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Quantum speedup dynamics process in multiqubit-interacting system
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We investigate the dynamics of an N-qubit interacting system coupled to a common reservoir. In the weak
system-environment coupling regime, the crossovers from Markovian to non-Markovian and from no speedup to
speedup can be realized by adjusting the controllable parameters (i.e., the coupling strength between qubits and
the number of the qubits). However, in the case of strong coupling, the multiple transitions from non-Markovian
regime to Markovian regime and from speedup to no speedup can be induced by manipulating controllable
parameters. In addition, a phenomenon can be noticed that the number of qubits and the coupling strength
between the qubits have the different effect on the non-Markovian dynamics and speedup evolution of the system
in the above weak- and strong-coupling regimes. Our results provide an effective theoretical scheme for the

realization of non-Markovian speedup dynamic processes.
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I. INTRODUCTION

In most practical situations, a quantum system should be
considered an open system [1,2] because it is inevitably cou-
pled to various environments. A simple way to describe the
dynamics of open systems is based on Markovian approxi-
mation, which is reasonable when the observed evolutionary
time scale is much larger than the correlation time of the
environment. In this description, the environment is memo-
ryless and can recover instantly from the interaction, which
leads to a monotonic one-way flow of information from the
system to the environment. Although the Markovian approx-
imation is widely used, the non-Markovian dynamics would
emerge [3,4], and backflow of information from the envi-
ronment to the system occurs when the memory effect of
the environment plays a non-negligible role in the dynam-
ics of quantum systems [5-10]. Non-Markovian dynamics
not only embody important physical phenomena related to
dynamical memory effects, but also prove to be useful in
practical processes such as quantum state engineering and
quantum control [11-13]. Therefore, more and more re-
searchers begin to pay attention to the conditions under which
the non-Markovian dynamic behavior of the system occurs
[14-21]. Several mechanisms that trigger non-Markovian dy-
namics have been discovered, such as structured environments
[14-16] and initial system-environment correlations [17-21].
Different methods for quantifying non-Markovian processes
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or non-Markovianity have been proposed [22-28]. The use
of non-Markovianity to protect quantum entanglement and
quantum coherence [29-32] has also been widely explored in
detail.

Recently, some researchers have studied the effect of non-
Markovianity on the speedup of quantum systems [33—43]. In
the strong system-environment coupling regime, by consider-
ing a qubit in a lossy single-mode cavity, the non-Markovian
effects could lead to quantum speedup dynamics [33]. The
non-Markovian speedup can also be achieved by controlling
the number of the qubits [38]. In some experimental systems,
the interaction between qubits exists and plays an important
role in the evolution of the system [44—47]. For example, in
solid-state nuclear magnetic resonance quantum computing,
two-qubit operation requires a switchable interqubit coupling
that controls the time evolutions of entanglements [44]. In
cavity QED systems, the dipole-dipole interaction cannot be
ignored when the distance between qubits is less than the
wavelength of the field [45]. In current Rydberg atom experi-
ments, the strong interaction between Rydberg states inhibits
multiple excitations within a blockade sphere, and opens the
way toward the development of Rydberg quantum simulators
[46,47]. Therefore, the effect of the coupling between the
qubits on the dynamical evolution of the system should be
considered.

Here, we mainly study the dynamics of N interacting
qubits coupled with a zero-temperature reservoir. Using quan-
tum speed limit time (QSL time) [48-52] to define the
accelerated evolution process, the influence of the coupling
strength between qubits and the number of the qubits on
the evolution speed of quantum systems is discussed. In the
weak coupling between the qubits and a zero-temperature
reservoir, the dynamics crossovers from Markovian to non-
Markovian and from no speedup to speedup can be achieved
by adjusting the coupling strength between qubits. Further-
more, we also analyze the effect of the parameters (i.e., the
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FIG. 1. The figure corresponds to N qubits (green circle) coupled
into a common zero-temperature reservoir (blue circle), where each
qubit interacts with its two neighbors.

coupling strength between the qubits and the number of the
qubits) on the non-Markovian speedup evolution of the qubit
in the strong-coupling regime between the qubits and the
IEeSErvoir.

