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The non-Hermitian extension of quasicrystals provides a highly tunable system for exploring novel material
phases. While extended-localized phase transitions have been observed in one dimension, quantum phase
transitions in higher dimensions and various system sizes remain unexplored. Here, we show the discovery
of a new critical phase and first-order structural transition induced by imaginary zeros in the two-dimensional
Haldane model with a quasicrystal potential on the upper boundary. Initially, we illustrate a phase diagram
that evolves with the amplitude and phase of the quasicrystal potential, which is divided into three distinct
phases by two critical boundaries: phase (I) with extended wave functions, parity-time-restore phase (II) with
localized wave functions, and a critical phase (III) with multifunctional wave functions. To characterize the wave
functions in these distinct phases, we introduce a low-energy approximation theory and an effective two-chain
model. Additionally, we uncover a first-order quantum phase transition induced by quasicrystal domains. As
we increase the size of the potential boundary, we observe the partitioning of the critical phase into regions in
proportion to the growing number of quasicrystal domains. Importantly, these observations are consistent with
ground state fidelity and energy gap calculations. Our research advances the understanding of phase diagrams
associated with high-dimensional quasicrystal potentials and marks the first discovery of a first-order quantum
phase transition induced by quasicrystal domains in non-Hermitian systems.
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I. INTRODUCTION

The exploration of open systems, characterized by non-
Hermitian quantum systems, has unraveled intriguing phe-
nomena absent in their Hermitian counterparts [1–13].
Notable examples include parity-time (PT) symmetry and
exceptional points [4–10], non-Bloch bulk-boundary corre-
spondence [7,11], and non-Hermitian skin effects [7,11,13–
21]. Many of these phenomena are related to PT-symmetric
Hamiltonians. These Hamiltonians typically exhibit two
phases as parameters vary: the PT-symmetric phase with real
eigenvalues and the PT-breaking phase with complex eigen-
values [2–5]. These phenomena have been experimentally
observed in open systems [22–29], with promising appli-
cations in precision measurements, nonreciprocal quantum
devices, and topological transport. The higher-order nontriv-
ial interplay between the non-Hermitian skin effect and the
topological effect has led to the concept of a hybrid skin-
topological effect [30–35].

Quasicrystals (QCs) in closed quantum systems exhibit a
plethora of fascinating properties [36–44]. For instance, in the
one-dimensional (1D) Aubry-Andreé-Harper (AAH) model,
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the introduction of finite quasicrystal strength leads to a transi-
tion from a metallic (extended) state to an Anderson insulator
(localized) [36,45–47]. Critical phases are vital for under-
standing the transitions from localized to extended states,
showing a range of fascinating phenomena including dynam-
ical evolutions [48–50], critical spectral behavior [51–54],
and the multifractal nature of wave functions [55–58]. To
date, critical phases are possible in a few theoretical models,
typically characterized by the 1D extensions of the AAH
model with incommensurate nondiagonal hopping, p-wave
superconductivity, and on-site potential [58–61]. Expand-
ing upon the AAH model, variations incorporating different
forms of quasidisorder and interactions give rise to exotic
phases, including critically localized states [62–66] and many-
body localization [67–69]. Recent research on non-Hermitian
extensions of the 1D AAH model has uncovered such a
multicritical point marking the transition from localized to
extended states, accompanied by PT symmetry breaking and
topological phase transitions [66,70,71]. Additionally, there is
a growing interest in studying the influence of quasicrystals on
2D topological insulators [72–74]. However, the investigation
of the interplay between the 2D chiral topological insulators
and the non-Hermitian quasicrystal dissipation boundary has
not been previously explored.

In this letter, our study not only reveals a complex phase
diagram, but also establishes a profound relationship between
the size of the non-Hermitian quasicrystal, the presence of
imaginary zeros, and the occurrence of first-order quantum
phase transitions (FOQPT). In the phase diagram, there are
three distinct phases separated by two-phase boundaries: the
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FIG. 1. [(a)–(e)] xPBC/yOBC. (a) Schematic of the 2D Haldane model with quasicrystal imaginary potential on the upper boundary.
Quasicrystal and zero potentials are denoted by orange/yellow spheres against blue/green backgrounds, respectively. Black solid lines
represent NN hopping, black dotted lines represent NNN hopping, and black dashed lines indicate intermediate hidden layers (Ly − 1). (b) The
IPR as a function of V and h, reveals three phases separated by two critical lines: phase (I) with extended wave functions, PT-restored phase
(III) featuring spatially localized wave functions, and critical phase (II) with fractional wave functions. Parameters: Lx = 20, Ly = 20. Two
red phase transition lines represent our fitted results for h1 = −0.55 V + 1.52, h2 = log(3/V) + 0.44/(V 1.6). [(c)–(e)] The density |ψ |2 as
functions of x at three distinct points, h = 0.3, 1.3, 2.3, with V = 1, following Eq. (8). (c) IPR=0.11, (d) IPR=0.25, (e) IPR=0.75.

extended phase (I), the localized phase (III), and the critical
phase (II), see Fig. 1(b). Furthermore, our study uncovers,
for the first time, the emergence of a FOQPT induced by
quasicrystal imaginary domains in non-Hermitian systems. As
the size of non-Hermitian quasicrystals increases, we observe
a linear growth in the number of phase transitions (NQPT ).
Firstly, within the quasicrystal potential, there are sites where
the imaginary potential drops to zero. As the system’s param-
eters increase, such as amplitude and phase, this leads to the
occurrence of a FOQPT [75,76]. Secondly, as the size of the
system grows, the number of points with zero potential in-
creases. These zero points divide the imaginary potential into
distinct domains, and with varying parameters, each domain
exhibits different phase transition points. Consequently, the
NQPT increases with the size of the system. We find that the
NQPT is equivalent to the number of zero points, which also
matches the count of non-Hermitian domains.

