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Localization, fractality, and ergodicity in a monitored qubit
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We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based
measurements. This setup is a fundamental minimal model for exploring the intricate interplay between the
unitary dynamics of the system and the nonunitary stochasticity introduced by quantum measurements, which
is central to the phenomenon of measurement-induced phase transitions. We demonstrate that this “toy model”
harbors remarkably rich dynamics, manifesting in the distribution function of the qubit’s quantum states in
the long-time limit. We uncover a compelling analogy with the phenomenon of Anderson localization, albeit
governed by distinct underlying mechanisms. Specifically, the state distribution function of the monitored qubit,
parameterized by a single angle on the Bloch sphere, exhibits diverse types of behavior familiar from the
theory of Anderson transitions, spanning from complete localization to almost uniform delocalization, with
fractality occurring between the two limits. By combining analytical solutions for various special cases with two
complementary numerical approaches, we achieve a comprehensive understanding of the structure delineating
the “phase diagram” of the model. We categorize and quantify the emergent regimes and identify two distinct
phases of the monitored qubit: ergodic and nonergodic. Furthermore, we identify a genuinely localized phase
within the nonergodic phase, where the state distribution functions consist of delta peaks, as opposed to the
delocalized phase characterized by extended distributions. Identification of these phases and demonstration of
transitions between them in a monitored qubit are our main findings.
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I. INTRODUCTION

Statistical properties of random systems constitute one
of the most outstanding topics of theoretical physics, which
keeps attracting a lot of attention, in spite of a long history.
Such an interest results, in particular, from the beauty and
fundamental importance of the physics of phase transitions.
One seminal example is the theory of the Anderson transition
between localized and delocalized phases [1,2]. Its archetypal
setup involves noninteracting particles in a random potential.
When strong disorder is introduced in the system the wave
functions of particles become spatially localized. Conversely,
for weak disorder, the wave functions may spread uniformly
throughout the system, exhibiting extended behavior. The
transition between the two phases is characterized by critical
fluctuations of wave functions, leading to the formation of a
multifractal spectrum.

Recently, a similar type of phase transition governed by
randomness has been discovered in hybrid random quantum
circuits, subject to both unitary evolution and local measure-
ments (monitoring) [3–7]. In monitored systems, randomness
is introduced by the quantum probabilistic nature of measure-
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ment outcomes rather than by the disordered potential. The
stochastic nonunitary evolution of the system emerges from
the inherently projective nature of measurements. The influ-
ence of measurements on the dynamics of quantum systems
has attracted considerable attention, largely because of recent
advances in the field of quantum information processing. Re-
gardless of the particular quantum hardware, the nuisance of
environmental noise is a formidable challenge [8–10]. In this
context, it is crucial that measurements can act both as a tool
to monitor the properties of a quantum system and as a source
of controllable disturbances.

It is the interplay of the unitary evolution of the system
with the nonunitary one governed by measurements that gives
rise to measurement-induced entanglement phase transitions,
a phenomenon originally predicted and studied in the context
of quantum circuits [3–7,11–30]. These transitions and related
phenomena were subsequently investigated in a variety of
models, including free fermionic systems [31–53], Ising spin
systems [54–63], various models with interactions [64–70],
and disordered systems exhibiting Anderson or many-body
localization [40,71–73]. Recent experimental papers have re-
ported on measurement-induced phase transitions in systems
with trapped ions [74] and in superconducting qubit arrays
[75,76].

A direct link between measurement-induced entanglement
transitions and the phenomenon of Anderson localization was
recently established in Refs. [47,48,50–52] by deriving non-
linear sigma-models for monitored free fermions. These field
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theories share significant similarities [50] with those used in
the context of Anderson localization. Particularly noteworthy
is the striking resemblance between the predicted entangle-
ment transition for free fermions in spatial dimensions larger
than one (D > 1) and the Anderson transition observed in
disordered systems of dimension D + 1 [51,52]. In the field of
measurement-induced dynamics, the entanglement transition
can be considered as a “metal-insulator transition” for quan-
tum information. In this analogy [51], mutual information
serves as a counterpart to dimensionless conductance, shed-
ding light on the evolving properties of the quantum system
under the influence of measurements.

Importantly, both the Anderson transition and the
measurement-induced entanglement transition are phenomena
that take place in infinite systems (thermodynamic limit). The
main question we are addressing here pertains to whether
a macroscopic spatial size or a macroscopically large num-
ber of degrees of freedom is a necessary condition for the
observation of complex behaviors driven by randomness,
thereby leading to transitions between distinct phases. More
specifically, our primary focus lies in ascertaining whether
a transition akin to the Anderson localization-delocalization
transition can be driven by repeated measurements in a micro-
scopic quantum system (cf. Ref. [77]).

In the present paper [78], we come across such complex-
ity even in a single monitored two-level system—a qubit
(e.g., a Loss-DiVincenzo spin qubit [79]), i.e., in the smallest
possible quantum system with nontrivial dynamics. The ther-
modynamic limit that is necessary for true phase transitions
can be reached here in the limit of infinite observation time
and, correspondingly, an infinite number of measurements.
Our setup comprises two two-level systems interacting with
each other, one of them representing the qubit, while the
other serves as the detector, see Sec. II A. This is arguably
the simplest model implementing “ancilla-based” generalized
measurements. Experimentally, monitoring and steering of
qubit quantum trajectories has become feasible [80–84].

The concept of variable-strength (generalized) measure-
ments, involving the coupling of a system to a two-state
detector (ancilla) followed by a projective measurement of
the detector, boasts a rich heritage across a variety of top-
ics, such as dephasing, weak values, counting statistics,
quantum control, and state engineering, as well as already
mentioned measurement-induced entanglement transitions
[12,57,58,69,70,77,85–103]. Historically, a setup with a two-
site system monitored by a detector first appeared, perhaps, in
Refs. [85,86], where a double quantum dot was electrostati-
cally coupled to a point contact in a conducting channel. It is
also worth noting that recent experimental investigations into
measurement-induced entanglement transitions [74,75] also
employ ancillas for measurements on qubit systems, in partic-
ular, in superconducting quantum processors with midcircuit
readout [75].

We demonstrate that this simple measurement model pos-
sesses extremely rich dynamics induced by the interplay of
unitary evolution and stroboscopic measurements. This shows
up, in particular, in the statistical properties of the distributions
of quantum states of the monitored qubit, which correspond
to different quantum trajectories. We find that, in the long-
time limit, the probability of finding a qubit in a given state

right after the measurement can be described by the time-
averaged distribution function W (θ ) of a single angle variable
parametrizing the state, see definitions in Sec. III A. This
is because the measurement protocol attracts the quantum
trajectories to a specific one-dimensional manifold on the
Bloch sphere of the qubit. One relevant observable, where
the state statistics manifests itself, is the expectation value
of the occupation of the monitored level (site) of the qubit.
Upon varying the strength of coupling between the system
and the detector, as well as the measurement period, W (θ )
exhibits a remarkably diverse and nontrivial behavior. It is
worth mentioning that recent study [77] predicted a cascade
of dynamical transitions in a similar model approaching the
quantum Zeno limit of frequent measurements (continuous
monitoring). Here, we are interested in the stationary phase
diagram of the model in the full parameter space, which in-
cludes stroboscopic measurements with a finite period.

One could argue that such complexity is kind of similar
to that arising during the evolution of chaotic systems [104].
However, there is a crucial difference between the chaotic and
monitored systems: The complexity in the Hamiltonian or dis-
sipative chaotic systems results from the intrinsic nonlinearity
of the evolution or nonintegrability induced by the system
boundaries; an additional source of randomness is not needed
there. On the contrary, the complexity of the monitored system
is unavoidably related to the quantum-mechanical uncertainty
in the measurement outcomes (Born’s rule) and disappears if
one applies a deterministic postselection procedure. Techni-
cally, the nonlinearity in our problem emerges at the level
of a functional master equation governing the distribution
functions for our stochastic maps.

The importance of measurement-induced randomness
points towards properties of disordered systems and the An-
derson localization transition rather than to chaotic systems in
the present context. Having in mind the above-mentioned link
between the measurement-induced transitions and Anderson
localization in large systems, it is very natural to anticipate
that, in the limit of the infinite observation time, statistical
properties of W (θ ) should be reminiscent of those of the
wave functions in disordered systems. Indeed, we observe that
W (θ ) may look localized (sharply peaked, see a representative
example in the upper panel of Fig. 1 and the first two panels
of Fig. 10 below), delocalized (see a representative example
in the middle panel of Fig. 1 and last three panels of Fig. 10
below), and even fractal [self-similar, see a representative
example in Figs. 1 (lower panel) and 12 below].

However, this visual similarity between the wave-function
statistics and the statistics of the states of the monitored qubit
is not conclusive. The classification of various types of be-
havior of the monitored qubit and identification of distinct
phases is only possible by using a combination of several
mutually complementary quantitative indicators. Inspired by
the striking parallels to the statistics of wave functions and
the local density of states in the theory of Anderson localiza-
tion, we employ here the standard indicators of the Anderson
transition: (a) the participation ratio and its scaling, Sec. V A;
(b) the support of W (θ ), Sec. V B; (c) the typical value of
W (θ ), Sec. V C; and (d) the Hausdorff dimension of the curve
W (θ ), Sec. V D. In addition, we characterize the stochastic
evolution resulting in the steady-state distribution W (θ ) by the
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FIG. 1. Distributions W (θ ) that look localized (upper panel),
extended and smooth (middle panel), or fractal (lower panel).

(e) ergodicity marker of the corresponding Markov process,
Sec. V E, which is common in the studies of chaotic dynami-
cal systems.

By combining the analytical solutions for several special
cases, which are related to various commensurability condi-
tions, with numerical approaches, we understand the overall
structure of the phase diagram of the monitored qubit, see
Fig. 15 below. The extensive numerical analysis of the in-
dicators has allowed us to categorize and quantify the rich
variety of regimes exemplified in Figs. 1 and 10 below. Using
indicator (e), we have identified two distinct phases of the
monitored qubit: ergodic and nonergodic. Furthermore, we
have found a genuinely localized phase within the nonergodic
phase, where the state distribution functions consist of delta
peaks, as opposed to the delocalized phase characterized by
W (θ ) with nonzero support. Identification of distinct phases
and demonstration of transitions between them in a monitored
qubit are our main findings.

Our analysis of the qubit toy model signifies that
measurement-induced transitions are characterized by an or-
der parameter that is not a conventional scalar quantity
but rather a distribution function. This distinguishing fea-
ture again resonates with the peculiarities of the Anderson

FIG. 2. Scheme of the model. Particles can occupy two sites, s1,2,
which are connected by tunneling with the strength γ . The site s1

interacts with a two-level system (detector D), with the coupling
strength being M. In the text we refer to the the chain of sites s1,2

(orange, dashed box) as “the system”, the two level system D (blue,
dotted box) is called “the detector”, and the entirety of system and
detector (green, solid box) is “the setup”.

transition, where the order parameter is represented by a dis-
tribution function of the local density of states [2]. Although
the “single-spin” system we study cannot demonstrate the
genuine entanglement transition, the discovered complexity
of the model manifested in the probability distribution W (θ )
suggests that in macroscopic monitored systems additional
“hidden” transitions are feasible, which could possibly be
observed in various distribution functions rather than average
quantities.