This paper is organized as follows. In Sec. II, we present
a physical model of interacting qubits coupled to a common
heat reservoir. In Sec. III, we have provided a useful prelim-
inary to non-Markovianity and then calculated them for the
proposed system. In Sec. IV, the effects of the number of
qubits and the coupling strength between qubits on the QSL
time are discussed. Finally, a simple conclusion of this paper
is given in Sec. V.

II. MODELS

We consider N interacting qubits coupled to a common
zero-temperature reservoir, as shown in Fig. 1. Here we chose
a completely solvable Ising-type coupling model to under-
stand the effects of the qubit-qubit interaction. Each qubit
interacts with its neighbors via the Ising-type coupling. The
Hamiltonian of the total system can be written as

H = Hg + Hg + Hgp, ey
where
& -
HS = EFLC{)QZC};—F Eth&fﬁfﬂ, (2)
j=1 Jj=1
Hy = hodjay, 3)
k
N
Hse =Y pj Y 106 &y + 2i67 a)), @)
j=1 k

with the N-qubit Hamiltonian having the periodic boundary
condition. In the above expression, 6]? is the Pauli operator

of the jth qubit with transition frequency wo, 6}* (6;) the

raising (lowering) operator of the jth qubit, d; and &Z are

the lowering and raising operators of the kth oscillator of
the zero-temperature reservoirs with frequency wy, and the
constant parameter g represents the strength of the qubit-qubit
interaction. The constant factor p; is introduced in Eq. (4)
to distinguish qubits. Therefore, the actual coupling strength
between the jth qubit and the kth field mode is given by
pjlhel [53,54].

Then, for convenience, we solve the dynamical evolution
process of the system in the interaction picture. The Hamil-
tonian of the total system in the interaction picture can be
expressed as

N
Hsp() = 1Y Y pilbfave™ + 167 aie?],  (5)
j=1 k

where ¢(t) = [y — wy — 3(6;+1 + 6]?_1)]1‘. To solve the
Schrodinger equation, we first assume that the initial state
of the total system is [/(0)) = |g)PN_, ® |0), where [g)&)_,
means that the first qubit is in the excited state and the
remaining N — 1 qubits are in the ground state, and |0)
means that the reservoir is in the vacuum state. After time
t > 0, the state of the total system evolves to the fol-
lowing one: (1)) = a1 (DI, + e ()|g)gm_, + -+
ay () xm—e] ®10) + 12V ® 3" Be()[1k), where |Li) =
|0...1%...0) means that the kth harmonic oscillator of the reser-
voir is in the excited state. Therefore, theses amplitudes «; (¢),
ar(t),..., an(t) are given by the following integrodifferential
equation:

N
do; ! ' ie(r—t’ o
— =P ,-§=1 /0 [ =)™ pia;(t"ydr,  (6)
where the correlation function f@—1t)=

[ dwJ (w)e™ @ === s related to the spectral density J(w)
of the reservoir. The reservoir is assumed as a Lorentzian
spectral density, i.e., J(®)= por?/Qr(w — w)* + 1),
where yy is the system-reservoir coupling strength, and A~!
is the reservoir correlation time. It is well known that the
standard Laplace transform technique is an effective method
to get the solution of Eq. (6). Here we focus on the dynamics
behavior of the first qubit. The reduced density matrix of
the system is referenced in Appendix A. The probability
amplitude o;(t) can be expressed as o (f)=1—1/N +
e~ A/2H N x [cosh(1/2) + (A + 2ig)/R) sinh(Qt/2)],
where Q = /(A + 2ig)? — 2yoAN pjz.. From the expression
of a(t), we want to stress that the dynamical behavior
of the system can be modified by the number N of qubits
and the coupling strength g between the qubits in the weak
(A > 2yp)/strong (A < 2yp) system-environment coupling
regime.