The paper is organized as follows. In Sec. II, we con-
struct the phase diagram using the inverse participation
ratio and offer an interpretation based on the low-energy
approximation. In Sec. III, we discuss the relationship be-
tween general imaginary domains and quasicrystal domain.
In Sec. IV, we explore the impact of system size on the first-
order quantum phase transition. Section V is devoted to our
conclusion.

II. MODEL AND PHASE DIAGRAM

The foundation of our study lies in the Hamiltonian, which
exhibits different forms under varying conditions:

H =
⎧⎨
⎩

HAAH, Ly = 1
two-chains, Ly = 2,

HHaldane + H edge
AAH, Ly → ∞,

(1)

with two critical points of y direction dimensions Ly =
1, 2. When Ly = 1, the system returns back to the 1D non-
Hermitian AAH model which plays a key role in this paper
[66,71],

H edge
AAH =

∑
n

V cos(2παn + ih)c†
ncn, (2)

where c†
n and cn are the creation and annihilation operators

for a particle at the n-th site. V and h are the amplitude and
imaginary phase of the potential, respectively, and α is an
irrational number for a QC. We set V = 1 as the energy unit
without changing the results.

Since α is an irrational number, it can be approximated by
a sequence of rational numbers pn/qn, where pn, qn are prime
numbers and pn, qn → ∞ as n → ∞. In numerical simula-
tions, it is common practice to consider a finite (yet arbitrarily
large) number of sites L = qn on a ring with periodic boundary
conditions.
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Here we focus on the non-Hermitian Haldane model
with quasicrystal imaginary potential HAAH

edge along the up-
per boundary [Fig. 1(a)], where height and circumference
are Ly and Lx. In the limits Ly → ∞, the Hamiltonian H =
HHaldane + HAAH

edge and the Haldane model is an important
model for describing the topological insulator [45,77],

HHaldane = t1
∑
〈nm〉

c†
ncm + t2

∑
〈〈nm〉〉

eiφnm c†
ncm, (3)

where the nearest-neighbor (NN) couplings are denoted by
t1 = 1, and the next-nearest-neighbor (NNN) coupling coef-
ficients are t2eiφnm with amplitude t2 = 0.2 and phase φnm.
The symbols 〈n, m〉 and 〈〈n, m〉〉 denote the NN and NNN
hopping, shown in Fig. 1(a) as black solid and black dotted
lines, respectively. The complex phase eiφnm accounts for the
NNN hopping, and we set the positive phase direction to be
clockwise (|φnm = π

2 |). Below, we consider periodic boundary
condition (PBC) along the x direction and open boundary
condition (OBC) along the y direction, i.e., a cylindrical ge-
ometry.

So far, the critical phases have only been found in the 1D
AAH model with on-site potential, p-wave superconductivity,
and incommensurate nondiagonal hopping [58–61]. However,
we are the first to explore the impact of 2D non-Hermitian
quasicrystal boundaries and to uncover the emergence of a
critical phase. To determine the phase diagram of the Hamil-
tonian (1) under Ly → ∞ condition, we compute the inverse
of the participation ratio (IPR)

IPRn =
∑

m |ψn,m|4(∑
m |ψn,m|2)2 (4)

as a function of V and h, shown in Fig. 1(b). Here, |ψn,m〉
represents the eigenstate of the H corresponding to the energy
eigenvalue En, and m = 1, . . . , 2Lx. Specifically, when n cor-
responds to the ground state (denoted as g), |ψg〉 represents
the ground state, and IPRg quantifies the localization of the
ground state. Phase (I) with delocalized states has an IPRg �
1/L � 0, the PT-restore phase (III) with fully localized states,
on the other hand, has an IPRg � 1, and the critical phase (II)
with fractional states fall in between, with IPRg values ranging
from 0 to 1, as shown in Fig. 1(b). Furthermore, the two red
phase transition lines represent our fitted results for

h1 = −0.55 V + 1.52, h2 = log(3/V ) + 0.44/(V 1.6). (5)

Two critical lines are evident: the extended-critical transition
line h1 and the critical-localized phase transition line h2. In
contrast to the 1D case, where only a transition from the
extended phase to the localized phase is observed [66,70,71],
and distinct from the mobility edge resulting from the cou-
pling of two chains [58], our scenario gives rise to a novel
critical phase.

Besides, we observe FOQPTs accompanied by the
extended-critical and critical-localized transitions in a 2D
Haldane model with an imaginary potential boundary, as in
Appendix A.

Before proceeding with the discussion, we first clarify
the wave functions of topological materials with imaginary
potential boundaries. For a 2D chiral topological insulator,
chiral modes can only exist on the boundary of topological

materials. In the continuous limit, the effective Hamiltonian
in the low-energy approximation is described as Hchiral = v f k,
where v f = ∂Hchiral

∂k k=k f
is the Fermi velocity, and k is the

vector of the chiral modes. In the long-wavelength and low-
frequency regimes, excitations are restricted to one-direction
propagation and protected by nontrivial bulk topology. The
utilization of the low-energy approximation in describing the
localization properties of wave functions at the boundary
stems from the fact that, apart from variations in localized
phases, the extended and critical phases closely resemble the
ground state phase diagram. Should we consider the system
to be in a topologically trivial phase, it has minimal impact on
the phase diagram, as topological edge states exert negligible
influence on the overall phase diagram.

Then, we consider the effects of dissipation which the
boundary potential has a nonzero imaginary part, and the
effective low-energy Hamiltonian [33–35] becomes

Hchiral = v f k + iV, (6)

where the imaginary part of eigenvalues is dependent on the
on-site dissipation potential V . The Schrödinger equation of
the dissipation chiral modes is[

−iv f
d

dx
+ iV (x)

]
ψ (x) = (εr + iεi )ψ (x), (7)

where εi and εr represent the imaginary and real part of the
eigenenergy, respectively.