The paper is organized as follows. In Sec. II, we introduce
the model and measurement protocol. The evolution of the
qubit state on the Bloch sphere is discussed in terms of mea-
surement operators. We further define the angle distribution
function (ADF) W (θ ) and explain its manifestation in various
averages (stationary solution of a Master equation and time
average of a single typical quantum trajectory). In Sec. III,
the measurement operators of our model are derived. Based
on these operators, we explain why the time evolution can be
described asymptotically in terms of a single angle variable.
We obtain the ADF analytically for several special parameter
choices in Sec. IV. The quantifiers of localization, fractality,
and ergodicity are introduced in Sec. V, where we illustrate
and explain their properties using generic ADFs obtained
from numerical simulation. Section VI is dedicated to the
systematic numerical calculation of these indicators in the
parameter plane of the model. Diagrams of the indicators
in the parameter plane are shown and their structure is ex-
plained in terms of the analytically understandable special
cases. The emergence of different phases in the parameter
plane is demonstrated. We discuss the relation of our results
to previous works on similar topics, implications of our find-
ings to experiment, as well as further directions, in Sec. VII
and conclude in Sec. VIII. Technical details are relegated to
Appendices.

II. BASIC DEFINITIONS AND CONCEPTS

A. Model and measurement protocol

The model we study is illustrated in Fig. 2. The entire setup
(green, solid box) consists of a system (orange, dashed box)
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and a detector (blue, dotted box). The two-level system is
represented by two tunnel-coupled sites s1 and s2, which can
be occupied by a single spinless electron (one can equivalently
consider any other realization of a qubit as the system). One of
the two sites (labeled by 1) is coupled to the two-state detector
that can be a single spin-1/2 (or, equivalently, another pair of
sites occupied by a single electron). The particular form of
the coupling between the system and the detector is chosen to
conserve the number of electrons in the system; in our case,
the detector monitors the occupation of site s1.

The specific model to be analyzed is described by the
Hamiltonian

Ĥ = Ĥs + Ĥsd, (1)

Ĥs = γ â†
1â2 + H.c., Ĥsd = M(â†â)1τ̂x. (2)

Here, Ĥs is the system Hamiltonian, Ĥsd couples the system
and the detector, â1,2 (â†

1,2) are the fermionic annihilation
(creation) operators on sites s1 and s2, the Pauli matrix τ̂x

acts in the detector space, and γ and M are the tunneling and
interaction constants, respectively. The occupation of site s1

facilitates transitions between the two levels of the detector.
If the detector is realized, e.g., with two auxiliary sites (cf.
Ref. [69]), the chosen form of Ĥsd would correspond to the
hopping between the auxiliary sites modulated by the density
on s1 of the system. We assume that the system sites are
unbiased, i.e., they have the same on-site energies. The value
of the on-site energy determines the origin and we have set
it to zero. Besides, we disregard an unimportant phase of γ ,
which can be gauged out. The dimension of the Hilbert space
of the setup (two-level system plus two-state detector) is four.
The orthonormal basis vectors of the system can be chosen as

|1〉 ≡ |1, 0〉, |0〉 ≡ |0, 1〉,
where the state |1, 0〉 (|0, 1〉) shows whether the first (second)
site is occupied.

Within our protocol, the detector is initiated in a given state
|−〉 at time t0 = 0, such that the initial state of the entire setup
(measured system plus detector) reads as

Initial setup’s state: �0 = ψ0 ⊗ |−〉;
where ψ0 is the initial state of the system. Measurements
are performed stroboscopically at time instants t j = jT, j =
1, 2, 3, . . . (T is the measurement period), when the detector is
projected on one of its two states in the basis of its initial state.
The probabilities of the detector readouts are given by the
standard Born’s rule. The projection to state |−〉 (with proba-
bility P−) will be called a “no-click” event; the projection to
the flipped state |+〉 (with probability P+) will be referred to as
a “click” event. The system’s state ψ (t j ) after the projection of
the detector depends on the outcome ± (“post-measurement
state”),

Setup state at t j : �(t j ) =
{
ψ+(t j ) ⊗ |+〉 click;

ψ−(t j ) ⊗ |−〉 no click.
(3)

After each projection, the detector is reinitialized in the |−〉
state at postmeasurement times t>

j ≡ t j + 0,

Setup state at t>
j : �(t>

j ) =ψ (t j ) ⊗ |−〉. (4)

This corresponds to “resetting” in the problem, which re-
moves memory effects [70] that would appear if the joint
system-detector evolution between times t>

j and t j+1 started
with the fiducial state of the detector after projection at t j .

The dynamics of the entire setup between t0 and t1, as
well as between any two successive measurements, can be
described by the unitary evolution operator,

ÛT = exp(−iĤT ).

This unitary evolution entangles the system and the detector,
so that, generically, the state of the setup is not a product
state for all times except for t j (and t>

j ). However, after each
measurement on the detector, the total wave function collapses
into a separable product of the system and detector states.
Importantly, the unitary evolution of the setup is governed by
the full Hamiltonian (1) at all times between the successive
measurements, combining both the system’s own tunneling
dynamics and the one induced by the system-detector cou-
pling. This should be contrasted with other models known in
the literature (see, e.g., Ref. [77]), where the periods of “mea-
surement dynamics” (governed only by Ĥsd, with Ĥs switched
off) follow the periods of free (decoupled from the detector,
Ĥsd switched off) evolution of the system. In such models, the
measurement Kraus operators are independent of the system
Hamiltonian (would not involve γ for the system considered).
Our model is thus more realistic for studying the interplay and
competition of the measurement-induced dynamics with the
system dynamics. It is this type of competition that results
in the measurement-induced entanglement transitions, see the
discussion of a related toy model in Ref. [41].

B. Electron states and postmeasurement mapping

In what follows, we consider the system states at times t j ,
ψ (t j ), which are normalized two-component spinors that can
be written as

ψ = α|1〉 + β|0〉 ≡
(
α

β

)
, |α|2 + |β|2 = 1. (5)

After omitting the overall phase of ψ , the corresponding am-
plitudes can be parameterized by two angle variables, θ ∈
[−π, π ) and ϕ ∈ [−π/2, π/2],

α = cos(θ/2), β = eiϕ sin(θ/2). (6)

Now, we can map the Hilbert space of the system onto the
space of unit vectors,

b ≡
⎛⎝sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞⎠, (7)

starting at the origin and pointing to points on the Bloch
sphere in three dimensions, see Fig. 3 for examples of states
on the Bloch sphere. Note that the resulting parametrization of
the Bloch sphere differs from the one based on conventional
Euler angles, where the azimuthal angle varies from 0 to π .

The coefficients (or angles) parametrizing the state ψ take
some values at the initial time, α(t0) = α0, β(t0) = β0 [or,
equivalently, θ (t0) = θ0, ϕ(t0) = ϕ0] and change during the
quantum evolution. Since between the measurement events,
the system is entangled with the detectors, these coefficients
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FIG. 3. States on the Bloch sphere. θ = 0 is the north
pole, corresponding to the state {α = 1, β = 0} [see Eq. (6)];
θ = −π is the south pole, corresponding to the state {α = 0,

β = 1}. The dots on the surface marked by arrows indicate states
{α = cos(3π/26), β = e−iπ/5 sin(3π/26)} and {α = cos(−7π/26),
β = eiπ/5 sin(−7π/26)}.

are only defined at post-measurement times t>
j . Such evolu-

tion at discretized time instants is described by the mapping
that depends on random measurement outcomes,

{α j−1, β j−1} →
{

{α(−)
j , β

(−)
j }, no click,

{α(+)
j , β

(+)
j }, click,

(8)

where

α j−1 ≡ α(t>
j−1), β j−1 ≡ β(t>

j−1). (9)

The probabilities of the measurement readout at t>
j generically

depend on the state of the system at time t>
j−1, i.e., on α j−1 and

β j−1. To reflect this property, we introduce notations

P(μ)
j ≡ Pμ(α j−1, β j−1), (10)

with μ = ± for click- and no-click outcomes. The mapping
(8) can be formulated in the matrix form(

α
(μ)
j

β
(μ)
j

)
= 1√

P(μ)
j

M̂μ

(
α j−1

β j−1

)
. (11)

Singling out the normalization factor with P(μ)
j in this matrix

equation renders the matrices M̂± (Kraus operators) indepen-
dent of the system’s state. Note that α and β on the right-hand
side of Eq. (11) are not marked by the upper index (μ) because
the outcome at t>

j−1 (whether it is “click” or “no-click”) is not
important for obtaining the state at t>

j . This is a consequence
of the ancilla’s resetting after its projection, which also im-
plies that the probabilities P(μ)

j do not depend explicitly on
the previous measurement outcome (hence, only one outcome
label μ).

If we start with the state determined by α0 and β0 and ex-
plore all quantum trajectories of length j, we come across the
tree-like graph with the branching number 2 and 2 j endpoints
[105], see Fig. 4. Each endpoint of the graph represents a
quantum state of the system obtained after acting on {α0, β0}T

by a random product

M̂(T ) ≡ M̂μ j . . . M̂μ2 M̂μ1 (12)

of 2 × 2 matrices M̂+ and M̂−. It corresponds to a
given sequence of click and no-click outcomes—a “quan-
tum trajectory” parameterized by the kth “bit-string” Tk ≡

FIG. 4. Exponential branching of states generated from the initial
state (gray) by different combinations of postmeasurement matrices
M̂± (the j = 2 trajectories are shown). After the jth measurement,
there are 2 j different endpoints (in principle, some endpoints can de-
scribe the same state). Each generated state (including all endpoints)
is labeled by a bitstring showing the sequence of measurement out-
comes along the quantum trajectory leading to the state.

{μ1, μ2, . . . , μ j}, where k = 1, . . . , 2 j labels one of the end-
points of the tree, see Fig. 4. Each quantum trajectory Tk is
weighted by the total Born’s probability,

PBorn(Tk ) ≡
j∏

i=1

P(μi )
i , μi ∈ Tk. (13)

Following Eq. (11), the normalization factor of the resulting
state is given by the square root of the same total probability
(13).

It is worth noting that random products of matrices [106]
appear in various contexts ranging from Anderson localization
in one-dimensional arrays of impurities [107–111] to biologi-
cal evolution and computer science (see, e.g., Refs. [112–116]
and references therein). However, in most of the applications,
the focus is the Lyapunov exponent characterizing such ran-
dom products. In particular, the maximum Lyapunov exponent
determines the localization length for low-dimensional dis-
ordered systems described by the transfer-matrix techniques
[117]. In our case, the renormalization factor introduced by
the total Born’s probability does not allow the state vector to
change its length, so that we are not interested in the Lyapunov
exponent of the random matrix M̂. Instead, we are focusing on
the statistics of the resulting system’s states as parameterized
by the angles θ j and ϕ j . Furthermore, the probabilities of ap-
plying the two matrices to the state vector are generically state
dependent in our case, in contrast to most works on random
products of matrices. Below, we will analyze the statistics of
these Bloch-vector angles in the limit of infinite time, j → ∞.

C. Angle distribution function and long-time limit

Owing to the probabilistic nature of measurement out-
comes, the model requires a statistical description. We
characterize the system by the statistics of its pure states at
times t>

j , i.e., by the statistics of both Bloch-sphere angles. In
most of the setups studied in the present paper, the statistics of
quantum trajectories in the long-time limit turn out to be fully
described by the statistics of angle θ . In particular, in the case
of finite hopping, γ �= 0, we encounter an attraction of almost
all quantum trajectories to the circle formed at the intersection
of the Bloch sphere with the YZ plane, see Sec. III B below.
This plane is parameterized by ϕ = π/2, so that α = cos(θ/2)
and β = i sin(θ/2) on this manifold, see Fig. 5. In what
follows, we refer to it as the grand circle (GC). Importantly,

013313-5



PAUL PÖPPERL et al. PHYSICAL REVIEW RESEARCH 6, 013313 (2024)

FIG. 5. Example of a trajectory (colorful markers) on the Bloch-
sphere (light blue) converging to the GC. The parameters are M =
2.92 and T = 1 and the trajectory is initialized at (θ, ϕ) = (1.3, 2.5).
Scattered dots correspond to the positions of the quantum trajectory
immediately after measurements. The time instances are color coded,
with light (dark) markers corresponding to early (late) times. The
(YZ) plane (GC plane) is indicated in gray.

the GC is an invariant manifold of evolution: starting from the
state belonging to the GC, the system never escapes from it.