III. THE CONTROL OF NON-MARKOVIAN DYNAMICS

To further illustrate the roles of the number N of
qubits and the coupling strength g between the qubits, in
what follows we describe how to tune the environment
from Markovian to non-Markovian by manipulating N
and g. To quantify the non-Markovianity, we use the
Breuer-Laine-Piilo (BLP) measure which is based on the
distinction of trace distances between the dynamics of two
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FIG. 2. (a), (b) The non-Markovianity of the quantum system
dynamic with 3 = 0.1A and t = 1 as a function of the coupling
strength g and the number of qubits N in the weak qubit-reservoir
coupling regime.

different initial states of an open system [22]. A Markovian
dynamics process of the system cannot improve their trace
distance for two different initial states p;(0) and p;(0)
of a system, therefore, the growth of the trace distance
implies the appearance of non-Markovian dynamics. Based
on this concept, the BLP measure of non-Markovianity is
given as N = max, 0y, p,(0) fa>0 dto(t, p1(0), p2(0)], with
alt, p1(0), p2(0)] = d¢(p1(2), p2(2))/dt  [22]. The trace
distance £ (p1(7), p2(t)) is defined as C(pi(r), p2(1)) =
%Tr||,01(t)—p2(t)||, where ||A| = ~/ATA. To evaluate the
non-Markovianity A/, one should optimize the initial state
of the system. Fortunately, based on the result of Ref. [55]
and through numerical calculations, the the optimal initial
states of the system maximizing the time derivative of the
trace distance can be chosen as {|g), |e)}. This allows us to
get the rate of change of the trace distance in the simple form
alt, pi1(0), p2(0)] = dla; () /dt.

When there are no other qubits, the system’s dynam-
ics mainly depends on the parameters A and yp in such
a way that A > 2y (A < 2yp), which is identified as the
weak-coupling (strong-coupling) regime, leads to Markovian
(non-Markovian) dynamics. In the case of adding qubits, the
dynamics of the system would be considered in the weak
qubit-reservoir coupling regime. In the following, we will
discuss the non-Markovianity of system dynamics as the func-
tion of the qubit-qubit interaction g and the total numbers
of qubits N.

First, we consider the case of weak the qubit-reservoir
coupling regime. When the qubit-qubit interaction g is small,
the system exhibits Markovian dynamics. However, when the
qubit-qubit interaction g exceeds a certain threshold, it has
significant non-Markovian dynamics, as shown in Fig. 2(a).
It implies that the qubit-qubit coupling play effective roles to
trigger the non-Markovian dynamics of the system. We also
find that the larger g and the smaller N have more advantage
to trigger the stronger non-Markovianity. Then the effect of
the number N of qubits on non-Markovianity is shown in
Fig. 2(b). It is clear that increasing the number of qubits is
not beneficial for improving non-Markovianity. Therefore, in
the weak qubit-reservoir coupling regime, the larger g/A and
the smaller N can be required to trigger the stronger non-
Markovianity.

When considering the strong coupling of the qubit with the
reservoir, the influence of N and g/A on non-Markovianity is
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FIG. 3. (a), (b) The non-Markovianity of the quantum system
dynamic with ) =5X and v =1 as a function of the coupling
strength g and the number of qubits N in the strong qubit-reservoir
coupling regime.

shown in Fig. 3. In Fig. 3(a), for a smaller N (i.e., N = 2, 4),
a remarkable dynamical crossover from Markovian behavior
to non-Markovian behavior can occur at a critical coupling
strength g../A. When g/A < g.-/A, the dynamics maintains
Markovian behavior, and then the non-Markovianity increases
monotonically with increasing g/A. However, for a rela-
tively large N (i.e., N = 6, 8), increasing g/A from zero,
the non-Markovianity first diminishes to zero and then rises.
This implies that the qubit-qubit coupling is able not only
to enhance the non-Markovianity of the environment but
also to restrain it. Then the influence of N on the non-
Markovianity is shown in Fig. 3(b). When there is a lack of
coupling between qubits (i.e., g/» = 0), the increase of N
promotes the non-Markovianity. While there is a fixed cou-
pling strength between qubits, the increase of N will inhibit
the non-Markovianity. Furthermore, it is worth noting that the
non-Markovianity of the system dynamics process with g/A =
0 and large N is always larger than the non-Markovianity with
g/ > 0. That is to say, in the strong qubit-reservoir coupling
regime, the goal of a strong non-Markovianity require the
smaller qubit-qubit interaction g and a larger total numbers
of qubits N.