Then, we get the solution of Eq. (7)

ψ (x) = 1√
C

exp

(
i
εr

v f
x

)
exp

(∫ Lx

0
dx′ V (x′) − εi

v f

)
, (8)

where 1/
√

C is the normalization factor and the integration
region (0, Lx) is on the dissipation boundary.

Since the 2D Haldane model is periodic in the x direction,
the periodic boundary condition gives ψ (Lx ) = ψ (0). Then,
we have

i
εr

v f
Lx − εi

v f
Lx + 1

v f

∫ Lx

0
dx′V (x′) = 2iπn, (9)

where n ∈ Z. Then, the Eq. (9) can be reduced to

εr = 1

v f

2πn

Lx
, (10)

εi = 1

Lx

∫ Lx

0
dx′V (x′) = Ṽ , (11)

where the imaginary part of eigenenergy εi is the average
value of imaginary potential Ṽ .

The first two components in Eq. (8), similar to plane
waves exp(ikx), are uniformly distributed throughout the en-
tire space. However, if the sign of v f is fixed, exponential
growth or decay is possible for the third component (8), de-
pending on the sign of sgn(V (x) − εi ) (either 1 or –1). For
example, at position xc, a steplike change in the sign of the
imaginary potential occurs, specifically when V (x < xc) < 0
to V (x > xc) > 0. If combined with v f < 0, the edge state
will exhibit a peak at xc. Similarly, if V (x < xc) > 0 and
V (x > xc) < 0, and v f > 0, the edge wave function will also
display a peak at xc. This behavior is depicted by the black (for
positive imaginary potentials) and red (for negative imaginary
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potentials) circles in Figs. 1(c)–1(e). These circles visually
represent the locations where the edge state wave functions
peak, corresponding to changes in the sign of the imaginary
potential.

In the specific case of our study, the dissipative potential
takes the form of a quasicrystal pattern [Eq. (2)]. Substituting
Eq. (2) into Eq. (11), it can be reduced to

εi = −V sin2(παLx )

παLx
sinh(h). (12)

This leads to a periodic peak in the imaginary potential, as
depicted in Figs. 1(c)–1(e). For a detailed view of the phase
diagram in various phases [Fig. 1(b)] in different phases,
we examine three points along the V = 1 line in Fig. 1(b):
h = 0.3, 1.3, 2.3. As shown in Fig. 1(c), when the imaginary
phase h = 0.3, the overall density of the wave function ex-
hibits minor fluctuations along the x direction, corresponding
to IPR = 0.11 ≈ 1/Lx. As h increases to 1.3, the wave func-
tion’s density varies more significantly, resulting in IPR =
0.25, indicating a wave function reminiscent of a fractal-like
state, as shown in Fig. 1(d). Finally, for a larger imaginary
phase h = 2.3, the low-energy approximation becomes less
effective, yet it remains useful for describing eigenstates at
the boundaries. The wave function shows random localization,
with the maximum density |ψ |2max ≈ 0.9 is observed at Lx = 1
(IPR=0.75). Sharp peaks in the wave function are observed at
black (positive) circles, see Fig. 1(e).

At V = 1, the extended-critical transition point at h1 =
0.97 and the critical-localized phase transition at h2 = 1.41.
In Appendix B, for a more comprehensive analysis of the
phase diagram, we calculate various physical quantities, in-
cluding the fractional dimension, the maximum imaginary
part of the topological edge states, the scaling exponent,
and the ground state fidelity. These calculations served to
elucidate the phase transitions at h1 and h2. Besides, when
Ly = 2, we construct an effective Hamiltonian, transforming
the system from a 2D to a two-chain system composed of
1D AAH chain and free chain [54,78]. This allowed us to
capture the main physical properties of the system. Moreover,
we have also introduced modifications to the phase, hopping,
and mass term, both of which do not affect the critical phase.
Our findings suggest that the emergence of critical phases is
unrelated to these parameters but is primarily a consequence
of the coupling between localized states and extended states
[54]. This allowed us to investigate the impact of the system’s
size along the y direction, leading to a deeper insight into the
critical phase.

III. IMAGINARY AND QUASICRYSTAL DOMAIN

Imaginary domains provide a general approach to un-
derstanding the wave function and FOQPT in the system.
Imaginary domain walls act similarly to finite potential wells,
imposing constraints on the wave function akin to forming
distinct spatial boundaries. As parameters change, the ground
state tends to localize in the potential well with the lowest
energy, while excited states localize in higher energy wells.
At the critical point, the system undergoes a PT phase tran-
sition. After the PT phase transition, the wave functions are
distributed only within the corresponding domain walls, and

the energy band shows an imaginary line gap, as shown in
Fig. 2(a).

Furthermore, we observe that when multiple domain
walls are present, the wave function is correspondingly re-
stricted within these separate domains. Subsequently, we
consider

HNNN = HHermitian + iV1 + iV2/4, V1 = V2, (13)

where HHermitian = ∑
n c†

ncn + H.c. is a free chain. V1 =
V

∑ L
4
n=1 xn, V2 = V

∑L
n= 3L

4
xn are the first and second domains

respectively, and V is the strength of imaginary domain.
In Fig. 2(a), the ground state wave function is depicted,

with the positions of the first V1 and second V2 domains
marked by yellow and green lines, respectively. In the left
image, the ground state wave function is an extended state.
However, as the imaginary potential strength V increases, the
ground state wave function becomes progressively confined to
the central region. Due to the presence of imaginary potentials
at both ends, the potential energy is lowest in the middle, so
the ground state wave function is mainly distributed in the
middle. This effect becomes more pronounced with stronger
imaginary potentials.