This important property of generic evolution in our setup
allows us to use the distribution function of the single angle
θ to describe the statistics of the system’s states in the long-
time limit. In view of this special role of the GC, we will, for
simplicity, focus on quantum trajectories starting on the GC,
without going into detail of the transient behavior of quantum
trajectories approaching the GC. We will discuss those special
fine-tuned cases, for which the evolution of the system does
not have the GC as an attractor, separately.

The matrix mapping (11) for the GC can be equivalently
rewritten in terms of the discrete mapping of angle θ j−1 → θ j

in the course of quantum evolution,

θ j =
{
�−(θ j−1) with probability P−(θ j−1),

�+(θ j−1) with probability P+(θ j−1).
(14)

Here, the functions �±(θ ) are derived from the form of the
matrices M̂±. The probabilities of click and no-click out-
comes, P±, are functions of θ corresponding to Eq. (10) via
Eq. (6) with ϕ = π/2. The explicit forms of these functions
are presented in Appendix C. It is also useful to introduce
the functions for the inverse (“retrospective”) mapping θ j →
θ j−1, describing the angles from which a given angle θ is ob-
tained by application of M̂− or M̂+ (when these are invertible
matrices),

θ j−1 =
{F−(θ j ) before no-click outcome,

F+(θ j ) before click outcome.
(15)

The following relations clearly hold for invertible mappings:

θ = Fμ[�μ(θ )] = �μ[Fμ(θ )]. (16)

To characterize all possible endpoints of a quantum tra-
jectory after j steps, we consider the probability distribution
of these states. Specifically, we take the angle θk for each
endpoint (labeled by k = 1, . . . , 2 j) of the above-described
tree-like evolution graph, thus accounting for all possible

quantum trajectories Tk of length j, and sum the correspond-
ing δ functions with their Born weights (13),

W (ε)
j (θ |θ0) =

2 j∑
k=1

PBorn(Tk ) δ(ε)(θ − θk ), (17)

Wj (θ |θ0) ≡ lim
ε→0

W (ε)
j (θ |θ0). (18)

Here, θ0 in the argument marks the starting point of the
graph, i.e., the θ angle of the initial state on the GC. Both θk

(for each k) and PBorn generically depend on θ0 (exceptions
will be discussed separately). The superscript (ε) on both
sides of Eq. (17) denotes a regularization of the δ function
parametrized by ε. This procedure is important, because the
distribution of pure states for any number of measurement
steps j and also for j → ∞ is a set of delta peaks. Taking the
limit ε → 0 at the end of the calculation allows one to define
a continuous distribution. Evidently, Wj (θ |θ0) is normalized,∫ π

−π

dθ Wj (θ |θ0) = 1. (19)

The structure of the angle distribution is similar to the
pattern of the local density of states in disordered systems (see
also Sec. V C below for more details). The local density of
states captures the weight of states of a given energy at a given
position, while the angle distribution captures the weight of
quantum trajectories at a given angle, thus quantifying the
probability to find the system in the state parameterized by this
angle. In a finite-closed disordered system, the local density
of states as a function of energy is represented as a series of
exact delta peaks located at the eigenenergies of the system,
similarly to Eq. (17). The weights of these peaks are deter-
mined by the amplitudes of the corresponding eigenfunctions
at the point where the density of states is calculated [the
counterpart of PBorn(Tk ) in Eq. (17)]. With increasing size of
the disordered system, the density of energy levels increases
(similarly, the density of the endpoints θk of a quantum trajec-
tory generically increases with increasing the number of steps
j). However, the distance between levels with high weight
may remain finite as a result of the spatial localization of
eigenstates. The inhomogeneity of a disordered system leads
to a nontrivial structure of the density of states, while the
complex structure of the angle distribution is determined by
the M̂± maps and the corresponding Born probabilities.

The distribution function of the local density of states
plays a role of the functional order parameter in the theory of
Anderson transitions [2]. The transition to the metallic state
in the thermodynamic limit is characterized by changing the
character of the locally defined spectrum from quasidiscrete
to continuous. Importantly, in order to obtain the continuous
spectrum from an infinite set of weighted δ functions, one
introduces infinitesimal broadening of the states, and sends
the width of δ-functions to zero at the end of the calculation,
after taking the thermodynamic limit. We adopt a similar
procedure in our case; this once again underscores the relation
of the present problem to Anderson localization.

We do not know a priori whether or not the distribution of
states keeps a memory of the initial state in the limit j → ∞.
As we are going to show, both situations (dependence on and
independence of the initial angle) are possible, depending on
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the parameters of the setup. We introduce a time-independent
steady-state distribution in the long-time limit (when such a
limiting function exists) as

W̃ (θ |θ0) ≡ lim
ε→0

W (ε)(θ |θ0), (20)

where

W (ε)(θ |θ0) = lim
j→∞

W (ε)
j (θ |θ0). (21)

It is worth emphasizing that the “thermodynamic limit”
j → ∞ is taken in Eq. (21) first.

Below, we will encounter situations (e.g., period-2 tra-
jectories, Sec. IV C) when the limit j → ∞ does not exist,
implying the absence of a unique steady state. In such a case,
it is convenient to introduce the “time-averaged” distribution
of states via

W (θ |θ0) ≡ lim
ε→0

lim
J→∞

1

J

J∑
j=1

W (ε)
j (θ |θ0). (22)

This distribution is uniquely defined by the system parameters
and the initial angle θ0. The above equation is, therefore, a
suitable definition for a general angle distribution function
(ADF) that describes the asymptotic state distribution of the
system for the parameter tuple (M/γ , T γ , θ0). If the limit
j → ∞ in Eq. (21) exists, the stationary-state distribution
W̃ (θ |θ0) is equivalent to the ADF. In what follows, we will
use the definition (22) when discussing the steady-state distri-
butions.

For any given quantum trajectory on the GC, the prob-
ability of a single-step transition θ j → θ j+1 is determined
by Born’s rule and is equal to the corresponding probability
Pμ(θ j ). If the quantum trajectory visits the vicinity of every
point θ with W (θ |θ0) > 0 many times, all possible transitions
between the discretized angle intervals are probed. The proba-
bility of any transition is then repeatedly sampled according to
the Born rule, which means that the time-averaged distribution
of states from a single quantum trajectory should converge to
the ADF. If this is the case, the ADF has a simple interpre-
tation in terms of quantum trajectories: If a single trajectory
is observed for a sufficiently long time, the fraction of time
it spends in a certain interval of the GC is determined by the
integral of W (θ |θ0) over that interval. The long-time behavior
of almost any quantum trajectory is in this case completely
described by the model parameters, being independent of
outcome sequences. This time averaging [cf. Eq. (22)] is, in
particular, naturally implemented in the numerical simulations
based on the Monte Carlo procedure.

Following this reasoning, we can investigate a distribution
for an individual quantum trajectory T of length m—without
performing any explicit average over outcomes (or trajecto-
ries),

W (ε)
T (θ |θ0) ≡ 1

mε

∫ θ+ε/2

θ−ε/2
dθ ′

m∑
j=0

δ(θT (t>
j ) − θ ′), (23)

where θT (t>
j ) is the θ angle at time t>

j for the quan-
tum trajectory and θT (t0) = θ0. Equation (23) allows one to
approximate the distribution (22), if any typical path for suffi-
ciently large m reproduces the distribution (22), as described

above. This approach serves as a basis for the Monte Carlo
numerical simulations.

In any numerical analysis, representation of the ADF ne-
cessitates discretization of the angles. As a result, δ functions
in Eq. (17) are necessarily regularized. We will discuss the
procedures of numerical evaluation and characterization of
W (θ |θ0) in Sec. V. Instead of taking the limit ε → 0 after
introducing peak broadening of order ε, we will use the equiv-
alent regularization

Wj (θ |θ0) ≡ lim
ε→0

1

ε

∫ θ+ε/2

θ−ε/2
dθ lim

ε′→0
W (ε′ )

j (θ |θ0), (24)

where limε′→0 W (ε′ ) is the set of unregularized δ peaks from
Eq. (17). At finite ε this defines a discretized distribution
function, as for example in Eq. (23).

D. Master equation

The time-dependent distribution of states Eq. (18), can be
obtained from an iterative integral master equation (ME) with
the initial condition W0 = δ(θ − θ0),

Wj (θ ) = W (+)
j (θ ) + W (−)

j (θ ),

W (μ)
j (θ ) =

∫ π

−π

dθ ′ Wj−1(θ ′) Pμ(θ ′) δ(θ − �μ(θ ′)). (25)

The distributions W (±)
j here describe the endpoints of the

evolution graph obtained after the click (no-click) readout at
the last step. For brevity, we skip the initial-angle argument of
W and encode θ0 in the initial condition W0(θ ) = δ(θ − θ0);
note that the ME has the same form for arbitrary W0. In fact,
in most of the cases we consider, the limiting distribution will
not depend on the initial angle.

The recurrence (25) yields the following steady-state inte-
gral equation:

W (θ ) =
∫ π

−π

dθ ′ W (θ ′)[P+(θ ′)δ(θ − �+(θ ′))

+ P−(θ ′)δ(θ − �−(θ ′))]. (26)

This equation is fulfilled, in particular, by the ADF (22), as
evident from substituting Eq. (25) into Eq. (22).

In general, the stationary ME can also have solutions that
do not correspond to an ADF, if the steady state is degenerate.
As we will see below, the existence of a unique steady state
depends on the setup’s parameters. However, in most situa-
tions, the steady state is nondegenerate, allowing us to infer
the ADF from it. In the following, we focus on such cases
when the steady state of the ME is described by the ADF. In
this case, the θ0 argument in the ADF can be dropped and the
ADF can be investigated with the help of the ME. We will
point out special cases when such a treatment is not justified.

Performing the integration in Eq. (26) by using (for invert-
ible maps) the identity

δ(θ − �μ(θ ′)) =
∣∣∣∣dFμ(θ )

dθ

∣∣∣∣ δ(θ ′ − Fμ(θ )),
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we arrive at the functional equation for the steady-state distri-
bution,

W (θ ) = W (+)(θ ) + W (−)(θ ),

W (μ)(θ ) = W [Fμ(θ )] Pμ[Fμ(θ )]

∣∣∣∣dFμ(θ )

dθ

∣∣∣∣. (27)

This type of functional equations [118] was addressed in
the literature devoted to random products of matrices (cf.
Refs. [113–115]), where the probabilities of applying the ma-
trices are typically state independent. In the present problem,
the dependence of Pμ on θ is dictated by the quantum-
mechanical Born’s rule.

E. Characteristic features of the ADF, quantitative indicators,
and classification of phases and regimes

The solution to the functional equation (27) cannot be
obtained analytically in a closed form, except for some fine-
tuned special cases. In particular, the reduction of the master
equation to the Fokker-Planck form (cf. Refs. [77,98]) is pos-
sible in the limiting case of frequent measurements, when the
system’s own evolution governed by Ĥs is slow compared to
the measurement rate, so that the change in θ after the no-click
measurement is small. Another possibility is related to various
kinds of commensurability in the setup’s parameters, which
leads to simplifications in the functions Pμ(θ ) and Fμ(θ ). In
general, however, the solution can be obtained only numer-
ically. Our strategy below is to identify the relevant special
cases, where the analytical treatment is possible, and guess the
overall “phase diagram” describing different types of ADF’s
behavior based on the exactly (or nearly exactly) solvable
cases. The rest of the parameter space will be analyzed nu-
merically.