IV. QUANTUM SPEEDUP OF THE SYSTEM DYNAMICS

In order to analyze the role of the number of the qubits
and the coupling strength between the qubits on the maximum
evolution speed of an open system, we use the definition of
quantum speed limit time (QSL time). It can characterize the
minimum time required for a quantum system to evolve from
the initial state to the target state and can be helpful to analyze
the maximal evolution speed of an open quantum system. The
QSL time from the initial state p(0) = |Wy) (V| to the target
state p(7) (the evolutional state of the system at the actual evo-
lution time 7) is defined as Tgsp = sin?{B[p(0), p(T)I}/ ALY
[33], where B[p(0), p(t)] = arccos +/{¢po|p(T)|¢po) is the Bu-
res angle between initial pure state and its evolved state, and
AY = r‘lfof lo(t)]loodt with the operator norm ||p(t)]l s
equaling the largest singular value of p(¢). The tight-
ness of the chosen QSL bound is good (see Appendix C
for details). Then for a given evolutionary time, the ratio
between the QSL time and the actual evolution time provides
an estimate of the potential ability to accelerate the evolution
of quantum dynamics. When tps; /T = 1, there is no further
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FIG. 4. (a), (b) The 7ys, /7 for the quantum system dynamics
with yp = 0.1X and T = 1 in the weak system-environment coupling
regime as a function of the coupling strength g and the number of
qubits N in a common zero-temperature reservoir. (c) Phase diagram
of Tps, /T in the g/A-N-tps /T plane with yp =0.1A and T =1 in
the weak qubit-reservoir coupling regime.

potential acceleration capability. While 7g5;/7 <1, the
smaller the ratio, the greater the rate of system evolution.

Then, according to the reduced density matrix of the sys-
tem and the expression of the QSL time, the QSL time can be
simplified as [56]

o lm@P @B
L= T e (ORldr . 2N+1 — ar (D

Eq. (7) shows that the QSL time is equal to the actual
evolution time when A =0, but the QSL time is smaller
than the actual evolution time when N > 0. That is, the
larger non-Markovianity A can lead to the faster quantum
evolution and the lower QSL time. It is worth mention-
ing that the relationship between A and QSL does not
depend on whether the non-Markovianity measure is a
BLP measure or the coherence-based measure of the non-
Markovianity. For a specific process, refer to Appendix B.
In what follows, we use Eq. (7) to evaluate the effects of
the number N of qubits and the coupling strength g be-
tween the qubits on the dynamical evolution speed of the
system.

For the weak qubit-reservoir coupling regime, the tps; /7
as a function of the controllable parameters (g, N) has been
plotted in Fig. 4. From Fig. 4(a) we find that a significant
decrease in tpsz/T occurs when the qubit-qubit interaction
g exceeds a certain critical coupling strength g... This im-
plies that the quantum speedup evolution can be realized by
manipulating the coupling strength between the qubits. At
the same time, when g > g.- we observe that the tps/T
increases with the increasing number of qubits. It implies
the acceleration capacity of the system is strong in small
numbers of qubits. As for Fig. 4(b), the effect of the number
of qubits N on tps; /7 is plotted. It is worth noting that, the
no-speedup evolution (tps;/T = 1) could be followed, and
the speedup evolution (tpsz/7 < 1) would occur when the
coupling strength g > g, between the qubits. And it is clear
that the potential acceleration capacity of the system decreases
as the number of qubits increases. The detail phase diagram
is given in Fig. 4(c) for the 7pg /T depending on the the
qubits number N and the coupling strength g between the
qubits. It conforms that the smaller N and larger g/) lead
to the smaller tpg; /7. Therefore, to speed up the quantum
system evolution, a larger coupling strength g and a smaller
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FIG. 5. (a), (b) The tps. /T for the quantum system dynamics
with yp = 5A, and 7 = 1 in the strong system-environment coupling
regime as a function of the coupling strength g and the number of
qubits N in a common zero-temperature reservoir. (c) Phase diagram
of Tps./7 in the g/A-N-tpg; /T plane with yy = 5, and T = 1 in the
strong qubit-reservoir coupling regime.