It is noteworthy that the domain walls here are two non-
adjacent imaginary domain walls. With the variation in the
strength V of the imaginary domains, two PT phase transitions
occur, ultimately presenting two imaginary line gaps, as seen
in Appendix C. We also discuss the scenario with adjacent
domains, which results in only one PT phase transition, as
shown in Fig. 9 from Appendix C.

We find that the quasicrystal imaginary potential in Eq. (2)
represents a special type of imaginary domain. Due to the qua-
sicrystal varying strength of the imaginary potential, points
where the potential is approximately zero emerge, effectively
demarcating different imaginary domains. As depicted below
Fig. 2(a), for Lx = 20, two imaginary domains are present
with boundaries at x = 18 and x = 42, marked by yellow and
blue dashed lines, respectively. At h=0.6, the ground state
remains an extended state. Upon reaching h = 1.2, the system
undergoes its first PT phase transition. In the middle panel,
where h1 < h < h2, the second domain has a lower average
potential, causing the ground state to predominantly occupy
the second domain area (18, 42), making it a critical wave
function. h = 1.7 > h2 corresponding to the right panel, the
system has passed through the second PT phase transition into
a localized phase. However, the ground state does not remain
in the same domain but shifts to the first domain (0, 18). This
is attributed to a level crossing in the Haldane model with
quasicrystal domains on the boundary, a scenario distinct from
1D AAH models, where coupling between extended and lo-
calized states is absent [54]. The first domain, which has lower
potential energy before the first PT transition, becomes higher
in potential energy than the second domain. Consequently,
what was an excited state in the first domain becomes the
ground state, indicating a FOQPT. This is a situation distinct
from the typical cases where imaginary potentials induce PT
phase transitions. It is noteworthy that the presence of two
quasicrystal domains (imaginary domains) leads to two FO-
QPTs (PT transitions). This phenomenon can be extended to
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(a) (b)

FIG. 2. (a) The top row presents the ground state of a one-dimensional free chain with nonadjacent quasicrystal domains. The three plots
correspond to V = 0.01, 0.80, 2.00, respectively. The bottom row showcases the ground state of the Hamiltonian in Eq. 2, with the three plots
corresponding to h = 0.60, 1.20, 1.70. In these plots, the yellow and green dashed lines indicate the positions of the first and second domains,
respectively. (b) The relationship between quasicrystal domains, phase transitions, and quasiperiodic domain-induced first-order quantum
phase transitions (QPTs): The quantities of imaginary domains (Nd ), PT phase transitions (NPT ), quasicrystal domains (NAAH ) and quasicrystal
domains inducing first-order quantum phase transitions (NQPT ) are all mutually equal, i.e., NAAH = Nd = NPT = NQPT .

systems with more domains, as illustrated in Fig. 2(b):

NAAH = Nd = NPT = NQPT , (14)

where NAAH , Nd , NPT , NQPT represent the number of qua-
sicrystal domains, domains, PT phase transitions, and FO-
QPTs, respectively. In other word, NAAH = NQPT . In the
following text, we will discuss the relationship between mul-
tiple quasicrystal domains and FOQPTs.

IV. FIRST-ORDER QUANTUM PHASE TRANSITION

In our study, we examine the impact of the x and y dimen-
sions on the phase diagram. In Fig. 3(a), we directly calculated
the ground state IPR as a function of h for V = 1 at different
sizes Lx = 21, 34, 55, 89, 144, 233. For Lx ranging from 21 to
233, there are respectively 2, 3, 4, 5, 8, and 13 critical points.
With Lx = 21, the system has only two critical points, similar
to what is shown in Fig. 1(b). This trend highlights that the
number of discontinuities in the IPR scales with size changes.

Further analyses in Appendix A reveal that the disconti-
nuities in the IPR correspond to changes in the derivation
of ground state energy for Lx = 21, 34, 55, 89. The energy
functions for general multiple imaginary domains, however,
remain continuous. At these critical points, level crossing
between ground and excited states suggests the occurrence of
a FOQPT.

We make the first observation of the FOQPT induced by
domain in non-Hermitian systems, characterized by the criti-
cal phase undergoing partitioning into multiple regions, which
is a phenomenon absent in Hermitian systems. We thus define
NQPT as the number of FOQPTs induced by the quasicrystal
imaginary domains.

We plot the NQPT as a function of Lx/Ly, as shown in
Fig. 3(b). The results show that NQPT remains constant with
increasing Ly, as indicated by the green line, due to the con-
stant size of the quasicrystal domain (V (x)). However, the
NQPT increases as Lx increases, as represented by the red line.
The linear fit result is NQPT = 0.05Lx + 0.98. 0.05 means that
for every 20 lattices, there is a phase transition increase in
the imaginary potential. Notably, the observed increase phase
transition is not the extended-critical or critical-localized

transition, but rather a FOQPT. Considering the potential
V (x) in Eq. (2), the emergence of zeros in the potential
(Im(V (x)) ≈ 0) is crucial. When we calculated the zero points
of the quasicrystal domains for these sizes, we find an average
of one zero point appearing every 20 lattice sites as well. That
is, the number of quasicrystal domains equals (Nd ) the number
of FOQPTs (NQPT ). This correlation is further supported by
the ground state fidelity analysis in Fig. 3(b) subplot. The
fidelity of the ground state Fg as a function of h for different
sizes Lx = 21, 34, 55, 89, 144, 233. As the Lx increases, the
number of zero imaginary potential points increases. These
zeros partition the potential into distinct domains, with each
domain hosting different phase transition points as the h vary.
This is the reason why the NQPT increases as the Lx [length of
the V (x)] increases.

