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Steady-state quantum thermodynamics with synthetic negative temperatures
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A bath with a negative temperature is a subject of intense debate in recent times. It raises fundamental
questions not only on our understanding of negative temperature of a bath in connection with thermodynamics
but also on the possibilities of constructing devices using such baths. In this work, we study steady-state quantum
thermodynamics involving baths with negative temperatures. A bath with a negative temperature is created
synthetically using two baths of positive temperatures and weakly coupling these with a qutrit system. These
baths are then coupled to each other via a working system. At steady state, the laws of thermodynamics are
analyzed. We find that whenever the temperatures of these synthetic baths are identical, there is no heat flow,
which reaffirms the zeroth law. There is always a spontaneous heat flow for different temperatures. In particular,
heat flows from a bath with a negative temperature to a bath with a positive temperature which, in turn, implies
that a bath with a negative temperature is “hotter” than a bath with a positive temperature. This warrants
an amendment in the Kelvin-Planck statement of the second law, as suggested in earlier studies. In all these
processes, the overall entropy production is positive, as required by the Clausius statement of the second law.
We construct continuous heat engines operating between positive and negative temperature baths. These engines
yield maximum possible heat-to-work conversion efficiency, that is, unity. We also study the thermodynamic
nature of heat from a bath with a negative temperature and find that it is thermodynamic work but with negative
entropy.
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I. INTRODUCTION

Thermodynamics constitutes a fundamental building block
of the modern understanding of nature. With the advent of
quantum mechanics, there have been numerous efforts to
extend the framework to systems composed of a finite or
large number of quantum particles while each particle has a
discrete energy spectrum and the states are in a superposition
of different energy levels, see for example [1]. One of the
possibilities for quantum systems with bounded energy is that,
in certain situations, they can assume “negative” temperatures.
This arises when the population distribution of a system or
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bath becomes an inverted Boltzmann distribution, i.e., states
with higher energy are populated more than the ones with
lower energy. It was first pointed out by Purcell and Pound in
the context of nuclear spin systems [2]. Subsequently, Ramsey
comprehensively discussed the thermodynamic implications
of such negative temperatures and the inter-relation between
negative and positive temperatures [3]. He states that the
Clausius statement of the second law remains unchanged if
one considers that negative temperature is “hotter” than a
positive temperature, and there heat can only flow from a
“hot” bath to a “cold” bath in absence of any external work.
Further, he advocates for a modification of the Kelvin-Planck
statement of the second law: “It is impossible to construct
an engine that will operate in a closed cycle and produce no
effect other than (1) the extraction of heat from a positive
temperature reservoir with the performance of an equivalent
amount of work or (2) the rejection of heat into a negative-
temperature reservoir with the corresponding work being done
on the engine” [3].

Initially, Schöpf raised some foundational questions re-
garding the dynamics of negative temperature [4]. He claimed
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that it is impossible to transform a thermodynamic system
adiabatically: from a positive finite temperature to the positive
infinite temperature, then from there to a negative infinite
(Boltzmann) temperature, and then subsequently to a nega-
tive finite (Boltzmann) temperature [4]. Tykodi and Tremblay
[5–7] disagreed and showed that the arguments used by
Schöpf are thermodynamically inconsistent as these violate
the second law of thermodynamics. Nevertheless, the de-
bates on thermodynamics with negative temperatures are not
settled, see for example [8]. Recent theoretical [9,10] and ex-
perimental [11–13] studies with cold atoms have brought the
debate on negative temperatures back again into the spotlight.
The works in Refs. [14–16] claim that “all previous negative
temperature claims and their implications are invalid as they
arise from the use of an entropy definition that is inconsistent
both mathematically and thermodynamically.” Another study
in Ref. [17] states that thermodynamic equilibrium at negative
temperatures would be unstable but can be used for work
storage or battery. Several researchers have come forward and
systematically explained that identification of the thermody-
namic entropy exclusively with the volume entropy proposed
by Gibbs is the root of all doubts [18–22], and it is incon-
sistent with the postulates of thermodynamics [23,24]. Using
Boltzmann entropy as the thermodynamic entropy, they argue
that negative temperature is a valid extension of thermody-
namics.

Apart from these foundational issues, there are questions
on whether a negative temperature bath can be used to con-
struct thermal devices, such as heat engines, refrigerators, heat
pumps, etc. Initially, a study on Carnot engines was made by
Geusic et al. [25] and, later on, by Landsberg and Nakagomi
[26,27] in this context. There are also some studies about
how the Carnot cycle should be modified in the presence of
negative temperatures [28–30]. Further, some propositions are
made to construct a quantum Otto engine [31–34] and refrig-
erators [35] using a bath with effective negative temperature.
It is shown that the heat-to-work conversion efficiency of an
engine operating between negative and positive temperatures
would be greater than unity [10–12]. But many of these
thermal device models either use already-existing negative
temperature baths without caring how these baths can be pre-
pared or are artificially prepared using either external driving
or work. Further, a systematic study of thermodynamics in
the continuous or steady-state regime in the presence of baths
with negative temperatures and continuous heat engines with
such baths are still missing.

In this article, we outline how to create a thermal bath
with arbitrary temperature, including negative temperature,
and study steady-state quantum thermodynamics. Along with
this, we also propose continuous heat engines with baths at
negative and positive temperatures. The bath with arbitrary
temperature is synthesized by letting a quantum system inter-
act simultaneously with two thermal baths at different positive
temperatures without external driving. We study various laws
of steady-state quantum thermodynamics with these synthetic
baths and construct continuous heat engines. We start by
verifying the zeroth law and show that there is no net heat
flow whenever two such baths with identical temperatures are
brought in contact with each other. This, in turn, legitimizes
the notion of the temperature of a synthetic bath (namely, the

FIG. 1. A synthetic bath is created using two baths with different
temperatures and letting them interact with a qutrit system. In partic-
ular, the hot bath (H ) with inverse temperature βH is weakly coupled
to the energy eigenstates |1〉 and |3〉. The cold bath (C) with inverse
temperature βC weakly interacts with the energy eigenstates |2〉 and
|3〉. As a result, the populations of the states |1〉 and |2〉 reach an
equilibrium corresponding to a synthetic temperature βS . By tuning
the temperature of the baths and the energy spacing between the
states, an arbitrary synthetic temperature can be obtained, including
negative temperatures. See text for more details.