Experience from related papers (e.g., Refs. [77,115,118])
suggests that the steady-state angle distribution W (θ ) and,
thus, the ADF can show a rich phenomenology of character-
istic features, being either smooth or singular. Specifically, it
may exhibit, for instance (cf. Fig. 1),

(i) isolated narrow peaks with vanishing background be-
tween them (akin to “localized phase” in the terminology of
Anderson localization);

(ii) a smooth background covering all the angles, with
fluctuations on top (akin to “ergodic metallic phase”);

(iii) coexisting regions of nonzero values separated by
segments where the function vanishes (akin to “granular
metal”);

(iv) a fractal-like pattern of singularities distributed over
zero or nonzero background.

Indeed, in our analysis, we encounter all these types of
behavior, see Secs. IV and VI.

In what follows, we will establish a classification of the
regimes existing in our setup and demonstrate the existence
of finite areas (distinct phases) in the overall two-dimensional
phase diagram. For this purpose, we will fix the value of the
hopping matrix element γ in Ĥs and vary the parameters γ T
and M/γ . For each point in this two-dimensional parameter
space, based on the steady-state angle distribution, we will
calculate the following quantitative indicators:

(1) Participation ratio R and its scaling exponent upon
coarse graining, Sec. V A;

(2) Support of W (θ ): the fraction of angles yielding a
given fraction of the total probability, Sec. V B;

(3) Position of the maximum in the histogram of heights
for the discretized angle distribution, Sec. V C;

(4) Hausdorff dimension of the curve W (θ ) obtained by
covering it with square boxes, Sec. V D;

(5) Ergodicity marker of the Markov process derived from
Eq. (27) for a given discretization scale, Sec. V E.

These indicators distinguish between localized and ex-
tended distributions and describe the degree of nonergodicity
and fractality in a given setup. Although none of them can
serve simultaneously as both the necessary and the sufficient
condition of localization or delocalization, the combination
thereof is foreseen to give a consistent description yielding
a well-defined phase diagram of the system’s state in the
long-time limit.

III. SINGLE-STEP SOLUTION

In this section, we analyze the quantum dynamics between
the initial time t0 = 0 and the first postmeasurement time t>

1 ,
or, equivalently, between two successive post-measurement
times t>

j and t>
j+1. In terms of the matrix formulation of the

problem, we elaborate on a single-step solution for the map-
ping given by Eqs. (8), (11), and (14). We start with a warm-up
example of the system with decoupled sites, γ = 0, and study
the state of the first site. We use this simple example to set the
stage, illustrating the basic steps of the approach. Much more
important is the general case with finite tunneling, γ �= 0. We
will explore it for fixed half-filling where a single electron
tunnels between sites s1 and s2.

A. Warm-up exercise: γ = 0

The model with γ = 0 was discussed extensively in
Ref. [69] (see also Refs. [96,102] for a different form of Ĥsd);
here, we repeat the derivation, as it turns out to be instructive
for comprehending the general case of γ �= 0. If there is no
tunneling between the sites, we can consider only the first
site—the one that is coupled to the detector. With a single
electron residing in the two-site system, this site can be either
empty, the state |0〉, or occupied, the state |1〉. The initial
state of the system, given by Eq. (5), can be prepared by
hybridizing the two sites at times t < 0 with the subsequent
switching off the hopping between the sites at t = 0. The
repeated measurements will then disclose whether the first site
is occupied or not. Using the parametrization by angles θ and
ϕ, Eq. (6), the initial expectation value of occupancy of the
first site is equal to cos2(θ0/2).

Using the basis

b̂(1)
1 = |1〉 ⊗ |+〉, b̂(1)

2 = |1〉 ⊗ |−〉,
b̂(1)

3 = |0〉 ⊗ |+〉, b̂(1)
4 = |0〉 ⊗ |−〉,

(28)
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we construct the matrix form of the Hamiltonian and the
evolution operator

Ĥ =

⎛⎜⎜⎜⎝
0 M 0 0

M 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠, (29)

ÛT =

⎛⎜⎜⎜⎝
cos(MT ) −i sin(MT ) 0 0

−i sin(MT ) cos(MT ) 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠; (30)

here T ≡ tk+1 − tk . The setup state between the initial time
and the first measurement reads

�(0 � t < T ) = α0|1〉 ⊗ [cos(MT )|−〉 − i sin(MT )|+〉]
+β0|0〉 ⊗ |−〉. (31)

Right after the first measurement and reinitialization of the
detector, the setup state becomes

�
(−)
1 = 1√

P(−)
1

[α0 cos(MT )|1〉 + β0|0〉] ⊗ |−〉, (32)

�
(+)
1 = 1√

P(+)
1

[−i α0 sin(MT )|1〉] ⊗ |−〉, (33)

where �
(μ)
1 ≡ � (μ)(t>

1 ) denote the setup state after click, μ =
+, and no-click, μ = −, outcomes, and P(±)

1 are probabilities
of the click and no-click outcomes of the first measurement,

P(+)
j = |α j−1|2 sin2(MT ), P(−)

j = 1 − P(+)
j . (34)

This procedure is repeated for later postmeasurement times
and yields the mapping

{α(−)
j , β

(−)
j } = 1√

P(−)
j

{α j−1 cos(MT ), β j−1}, (35)

{α(+)
j , β

(+)
j } = 1√

P(+)
j

{−i α j−1 sin(MT ), 0}. (36)

In terms of matrices M̂μ, the mapping is given by

M̂− =
(

cos(MT ) 0

0 1

)
, (37)

M̂+ =
(−i sin(MT ) 0

0 0

)
. (38)

Note that M̂+ is a projecting matrix.
Equations (35) and (36) show that the stroboscopic values

of the angle θ defined at the postmeasurement times θ j change
during the quantum evolution while those of ϕ are equal to
its initial value, ϕ j = ϕ0. Besides, ϕ0 has no effect on the
evolution of θ . In particular,

�−(θ ) = 2 arctan[cos(MT ) tan(θ/2)], (39)

�+(θ ) = 0, (40)

regardless of the value of ϕ0. If we are interested in an observ-
able that is not sensitive to ϕ0, e.g., the occupation of the first

site, we can choose any value of ϕ0 and explore the evolution
of the trajectory parameterized by a single angle θ .

B. Main model: γ �= 0

In the previous section, we have set γ = 0 such that the
expectation value of the occupation of the measured site is
changed only by the measurement backaction. Let us now take
into account the quantum dynamics of the system (governed
by Ĥs) between two successive measurements, which is due to
finite tunneling between the measured and nonmeasured sites.
Finite tunneling introduces a new energy scale γ , or

Y =
√

M2 + 4γ 2. (41)

In this case, none of the angles parametrizing the system state
remains constant in the postmeasurement mapping. The states
could be anywhere on the Bloch sphere and should be parame-
terized by both Bloch sphere angles, θ and ϕ. However, as we
show below, almost all trajectories are attracted to the GC in
the long-time limit and, in this limit, the quantum trajectories
can be parameterized only by the angle θ ,

ψGC = {cos(θ/2), i sin(θ/2)}T. (42)

The first steps of the description of two tunnel-coupled
sites interacting with the detector are very similar to those
explained in Sec. III A. We use the basis

b̂(2)
1 = |1, 0〉 ⊗ |+〉, b̂(2)

2 = |1, 0〉 ⊗ |−〉,
b̂(2)

3 = |0, 1〉 ⊗ |+〉, b̂(2)
4 = |0, 1〉 ⊗ |−〉,

(43)

and construct the matrix Hamiltonian

Ĥ =

⎛⎜⎜⎜⎝
0 M γ 0

M 0 0 γ

γ 0 0 0

0 γ 0 0

⎞⎟⎟⎟⎠. (44)

Next, we choose the initial state in a full analogy with the
γ = 0 case,

�0 = (α0|1, 0〉 + β0|0, 1〉) ⊗ |−〉, (45)

α0 = cos(θ0/2), β0 = eiϕ0 sin(θ0/2), (46)

and solve the evolution equation between measurements. The
phases of amplitudes α and β in ψ now enter expressions
for � (μ)(t>

j ) in a nontrivial way. Therefore, the system state
should generically be parameterized by two angles,

ψ (t>
j ) = cos(θ j/2)|1〉 + eiϕ j sin(θ j/2)|0〉. (47)

However, we show at the end of this section that ϕ j → π/2
for j 
 1, yielding the GC state, Eq. (42), in the long-time
limit for almost all quantum trajectories.

The discrete evolution of the system state is described by
the matrix mapping in the form of Eq. (11). Expressions for
the probabilities P(μ)

j are rather cumbersome and, since they
are of secondary importance for the current explanations, we
present them in Appendix A 1. The “no-click” and “click”
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matrices have the following form (see Appendix A 1 for
algebraic details):

M̂− =
(

cMcY − M
Y sMsY −i

√
Y 2−M2

Y cMsY

−i
√

Y 2−M2

Y cMsY cMcY + M
Y sMsY

)
, (48)

i M̂+ =
(

sMcY + M
Y cMsY −i

√
Y 2−M2

Y sMsY

−i
√

Y 2−M2

Y sMsY sMcY − M
Y cMsY

)
, (49)

where we have introduced short-hand notations

cM ≡ cos(MT/2), cY ≡ cos(Y T/2), (50)

sM ≡ sin(MT/2), sY ≡ sin(Y T/2). (51)

Determinants of these matrices read

detM̂− = c2
M − M2

Y 2
s2

Y , (52)

detM̂+ = −s2
M + M2

Y 2
s2

Y . (53)

Other properties of matrices M̂μ are described in Ap-
pendix A 2. Let us briefly recapitulate here the most important
ones, which will be used for the analysis of the system
dynamics. The matrices M̂± are symmetric, M̂± = M̂T

±, not
Hermitian, but generically invertible. The latter property al-
lows one to find the previous state by backward-time evolution
of the current state with the account of the measurement
outcomes. The exception includes those system parameters,
at which detM̂± = 0, see Fig. 8 below, such that at least
one of the matrices is a projector up to the normalization of
its nonzero eigenvalue, and the evolution cannot be inverted.
Depending on the parameters M/γ and T γ , eigenvalues of
M̂− and iM̂− can be either complex valued (and then complex
conjugated to each other), or purely real and generically not
equal to each other. In the former case, both eigenvectors point
to the equator of the Bloch sphere, θ = ±π/2, while, in the
latter one, they point to the GC.

As we emphasized above, the GC plays a special role in our
consideration. Multiplying the matrices M̂± with the column
vectors {cos(θ/2), i sin(θ/2)}T and restoring the normaliza-
tion, one proves that the GC is an invariant manifold of the
postmeasurement mapping. Furthermore, a generic trajectory
is attracted to the GC, see an example in Fig. 5. Arguments
supporting the attraction to the GC are given in Appendix B.
The main point of this consideration is that there always exist
products of matrices, M̂(k, l ) = (iM̂+)

k
(M̂−)

l
, whose eigen-

vectors point to the GC and, hence, these products tend to
project the electron state to the GC in the limit of an infinite
number of measurements. Figure 6 shows minimum powers k
at which the product Mk

+M− starts projecting the state to the
GC. More precisely, the invertibility of the maps together with
the GC forming an invariant set for the inverse maps means
that a trajectory can never truly arrive at the GC. However,
the closer they get to the GC, the harder it is to escape from its
vicinity, because of the smoothness of the map. This allows us
to restrict ourselves mainly to the initial conditions located on
the GC and to parametrize the quantum trajectories in terms
of a single angle θ . It is worth mentioning that attraction to
the GC is a consequence of the equivalence of the two on-site

energies in the system. If the on-site energies are different and
the symmetry between the sites is broken, attraction to the GC
disappears.