number of the qubits N are required for the weak qubit-
environment coupling regime.

In the presence of the strong qubit-reservoir coupling
regime, i.e., A < 2yp, the situation is different. To illustrate
this difference, we present in Fig. 5 the effects of the coupling
strength g/A between the qubits and the number of qubits N
on the tps; /7. Figure 5(a) shows the dependence of tps;/T
on g/A for different N. For relatively small values of N (i.e.,
N = 2,4), the increase of g/A can take the dynamical evo-
lution process of the system transition from no-speedup to
speedup evolution. For larger values of N, the evolution speed
will go from speed down to no speedup and then to speedup
evolution by increasing g/A. This implies that, in the strong
qubit-reservoir coupling regime, the speed of evolution for
the system can be controlled to a speedup or speed-down
process by selecting the appropriate parameters g/A and N.
As for Fig. 5(b), when the coupling between the qubits does
not exist (i.e., g/A = 0), the increase in the number of qubits
can promote the transition of the system from no-speedup
evolution to speedup evolution. However, considering g/A =
2,3,4,5, the system does not appear to speedup evolution
by manipulating N. That is to say, N and g/A have different
effects on the accelerated evolution of the system. A compre-
hensive picture for the dependence of 7ps; /T on g/A and N is
shown in Fig. 5(c), where we can see the speedup evolution
thresholds of g/A for a given N and the crossovers between
no-speedup and speedup regimes as N increases for a given
g/A. Clearly, in the strong qubit-reservoir coupling regime, to
achieve speedup evolution of the system, either the larger N
and the smaller g/, or the smaller N and the larger g/ should
be chosen.

V. CONCLUSION

In this work, we investigated the dynamics of an N-qubit
system immersed in a common zero-temperature reservoir.
We showed that two dynamical crossovers of the quantum
system, from Markovian to non-Markovian dynamics and
from no-speedup evolution to speedup evolution, have been
achieved in the weak qubit-reservoir coupling regime by con-
trolling the number N of qubits and the coupling strength
g between the qubits. It is worth noting that the coupling
strength g and the number N of the qubit have the opposite ef-
fect on the non-Markovian dynamics and speedup evolution of
the qubit in the weak qubit-reservoir coupling regime. Then,
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by considering the strong qubit-reservoir coupling regime,
manipulation the coupling strength between the qubits and
the number of the qubits would take the system multiple
crossovers from non-Markovian to Markovian regimes and
from speedup to no-speedup regimes. Here, it should be
pointed out that, for the systems we consider in the amplitude
damping channel, QSL and non-Markovianity can be con-
nected. However, it is worth emphasizing that the connection
between QSL and non-Markovianity depends on the dynam-
ical evolution process of the system, so there is no universal
connection between QSL and non-Markovianity [57,58].

In addition, our setup is an interacting two-level system
that is influenced by the environment. It can be realized by ul-
tracold atoms held by optical lattice [59,60] and by transmon
qubits in a circuit QED system [61,62]. In a superconducting
circuit system, the interaction between qubits can be regulated
by capacitance. Therefore, according to these potential candi-
dates for the qubits, our proposed scheme is experimentally

can be realized by manipulating the coupling between the
systems.
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APPENDIX A: THE REDUCED DENSITY
OF THE SINGLE-QUBIT SYSTEM