synthetic temperature). We verify the Kelvin-Planck statement
of the second law for negative temperatures, which states that
it is impossible to construct a device operating in a cyclic
process that produces no effect other than dumping heat into a
negative-temperature bath with the corresponding work being
performed on the device. In the case of two different tempera-
tures, we verify the Clausius statement of the second law and
demonstrate that there is a spontaneous heat flow from a bath
with a negative temperature to one with a positive tempera-
ture. Both of these corroborate with the finding of Ramsey
[3]—baths with negative temperatures are “hotter” than the
ones with positive temperatures. Interestingly, in such cases,
the entropy flow is opposite to the direction of heat flow which
is again expected for the baths with negative temperatures.
We also construct continuous heat engines involving synthetic
baths and find that engines operating between positive and
negative temperature baths can yield unit engine efficiency.
This leads us to question the physical meaning of heat flow
in the presence of a bath with negative temperatures. With
a systematic analysis, we show that the heat associated with
a bath with a negative temperature is equivalent to work but
with a negative entropy flow.

II. SYNTHETIC BATHS AND NEGATIVE TEMPERATURES

In general, naturally occurring thermal equilibrium results
in nonnegative temperatures. Only in certain situations, as
discussed earlier, can the temperatures be negative. Below, we
introduce a method through which a bath can be synthesized.
The temperatures of these synthetic baths can assume arbi-
trary values, including negative ones.

The method utilizes a qutrit system, a hot bath (H) with
inverse temperature βH , and a cold bath (C) at inverse tem-
perature βC . The energy levels of the qutrit are denoted by
|1〉, |2〉, |3〉, with the corresponding Hamiltonian H0 = (EH −
EC ) |2〉〈2| + EH |3〉〈3|. As shown in Fig. 1, the hot (cold) bath
weakly interacts with the levels |1〉 and |3〉 (levels |2〉 and |3〉).
As convention, we consider βH < βC , Planck constant h̄ = 1,
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and the Boltzmann constant kB = 1 throughout the article. The
levels |1〉 and |2〉 are not directly coupled. However, they are
indirectly linked through the level |3〉. When the couplings
between the qutrit and the baths are weak and satisfy the
Markov condition, the overall dynamics is expressed in terms
of the Lindblad or Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) form of master equation [36]

ρ̇ = LU (ρ) +LH (ρ) +LC (ρ). (1)

Here ρ represents the density matrix corresponding to a
state of the qutrit. The first term on the right-hand side of
Eq. (1) LU (ρ) = i [ρ, H0] takes care of the unitary part
of the evolution due to the system Hamiltonian H0. The
second and third terms, with the Lindblad superoperators
(LSOs) LH (·) and LC (·), represent the contributions due to
the dissipative part of the evolution induced by the hot and
cold thermal baths, respectively. The LSOs are expressed
(for X = H, C) as

LX (ρ) = �X (NX + 1)(AX ρA†
X − 1/2 {A†

X AX , ρ})

+ �X NX (A†
X ρAX − 1/2 {AX A†

X , ρ}), (2)

where AH = |1〉〈3|, AC = |2〉〈3|, anticommutator {Y, Z} =
Y Z + ZY , and NX = 1/(eβX EX − 1). The coefficient �X is the
Weiskopf-Wigner decay constant. The overall dynamics leads
to heat exchange between the baths and the system. The heat
fluxes are quantified as Q̇X = Tr[LX (ρ) H0] due to interaction
with the bath X [37–39]. Heat flux Q̇X > 0 implies that heat
is flowing into the qutrit system from the bath with inverse
temperature βX .

This dynamics always leads to a steady state, say σ , which
is diagonal in the energy eigenstates. The populations {pi} of
the states {|i〉} satisfy

p1

p3
= eβH EH and

p2

p3
= eβC EC .

The populations corresponding to states |1〉 and |3〉 attain
thermal equilibrium with the hot bath and, similarly, the pop-
ulations of |2〉 and |3〉 attain thermal equilibrium with the cold
bath. In fact, the dynamics drives the overall system to reach
thermal equilibrium, albeit in interactions with two baths at
different temperatures. This is justified because the heat flux
and entropy production vanish, i.e., Q̇X = 0 for X = H,C and
−βH Q̇H − βCQ̇C = 0, respectively. As the entire system is
in thermodynamic equilibrium, so are the populations of the
states |1〉 and |2〉.

In general, if one introduces an interaction between the lev-
els |1〉 and |2〉, be it time-dependent or time-independent, then
the heat and entropy fluxes become nonzero [38,39] and the
corresponding populations change. But once the interaction
is switched off, the populations revert to their equilibrium
values. This is as if the levels |1〉 and |2〉, or the subspace
spanned by these two levels, are interacting with a synthetic
bath at inverse temperature βS , defined as

βS = 1

ES
ln

(
p1

p2

)
= 1

ES
ln

(
p1

p3

p3

p2

)
= βH EH − βCEC

ES
,

(3)

where ES = EH − EC . A similar concept of temperature is
also introduced in Ref. [40] in the context of quantum thermal

FIG. 2. Two synthetic baths are engineered with the help of a hot
and a cold bath at inverse temperatures βH and βC , respectively. Each
synthetic bath is created by letting the baths weakly interact with
one qutrit, as shown in Fig. 1. Different synthetic temperatures are
engineered by tuning energy spacings between the states |1〉, |2〉, and
|3〉. In addition, an interaction is introduced between the synthetic
baths to study the heat and entropy flow. See text for more details.

machines. We note that a LSO cannot be given exclusively for
the equilibration dynamics due to the synthetic bath. However,
as we discuss in the later sections, this is a legitimate thermal
bath. We call βS the “synthetic” inverse temperature because
it can be tuned to assume arbitrary values, including negative
values, by changing the energy-level spacings and the βH and
βC . In literature, there are debates on whether the temperature
of a system can be continuously changed from a positive to a
negative equilibrium temperature [17]. However, in this setup,
the inverse temperature of the synthetic bath can be tuned
continuously, e.g., from βS > 0 to βS < 0, including βS = 0
(infinite temperature).