IV. ANALYSIS OF SOLVABLE CASES

The definition of the ADF, Eq. (22) implies averaging over
all quantum trajectories, which is generically very nontrivial
at γ �= 0 and often requires extensive numerical simulations.
We have managed to develop the (mostly) analytical de-
scription for finite tunneling only in several solvable cases
described in this section. We focus mainly on the GC and
point out extensions of our results beyond the GC wherever
necessary.

The special cases that can be addressed analytically at
γ �= 0 are related to (i) commensurability effects, (ii) the
existence of periodic orbits on the GC, or (iii) the project-
ing nature of matrices M̂±. We will show how localization
in W (θ ) emerges in these cases. The structure of the entire
phase diagram of the system is essentially determined by these
special cases.

A. Localization at γ = 0

Before delving into the analysis of γ �= 0 cases, let us re-
turn to the simple model of Sec. III A and find the ADF, W (θ )
for γ = 0. The initial state is assumed to be θ (t = 0) = θ0

and ϕ0 = 0 (the latter equality makes intermediate equations
shorter). Dependence of the final state on ϕ0 will be trivially
restored at the end. Equation (36) suggests that, after the very
first click event, the system state is projected to |1〉: the mea-
surement reveals that site s1 is occupied with probability one
and it remains occupied for all later postmeasurement times
(since there no hopping to site s2). In this case, the system
is in the state |1〉 at j → ∞ and the ADF becomes δ(θ ). If
the quantum trajectory contains only no-click outcomes, the
final state at j → ∞ is |0〉, see Eq. (35), which yields another
contribution to the ADF, δ(θ − π ).

Let us calculate the probability of this specific (“null-
measurement”) outcome,

Pnull
L =

L∏
j=1

P(−)
j , (54)

where L is the length of the no-click trajectory. Recalling that
we have chosen �[α j] = �[β j] = 0, the following equality
holds true:

[α(−)
j ]2+[β (−)

j ]2 = [α(−)
j−1]2cos2(MT ) +[β (−)

j−1]2

P(−)
j

. (55)

The normalization of the postmeasurement system state
requires the left-hand side of Eq. (55)—and, hence, the right-
hand side—to be unity. Combining Eqs. (35) and (55), we find

Pnull
L = cos2(θ0/2) cos2L(MT ) + sin2(θ0/2),

⇒ Pnull
L→∞ = sin2(θ0/2). (56)

This shows that the ADF is given by

W (θ |θ0) = cos2(θ0/2)δ(θ ) + sin2(θ0/2)δ(θ − π ). (57)
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FIG. 6. (Upper-left panel) Minimum values of the power k, at which both eigenvectors of M̂k
+M̂− point to GC up to errors of the order

of the numerical precision. We have analyzed k ∈ [0, 103]. White regions correspond to k = 0. Black-dashed lines correspond to the special
(frozen) case Y T = 2lπ with l being integer. (Upper-right panel) Configurations of eigenvectors of M̂±. (0) all eigenvectors off GC; (1) only
eigenvectors of M̂− on GC; (2) only eigenvectors of M̂+ on GC; (3) eigenvectors of both matrices on GC. (Lower panels) Ratios of eigenvalues
of the matrices.

The weights of delta functions coincide with the initial proba-
bilities for the first site to be occupied, cos2(θ0/2), and empty,
sin2(θ0/2). Thus, repeated generalized measurements of one
site yield, in the limit of an infinite number of measurement
steps, the same distribution of final states as a single projective
measurement.

An exception is a trivial case where the probability of the
click event vanishes and there is only one quantum trajectory
consisting of no-click events,

MT = π l,

with l being integer. In this special case, θ j = θ0 for all j and
W (θ |θ0) = δ(θ − θ0) coincides with the initial ADF. Another
special (“commensurate”) case is realized for

MT = π l/2

with integer l . According to Eq. (32), a single no-click out-
come in this case also immediately projects the system state
(now, to |0〉), thus, both matrices M± are projectors then. This
implies that the generalized measurement becomes a strong
(projective) measurement (cf. Ref. [69]).

If instead of a single initial state with fixed θ0 one prepares
a set of states characterized by an initial distribution of θ0,

W (θ |θ0) in Eq. (57) should be averaged over θ0,

W (θ ) = 〈cos2 (θ0/2)〉θ0δ(θ ) + 〈sin2 (θ0/2)〉θ0δ(θ − π ).

(58)

The distribution functions [(57) and (58)] fully describe the
statistics of the occupation of the measured site: since ϕ does
not influence evolution of θ , the full ADF is factorized into
a product W (θ ) × δ(ϕ − ϕ0), and similarly for W being aver-
aged over the initial angles.

To conclude this section, let us reiterate that the qubit is
always found within one of two states, {θ = 0, ϕ = ϕ0} and
{θ = π, ϕ = ϕ0}, at γ = 0 in the limit j → ∞. The initial
condition for θ0 can only change the relative weights of these
two states but is unable to modify the structure of the ADF
containing only two δ peaks. Such a distribution falls into our
operational definition of the localized phase. The localization
of the angle θ can also be considered as a measurement-
induced steering [96,100] of an arbitrary state of the qubit
to the states with θ = 0, π . This example also allowed us
to pinpoint two special cases: MT = π l and MT = π l/2,
corresponding to “frozen dynamics” and strong-measurement
dynamics, respectively. In what follows, commensurability
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conditions of this sort will enable us to identify special cases
of dynamics that will determine the phase diagram of the
model at γ �= 0.

B. Effects of (in)commensurability and commensurability
transitions on GC and beyond

We now return to the general case of finite hopping γ �= 0.

1. Frozen case

Let us start with a simple case, where

Y T = 2πq,

with q being integer. Using equations from Appendix A 1,
it is straightforward to show that the outcome probabilities
are state independent and the electron postmeasurement states
differ from previous ones only by a total phase,

P(±) = 1
2 [1 ∓ cos(MT )], (59)

ψ (+)(t>
j ) = (i sign sM ) j (α0|1〉 + β0|0〉), (60)

ψ (−)(t>
j ) = (i sign cM ) j (α0|1〉 + β0|0〉). (61)

Thus, θ is not changed by the post-measurement mapping and
its ADF coincides with the initial distribution at t = 0,

Wj (θ |θ0) = δ(θ − θ0). (62)

Moreover, similar to the γ = 0 case, we can trivially restore
the entire distribution function of states even beyond the GC:
both angles θ and ϕ are frozen at their initial values. Hence,
the initially localized distribution remains unchanged at any
j = 1, 2, . . .. One can refer to this commensurate case as the
“frozen” case.

2. Shift case

The outcome probabilities also do not depend on the sys-
tem state if

MT = qπ

with q being integer,

P(±) =
(

M

Y

)2

s2
Y , P(∓) = 1 − P(±). (63)

The choice of the upper index of P(±) depends on the parity
of q. To be more specific, choosing odd q = 2l + 1, we arrive
at the following expressions for the matrices M̂±:

M̂− = (−1)l+1 M

Y
sY σ̂3, (64)

M̂+ = i (−1)l+1

(
cY σ̂0 − i

2γ

Y
sY σ̂1

)
, (65)

where σ̂0,1,3 denote Pauli matrices acting in the system state.
These matrices satisfy the relations

M̂†
μM̂μ = |det(M̂μ)|2σ̂0, M̂−p

+ ∝ M̂−M̂ p
+M̂−, (66)

where p is integer. Equation (65) suggests that any product of
matrices M̂± can be reduced to one out of four possible forms,

M̂ p
+, M̂ p

+σ̂3, σ̂3M̂ p
+, σ̂3M̂ p

+σ̂3. (67)

FIG. 7. Time histogram of a postmeasurement trajectory in the
shift case MT = π over 105 time instances. By tuning the shift angle
to a multiple of π , a localized distribution emerges (upper panel). If
an incommensurate shift angle is chosen, all points on the GC are
eventually covered (lower panel).

This is another rare case where there is no attraction to the
GC. Nevertheless, the evolution of a GC state, Eq. (42), is
remarkable. Matrix σ̂3 trivially inverts the sign of the angle θ .
Matrices M̂ p

+ shift this angle,

M̂ p
+ψGC ∝ {cos(θ/2 + pφ), i sin(θ/2 + pφ)}T, (68)

where φ is the phase of the eigenvalue υ+ (the upper index
of υ+ is not important), see Appendix A 2. If the phase φ

is commensurate, φ = p1π/p2, the matrices M̂+ yield p2-
periodic (or 2p2-periodic) trajectories along the GC. Hence,
the initially localized distribution of θ remains localized at
infinite time. Examples of these scenarios are presented in
Fig. 7.

The set of the phases φ that correspond to localization
is somewhat similar to the set of parameters that yield the
structure of the well-known Hofstadter butterfly [119], where
the density of states is also determined by certain commen-
surability. Specifically, the structure of the energy levels in
this model is governed by the ratio of magnetic flux through
a lattice cell and the flux quantum. For rational values of this
parameter entering the Harper equation [120], the density of
states is represented by a finite set of peaks, similar to the
structure of W (θ ) for commensurate values of the shift angle
(upper panel in Fig. 7). If the phase φ is not commensurate,
the shifts pφ fill the entire GC at infinite time. This breaks
any initial localization of the θ distribution (see an example
in lower panel of Fig. 7). Whether or not the GC becomes
filled homogeneously or the ADF becomes fractal similar to
the spectrum of the Harper equation in the incommensurate
regime depends on the combinatorics of various quantum tra-
jectories and can be checked numerically. The case of MT =
2lπ is analogous to the above case of MT = (2l + 1)π up to
reshuffling M̂+ ↔ M̂−.
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We note in passing that the postmeasurement states in
quantum trajectories at MT = qπ are located on two 1D
circles even beyond the GC. For example, in the example of
odd q, the trajectories are governed by the intersection of the
Bloch sphere with two planes being parallel to the GC plane
and located symmetrically with respect to the GC. The matrix
M̂− reflects the state with respect to the GC plane, while M̂+
rotates the state around the x axis. The expression for a single
step of the rotation is rather cumbersome and we omit it for
the sake of brevity. Let us emphasize that such rotations can
also be commensurate or incommensurate.

C. Period-2 trajectory

Above, we have considered two cases where the local-
ized nature of W (θ ) at j → ∞ is related to localized initial
conditions—quantum dynamics and measurements are unable
to destroy localization due to commensurability. Let us now
analyze other solvable examples where localization of the
ADF emerges at long times regardless of the nature of the
initial conditions.

In this section, we focus on the setup with

Y T = (2l + 1)π,

where the post-measurement map again simplifies:

M̂− = (−1)l+1

Y
m̂−, M̂+ = i(−1)l

Y
m̂+, (69)

m̂− ≡ 2iγ cMσ1 + MsMσ3, (70)

m̂+ ≡ 2iγ sMσ1 − McMσ3. (71)

For the GC, the probabilities of outcomes take the form

P(±)
j = 1

2
± 2γ

M sin(2θ j−1) sin(MT ) + γ cos(MT )

Y 2
. (72)

Noting that

m̂±{1/
√

2,±i/
√

2}T ∝ {1/
√

2,∓i/
√

2}T,

we conclude that the states {1/
√

2,±i/
√

2}T form a period-2
trajectory of the matrices m̂±.

