase boundary. We also anticipate that similar localiza-
tion behavior could be observed in other dipolar systems,
such as phonon polaritons in SiC nanoparticle chains and
cold-atom chains, due to the same type of hoppings. This work
extends the concept of mobility edge and intermediate phase
to plasmonic systems and paves the way for further explo-
ration of the physics of Anderson localization on plasmonic
platforms.
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APPENDIX A: FINITE-SIZE EFFECT

To ensure that the ultrawide intermediate phase observed in
Fig. 2(a) for the NN case is independent of finite-size effect,
we perform additional calculations on the 〈IPR〉, 〈NPR〉, and
� in this case for different system sizes corresponding to
Fibonacci numbers Fn from 144 to 10 946 (N∈{Fn|12�n�21,

n ∈ Z+}), as shown in Fig. 11. The black dashed line and the
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gray-shaded region represent the critical point of the phase
transition and the intermediate phase, respectively. In the NN
case depicted in Figs. 11(a) and 11(b), as the system size N in-
creases, it is evident that 〈IPR〉 decreases and approaches zero
when η < ηc ≈ 0.25, while 〈NPR〉 remains finite when η >

ηc ≈ 0.25, yielding a stable intermediate phase region that
is guaranteed by � convergent to the interval of [−2,−1.5].
This indicates that the ultrawide intermediate phase observed
in the NN case is not a finite-size effect, which may be
caused by extended modes near the localized surface plasmon
resonant frequency ωLSP. These modes align with the Dyson
singularity in the density of states of the 1D NN tight-binding
model with the off-diagonal disorder [106,107]. Rather, with
the FD interactions included, 〈IPR〉 and 〈NPR〉 approach
zero rapidly in the delocalized (η < ηc1 ≈ 0.2) and localized
phases η > ηc2 ≈ 0.4 as N increases [Fig. 11(c)], leading to
an intermediate phase with a narrow width [Fig. 11(d)].

APPENDIX B: MOBILITY EDGES
IN THE QUASISTATIC REGIME

In the quasistatic regime, we can derive an analytical so-
lution for the mobility edges for the nearest-neighbor case
using the energy match model [108]. The basic idea of this
model involves approximating quasiperiodic disordered mod-
els utilizing an ensemble of ordered models {Hα}. Under the
nearest-neighbor approximation, the effective tight-binding
Hamiltonian of these models, labeled by α ∈ {1, 2, . . . , N}, is
constructed from the near-field Green’s matrix, which reads as

Hα = −
N−1∑
n=1

tα (|pn〉〈pn+1| + |pn+1〉〈pn|), (B1)

where tα = fν
[1+η cos(2πβα+φ)]3 is the hopping amplitude

between two adjacent sites, and the polarization-dependent
factor fx = − 1

2π
( fy or fz = 1

4π
) for the longitudinal

(transverse) modes arises from the anisotropy of the dipolar
interaction. The exact diagonalization of a Toeplitz tridiagonal
matrix Hα in the presence of a constant tα permits the
following eigenvalue spectrum:

El
α = −2tα cos

π l

N + 1
, l ∈ {1, 2, . . . , N}. (B2)

Obviously, the extended phase region for the model Hα

belongs to the spectrum interval

Eα ∈ (−2tα, 2tα ). (B3)

Note that if a given energy E is ergodic and falls within
the energy spectra of all the models Hα , we expect the
corresponding eigenstate to be extended. Therefore, the
energy domain of the extended states will be the intersection
of the energy spectrum sets Eα as

E ∈
N⋂

α=1

Eα,

∈
(

− 2 fν
(1 + η)3

,
2 fν

(1 + η)3

)
. (B4)

(a) (b)

FIG. 12. The quasistatic eigenvalue spectra of an N = 100
nanoparticle chain as a function of η for (a) longitudinal and
(b) transverse polarizations under the nearest-neighbor approxima-
tion. The colors represent the IPR of each eigenmode, and the black
dashed curves mark the solved mobility edges.

It is easy to see that the respective energy domains of the ex-
tended phase for longitudinal and transverse polarizations are

E ∈

⎧⎪⎨
⎪⎩

(
− 1

π (1+η)3 ,
1

π (1+η)3

)
, ν = x(

− 1
2π (1+η)3 ,

1
2π (1+η)3

)
, ν = y, z.

(B5)

The upper bound and lower bounds define two mobility edges
as the disorder parameter η varies, which serve as boundaries
that separate extended states from localized states.

To verify the above mobility edges, we plot the eigen-
values of longitudinal and transverse modes with increasing
disorder amplitude η in Fig. 12. The color of each point
encodes the IPR value of the eigenmodes. We observe
that the boundary of the blue region roughly corresponds
to the mobility edges determined by the energy matching
method.