III. THERMODYNAMICS WITH SYNTHETIC BATHS

To study thermodynamics with synthetic temperatures,
we consider two different qutrit systems L and R with
the corresponding Hamiltonians HX = (EXH − EXC ) |2〉〈2| +
EXH |3〉〈3|, with X = L, R. We assume EXH − EXC = ES for
both systems, i.e., the energy spacing between |1〉 and |2〉 for
both L and R are same. For brevity, we denote HL ≡ HL ⊗ I
and HR ≡ I ⊗ HR. Each system couples to a hot and a cold
bath with inverse temperatures βH and βC , respectively (see
Fig. 2), and reaches an equilibrium state. Without an inter-
action in between, the equilibrium state of the composite LR
becomes

ρL ⊗ ρR =
3∑

m,n=1

pmqn |m n〉〈m n|, (4)

where p1/p3 = eβH ELH , p2/p3 = eβC ELC , q1/q3 = eβH ERH , and
q2/q3 = eβC ERC . The population ratio between the degenerate
energy states |21〉 and |12〉 is

p1q2/p2q1 = e(βLS−βRS )ES , (5)

where βLS and βRS are the synthetic temperatures correspond-
ing to qutrit L and R, respectively.

An interaction is introduced that only couples subspace
spanned by the energy levels belonging to |1〉 and |2〉 in
each qutrit, ensuring an energy exchange between L and R
only through these subspaces. The most general interaction
Hamiltonian that drives an energy exchange between these
subspaces is given by

Hin = (λ + i γ ) |12〉〈21| + (λ − i γ ) |21〉〈12|, (6)
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where λ, γ ∈ R. This interaction also strictly conserves en-
ergy, as [Hin, HL + HR] = 0. The overall dynamics of LR is
expressed as

ρ̇LR = i [ρLR, HT ] +LL(ρLR) +LR(ρLR), (7)

where HT = HL + HR + Hin, LL(·) = LLH (·) +LLC (·), and
LR(·) = LRH (·) +LRC (·). Here, LXH (·) and LXC (·) are the
LSOs taking into account the dissipative part of the dynamics
due to the coupling with hot and cold baths, respectively, with
the qutrit X . Under this dynamics, the composite system LR
reaches a steady state, say σLR. Then, the heat flux and the
entropy flux, respectively, are

Q̇X = Tr[LX (σLR) HX ], ṠX = βXSQ̇X , (8)

with X = L, R, and Q̇X = Q̇XH + Q̇XC .
In absence of any interaction between the L and R, the

steady (or equilibrium) state is σLR = ρL ⊗ ρR [see Eq. (4)].
Then, the heat flux from L is Q̇L = 0, as Q̇LH = Q̇LC = 0.
However, in presence of interaction via Hin, the steady state
becomes σLR �= ρL ⊗ ρR, and then the Q̇L = Q̇LH + Q̇LC �=
0. This means that there is heat flux through the subspace
spanned by {|1〉, |2〉} of L, which we may consider as the
heat flux due to the synthetic bath associated with L. By
convention, Q̇L > 0 implies a heat flux from the synthetic bath
to L, which is then passed to R. With these tools at hand, we
now set out to explore steady-state quantum thermodynamics
with synthetic temperatures. Note that the first law is always
respected at steady state as Q̇L + Q̇R = 0. Thus, our emphasis
would be on studying the zeroth and second laws.

A. Zeroth law

In thermodynamics, the zeroth law interlinks the notion
of temperature with equilibrium. It states that if two systems
are in thermal equilibrium, they must have the same temper-
ature and vice versa. Again, thermal equilibrium implies that
when two systems are in contact, there is no net flux in any
thermodynamic quantities (such as heat and entropy) between
systems. In such situations, the overall entropy production
also vanishes. Below we show that, in the two-qutrit scenario
discussed above, there is no net flux of any thermodynamic
quantity whenever the synthetic temperatures are identical for
both qutrits.

Recall the setup we consider in Fig. 2. Without any interac-
tion, the steady state of LR is ρL ⊗ ρR, which is diagonal in the
energy eigenstates [see Eq. (4)]. With same synthetic inverse
temperatures βLS = βRS , the populations of the states |12〉 and
|21〉 satisfy p1q2 = p2q1 [see Eq. (5)]. It means, the matrix
corresponding to the state ρL ⊗ ρR in the subspace spanned by
{|12〉, |21〉} is proportional to an identity operator. Now an in-
teraction between L and R introduced by Hin, as in Eq. (6). It is
easily seen that [Hin, ρL ⊗ ρR] = 0 for βLS = βRS . Thus, even
after the interaction is switched on, the steady state remains
unaltered, i.e., σLS = ρL ⊗ ρR and σ̇LR = 0. Hence, there is
no exchange of heat and entropy between L and R, as Q̇X =
ṠX = 0 for X = L, R. This implies that the synthetic baths are
in thermal equilibrium whenever the synthetic temperatures
are identical, irrespective of whether the temperatures are pos-
itive or negative. A numerical analysis also confirms this. See
Fig. 3(a).

B. Second law

For βLS �= βRS , heat and entropy flow is possible from one
qutrit to the other. However, the flow cannot be arbitrary. The
second law dictates the physically allowed processes given
that zeroth and first laws are respected. There are various
statements of the second law. Below, we verify the Clausius
statement regarding the directionality of heat flow and the
entropy production.

Let us consider the case for which −βLS > −βRS . When
there is no interaction between the qutrits, the equilibrium
state of the composite LS is ρL ⊗ ρR. The state is expressed
in the block-diagonal form as

ρL ⊗ ρR = �0ρL ⊗ ρR�0 + �1ρL ⊗ ρR�1,

where �0 = |12〉〈12| + |21〉〈21| and �1 = I − �0. The pop-
ulations corresponding to the energy eigenstates |12〉 and |21〉
satisfy p1q2 < p2q1 [see Eq. (5)].

Now let us disconnect the thermal baths and introduce
an interaction driven by Hin. This, or the total Hamiltonian
HT , evolves the composite and induces a rotation onto the
subspace spanned by |12〉 and |21〉 only. At the same time,
the other part of the density matrix remains unchanged. As
a result, there appear off-diagonal elements in this subspace.
Say, the state of LR after any evolution becomes

ρ ′
LR = a |12〉〈12| + b |12〉〈21| + c |21〉〈12| + d |21〉〈21|

+ �1ρL ⊗ ρR�1.