In this Appendix, we will provide further details on the
reduced density matrix discussed in the main text. The density
matrix of the whole system can be expressed as

foasi : . e = [Y@O) @)l (AD)
easible. Our work emphasizes that in multiqubit systems, the
non-Markovian speedup dynamical behavior of the system
where ‘
W (@) = [a1OIQT, + o)l 5m_, + -+ an®IDey_.] ® 10) + 2)%¥ @ Y Bi(0)|L). (A2)
k
Then
S =yl
= {[al(r)lgm LISy _ 4+ av®lgen ] ®10) + 9% ® Zﬂk(z)|1k>}
k
X [[a]"(t)( | a3 () (gl + - ay () glen_.] ® (O] + (gI®Y ®Z,3;f(t)(lk|}- (A3)
k
After tracing out the zero-temperature thermal reservoir, the reduced density matrix p¢ of the N-qubit system is given by
P = Oy () (¥ (1)10) + (Ll (1) (¥ ()|1c), (A4)
where |0) = |g, 8,8, .--,8),|1k) =12, 8 & --.,¢,...,8). We can obtain
01y (1) (¥ (1)10)
= (0 I{[al(wlgm e a5y + - +an®lg) - e]®|0>+|g>®’v®2ﬂk(t>|1k>}
k
{[ TS, + o5 () e, oy ()(glfn.] ® (01 + (¢l®¥ ® Zﬂf(t)(lkl}lﬁ)
k
[al(t)|g>1g[ —e +a2(t)|g)2nd T +05N(t)|g)N,h e][a*(t)< |1g —e +0[2(l)(g|2nd —e +O‘N(t)(g|/vth e]
= a1 ()P 1) o (8IS, + a1 (s (DIg) Fr_ (IS, +a1(t)aN(t)|g>m (8l nee
+(12(t)0l1(t)|g>2nd e< |1st .t |O[2(t)| |g>2nd e< |2nd —e +a2(t)aN(t)|g>znd e<g|th "
+OlN(t)a>1k(t)|g>N,h e< |1st E+O[N(t)a2(t)|g>}v,h e<g|2nd —e -+ |aN(t)| |g>Nth e<g|Nth —e (AS5)

(il () (¥ (1) 1)

= (1k|{[“1(t)|g>lvz @IS, + - Fav®IDT_] ®10) + 19V © Y A1)k

k
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x A [ (OIS, + a3 () (glom_, + - + ey iglim_.] ® 01 + €®¥ @ D Brt) (L] } 1)
k

= > 1B (gl®;
k

We now consider the speedup dynamics of a single qubit (say
the first qubit) in the presence of the other N — 1 interacting
qubits. After tracing out the other qubits, the reduced density
matrix p of the single-qubit system is given by

C(1=lw@P 0
P= 0 o))

with the standard base {|g), |e)}.

(A7)

APPENDIX B: THE COHERENCE-BASED MEASURE
OF NON-MARKOVIANITY

In this Appendix, we present the coherence-based measure
of non-Markovianity, complementing the results shown in
the main text. To examine the correlation between the
coherence-based measure of non-Markovianity (CMON) and
QSL, we first have to give an expression for CMON for the
physical model we consider. In Ref. [63], CMON can be
written as

dC(p(t
Nevon = max / Mdt,
POE([¥a)} Jacww - o dt

where |W,) = (1/+/d) Z?:l = ¢'%|i) (d is the dimension of
the Hilbert space and ¢; € [0, 27)) and C(p(¢)) is the quan-
tum coherence of the system. In this paper, we consider the
system in a dissipative channel. For an arbitrary system qubit
[0(0)], dynamical map p(t) = A(t)p(0) is given by [1,64]

000(0) + p11(0)(1 — Jar ()I*)  por(0)a}(t)
pt) = .

(BI)

p10(0)a1 (1) p11(0)]ay ()]
(B2)
Therefore, the [; norm of coherence C;(p(t)) =

21p10(0)|ai ()], and clearly dla;(t)|/dt >0 will mark

x10° x10°%
0.70 (@) 0.6 :-"a,\‘._- . (b)
B z T
e — N=2 & — g/A=0
< o 8l
= - - N= > —
303 _ ﬁig 2 03f = - g2
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FIG. 6. (a), (b) The non-Markovianity Ncmon of the quantum
system dynamic with 3 = 0.1A and 7 =1 as a function of the
coupling strength g/A and the number of qubits N in the weak
qubit-reservoir coupling regime.