Moreover, if these zeros are replaced by finite imaginary
potentials, the NQPT returns to the situation in Fig. 3(b) and
does not vary with Lx, as illustrated by the green line. Addi-
tionally, when maintaining a constant length of the imaginary
potential, i.e. length(V (x)) = 20, we plot the NQPT as a func-
tion of Lx, as indicated by the green line. This implies that the
first depends only on the changes in the imaginary domain.

Furthermore, based on the above discussion, imaginary
domains not only induce FOQPT but also confine the ground
state wave function within the domain regions with the lowest
potential energy. However, as seen in Fig. 3(a), around the
FOQPT, there is a slight discontinuity in the ground state
probability. Additionally, with increasing size, the variation in
this IPR becomes progressively smaller. We have computed
the average of the differences in the IPR (IPRδ) at all critical
points as a function of Lx. Through log-log fitting, we find
that IPRδ ∝ L−0.84

x , as shown in Fig. 3(c). Therefore, in the
thermodynamic limit, the localization transition of the system
from critical to localized phase would be a continuous one.

In Appendix D, we also discuss the relationship between
the critical points h1, h2, and the system dimensions Lx, Ly. We
observe that only h2 is influenced by Lx, showing an approxi-
mately linear growth with increasing Lx. This further indicates
that the transition from the critical phase to the localized phase
is expected to be a continuous process in the thermodynamic
limit.
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(a)

(b)

(c)

FIG. 3. (a) The IPRg as a function of h for six different system
sizes Lx = 21, 34, 55, 89, 144, 233. (b) The NQPT as a function of
Lx/Ly. The red line represents Lx , and the fit yields NQPT = 0.05Lx +
0.98. The green line corresponds to Ly. Inset: The ground fidelity Fg

plotted against h with Lx = 21, 34, 55, 89, 144, 233. (c) The average
of difference in IPR (IPRδ) at critical points as a function of Lx .

V. CONCLUSION

We have systematically explored the intricate phase
diagram and the emergence of an FOQPT in the 2D Haldane
model with edge quasicrystal dissipation. The system exhibits
extended, critical, and localized phases, where the critical
phase does not appear among the corresponding 1D AAH
models. In the low-energy approximation, we show phase
transitions in the density of the wave function within different
phases.

Furthermore, the effect of the system dimensions along
both x and y directions on these phase transitions has been
also analyzed. While variations in the y direction dimen-
sions exhibit no significant impact on the phase transitions,

increasing the dimensions along the x direction leads to a
notable expansion of the critical point, marking the transition
from the critical to the localized phase. This expansion can
be attributed to the gain effect of the positive imaginary po-
tential, which weakens the localization of the wave function.
moreover, our study unveils an interesting phenomenon in
non-Hermitian systems: a FOQPT triggered by quasicrystal
imaginary domains. This intriguing occurrence results in the
critical phase partitioning into multiple regions as the size of
the imaginary domain increases. Finally, these results deepen
comprehension of the intricate interplay between the criti-
cal phase, edge quasicrystal domain, and system dimensions.
These results also pave the way for further investigations into
the realm of critical phases and quantum phase transitions.
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APPENDIX A: FIRST-ORDER PHASE TRANSITION

According to Landau’s criterion, a quantum phase transi-
tion is identified by the non-analytic behavior of the ground
state energy. This nonanalyticity can manifest as the limit-
ing case of avoided level crossing or actual level crossing
[79]. Furthermore, an nth-order quantum phase transition is
characterized by discontinuities in the nth derivative of the
energy [80]. However, the spectra of the non-Hermitian sys-
tem are generally complex. There are some line gaps and
point gaps that have been found in the non-Hermitian systems
[6,71]. When the parameters are changed, the line gap may go
through the process of closing and reopening many times if
there is more than one zero imaginary potential point. There-
fore, in our system, FOQPT is identified by abrupt changes
in the real part of the energy gap 	g and the first derivative
of the ground state energy dEg/dh. In Fig. 4(a), we plot the
logarithm of the energy gap log(	g) as a function of h for
different system sizes Lx = 21, 34,55, 89,

	g = Re(E f − Eg), (A1)

where E f is the first excited state energy and Eg is the ground
state energy. There are two discontinuous points h1 and h2,
at which the gap is closed. It also corresponds to the phase
transition at V = 1 in Fig. 1(b) in the main text.

To determine the order of a phase transition, we calculated
the ground state energy Eg and its first derivative dEg/dh as a
function of h. In Fig. 4(b), the black dots represent the ground
state energy, while the red dots represent its first derivative.
Although Eg is continuous, the discontinuity of dEg/dh at
h1 and h2, showing the first-order nature of quantum phase
transition, as illustrated in Fig. 4(a).

For the Hamiltonian system described by Eq. (13) in the
main text, we also investigated the phase transitions in a
1D nonadjacent imaginary domain system. As illustrated in
Fig. 5, we computed the ground state energies and their
derivatives for different system sizes (L = 40, 60, 80, 100).
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(a) (b)

FIG. 4. (a) The logarithm of energy gap log(	g) as a function of h. (b) The first-order derivative of the ground state energy dEg/dh as a
function of h. Both log(	g) and dEg/dh exhibit discontinuities for four different system sizes Lx = 21, 34, 55, 89. The parameters are chosen
as V = 1, Ly = 20.

However, unlike the scenario depicted in Fig. 4, we did not
observe any discontinuous changes indicative of phase transi-
tions. Specifically, the parameter variations in a typical virtual
domain system did not give rise to first-order quantum phase
transitions or energy level crossings. This stands in contrast
to the distinctive phenomenon observed in the 2D quasicrys-
tal domain system, which represents a unique case in our
research.