The unitary nature of the evolution in the subspace |12〉 and
|21〉 guarantees that a > p1q2 and d < p2q1. For this reason
and as the off-diagonal elements do not contribute to the
populations of the reduced state of L, i.e., ρ ′

L = TrRρ ′
LR, we

find p′
1 = 〈1|ρ ′

L|1〉 > p1 and p′
2 = 〈2|ρ ′

L|2〉 < p2. Similarly,
for the reduced state of ρ ′

R = TrLρ ′
LR, the modified popula-

tions becomes q′
1 = 〈1|ρ ′

R|1〉 < q1 and q′
2 = 〈2|ρ ′

R|2〉 > q2.
Note, the populations corresponding to level |3〉 for both L and
R remain unchanged, i.e., 〈3|ρ ′

L|3〉 = p3 and 〈3|ρ ′
R|3〉 = q3.

Clearly, the qutrit L loses some energy. As the evolution
respects strict energy conservation, the qutrit R gains the same
amount of energy. Thus, any evolution due to Hin ensures
that there is an energy flow from L to R for −βLS > −βRS .
After this modification, if L is now exposed to its baths, then
the dissipative dynamics due to LL(·) forces the qutrit to
restore its equilibrium state, p′

1 → p1 and p′
2 → p2. This, in

turn, increases the energy of L by absorbing some heat from
the hot and cold baths or, equivalently, from the synthetic
bath. Similarly, if R is exposed to its baths, then some of its
energy is released to its synthetic bath in the form of heat and
thereby attains its equilibrium. Note in this process, to reach
the equilibrium, the populations of |3〉 do not remain constant
throughout in both L and R.

From the above arguments, we see that the unitary evolu-
tion with the interaction between L and R drives the composite
out of equilibrium leading to a spontaneous heat flow from
L to R for −βLS > −βRS . At the same time, the dissipative
evolution due to thermal interactions with the baths tries to
restore the composite back to the initial equilibrium state
(ρL ⊗ ρR) by pumping some heat into L and absorbing some
heat from R. When both unitary and dissipative evolutions
occur simultaneously, as in Eq. (7), the opposing tendencies
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FIG. 3. The figures represent heat and entropy fluxes, Q̇L and ṠL , respectively, through the qutrit L. The numerical calculation is carried
out with the parameters: �H = �C = 0.001, βH = 0.05, βC = 1, λ = 1, γ = 0, ES = 9.5. The different synthetic inverse temperatures are
obtained by tuning the energy EH of |3〉 for the qutrits L and R. (a) The density plot represents the Clausius statement of the second law in
terms of the heat flux through L, i.e., Q̇L . The plot shows no heat flux for βLS = βRS . This corroborates with the zeroth law. However, there is
a positive (negative) heat flux Q̇L , i.e., heat flows from L to R (from R to L), whenever −βLS > −βRS (−βLS < −βRS) implying bath with βLS

(βRS) is hotter than βRS (βLS). Clearly, a bath with a negative temperature is always ‘hotter’ than any bath with a positive temperature. (b) The
density plot represents the variation of entropy flux ṠL for different synthetic temperatures. As seen from the plot, for βLS = βRS , ṠL = 0. For
βLS > 0 and βRS > 0, the direction of entropy flux is same with the heat flux as expected for the baths with positive temperatures. However, the
direction of heat flow is opposite to the direction of entropy flow, in general, for baths with negative inverse temperatures. See text for details.

balance each other and result in a steady state, say σLR. This
steady state is again block-diagonal in total energy eigenstates
and has off-diagonal elements in the eigenstates |12〉 and |21〉.
Nevertheless, the steady-state dynamics generate a heat flux
from L to R,

Q̇L = Tr[LL(σLR) HL] = Tr[LL(σL ) HL] > 0, (9)

and Q̇R = −Q̇L. The expression of Q̇L can be given ana-
lytically, and it has complicated dependencies with all the
parameters. Rather, a numerical analysis is more illuminating;
we have done so in Fig. 3(a). Again for −βLS < −βRS , we find
that Q̇L < 0. This means that there is a spontaneous heat flow
from R to L.

In thermodynamics, the Clausius statement of the second
law states that heat can only flow from a hot bath to a cold
bath when no external work is performed. As we see above
for −βLS > −βRS , there is a heat flow from L to R. This means
that: (1) baths with negative inverse temperatures are “hotter”
than the baths with positive inverse temperatures; (2) baths
with larger negative inverse temperatures are “hotter” than
those with smaller negative inverse temperatures. This is in
conformation with the findings of Ramsey [3]. However, one
important point to be noted here is that although there is a
heat flow from a negative to a positive temperature bath, the
entropy flow is the opposite. This is indeed a signature of a
bath having a negative temperature.

Another version of the Clausius statement states that
the overall entropy production is always positive in a
thermodynamical process. For steady-state thermodynamics
with synthetic baths, the overall entropy production rate is

given by

	 = ṠLR − βLSQ̇L − βRSQ̇R, (10)

where ṠLR = ∂SLR/∂t is the rate of change in von Neumann
entropy SLR = −Tr[σLR log σLR], and βLS (βRS) is the syn-
thetic inverse temperature of L (R) and Q̇L (Q̇R) is the heat
flux from L (R). Note at steady state, the ∂SLR/∂t = 0 and
	 = (βRS − βLS ) Q̇L, as Q̇L = −Q̇R. For −βLS > −βRS , the
heat flux from L is positive, Q̇L > 0. Consequently, 	 > 0.
Similarly, Q̇L < 0 for −βLS < −βRS , and thus 	 > 0. For
βLS = βRS , we have 	 = 0. Thus, the Clausius inequality in
the differential form is

	 � 0,

and it is always satisfied.
At steady state, the entropy production rate is positive, 	 �

0. This is mainly due to the dissipative interaction between the
baths and the system. However, one may find out an entropy
flow through the system LR, as

ṠX = −Tr[LX (σLR) log σLR],

for X = L, R (see Appendix A). At steady state, ṠL + ṠR = 0
as the state does not evolve over time. ṠL > 0 implies that
there is an entropy flux from bath with inverse temperature
βLS to R via L, and similarly for ṠR > 0. In general, for a bath
with positive temperature, an outflow of heat is associated to
a decrease in entropy. One striking feature we must note here
is that, although there is a spontaneous heat flow from a bath
with negative temperature to a bath with positive temperature,
the entropy flow is just opposite to that [see Fig. 3(b)]. This
is also true when both baths are of negative temperatures.
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For a bath with negative temperature, an outflow of heat is
associated with an increase in entropy of the bath. Thus, a bath
with negative temperature in general acts as an entropy sink.