(A6)

(
the emergence of non-Markovianity. CMON will simply be

d|o (2)]
Nemon = /dmm' o

dt

d. (B3)

In our paper, we use the BLP measure to evaluate the non-
Markovianity of the environment. The BLP measure of non-
Markovianity [22] is given as

Nop = max / diolt, p(0), 2O (B4)
p1(0),0200) J 50

In [56], for the map of equation

b, |2 0)b
o111b;] p10(0) t2 ’ (BS)
po1(0)b} 1 — p11]by|

it was numerically shown that the eigenstates |0)(0| and
[1)(1] of o3 are the optimal pair of states for the BLP mea-
sure. Based on these, the BLP measure of non-Markovianity
for our considered model can be written as Nprp =
/d\al(t)\2/dt>0(d|a1(t)lz/dt)dt’ Comparing the CMON and
BLP measures, we can get two points: (i) The conditions
for non-Markovianity appearance of the environment are
the same, i.e., d|a;(t)|/dt > 0 < d|o(t)|?/dt > 0. (ii) The
monotonicity of |e;(¢)|> and |a;(¢)| is the same. In this
way, within a given actual evolution time, the effect of the
parameters of the system and the environment on the BLP
non-Markovianity N p of and the COMD non-Markovianity
Nemon (ie., see Figs. 6 and 7) are qualitatively the same for
our model. Therefore, qualitatively, the relationship between
BLP non-Markovianity and QSL also holds for CMON non-
Markovianity. To be more clear, the QSL time is equal to
the actual evolution time when Mcemon = 0 (i.e., Mgrp = 0),
but the QSL time is smaller than the actual evolution time
when Mcemon > 0 (i.e., Nprp > 0). That is, the larger non-
Markovianity Mcmon can lead to the faster quantum evolution
and the lower QSL time.

D/ (po) = p(t) = (

0.06

(a)

Non-Markovianity
Non-Markovianity

3
g/

FIG. 7. (a), (b) The non-Markovianity Ncyon of the quantum
system dynamic with Yy =5\ and 7 =1 as a function of the
coupling strength g/A and the number of qubits N in the strong
qubit-reservoir coupling regime.
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APPENDIX C: TIGHTNESS OF QSL BOUND

In this Appendix, we provide some details for the bound
tightness of the QSL in the models, complementing the
conclusions shown in the text. To accurately evaluate the min-
imum time required for the system to evolve from the initial
state pg to the target state p,, we should choose the QSL with
good tightness and availability. According to Refs. [49,65],
by measuring angles and distances between (mixed) states
represented as generalized Bloch vectors, the authors derive
quantum speed limits for arbitrary open quantum evolution,
which can be Markovian or non-Markovian, providing fun-
damental bounds on the time required for the most general
quantum dynamics. The QSL is given as follows:

_ 190 = p(®)lls

, Cl1
@)l D

TosL

where ([o(DID) = (1/7) fy dtllp@)] and X |l = 3=, \/M7.
Here, M; are the singular values of X . The authors also demon-
strate that Eq. (B2) is easier to compute and measure than
other QSL for open evolution, and that it is tighter than the
previous bounds for almost all open processes.

For the dynamics evolution process we consider in
this paper, [0(0) — p(T)llys = V2(1 — i (D)), Tp@] =
(1/7) fOI dt~/29,|o1(1)]?. QSL can be written as

1 — o (D)?

Iy 18len@P1dr’

. This is the same QSL bound proposed by Deffner et al. [33]
that we choose in the paper [i.e., Eq. (7)]. Therefore, the bound
tightness of the QSL chosen in this paper is good and can

accurately evaluate the potential acceleration evolution ability
of the system.

(C2)

TosL =
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