APPENDIX B: FRACTION DIMENSION, PT-SYMMETRY
BREAKING, AND FIDELITY

The localization behavior of the system’s wave function
is a crucial observable that requires precise measurements.
Wave functions are commonly characterized by their fractal
dimension (FD) [54,66], quantified by the IPR, which follows
a scaling relation of

IPR ∼ (Lx )−τ , (B1)

where τ represents the FD. The FD provides a valuable per-
spective to understand how states expand and fluctuate as the
system size increases. Similar to IPR, when limLx→∞ τ = 1, it
indicates an extended wave function. Conversely, if the wave
function is localized with peaks only at a few lattice points and
negligible amplitudes elsewhere, it implies limLx→∞ τ = 0.
Fractal wave functions exhibit FD values within the range of
0 < limLx→∞ τ < 1.

In Figs. 6(a)–6(c), we compare the fractal dimensions of
the extended, localized, and critical phases. Specifically, we
examine three points along the V = 1 line in Fig. 1(b) of the
main text: h = 0.2, 1.4, and 2.6. The two black dashed lines in
all plots correspond to Re(E ) = ±1 positions, between which
states are all topological edge states only when h is small. In
Fig. 6(a) at h = 0.2, the majority of states are concentrated
at the top, indicating extended states with τ = 1. Moving to
Fig. 6(b) with h = 1.4, a decreasing trend is observed in both
topological edge states and boundary states, with τ values
ranging from 0.1 to 0.6. These boundary states tend to localize
at points on the imaginary lattice. Additionally, some of these
states satisfy |Re(E )| < 1, indicating the occurrence of an
energy level-crossing, i.e., a first-order phase transition. It
is worth noting that at τ = 0.6, we observe the separation
between extended states and fractal states localized on the
dissipative boundary.

Under a strong imaginary potential at h = 2.6 in Fig. 6(c),
we discover that all boundary states move to the bottom with
τ = 0, and their count precisely matches the number of topo-
logical edge states Lx. However, the topological edge states
return to the top of the plot, indicating their return to extended
states almost unaffected by the imaginary potential.

The impact of the imaginary potential on the system’s
topological states is observed in the critical phase, as depicted
in Figs. 6(b). A captivating question arises: How does the
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2.998×10-6 1×10-8

1×10-8

1×10-8

1×10-9

2.998×10-6

2.998×10-6

2.998×10-6

FIG. 5. The ground state energies (black points) and their deriva-
tives (red points) for the Hamiltonian (Eq. 13) as a function of h at
L = 40, 60, 80, and 100. The derivatives of the ground state energies
did not exhibit any discontinuous changes.

variation of the parameter influence the imaginary part of the
topological edge states? Figure 6(d) illustrates the behavior of
the largest imaginary part |Im(E )| vs h. Remarkably, a sudden
surge from zero occurs at h1, followed by an abrupt decline to
zero at h2. Remarkably, when h < h1 (PT-symmetric) and h >

h2 (PT-restored), max(Im(Ee)) remains close to zero, in agree-
ment with Figs. 4(a) and 4(b). However, in the intermediate
region, the imaginary potential has a pronounced impact on
the topological states, leading to non-zero values of Im(Ee).
This observation verifies our earlier conjecture and highlights
the intricate interplay between the parameter variation and the
imaginary part of the topological edge states, see Eq. (6) of
the main text.

One calculation similar to the FD is the scaling exponent
[54,66], which can be obtained from the on-site probabilities
of any wave function ψn. Specifically, the on-site probability

is restricted to the boundary. According to the fractal theorem,
the scaling of the maximum on-site probability is expressed as

max(pn,edge) ∼ (2Lx )−β
edge
n , (B2)

where pn,edge = |ψn,edge|2 and edge = 1, . . . , 2Lx. To deter-
mine the extended, critical, and localized wave functions, we
only need to investigate the minimum value of the scaling
exponent β

edge
min .

Referring to Fig. 6(e), we focus on the scaling exponent
of the ground state on the boundary. Strikingly, we observe a
precipitous decline in β

edge
min precisely at the critical points h1

and h2. When h < h1, the system manifests an extended phase,
thereby approximating β

edge
min to 1. Conversely, for h > h2,

the system assumes a localized phase, whereby the boundary
wave functions localize, yielding β

edge
min ≈ 0. Within the critical

phase, β
edge
min spans the interval (0.1, 0.25), providing evidence

of a fractal nature of the ground state.
We have carried out various calculations, some of which

are based on knowledge of the physical properties of the
system. However, in Fig. 6(f), we investigate the behavior of
the ground state fidelity Fg vs h [81]. Fidelity has a distinct
advantage in that it does not require prior familiarity with the
order parameters or symmetries of the system. Typically, we
can expect that as the ground-state structure undergoes sharp
changes, the fidelity will abruptly decrease near the critical
points of the system. We focus on the boundary subspace and
explore the boundary fidelity, quantified as

Fg(h, δh) = | 〈ψg,edge(h)|ψg,edge(h + δh)〉 |, (B3)

where δh is a small quantity, |ψg,edge(h)〉 =∑
edge |ψedge〉 〈ψedge|ψg(h)〉 and |ψg(h)〉 satisfies the

eigenvalue equation H (h) |ψg(h)〉 = Eg |ψg(h)〉. Around
the critical points near h1 and h2, the overlap of the ground
state Fg undergoes a dramatic decrease, decreasing from 1 to
0.76 and from 1 to 0, respectively.