Now, we focus on the Kelvin-Planck statement of the sec-
ond law that applies to cyclic processes involving a single
bath. Traditionally, for baths with positive temperatures, the
statement says that it is impossible to devise a cyclic process
that absorbs energy in the form of heat from a single thermal
reservoir and delivers an equivalent amount of work as the
sole effect. According to Ramsey, the statement must be ap-
pended to incorporate the cases involving baths with negative
temperatures with the following. It is impossible to construct
a device operating in a cyclic process that produces no effect
other than dumping heat into a negative-temperature bath with
the corresponding work being performed on the device [3].

To verify the Kelvin-Planck statement, we consider a cyclic
process that involves one synthetic bath. We utilize a device
where a qutrit interacts with a hot and a cold bath at inverse
temperatures βH and βC , respectively, as considered in Sec. II
and shown in Fig. 1. In this case, the Hamiltonian of the qutrit
is H0 = (EH − EC ) |2〉〈2| + EH |3〉〈3| with EH > EC > 0, and
the working system, composed of the energy levels |1〉 and
|2〉, is interacting with the synthetic bath with the synthetic
inverse temperature βS = βH EH −βC EC

ES
. In addition, the levels

|1〉 and |2〉 are driven by an external field, given by the driving
Hamiltonian

Hd (t ) = α(|1〉〈2|eiωt + |2〉〈1|e−iωt ). (11)

This device model is widely considered in the literature;
see, for example, Refs. [37–39,41]. Following the discussion
in Appendix B, the total Hamiltonian can be made time-
independent by moving to a rotating frame, and a steady
state is attained when the qutrit is weakly coupled to the
baths. As this represents a continuous device, exploiting a
nonequilibrium steady state, we may consider that the device
is undergoing a cyclic process where every cycle is completed
instantaneously. With an explicit calculation of the steady
state, the power P and heat fluxes Q̇H and Q̇C associated with
the hot and cold baths are given by [41]

P = −4α2�(NH − NC )(EH − EC )

G
, (12)

Q̇H = 4α2�(NH − NC )EH

G
, (13)

Q̇C = −4α2�(NH − NC )EC

G
, (14)

where G = 4α2(3(NH + NC ) + 4) + �2(NH + NC )(NH +
NC + 3NH NC ) is positive constant and NX = 1/(eβX EX − 1).
Without loss of generality, here we consider �H = �C =
� > 0. The heat flux corresponding to the synthetic bath is
Q̇S = Q̇H + Q̇C , and the first law implies Q̇S + P = 0. The
P < 0 represents that the device is operating in a cycle in
which heat is absorbed from the synthetic bath (Q̇S > 0)
and work is delivered to the driving field. However, P > 0
implies that the device is operating in a cycle in which the
work is performed on the device by the driving field while
heat (Q̇S < 0) is dumped into the bath.

We first consider the device with a bath at positive syn-
thetic inverse temperature βS > 0, which is equivalent to the

condition (NH − NC ) < 0. For all values of the parameters α

and �, the only possibility is that P > 0 and Q̇S < 0. This is in
full compliance with the traditional Kelvin-Planck statement,
which states that, in a cyclic process, heat cannot be absorbed
from a bath with positive temperature and converted into an
equivalent amount of work as the sole effect.

For the device with a bath at negative synthetic inverse
temperature βS < 0, the equivalent condition (NH − NC ) > 0
implies that there is only one possibility, i.e., P < 0 and
Q̇S > 0, for all values of α and �. This is again in full com-
pliance with the amendment to the Kelvin-Planck statement
proposed by Ramsey, which states that in a cyclic process,
heat cannot be dumped into a bath with negative temperature
and converted into an equivalent amount of work as the sole
effect.

With verification above, let us discuss the conceptual take-
aways of the Kelvin-Planck statement in this context. From
our discussion on the Clausius statement earlier, we have seen
that, while the direction of the flow of heat and entropy is
the same for βS > 0, the direction of heat and entropy flow
are opposite for βS < 0. For a device operating in cycle with
a bath at βS > 0, any heat flown out of the bath cannot be
converted into work entirely in the absence of an entropy sink,
where work is a pure form of energy and does not contain
entropy. Again, absorbing entropy into an entropy sink or a
bath with positive (negative) temperature must result in an
increase (decrease) in energy or heat. Thus, such a process
cannot be realized without an entropy sink attached to the
device or without the possibility of increasing its energy. For a
device attached to a bath with βS < 0 and operating in a cycle,
a heat flow into the bath is associated with an opposite entropy
flow, i.e., an entropy flow out of the bath. Again, without the
possibility of dumping that entropy into a sink or a bath, such
a process cannot be implemented even after performing an
equivalent amount of work on the device.

IV. QUANTUM HEAT ENGINES WITH A BATH
AT NEGATIVE TEMPERATURE

Now we discuss heat engines operating with a bath at
synthetic temperatures, particularly at negative temperatures.
A device acting as a heat engine aims to transform heat into
work. A generic heat engine consists of three primary parts:
two separate heat baths with different temperatures and a
working system. It operates by absorbing heat from the hot
bath. The working system transforms part of this heat into
work, dumping the rest into the cold bath. The model of a
quantum heat engine (QHE) we are concerned with utilizes
a synthetic bath with negative temperature and a heat bath
with positive temperature (as depicted in Fig. 4). The working
system is composed of a qutrit (L) and a qubit (W ). The
synthetic bath with inverse temperature βLS is created using
two baths at different temperatures βH and βC and letting these
weakly interact with L, similar to the one considered in Fig. 1.
The Hamiltonian of L is given by HL = (EH − EC )|2〉〈2| +
EH |3〉〈3|. The qubit W is weakly coupled to a bath at inverse
temperature βW � 0, and its Hamiltonian is HW = EW |2〉〈2|,
where EW = EH − EC . To operate the device as a heat engine,
a time-dependent interaction is introduced between L and W
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FIG. 4. A schematic of a quantum heat engine operating with two
baths; one with negative inverse temperature βLS and the other with
positive temperature βW . The negative temperature is synthesized by
weakly coupling a qutrit L with a hot and a cold bath, as discussed
in Fig. 1. This is as if the energy levels |1〉 and |2〉 are coupled to a
synthetic bath at inverse temperature βLS . A qubit W is weakly cou-
pled to the bath with βW . In the engine, L and W are coupled through
a time-dependent interaction as in Eq. (15). The arrows represent the
direction of heat (Q̇X ) and entropy (ṠX ) fluxes for X = L,W , and P
represents the power of the engine. See text for more details.