Moreover, this is a limit cycle that generically attracts
quantum trajectories. In fact, it is a kind of weak attraction: A
typical trajectory will always return to any previously visited
point on the GC; it is just that the most time is spent around
the attractive points. The origin of attraction can be explained
as follows: since m̂2

μ ∝ σ̂0, any product of the matrices M̂μ

reduces to one of four possible forms,

(M̂+M̂−)k ∝ (m̂+m̂−)k, (73)

M̂−(M̂+M̂−)k ∝ m̂−(m̂+m̂−)k, (74)

(M̂−M̂+)k ∝ (m̂−m̂+)k, (75)

M̂+(M̂−M̂+)k ∝ m̂+(m̂−m̂+)k. (76)

The eigenvalues of the products m̂μm̂−μ are real num-
bers 2ηMγ − Y 2 sin(MT )/2. Importantly, absolute values
of the eigenvalues are different, with the maximum being
2Mγ + Y 2| sin(MT )|/2. The eigenvectors of these products

FIG. 8. Lines on the plane of dimensionless parameters
{M/γ , T γ }, where detM̂± = 0.

are {1/
√

2,±i/
√

2}T and point to the intersections (two op-
posite points) of the equator with the GC. In the limit of
large time, typical quantum trajectories are characterized by
k2 that is of the order of a large number of measurements
for a long-time quantum trajectory, k2 ∼ j 
 1. This follows
from the analogy with classical random walks in 1D, where,
following the diffusion law, the mean-square displacement
(the counterpart of k2) is proportional to time (the counterpart
of the number of measurements), see Appendix D for details.

If the typical value of k is large, one can keep only the
“main” eigenvector in the expansion of the matrix products,

k 
 1 : (M̂μM̂−μ)k ∝ (Mγ + Y 2| sin(MT )|/2)k

× [ either {1/
√

2, i/
√

2}T or {1/
√

2,−i/
√

2}T]. (77)

Thus, the matrices (M̂μM̂−μ)k project any state onto one of
the two states {1/

√
2,±i/

√
2}T. Finally, we note that

m̂μ{1/
√

2,±i/
√

2}T ∝ {1/
√

2,∓i/
√

2}T, (78)

which means that, in the long-time limit, all combinations in
Eqs. (73)–(75) with k 
 1 project any state onto one of two
states: {1/

√
2,±i/

√
2}T.

Thus, we conclude that, if Y T = (2l + 1)π , the typical
quantum trajectories generate two universal (independent of
the initial state) peaks in the ADF W (θ ) at θ = ±π/2. This
can be regarded as steering an arbitrary quantum state to these
specific states [96,100]. Numerical simulations confirm the
above semiphenomenological explanation, see Fig. 9.

D. Projecting matrices

There is a special case of real eigenvalues of the matrices
M̂±, where one of them is zero and, therefore, the correspond-
ing matrix is a projector. This holds true if the determinant of
one of the matrices vanishes,

|cM | = (M/Y )|sY | for μ = −, (79)

|sM | = (M/Y )|sY | for μ = +. (80)

Lines, where detM̂± = 0 are shown in Fig. 8.
Let, for instance, M̂− be the projector. After the very

first no-click event along the quantum trajectory, the system
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FIG. 9. Examples of GC-angle distributions W (θ ) for the period-
2 and projective cases (see Secs. IV C and IV D, respectively).
Both panels show the numerical results (blue) obtained for γ = 1
with the different M and T values shown in the plot titles. (Upper
panel) Period-2 case, with TY = π . In agreement with our prediction
(Sec. IV C), the distribution consists of two peaks of (approximately)
equal height, located at angles θ = ±π/2. (Middle panel) Projective
case, where one of the matrices M± has a vanishing eigenvalue,
projecting to the “main eigenvalue” (the leftmost peak). The blue
curve was obtained numerically by performing a time average over a
single random Monte Carlo postmeasurement trajectory. The dotted
curve is the analytical prediction, Eq. (81), truncated at 20 terms.
(Lower panel) Almost projective case in the limit M/γ → ∞ and
T γ → 0, where the matrix M̂+ projects to θ = 0, while matrix M̂−
introduces a small shift. The inset shows the same distribution in the
interval θ ∈ [−0.1, 0.1].

is projected to the eigenstate ϒ (−)
p of M̂− corresponding

to the nonzero eigenvalue and “eigenangel” θ−. The sub-
sequent click event occurs with the probability P+ = 1 −
(M/Y )2 sin2(Y T ) and drives the system out of ϒ (−)

p . The
asymptotic angle distribution will consist of the highest peak
governed by ϒP , its smaller satellite resulting from M̂+ϒ (−)

p ,
even smaller satellite of the second generation M̂2

+ϒ (−)
p , etc.

Application of M̂− to any of the satellites moves the state back
to ϒ (−)

p and the process starts over. The resulting distribution
is the limiting case of the pattern predicted in Ref. [115].

Such a structure is insensitive to the initial distribution and,
if there is a gap between the main peak and the satellite,
as well as between the satellites, W (θ ) appears localized at
j → ∞. Numerical simulations confirm this scenario, see
the middle panel of Fig. 9. If the determinant of one of the
matrices is close to zero but not equal to zero, the structure
of localized peaks becomes more and more smeared with
increasing deviation from conditions (79) and (80).

The ME (27) for M̂− projecting to ϒ (−)
p is formally solved

by the following ADF:

W (θ ) = N
{

δ(θ − θ−)

+
∞∑

n=1

δ(θ − F (n)
+ (θ−))

n∏
j=1

P(+)(F ( j−1)
+ (θ−))

}
, (81)

N−1 = 1 +
∞∑

n=1

n∏
j=1

P(+)(F ( j−1)
+ (θ−)), (82)

where

F ( j)
μ (θ ) :=

{
θ, j = 0,

�μ

(
F ( j−1)

μ (θ )
)
, j > 0.

(83)

Here, the normalization factor N contains information about
all of the satellite peaks, which are projected back onto the
mean peak by an application of matrix M̂− and develop again
by sequences of M̂+. In the stationary state, the weight of the
main peak is determined by the projections from all satellites,
weighted by the respective probabilities. The weight of the
satellites is, in turn, balanced against the main peak. It can
be seen that this is achieved by first generating all satellites
and then renormalizing this pattern. A good approximation to
Eq. (81) can be obtained by truncating the sum, since higher-
order terms are exponentially suppressed, see Fig. 9.

An interesting case of projective matrices is realized in
the frequent-measurements limit M/γ → ∞ (so that Y � M)
and T γ → 0, with M2T/γ kept constant. In this limit, the
matrix M̂+ becomes projecting, whereas M̂− induces very
small shifts: |�−(θ ) − θ | � 1. The ME (27) then reduces to
a Fokker-Planck equation with resetting, see Refs. [77,98] for
details. The limiting ADF contains an extended region in a
finite domain of angles; beyond this domain W (θ ) = 0 (see
the lower panel of Fig. 9). Importantly, however, the smooth
curve in this distribution appears only in the limit T γ → 0;
for any finite T , the extended region comprises well-defined
isolated peaks (see inset in Fig. 9).

In the special case where

MT = π

2
+ π l, l = 0,±1,±2, . . . (84)∣∣∣π

2
+ π l

∣∣∣|sY | = Y T√
2

⇒ detM̂+ = detM̂− = 0; (85)

both matrices are projectors and W (θ ) consists of two peaks
generated by these projectors

W (θ ) =
∑
μ=±

Aμδ(θ − θμ). (86)

Here θ± are the angles that correspond to eigenstates with
nonzero eigenvalues of the projectors. Using equations from
Appendix A 2, one can show that the probabilities of applying
the matrix M̂− at angle θ+ (and vice versa) are determined by
choice of the solution of Eqs. (84) and (85)

P±(θ∓) = 1 − 2c2
Y , (87)
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FIG. 10. Different GC distributions obtained for M = 2.92 by solving the discretized master equation (N = 105 grid cells) numerically for
different values of T , starting from a homogeneous initial condition.

and are generically nonzero. This means that the “double-
projecting limit” is not equivalent to the strong-measurement
one (cf. the case of MT = π l/2 for γ = 0 in Sec. IV A).

The weights A± depend on the dwelling time of a given
peak, i.e., on the typical length of sequences M̂−M̂− . . . M̂−
and M̂+M̂+ . . . M̂+. Since the escape probabilities are the
same for both peaks, Eq. (87), we conclude that

A± = 1/2.

Equation (86) gives an example of localization. Since the peak
positions do not depend on the initial state, we come across the
measurement-induced steering [96].

V. NUMERICAL SIMULATIONS: CHARACTERIZATION
OF THE ANGLE DISTRIBUTION

In order to explore the phase diagram beyond the analyt-
ically solvable special cases, we have performed numerical
studies of the model. A combination of two complementary
methods—(i) solution of a discretized ME and (ii) Monte
Carlo simulations (see Appendices E and F)—has allowed us
to systematically explore the ADF in the (M, T ) parameter
plane (fixing γ = 1). The approach based on the iterative
solution of the discretized ME is our main working tool, see
Appendix E 1. The convergence of the numerically obtained
distributions to the ADF as defined and motivated in Sec. II
is extensively discussed in Appendix F. In essence, excellent
agreement between results from the two completely different
approaches proves their validity. We consider the domain
M, T ∈ (0, 5], which turns out to include a broad range of
regimes. Our understanding of generic distributions is based
on the consideration of four cases (frozen, shift, period-2, and
projective) in Sec. IV, which shape the rich “phase diagram”
of the model.

To give an impression of various angle distributions for
generic parameters, we fix (arbitrarily) M = 2.92 and present
six different distributions, corresponding to different values
of T in Fig. 10. Comparing several distributions, there is an
immediate observation: For T = 2.5 and 2.7, W (θ ) has heavy
peaks around a few points and is close to zero at most angles.
At T = 3.0, there are some high peaks, but the distribution
has small finite values at all angles. For T = 3.0554, 3.1,
and 3.722, the distribution is close to uniform (note the scale
of the y axis) but features an intricate structure on smaller
scales. Based on the immediate visual difference between the
distributions, it is tempting to refer to them as localized and
delocalized. We now proceed with a more detailed description
of the indicators that allow one to characterize the localized
and delocalized angle distributions.

A. Participation ratio and its scaling

An ADF could be referred to as localized if there is a
large chance to find the angle within a small interval on the
GC [heavy peaks in W (θ )]. If no such subset exists, the
distribution is delocalized. To quantify this, we calculate a
participation ratio (PR) for discretized angles

RN (W ) ≡
[

N∑
i=1

Pr2
i

]−1

= N2

(2π )2

{
N∑

i=1

[W (�θ )(θi )]
2

}−1

,

(88)

where

Pri ≡
∫

ci

dθW (θ ) (89)

are the probabilities obtained from integrating the ADF over
N discretization cells ci of equal size �θ = 2π/N (see
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Appendix E for details). A perfectly localized distribution
Wloc(θ ) = δ(θ − θloc) gives RN (Wloc) = 1, while a uniform
distribution Wuf(θ ) = (2π )−1 gives RN (Wuf) = N . Accord-
ingly, large (small) values correspond to more delocalized
(localized) distributions.