Based on the above description, the physical properties of
the original Haldane model can essentially be captured by the
characteristics of its boundaries. Therefore, we introduce the
concept of the boundary effective Hamiltonian Hedge to further
comprehend the expanded-critical and critical-localized phase
transitions depicted in Fig. 1(b) in the main text. Directly, we
project the H onto the boundary subspace by using the bound-
ary projection operator Pedge. The effective edge Hamiltonian
is then given by

Heff = Pedge H Pedge = HAA + Hfree + Hc, (B4)

where HAA = ∑
m(a†

mam+1 + H.c.) +V cos(2παm + ih)a†
mam

represents the non-Hermitian Aubry-Andreé-Harper model,
Hfree = ∑

m b†
m+1bm + H.c. is the free chain with only the

nearest-neighbor hopping term, and Hc = a†
mbm + H.c. repre-

sents their coupling, as seen in Eq. (1) of the main text with
Ly = 2. The Heff is reduced to a two-chain model

Heff =
2∑

j=1

∑
n

[Vj,mc†
j,mc j,m + t (c†

j,mc j,m+1 + H.c. )]

+ λ
∑

m=odd

(c†
1,mc2,m + H.c. ), (B5)
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(a) (b) (c)

(d) (e) (f)

FIG. 6. [(a)–(c)]. The fractal dimensions τ as a function of the real part of eigenenergies Re(E ) for three different h = 0.2, 1.4, 2.6. In (d),
the largest value of |Im(E )| is a function of h. (e) The minimal scaling exponent as a function of h. (f) The fidelity of ground states Fg versus
h. Abrupt changes at h1 and h2 are present in [(d)–(f)]. Inset: Phase diagram of the effective two-chain model Heff . The parameters are chosen
as Lx = 20, Ly = 20.

where V1,m = V cos(2παm + ih) when j = 1 and when j =
2, V2,m = 0.

In the subplot of Fig. 6(f), two critical lines, similar to
those in Fig. 1(b) of the main text, divide the whole phase
diagram into three regions: extended, localized, and critical
phases. This phase diagram is almost the same as Fig. 1(c) in
the main text, except that the critical line from the extended
phase to the critical phase is not particularly obvious, and the
extended phase is also reduced. This is due to size effects, and
in the case of Ly → ∞ the subplot of Fig. 6(f) will change
back to Fig. 1(b) in the main text.

APPENDIX C: PHASE TRANSITION IN IMAGINARY
POTENTIAL

Now we replace Hh in Eqs. (12) and (13) of the main text
by a 4 × 4 PT-symmetric matrix. This matrix is represented
by four lattice models with different imaginary potentials.
In the first case, two nonadjacent lattices feature dissipative
behavior, while the other two do not. The corresponding
Hamiltonian is denoted as HNNN = Ha

Ha =

⎛
⎜⎜⎝

iγ t 0 0
t 0 t 0
0 t iγ t
0 0 t 0

⎞
⎟⎟⎠, (C1)

where the t is the nearest hopping term and the γ is the non-
adjacent on-site imaginary potential. Ha is PT-symmetric, i.e.,
PT Ha(PT )−1 = Ha. The exceptional points are γ = (

√
5 ±

1)t , and the eigenvalues are

λ1 = 1
2

( −
√

−γ 2 − 2
(√

5 − 3
)
t2 + iγ

)
,

λ2 = 1
2

(√−γ 2 − 2
(√

5 − 3
)
t2 + iγ

)
,

λ3 = 1
2

( −
√

2
(√

5 + 3
)
t2 − γ 2 + iγ

)
,

λ4 = 1
2

(√
2
(√

5 + 3
)
t2 − γ 2 + iγ

)
. (C2)

As the eigenvalues are symmetric, we only need to con-
sider γ > 0, see Fig. 7(a). The system hold PT symmetry
when γ < (

√
5 − 1)t , where Im(λ1, λ2) are all equal to each

other. When (
√

5 − 1)t < γ < (
√

5 + 1)t , the imaginary part
Im(λ1, λ2) are different, so γ = γc1 = (

√
5 − 1)t is the first

critical point. Moreover, when γ exceeds the second critical
point γ = γc2 = (

√
5 + 1)t , the vanishing of the real part of

the four modes indicates that PT-symmetry is broken again.
Conversely, the Hamiltonian with two adjacent imaginary

potentials is

Hb =

⎛
⎜⎜⎝

iγ t 0 0
t iγ t 0
0 t 0 t
0 0 t 0

⎞
⎟⎟⎠, (C3)

where Hb is also PT-symmetric. Then the eigenvalues of Hb

are

λ1 = 1
2

( −
√

−γ 2 − 2t
√

5t2 − 4γ 2 + 6t2 + iγ
)
,

λ2 = 1
2

(√−γ 2 − 2t
√

5t2 − 4γ 2 + 6t2 + iγ
)
,

λ3 = 1
2

( −
√

−γ 2 + 2t
√

5t2 − 4γ 2 + 6t2 + iγ
)
,

λ4 = 1
2

(√−γ 2 + 2t
√

5t2 − 4γ 2 + 6t2 + iγ
)
. (C4)

However, there is only one exceptional point γ = γc1 ≈ 1.1
where Im(λ1) = Im(λ2) and Im(λ3) = Im(λ4), as shown in
Fig. 7(b). As in Eq. (13) of the main text, the Hamiltonian of a
1D free chain with different imaginary domain walls is given
by

HNN = HHermitian + iV1 + iV2/4, V1 = V2, (C5)

where HNN represent the nearest-neighbor imaginary domain.

HHermitian = ∑
n c†

ncn + H.c. is a free chain. V1 = V
∑ Lx

4
n=1 xn,

V2 = V
∑Lx

n= 3Lx
4

xn are the first and second domains
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(a) (b)

FIG. 7. The energy spectrum of the simplest four lattice model. (a) The real and imaginary parts of the energy spectrum of Ha as a function
of γ . (b) The real and imaginary parts of the energy spectrum of Hb as a function of γ .

respectively, and V is the strength of imaginary domain.

HNNN = HHermitian + iV1 + iV3/4, V1 = V2 (C6)

where HNNN represent the next-nearest-neighbor imaginary

domain. V1 = V
∑ Lx

2
n=1 xn, V3 = V

∑Lx

n= Lx
2

xn are the first

and second domains respectively, and V is the strength of
imaginary domain.