driven by the interaction Hamiltonian

HE
in (t ) = δ (|11〉〈22| eiωt + |22〉〈11| e−iωt ). (15)

The total Hamiltonian is then HE
T = H0 + HE

in (t ), where H0 =
HL + HW . The overall dynamics will never lead to a steady
state for a time-dependent interaction. However, for a periodic
time dependence, there is a rotating frame in which the inter-
action becomes time-independent. For instance, to move from
the laboratory frame to a rotating frame we may introduce a
rotation, given by the unitary U = exp[iHRt] which satisfies
[HR, H0] = 0. For a suitable HR, the interaction becomes time-
independent, i.e., Vin = UHE

in (t )U †. In this rotating frame, the
overall dynamics comprising the unitary and the dissipative
evolution is given by (see Appendix A)

ρ̇R
LW = i

[
ρR

LW , H̄E
T

] +LL
(
ρR

LW

) +LW
(
ρR

LW

)
, (16)

for a state ρLW , with ρR
LW = UρLW U † and H̄E

T = H0 − HR +
Vin. Note the LSOs remain unchanged in the rotating frame.
Now that the time-dependence in the Hamiltonian is lifted,
the dynamics attains a steady state σ R

LW in the rotating frame.
With this, the heat flux, entropy flux, and the power in the

laboratory frame are quantified as (see Appendix A)

Q̇X = Tr
[
LX

(
σ R

LW

)
H0

]
, ṠX = −Tr

[
LX

(
ρR

LW

)
log σ R

LW

]
,

and P = i Tr
[
σ R

LW [Vin, H0]
]
. (17)

for X = L,W , and [A, B] = AB − BA. Here Q̇X

and ṠX represent the heat and entropy fluxes
through system X , respectively, and P represents
the power. The condition Q̇L + Q̇W + P = 0 is always
satisfied as required by the first law [42,43] and at steady
state, ṠL + ṠW = 0. For any negative inverse temperature
βLS < 0, we have, as confirmed by numerical analysis,
Q̇L > 0, Q̇W > 0, and P < 0. This means the device draws
heat from both the synthetic bath and the bath with inverse
temperature βW . For traditional engines, the efficiency
is calculated as the ratio of work extracted and the heat
absorbed by the engine from the hot bath. Here, the heat is
absorbed from both baths. For each bath, the corresponding
engine efficiency may be defined as

ηL = −P

Q̇L
, and ηW = −P

Q̇W
.

FIG. 5. Heat and entropy fluxes in the engine. The red-solid and
blue-dotted traces represent the change in heat flux (Q̇L) and entropy
flux (ṠL) through L in the engine with respect to βLS , respectively.
The calculation is done with the parameters: βH = 0.01, βW = 0.1,
βC = 10, δ = 5, ω = 1, and ES = 5. As clearly seen, Q̇L > 0 and
ṠL < 0 for all βLS < 0. See text for more details.

It can be easily checked that ηL > 1 and ηW > 1. Thus, the
efficiency exceeds unity for an engine operating between
baths with positive and negative temperatures. This is what is
also proposed in Ref. [25]. We, however, find this conclusion
incomplete. The heat-to-work conversion efficiency should
always be defined with respect to the total amount of heat
entering the engine and the amount of work produced out of
that. In that sense, the total heat flux entering the engine is
Q̇L + Q̇W , and this entire heat is converted into work. As a
result, we find

η = −P

Q̇L + Q̇W
= 1,

i.e., the engine efficiency becomes unity. Thus, the efficiency
of an engine can never exceed unity in any circumstance as
long as the first law, i.e., the overall energy conservation, is
respected.

This is, nevertheless, different from what we see in tra-
ditional heat engines. It raises a question on the physical
meaning of the heat released or absorbed by a bath with a
negative temperature. By definition, heat is a form of energy
that is always associated with a change in the entropy of the
corresponding bath. Heat flow, thus, occurs with an entropy
flow. The work, however, is a pure form of energy and is
not associated with any flow of entropy. In traditional engines
operating with baths at positive temperatures, the direction of
heat flow and the direction of entropy flow is the same. That
is how a bath gets cooled down when it releases some heat.
For a bath with a negative temperature, this is not true [see
Fig. 3(b)]. There the bath’s entropy increases as it releases
heat. For the engine we have considered above, the direction
of heat flux Q̇L > 0 is opposite to the direction of entropy
flux ṠL < 0 in L which is coupled to the negative bath (see
Fig. 5). While for W , coupled to positive temperature bath, the
direction of heat flux Q̇W > 0 is the same as the direction of
entropy flux ṠW > 0. In fact, while heat is entering the engine
from both baths, there is an entropy flow from the bath with
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inverse temperature βW to the bath with βLS where the latter
acts as an entropy sink.

To understand the thermodynamic nature of this heat, let
us make a closer inspection of the process that is happening
on L and W alone in the rotating frame. To create a syn-
thetic bath with negative temperature, L interacts with hot and
cold baths with inverse temperatures βH and βC . The corre-
sponding heat fluxes are Q̇LH = Tr[LLH (σ R

LW ) HL] and Q̇LC =
Tr[LLC (σ R

LW ) HL]. Recall that LL(·) = LLH (·) +LLC (·). We
can also quantify the power as PL = iTr[σLW [Vin, HL]] which
is produced in L. For the interaction Vin, we always find
Q̇LH > 0, Q̇LC < 0, and PL > 0. For W , the heat flux and
power can be similarly calculated, and they are Q̇W > 0 and
PW < 0. At steady state, we have

Q̇LH + Q̇LC + PL = 0,

Q̇W + PW = 0,

P = PL + PW .

Note Q̇L = Q̇LH + Q̇LC and Q̇L = −PL. This may imply that
the heat flux from the synthetic bath is quantitatively equal
to the power extracted from L. But, as mentioned above, this
cannot be just power, as power is not associated with any
entropy flux. For justification, we may remove the interaction
between qutrit L and qubit W and drive L with an oscillating
external field instead. This is exactly what is considered in
Ref. [39], where power is quantified as the flux of pure energy
being stored in the external field and is not associated with
entropy flow (see Appendix B). Here, on the contrary, we
see an entropy flux opposite to the power extracted (heat
flux) in L. This leads us to conclude that heat from a bath
with a negative temperature is thermodynamic work but with
negative entropy.