In addition to the PR, we also calculate its scaling with
the number of coarse-graining cells Ng. Namely, we take the
ADF at the highest available resolution (characterized by N),
superimpose a broader grid (characterized by Ng), and sum up
the terms Pr2

i in each broader cell—as opposed to numerically
solving the ME at every considered discretization level with N
cells separately. The scaling can be described approximately
by a power law

RN ∝ Nζ
g ζ ∈ [0, 1], (90)

with the PR exponent ζ .
In the preceding sections, we referred to (de)localization as

a property of wave functions in space in disordered systems.
In a one-dimensional Anderson-localized system, the proba-
bility amplitude |ψi|2 corresponding to an arbitrary eigenstate
of the disordered Hamiltonian falls off exponentially with the
distance to the center site. In this case, a participation ratio is
calculated as

R̃L(ψ ) ≡
[

L∑
i=1

|ψi|4
]−1

, (91)

where L is the system size. In a localized system, the PR
becomes independent of the system size if L exceeds the
localization length ξ , whereas delocalization is defined by

R̃L → L

in the thermodynamic limit. Our model has a fixed size (the
angle θ is compact), so that the role of the system size
L/ξ → ∞ is played by the number of the GC discretiza-
tion grid cells N . In the present problem, the counterpart of
the modulus-squared amplitude of the wave function is the
stationary probability Pri on the GC. In a sense, increasing
the number of “bins” in our model is similar to decreasing
ξ (by increasing the strength of disorder) in the Anderson-
localization problem.

The scaling of the PR with N does not generally have
an equivalent meaning as the scaling of the PR with L in
the context of Anderson localization. For example, for a box
distribution

W (θ ) =
{

1/|I1|, θ ∈ I1,

0, otherwise,
(92)

which can be arbitrarily narrow, |I1| � 1, we get RN (W ) ∝
N , as the fraction of the GC covered by the distribution is
independent of N . The situation is different, if the distribution
is given by a sum of delta peaks: in this case, the discretized
distribution W (�θ )(θ ) becomes narrower as �θ → 0, and the
PR is constant as a function of N . In this sense, a distribution
would only be localized, if its support on the GC decreased
with increasing resolution. There can be situations where
distributions are localized in the sense of a small PR value
(narrow peaks), but delocalized in the sense that the support
is independent of the discretization (if �θ is sufficiently small
to resolve the distribution). Such distributions can be regarded

as “metallic grains” (coexisting delocalized and localized re-
gions), which are not generally expected in the problem of
Anderson localization in homogeneously disordered systems.
At the same time, we know of two special cases (period-2
trajectories and the projective case), where the distribution
W (θ ) is localized in the strict sense: the observed peak width
scales to zero with increasing the resolution of discretization.
Without additional analytical arguments, based only on the
analysis of PR, we are limited by the minimum resolution �θ

when distinguishing the true localization from the localization
in the sense of metallic grains.

B. Support of the angle distribution

To further characterize the “localized-looking” ADF, we
introduce another observable SC

N , which captures the mini-
mum support NC/N needed to cover a fraction C � 1 of the
total probability,

SC
N (W ) ≡ NC

N
, (93)

NC :
Nc∑

i=0

[sorted(Pr)]i � C, (94)

where sorted(Pr) are descendingly sorted probabilities {Pri}
and NC is the smallest integer, such that the inequality is
fulfilled. If the support is one, the distribution can be regarded
as extended; otherwise, it can be localized or “granular”. It
is worth emphasizing, however, that this indicator explicitly
depends on the cut-off scale C, which should be compared
with the scale introduced by the discretization resolution in
numerical simulations.

C. The typical height of the distribution

In the theory of Anderson transitions [2], the transition
between insulating and metallic phases manifests itself in the
local density of states [2,121–123],

ρi(ε) =
∑

n

δ(ε − εn)|〈i||εn〉|2. (95)

On the localized side, there is just a small number of wave
functions contributing to the sum (95) at any given site i
(because most wave functions are localized away from i and
their contribution to the local density of states at a given site is
exponentially suppressed). As a result, the typical value of the
local density of states (essentially the value at the maximum
of the distribution) vanishes [2,121,123]. On the metallic side
close to the transition, many states contribute at any site,
because the eigenfunctions 〈i||εn〉 are extended. The typical
value becomes finite and the distribution is spread around the
typical value [122,123]. The order parameter of the Anderson
transition is then a functional one: the distribution function
of the local density of states. Characterizing this distribution
function by the corresponding typical value, one can invent a
simple-minded scalar “order parameter” that could be of prac-
tical use for a variety of questions in the context of Anderson
transitions.

Inspired by this experience, we introduce a third observable
to distinguish localized ADFs from delocalized. Making use
of the similarity between the patterns of the local density of
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FIG. 11. Examples of histograms of heights falling into the three different categories introduced in Sec. V C. (Upper panels) Distributions
obtained from the master equation with N = 105, at (M = 2.263, T = 3.498), (M = 0.990, T = 1.811), (M = 4.052, T = 3.768) from left
to right. (Lower panels) The corresponding histograms of heights. From left to right categories 1 (localized, maximum at the “numerical zero,”
h = �h, see inset), 2 (maximum at the left boundary h0 of the histogram but at h > �h, see inset), and 3 (delocalized, maximum not at the left
boundary). Here, h0 = min(W (�θ ) ) + �h is the height corresponding to the leftmost bin in the histogram of heights with H (hi ) > 0.

states and the angle distribution in our case, we introduce the
height distribution H (h j ) of

hi = min(W (�θ ) ) + (2i + 1)�h, (96)

�h ≡ max[W (�θ )] − min[W (�θ )]

2Nh
, (97)

where i ∈ [0, Nh − 1] and Nh � N is the number of distinct
heights, see Fig. 11. This is a discretized version of the dis-
tribution of the “local density of states” (the local density
of postmeasurement trajectories on the GC): We count the
number of bins, where the probability distribution at a given
resolution lies within a given window of values (a “histogram
of heights”).

We analyze the typical value of this distribution by consid-
ering the position of its maximum hmax, such that H (hmax) =
max(H ). Based on numerical results, we distinguish three
categories:

(1) hmax = h0 = �h,
(2) hmax = h0 > �h,
(3) hmax > h0.
Here h0 = min(W (�θ ) ) + �h is the height corresponding

to the leftmost bin in the histogram of heights with H (hi ) > 0,
see Eq. (96). The first category implies a vanishing typical
value in analogy to the insulating phase of a disordered sys-
tem. The third category means a finite typical value in analogy
to the metallic phase of a disordered system. The second,
intermediate case corresponds to a nonvanishing typical value,
however, at the left boundary of the distribution. This category
describes, for instance, isolated peaks on top of a nonzero
background in the ADF.

D. Fractal dimension

Having introduced observables to quantify “localization”,
we now take a closer look at the apparent substructure in
some of the distributions. As an example, we consider M =
2.92, T ≈ 3.729 in Fig. 12 at high grid resolution N = 107.

FIG. 12. Example of a fractal ADF. Angle distribution for M =
2.92, T ≈ 3.729 is calculated from the ME with N = 107 grid cells,
starting from a uniform initial condition. The upper panel shows
W (θ ) on the entire GC, θ ∈ [−π, π ). The lower panels show pro-
gressively smaller segments of the GC, with the respective interval
indicated by blue shading in the preceding panel.
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The upper-left panel shows the entire distribution W (θ ) with
θ ∈ [−π, π ). The other panels show sections of the dis-
tribution taken from progressively smaller intervals on the
GC. The blue shaded areas indicate the intervals that are
displayed in the next (zoom-in) panels. Remarkably, these
four sections look similar to each other, suggesting that the
distribution “repeats itself” on different scales, with the in-
terval considered in the lower panel corresponding to 3 ×
10−4/(2π ) ≈ 5 × 10−5 fractions of the GC. Numerically, we
cannot further resolve this pattern without going to larger N . A
heuristic argument suggests that this self-similarity can exist
on any scale, rendering the distribution fractal.

We quantify fractality of the distribution by calculating
its Hausdorff fractal dimension d: Overlaying W (θ ) with a
uniform grid of m−1 × m−1 cells, we count the number of cells
C(m) required to fully cover the curve [124]. The relation

C(m) ∝
(

1

m

)d

, m → 0, (98)

defines the box counting dimension d [125]. If the structure
can be fully resolved at finite m, we get d = 1. The dimension
1 < d < 2 corresponds to a fractal structure. Numerically cal-
culating the fractal dimension, we cannot increase m above the
number of grid cells N without trivializing the box-counting
dimension. Thus, any curve with d > 1 should turn out to
scale trivially when the box size is reduced beyond our nu-
merical resolution.

The emergence of fractality of the distributions can be
exemplified by a heuristic consideration of the vicinity of the
projective cases (cf. Ref. [115]). Let �+(θ ) map a large frac-
tion of the GC to a narrow interval around its main eigenangle,
resulting in a slightly broadened peak. The matrix M̂− trans-
lates this peak to another angle interval, slightly “distorting”
the peak shape (because F ′

− and P− are not constants). If we
start from a peaked distribution around the main eigenangle,
the translating map generates a set of decaying “peak clones”
on the GC. Many of these peak clones are reflected back onto
the main peak by the almost projecting map. Self-consistency
requires those modulations to be translated to the secondary
peaks as well [cf. Eq. (81)]. Recursively applying this argu-
ment suggests that the stationary limit is given by a fractal.

Generally, this mechanism is not limited to the projective
cases. As soon as there is some back-and-forth copying be-
tween two points, fractality can emerge. Quantifying when
exactly this breaks down towards the uniform cases re-
quires a more careful consideration, which we do not provide
here. A related analysis was performed in Ref. [115] for
correlated random products of two matrices, where the ap-
pearance of singular peaks at “strong” eigenangles, as well
as their “cloning”, was found at the condition analogous to
P±(θ±)|F ′

±(θ±)| = 1.
The emergence of fractality is another parallel to the theory

of Anderson transitions: At an Anderson transition, the wave
function of the system becomes multifractal [2], which means
that its self-similarity can be characterized by a whole set of
nontrivial fractal dimensions by attributing a fractal dimen-
sion f (α) to a subset of points of the wave function that is
characterized by scaling as L−α with the system size [2,126–
128]. The function f (α) is called the singularity spectrum

and can be extracted from the scaling of moments of the
wave function (like the inverse participation ratio) with the
system size [2,126]. The box-counting dimension of the entire
wave function is closely related to the singularity spectrum but
contains less information [128].

E. Ergodicity indicator for the Markov process

Finally, we address ergodicity of the Markov chain defined
by the matrix M̂N ,

[M̂N ]ik ≡ 1

�θ

∑
μ∈{+,−}

Pμ(θk )| fμ(ci ) ∩ ck|. (99)

Here, fμ(ci ) is the image of ci under the action of map Fμ(θ ∈
ci ), Eq. (15), which is continuous on the periodic interval
[−π, π ) and invertible for all sets of parameters except for the
projective limit; | . . . | denotes the length of the corresponding
angle interval. The sparse matrix M̂N relates the cell proba-
bilities Pri,

Pri =
N∑

k=1

[M̂N ]ikPrk, (100)

in the discretized ME, see Appendix E for details.
There exist several different notions of ergodicity for

Markov processes in the literature [129,130]. In the following,
we call the system ergodic, if the Markov process is irre-
ducible [131]. Irreducibility means that any state i (bin ci) can
be reached from every state k [129]. If this is the case, the
ADF is probed by any typical post-measurement trajectory
implying ergodicity of the dynamical system [132]. In our
notation, for any i0, k0 there exists a natural number s such
that

N∑
l=1

[(M̂N )s]i0lδlk0 > 0. (101)

For the coarse-grained ADF, ergodicity implies:
(1) Support of the ADF on the entire GC.
(2) A unique stationary state of the ME.
(3) Equivalence of the ADF, stationary state [133], and

time average of a typical quantum trajectory.
(4) Independence of the ADF of the initial angle.
To numerically check whether the process is irreducible for

given parameters, we can consider its Markov matrix M̂N as
the transition matrix of a directed graph

GN := (VN , EN ),

VN := {1, . . . , N},
EN := {(k, i), such that [M̂N ]ik > 0; k, i ∈ VN }, (102)

where the N nodes from the set VN represent the grid cells ci

and the edges from the set EN represent transitions k → i be-
tween the cells with finite (nonzero) probability in the matrix
M̂N . Ergodicity of the Markov process with transition matrix
M̂N is equivalent to GN having a single strongly connected
component (SCC) containing all N nodes. The SCC is a max-
imal set of nodes v ⊆ VN , such that for every pair of nodes
s, s′ ∈ v there is a path s → s′ (and also s′ → s) that only
traverses edges between nodes in v. Here, “maximal” means
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that no further nodes can be added to the set without breaking
the latter property.