In Eq. (13) of the main text, we have the Hamiltonian
for a one-dimensional free chain with distinct imaginary
domain walls. Examining Fig. 8(a), for nonadjacent imagi-
nary domains, the complex spectrum initially approximates
a straight line. As the strength of the domains increases, a
PT phase transition occurs, leading to the emergence of a
line gap. Upon further increasing the strength of the imagi-
nary domains, another line gap appears, indicating another PT
phase transition. In other words, two nonadjacent imaginary
domains induce two PT phase transitions. However, the ad-
jacent domain undergoes only one PT phase transition with
the variation of parameter V , see Fig. 8(b). This conclusion
further corroborates the scenario discussed in Fig. 3(b) of
the main text. In the following, we aim to figure out the
connection between the 2D Haldane model and the imaginary
potential. Figure 9 illustrates the complex energy spectrum of
two scenarios: one with NN imaginary potential [Fig. 9(a)],
defined as

HNN = HHermitian + iV1 + iV2/2, V1 = V2, (C7)

and another with NNN imaginary potential [Fig. 9(b)] given
by

HNNN = HHermitian + iV1 + iV3/2, V1 = V3, (C8)

where HHermitian is an arbitrary Hermitian matrix, we consider
the 2D Haldane model HHermitian = HHaldane, see Eq. (3). In Vi,

“i = 1, 2, 3” represent the on-site potential of any position on
the boundary and are increasing in order.

Their energy spectra form a semicircle with the x axis, ex-
hibiting a skinning effect at V = 1.600, as shown in Fig. 9(a).
The states close to the x-axis depict topological edge states in-
fluenced by the NN imaginary potentials. The two points with
the largest imaginary part correspond to two boundary states,
which are progressively confined towards the boundary due to
the impact of the imaginary potential. The colors in Figs. 9(a)
and 9(b) represent the density at the boundary |ψedge|2, re-
vealing that the topological edge states primarily occupy the
boundary, while the states outside the energy gap are bulk
states, except for the boundary states. At V = Vc = 3.356, a
critical phase transition occurs when the two boundary states
degenerate. If the imaginary potential is slightly larger, i.e.,
V = 3.500, the real part of these two states remains the same,
but the imaginary part differs, resulting in a PT phase transi-
tion. With further increases in V , the energy of the boundary
states increases in tandem with the imaginary potential, and
the imaginary parts of the topological edge states become
nearly zero, restoring PT symmetry.

We also consider the case of next-nearest-neighbor imag-
inary potentials for V = 1.600, 2.000, 3.400, 6.000. The en-
ergy spectra are more or less the same at the beginning, and
the energy of the two boundary states undergoes a degenerate
at V = Vc1 = 2.000, which is also the first critical point. How-
ever, when V = Vc2 = 3.400, two additional boundary states
emerge near the topological edge states. These two boundary
states undergo a second PT phase transition. After the occur-
rence of twice PT phase transitions, there are only boundary
states localized at the two imaginary potential points, as
shown in Fig. 9(b). This observation from the simplest case
of two imaginary potentials can be extended to scenarios
involving multiple imaginary potentials, where multiple PT
phase transitions occur whenever nonadjacent imaginary
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(a) (b) 1×10-15+6.25×10-3

FIG. 8. The complex energy spectrum of the 1D free model with different imaginary impurities. (a) The energy spectra with two
nonadjacent imaginary impurities for V = 0.01, 0.80, 2.00 from left to right. (b) The energy spectra with two adjacent imaginary impurities
for V = 0.01, 0.30, 0.50 from left to right. The parameters are chosen as Lx = 40.

potentials are present, see Fig. 3(c). These nonadjacent imagi-
nary potential points essentially act as domain walls separated
by zeros. Consequently, as the size of the quasicrystal poten-
tial increases, FOQPT will be triggered continuously.

APPENDIX D: CRITICAL POINTS h1 AND h2

Not only the NQPT are influenced by the dimensions Lx

and Ly, but also the extended-critical transition point (h − 1)
and the critical-localized transition point (h2). The log(Lx ) as

(a)

(b)

FIG. 9. The energy spectrum of the Haldane model with different imaginary impurities. (a) The energy spectra with two NN imaginary
impurities for V = 1.600, 3.356, 3.500, 6.000 from left to right. (b) The energy spectra with two NNN imaginary impurities for V = 1.600,
2.000, 3.400, 6.000 from left to right. The parameters are chosen as Lx = 20, Ly = 20.
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(a) (b)

FIG. 10. (a) The x direction dimension Lx as a function of h1/h2. (b) The y direction dimension Ly as a function of h1/h2.

a function of h1, h2 is shown in Fig. 10(a), where we can
see h1 ≈ 0.97 is almost a constant and log(Lx ) = kh2 + c is
a linear function, where k and c are constants. As the size
of the system increases, the alternation of positive and neg-
ative imaginary potentials becomes more pronounced. The
presence of positive imaginary potentials causes the wave
function [Eq. (8)] to spread towards regions marked by
such potentials. This inherent tendency results in the wave
functions localization transition points increasing as the sys-
tem dimensions (Lx) grow. And each PT phase transition leads

to a more localized wave function. Thus, when combined
with the calculations for IPRδ in the main text, the criti-
cal phase undergoes a continuous transition to the localized
phase in the thermodynamic limit. Moreover, h1, h2 is shown
in Fig. 10(b) as Ly varies, when h1, h2 are all essentially
constants.

It is important to note that, in the case of small system sizes,
the critical points h1 and h2 are affected by the parameter Ly.
Only when Ly is relatively large (with Ly � 20) do these two
critical points tend to stabilize as constants.
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