V. CONCLUSION

In this article, we have studied steady-state quantum ther-
modynamics with negative temperatures. For that, we have
engineered synthetic baths by utilizing two baths at different
positive temperatures and letting them weakly interact with
qutrit systems in a particular fashion. These synthetic baths
can assume arbitrary temperatures, including negative ones.
These baths with negative temperatures are exploited to study
steady-state thermodynamics. We have explored the thermo-
dynamic laws, particularly the zeroth and second laws. We
have shown that whenever two synthetic baths with identical
temperatures are brought in contact, there is no heat flow in
between. This, in turn, legitimizes the notion of temperatures
in synthetic baths. However, for nonidentical temperatures,
there is a heat flow. Further, heat always flows spontaneously
from a bath with a negative temperature to a positive one. This
implies that a bath with a negative temperature is “hotter” than
a bath with a positive temperature. Further, there is a heat flow
from a bath with a less negative temperature to a bath with a
more negative temperature. We have then studied the Clausius
statement of the second law in case of negative temperatures
and found that there is always nonnegative entropy production
in the steady-state thermal processes. Then, we have intro-
duced a heat engine model that operates between two baths,
one with negative temperature and the other with positive tem-

perature. Unlike traditional engines, the continuous engines
considered above always yield unit heat-to-work conversion
efficiency. A systematic analysis has revealed that the heat
flow from a bath with a negative temperature is equivalent
to an injection of work into the working system by an equal
amount. This is exactly the reason why these engines yield
unit efficiency.

The proposed continuous engine utilizes qutrit and qubit
systems weakly coupled to two or three baths at different tem-
peratures. Thus, these engines can be realized experimentally,
for example, using atom-optical [44–47], NMR [48,49], and
solid-state [50,51] systems. Finally, we conclude that:

(i) A thermal bath with a negative temperature can be syn-
thesized with two baths with different positive temperatures.

(ii) In steady-state thermodynamics with negative tem-
peratures, the zeroth law remains unchanged. The Clausius
statement is to be updated to incorporate that there is a
spontaneous heat flow from a bath with a negative inverse
temperature to a bath with a positive inverse temperature and
from a bath with smaller negative inverse temperature to a
bath with a larger negative inverse temperature. Also, the
Kelvin-Plack statement is to be appended to incorporate that
it is impossible to construct a device operating in a cyclic
process that produces no effect other than dumping heat into a
negative-temperature bath with the corresponding work being
performed on the device.

(iii) A continuous heat engine can be constructed using
baths with negative and positive temperatures. In such en-
gines, the heat-to-work conversion efficiency is always unity.
This is maximum for any device that respects first law, i.e.,
conservation of total energy.

(iv) On the fundamental level, the thermodynamic nature
of heat from a bath with a positive temperature is qualitatively
different from the one with a negative temperature. For the
former, heat flows in the same direction as entropy flow.
For the latter, heat flows in the opposite direction of entropy
flow. Further, heat from a bath with a negative temperature is
thermodynamic work but with negative entropy.

(iv) The models we have introduced to study steady-state
quantum thermodynamics and continuous heat engines with
baths at negative temperatures are experimentally feasible.
Thus, our work opens up possibilities for quantum technolo-
gies utilizing quantum thermal devices and engines that are
highly efficient in the near future.

ACKNOWLEDGMENTS

M.L.B., U.B., and M.L. thankfully acknowledge support
from: ERC AdG NOQIA; Ministerio de Ciencia y Innovation
Agencia Estatal de Investigaciones (PGC2018-097027-B-I00/
10.13039/501100011033, CEX2019-000910-S/10.13039/
501100011033, Plan National FIDEUA PID2019-106901GB-
I00, FPI, QUANTERA MAQS PCI2019-111828-2,
QUANTERA DYNAMITE PCI2022-132919, Proyectos
de I + D + I “Retos Colaboración” QUSPIN RTC2019-
007196-7); MICIIN with funding from European Union
NextGenerationEU (PRTR-C17.I1) and by Generalitat
de Catalunya; Fundació Cellex; Fundació Mir-Puig;
Generalitat de Catalunya (European Social Fund FEDER
and CERCA program, AGAUR Grant No. 2021 SGR

013318-8



STEADY-STATE QUANTUM THERMODYNAMICS WITH … PHYSICAL REVIEW RESEARCH 6, 013318 (2024)

01452, QuantumCAT U16-011424, co-funded by ERDF
Operational Program of Catalonia 2014–2020); Barcelona
Supercomputing Center MareNostrum (FI-2022-1-0042); EU
(PASQuanS2.1, 101113690); EU Horizon 2020 FET-OPEN
OPTOlogic (Grant No. 899794); EU Horizon Europe
Program (Grant Agreement No. 101080086-NeQST),
National Science Centre, Poland (Symfonia Grant No.
2016/20/W/ST4/00314); ICFO Internal “QuantumGaud”
project; European Union’s Horizon 2020 research and
innovation program under the Marie-Sklodowska-Curie
Grant Agreement No. 101029393 (STREDCH) and
No. 847648 (“La Caixa” Junior Leaders fellowships
ID100010434:LCF/BQ/PI19/11690013,LCF/BQ/PI20/
11760031,LCF/BQ/PR20/11770012,LCF/BQ/PR21/
11840013). M.L.B. acknowledges the financial support from
MCIN/AEI/10.13039/5011000 11033. V.S. acknowledges
the financial support through the KIAS Individual Grant No.
PG096801 (V.S.) at Institute for Advanced Study. V.S. also
acknowledges the financial support from the Institute for
Basic Science in the Republic of Korea through Project No.
IBS-R024-D1. M.N.B. gratefully acknowledges financial
support from SERB-DST (CRG/2019/002199), Government
of India.