APPENDIX C: EFFECTS OF QUASIPERIODIC
DISORDER ON BAND STRUCTURES

To delve into the effect of quasiperiodic disorder on the
plasmonic band structure, we first calculate the eigenpairs of
an equidistant chain consisting of N = 1000 nanoparticles via
the linearized Green’s function method for comparison, and
the real and imaginary parts of eigenfrequencies are shown
in Figs. 13(a) and 13(b) for the longitudinal and transverse
modes. The dispersion relation depicted by the blue dots in
Figs. 13(a) and 13(b) is obtained by sorting the eigenmodes
in ascending order of the mode index l , which is equal to the
node number of Re(p) plus 1, and the Bloch wave vector q is
given by

qd/π = (N − 2)l + 1

N (N − 1)
, (C1)

where l is the mode index and N is the number of nanopar-
ticles in the chain. The results are in agreement with the
previous arguments of renormalized dispersion curves for the
1D regular plasmonic arrays [78,109,110]. We observe that at
q = 0, the longitudinal mode reaches a minimum lying below
ωLSP, while the transverse mode demonstrates a maximum,
positioned above ωLSP, which implies the opposite signs of
near-field pair dipole interactions for these two modes. We
also see that the light line k = Re(ω)/c marked by the gray
dashed-dotted line divides the eigenmodes into two parts,
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(a)

(c) (d)

(b)

FIG. 13. (a), (b) Real (blue dots) and imaginary (red dots) parts of the dispersion relation of regular plasmonic chains (η = 0) for the
longitudinal and transverse modes. The dispersion of light in free space (gray dashed-dotted line) is also shown. (c), (d) The frequency
spectrum of quasiperiodic plasmonic chains (η = 0.3) with topological numbers of spectral gaps being labeled by dotted lines for longitudinal
and transverse modes. The results are calculated on parameters of κ = 0.2 (d = 1.08 µm), a = 200 nm, and N = 1000.

leaky (radiating) modes and guided (nonradiating) modes.
Within the light line (q < k), leaky modes with large negative
values of Im(ω) suffer from both Ohmic and radiative losses.
In contrast, the guided modes above the light line (q > k)
are free of radiative damping and possess the Ohmic loss
only. It should be noted that the anticrossing between the
dispersion curve and the light line is only observed for the
transverse modes in Fig. 13(b), signaling a strong polaritonic
mixing between plasmons and photons, which is attributed
to the transversality of light waves, and hence they can cou-
ple well to transverse plasmons. This intense coupling also
yields a step discontinuity at the anticrossing point for the
imaginary part, and a long-range far-field interaction term
in the full Green’s function for the transverse polarization.
For the longitudinal case in Fig. 13(a), although there is no
such cusp in the associated dispersion and no discontinuity in
the imaginary counterpart, a hybridization between collective
plasmons and the photonic environment is still present in the
form of radiative loss [90,111].

For a quasiperiodic chain with a spacing disorder of
η = 0.3, we plot the eigenfrequency spectra as a function
of the filling number l/N for the longitudinal and transverse
modes in Figs. 13(c) and 13(d). In both polarizations, we
see that the spectra are separated by fractal gaps appearing

at fillings of [{3(1 − β )}, {2β}, 1−β, β, {4β}, {4(1−β )},
2(1 − β ), {3β}] with {·} being the fractional part of a number.
These gaps can be denoted briefly as their topological indices
[−3, 2,−1, 4,−4, 1,−2, 3], which are protected by gap
labeling theorem [112], and they are portrayed by black
dotted lines in Figs. 13(c) and 13(d). The two main gaps that
establish the largest gap width are located at the fillings 1 − β

or β, and the other six minigaps with smaller gap widths are
classified as {2β}, 2(1 − β ), etc. In principle, for an irrational
number of β, irrespective of the quasiperiodic strength η, the
filling sequence will exhibit an infinite number of gaps in the
thermodynamic limit. These gaps separate the unperturbed
band into a series of subbands, which present different
localization transitions at different disorder amplitudes η as
reported in the main text. We can still adopt the radiative
loss to classify these modes into leaky and guided parts,
even though there is no Bloch wave vector for the disordered
structure. From the imaginary spectra, it is observed that
destruction of periodicity can give rise to additional scattering
losses for guided modes in subbands above the real frequency
of 0.9975ωLSP for longitudinal modes or below the real
frequency of 1.0005ωLSP for transverse modes, whereas it
can also suppress the losses for the leaky modes, leading to
an overall increase in the values of Im(ω) [78,113].
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