APPENDIX A: ROTATING FRAME AND STEADY-STATE
THERMODYNAMICS

Let us consider the setup discussed in Sec. IV of the main
text. The Hamiltonian of the working systems are

HL = (EH − EC )|2〉〈2| + EH |3〉〈3|,
HW = EW |2〉〈2|,

HE
in (t ) = δ (|11〉〈22| eiωt + |22〉〈11| e−iωt ),

HE
T (t ) = HL + HW + HE

in (t ),

where EW = EH − EC . The Hamiltonian HL corresponds to a
qutrit L. It weakly interacts with a hot (H) and a cold (C) bath
at inverse temperatures βH and βC (as described in Sec. IV
of the main text) to synthesize a bath with negative inverse
temperature βLS . The qubit W , with Hamiltonian HW , weakly
interacts with a bath with positive inverse temperature βW .
The L and W interact between them with a time-dependent
interaction Hamiltonian given by HE

in (t ). After having all these
interactions, the overall dynamics of the composite LW is

∂ρLW (t )

∂t
= i

[
ρLW (t ), HE

T (t )
] +LL(ρLW (t )) +LW (ρLW (t )),

(A1)

for a state ρLW , where LL(·) = LLH (·) +LLC (·) is the LSO
representing the dissipative dynamics due to baths H and C,
and LW (·) is the LSO for the bath with inverse temperature
βW . For this dynamics, the heat flux and power are defined as
[37,42]

Q̇ = Tr

[
∂ρLW (t )

∂t
HE

T (t )

]
, (A2)

P = Tr

[
ρLW

∂HE
T (t )

∂t

]
. (A3)

Note the heat flux Q̇ and the power P may have time depen-
dence.

For time-dependent Hamiltonians, the dynamics generally
never leads to a steady state. However, for a periodic time-
dependence, as in HE

in (t ), there is a rotating frame in which
the Hamiltonian can be made time-independent. For that, a
counterrotation is applied on the laboratory frame by U =
eiHRt with [HR, H0], where H0 = HL + HW . In the rotating
frame, an operator A in the laboratory frame transforms as
A → (A)R = UAU †. Further, there exists a Hamiltonian HR

for which the interaction Hamiltonian reduces to a time-
independent one, given by Vin = UHE

in (t )U †. Accordingly,
the overall Hamiltonian becomes time-independent, and it is
H̄E

T = H0 − HR + Vin. In this rotating frame, the overall dy-
namics is recast as

∂ρR
LW (t )

∂t
= LU

(
ρR

LW

) +LL
(
ρR

LW

) +LW
(
ρR

LW

)
, (A4)

for a state ρLW , with ρR
LW = UρLW U †. Here we denote

LU (ρR
LW ) = i[ρR

LW , H̄E
T ] which is the unitary contribution to

the dynamics. This dynamics can lead to a steady state, say
σ R

LW . It can be easily checked that the LSOs remain unchanged
in this rotating frame. Given that Tr[AB] = Tr[(A)R(B)R] for
two arbitrary operators A and B, we may re-express the heat
flux and power as [37]

Q̇ = Tr

[(
∂ρLW (t )

∂t

)
R

(
HE

T (t )
)

R

]
= Tr

[
L

(
ρR

LW

)
H0

]
, (A5)

where L(ρR
LW ) = LL(ρR

LW ) +LW (ρR
LW ), and the power as

P = Tr

[
(ρLW )R

(
∂HE

T (t )

∂t

)
R

]
= −iTr

[
ρR

LW [H0,Vin]
]
, (A6)

where [A, B] = AB − BA. The heat flux Q̇ can be divided
into two parts. One contribution comes from interaction of
L with baths H and C, i.e., Q̇L = Tr[LL(ρR

LW ) H0] and the
other due to interaction between W with its bath, i.e., Q̇W =
Tr[LW (ρR

LW ) H0].
Now we study the entropy flux through LW . Note the rate

of change in von Neumann entropy is given by

Ṡ = −Tr

[
∂ρLW (t )

∂t
log ρLW (t )

]

= −Tr

[(
∂ρLW (t )

∂t

)
R

log (ρLW (t ))R

]
.

In the rotating frame and at steady state, it reduces to

Ṡ = −Tr

[
∂σ R

LW

∂t
log σ R

LW

]
= 0.

The rate of change in entropy vanishes because the state
does not change over time. Nevertheless, there still can be a
nonvanishing flux of entropy passing through L and W . Given
that unitary dynamics does not contribute to the entropy flux,
i.e., −Tr[LU (ρR

LW ) log σ R
LW ] = 0, we can calculate the entropy
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flux through L and W , respectively, as

ṠL = −Tr
[
LL

(
ρR

LW

)
log σ R

LW

]
, (A7)

ṠW = −Tr
[
LW

(
ρR

LW

)
log σ R

LW

]
, (A8)

where ṠL + ṠR = 0.

APPENDIX B: POWER AND ASSOCIATED ENTROPY
FLUX IN TRADITIONAL STEADY-STATE ENGINES

In traditional engines, unlike heat, work is a form of energy
not associated with entropy. To understand that, we may
reconsider the heat engine composed of a qutrit and two baths
at different temperatures, which is also studied in Ref. [39].
Consider the qutrit system outlined in Sec. II where the
Hamiltonian of the qutrit is H0 = (EH − EC )|2〉〈2| +
EH |3〉〈3|, and it is weakly interacting with a hot (H) and
cold (C) with inverse temperatures βH and βC , respectively.
In addition, an external driving

Hd (t ) = α (|1〉〈2|eiωt + |2〉〈1|e−iωt ) (B1)

is introduced. As a result, the reduced dynamics becomes

ρ̇ = i [ρ, HT (t )] +LH (ρ) +LH (ρ), (B2)

where HT (t ) = H0 + Hd (t ), and LH (·) and LC (·) are LSOs
representing the dissipation due to interactions with hot and
cold baths. Again, as discussed in Appendix A, this dy-
namics leads to a steady state, say σ R, in a rotating frame.
The heat fluxes, entropy fluxes, and power are calculated,
respectively, as

Q̇H = Tr
[
LH (σ R)H0

]
,

Q̇C = Tr
[
LC (σ R)H0

]
,

ṠH = −Tr
[
LH (σ R) log σ R

]
,

ṠC = −Tr
[
LC (σ R) log σ R

]
,

P = −iTr
[
σ R [H0,V ]

]
,

where V = α (|1〉〈2| + |2〉〈1|). Here Q̇X and ṠX represent
the heat and entropy fluxes from bath X = H,C, and P is
the power. As required by first law, Q̇H + Q̇C + P = 0 and,
at steady state, ṠH = −ṠC . When the device operates as an
engine, we have Q̇H > 0, Q̇C < 0, and P < 0. In this case,
heat enters from the hot bath. Part of that heat is converted
into work which is stored in the driving field, and the rest is
dumped into the cold bath. Further, in this case, ṠH > 0 and
ṠC < 0. Clearly, at steady state, whatever amount of entropy
enters the system from the hot bath is released to the cold bath.
Thus, the work-flux, i.e., power P, does not carry any entropy.
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