The SCCs of a graph GN can be calculated efficiently,
within O(|VN | + |EN |) operations [134–136]. Our ergodicity
indicator has two values: 1 (ergodic, GN has a single SCC) and
0 (nonergodic, GN has more than one SCC). It is, however, not
obvious whether or not this finite-N indicator can be used to
classify the continuous process. Indeed, ergodicity can be an
artifact of discretization. As an extreme example, suppose we
discretized the entire GC into a single cell c1 = [−π, π ). This
cell forms a single SCC, thus corresponding to an ergodic pro-
cess. This dismisses any subintervals of the GC that may prove
unreachable at higher discretization, which would render the
process nonergodic.

Importantly, nonergodicity in MN does have implications
for the continuous process. To see this, a simple example of a
discrete, nonergodic process is helpful: Let us assume that the
set of nodes VN of the graph GN splits into two SCCs v1 and v2.
These SCCs can be either (i) disconnected, or (ii) connected
only by edges in one direction, e.g., v1 → v2. Edges in both
directions v1 → v2 and v2 → v1 are not possible because this
would mean that GN consists only of a single SCC.

In both situations (i) and (ii), the GC subset represented
by the nodes from v2, I2 ≡ ⋃

i∈v2
ci, forms an invariant

subset. This subset is also invariant for the continuous post-
measurement evolution on the GC regardless of the value of
N for which it was found, see Appendix G for details. The
above argument can easily be generalized to situations where
GN splits into more than two SCCs, the key insight being
that, by construction, there always exists at least one SCC that
corresponds to an invariant subset of the dynamical process.

We stress that the finite value of N in this argument does
not imply any discretization of the dynamical process. Indeed,
the mapping used in the construction of a finite-N graph GN

is the mapping of continuous intervals of the angles (rather
than a mapping of discrete interval labels), which preserves
the continuous nature of the stochastic process. Discretization
with finite N refers here only to the resolution of the instru-
ment (a “microscope”) employed to explore the continuous
process by constructing a corresponding graph.

With the above prerequisites, we define nonergodicity of
the continuous process in the following way: The process is
nonergodic, if an invariant subspace of the dynamical process
can be found that does not include the entire GC. Otherwise,
the process is ergodic (for any discretization, paths between
any two bins exist). Importantly, once our “microscope” de-
tects such an invariant subset in the continuous process at
some N , there is no need to further enhance its resolution: non-
ergodicity of the continuous process is already demonstrated.
Finally, it is worth mentioning that nonergodicity does not
imply degeneracy of the stationary state. In the above example
with two SCCs, both cases (i) and (ii) are nonergodic, but only
case (i) corresponds to a degenerate stationary state.

F. Summary of regimes and respective indicators

We have introduced four indicators, which are suitable for
identifying the behavior of the ADF:

(1) Localization and delocalization are reflected by the
participation ratio and its scaling, the support measure, and the

typical value of the “histogram of heights”. These indicators
have been used based on a loose analogy of the shape of
the asymptotic angle distributions (possibly at different dis-
cretizations) with localized and delocalized wave functions in
a disordered system. In the truly localized regime, we may
expect R → 1, ζ → 0 regardless of the smallness of the bin
size.

(2) Fractality and self-similarity of the ADF curves are
described by their box-counting Hausdorff dimension.

(3) Ergodicity and nonergodicity of a discrete Markov pro-
cess corresponding to the transition matrix M̂N is described
by the connectivity of the graph GN .

VI. NUMERICAL RESULTS: (DE)LOCALIZATION,
(NON)ERGODICITY, AND FRACTALITY

In this section, we present the results of our numerical
study of the structure of the “phase diagram” in the M-T
plane for γ = 1. We obtain the stationary angle distribution
W (θ ) from the ME for a high-resolution grid in the domain
0 < {M, T } < 5, see Appendix E 1 for details. We classify the
distribution into (non)ergodic, (de)localized, and fractal types
by means of the characterization schemes described in Sec. V.

A. Cross section of the phase diagram

We first investigate a single cross section of the “phase
diagram” through the parameter space at fixed M = 2.92,
considering 640 equally spaced values of T in the interval
T ∈ [10−3, 5], see Figs. 13 and 14. The distributions were ob-
tained using the ME method with N = 105 grid cells, starting
from uniform distributions and iterating for up to 104 steps.
Different special conditions are indicated by vertical lines in
Figs. 13 and 14, see captions of these figures. Additionally,
distributions for projective T values were calculated from
Eq. (81).

1. Delocalization and localization regions

The upper and middle panels of Fig. 13 show, respectively,
the PR, RN , and the PR scaling exponent ζ calculated for N =
105. First, we note that the PR exponent essentially follows
the behavior of the PR and, therefore, we can focus on the
dependence RN (T ). All regions with the values of RN that are
attributed to localization or delocalization, can be understood
based on the properties of the special cases.

In the limit T → 0, as well as at the values of T that
correspond exactly to the frozen (dashed lines) and shift (dot-
ted lines) cases, the PR indicates delocalization: RN ≈ N .
However, this is an artefact of the uniform initial condition.
At T → 0, the detector state is Zeno-frozen (cf. Ref. [77]),
since there is no (joint) unitary time evolution between the
measurements. Therefore, the detector state never changes,
and the measurement outcome is always no-click. At T = 0,
the matrix M̂− acts trivially on the system state, such that it
remains frozen as well (although not in an eigenstate of the
projective density measurement).

Similarly, exactly along the frozen cases, both matrices
M̂± act trivially and the system state never changes, while
the analysis of the ME indicates a delocalized distribution. In
these cases, any state is an eigenstate of the Markov matrix,
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FIG. 13. Indicators of (de)localization in a cross section of the
M-T “phase diagram” with T ∈ [10−3, 5] at M = 2.92. All curves
were obtained numerically from a discretized ME with N = 105

grid cells and a maximum of 104 iteration steps, starting from a
uniform initial distribution. (Upper panel) Participation ratio RN

[defined in Eq. (88)]. Large (small) values correspond to delocal-
ization (localization). (Middle panel) Scaling exponent ζ of the PR
[Eq. (90)]. (Lower panel) Support SC

N with C = 0.99 [defined in
Eq. (93)], which makes a direct link between (de)localization and
(non)ergodicity. Solid-vertical lines: period-2 cases Y T = (2k + 1)π
with k ∈ N0. Dashed lines: frozen cases TY = 2kπ . Dotted lines:
shift cases MT = kπ . Dash-dotted lines: projective limit defined by
conditions (79) (purple) or (80) (orange).

and these degenerate stationary states do not correspond to
the actual (frozen) ADF, which is given by the initial state.

In the shift case, the ME also always has a uniformly
delocalized stationary state, as every bin has exactly the same
incoming contributions. The actual ADF depends on the shift
angle φ and the initial condition: If the shift angle is commen-
surate with π , nφ = 2π for some n ∈ N, the ADF only has
support on a finite set of points that depends on the initial
condition. If the angle is not commensurate with 2π , any
point on the invariant manifold can be approached arbitrarily
closely and the ADF is delocalized. In any (shift) case, generic
postmeasurement quantum trajectories do not converge to the
GC.

Thus, the indicators based on the solution of the discretized
ME with a uniform initial condition may fail in the special

FIG. 14. (Non)ergodicity and fractality vs localization in the
cross section of the M-T “phase diagram” with T ∈ [10−3, 5]. All
curves were obtained from discretized ME, parameters are the same
as in Fig. 13. (Upper panel) Ergodicity indicator of the Markov pro-
cess corresponding to M̂N : 0 (1) indicates nonergodicity (ergodicity)
in terms of connection of graph GN , Eq. (102). (Middle panel) Fractal
dimension d from box counting [Eq. (98)]; d = 1 corresponds to
a one-dimensional curve, 1 < d < 2 gives a nontrivial Hausdorff
dimension of the curve. (Lower panel) Category of the position of
the maximum of the height histogram [Eq. (96)]; 1 and 3 indicate
localization and delocalization, respectively; 2 indicates peaks on top
of the extended background. These categories establish a connection
between localization and nonergodicity as well as delocalization and
ergodicity, see discussion in the text. The vertical lines denote the
same cases as in Fig. 13.

cases. In particular, they may overlook the localized points:
“fake delocalization” at special points can emerge as a result
of averaging over localized distributions. In this regard, the
structure of the matrix M̂N can provide additional valuable in-
sights into the expected behavior of the ADF, see Appendix E.

The situation is different already in the immediate vicinity
of the frozen and shift cases: Freezing of state and Bloch-
angle is clearly broken away from the commensurability
points. The deviation lifts the exact degeneracy of eigenvalues
in the frozen case, and the ME approach can be used—
agreeing well with the MC time average (Appendix F). Note
that the maximum (for given N) value of the PR is achieved for
finite segments of T values around special commensurability
points, suggesting the existence of delocalized phases.
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Specifically, the PR indicates regions of true delocalization
of width �T ≈ 1/2 with almost saturated PR values
RN ≈ N = 105, where the distributions are close to uniform.

The localized behavior, RN � N , is correlated with
period-2 trajectories (solid lines) and the projective limit
(dash-dotted lines). The behavior of the indicators shows,
however, that localization at the period-2 trajectory is de-
stroyed by slight deviations from these commensurability
points. Perturbatively, we might expect that a product M̂±M̂∓
still has eigenstates close to the period-2 peaks. However, the
attraction to the period-2 peaks relies on long chains of prod-
ucts M̂+M̂−, which emerge from the contraction argument
M̂2

± = 1, see Sec. IV C and Appendix D. If this contraction
is not fulfilled exactly, the deviations are accumulated in long
chains. This may lead to the broadening of the peaks in the
ADF.

In the projective limit, the solution of the ME is given by
a discrete set of delta-peaks, whose strength decays exponen-
tially with the number of necessary transitions from the main
projective peak, resulting in apparent localization. Indicators
in Fig. 13 demonstrate that the stability of this projective lo-
calization with respect to variation in T depends on the value
of T , in particular, through the “interaction” with neighboring
commensurability conditions. Specifically, for projective lines
at T ≈ 0.6, 2.5, 2.8, and 4.8, we come across relatively wide
regions of small PR values. Regions around T ≈ 1.5 and 3.9
lie within narrow “valleys”, while those at T ≈ 1.4 and 3.3
are enclosed by the shift and frozen lines and only show a
sharp dip. At the same time, the combined effect of projective
and period-2 cases favors localization in a relatively broad
range of T , see the region around T = 2.7. Interestingly, all
broad regions of apparent localization observed in Fig. 13
correspond to cases with a strong hierarchy in both postmea-
surement matrices.

The support measure SC
N with C = 0.99 shows behavior

similar to that of the PR and the PR exponent. Since non-
ergodic regions turn out to correlate with low values of this
measure this establishes a link between (de)localization and
ergodic properties of the steady-state distributions. Finally,
yet another indicator of (de)localization—the typical value of
the “histogram of heights” shown in Fig. 14—also exempli-
fies the correlations between the indicators oriented on the
(de)localization and (non)ergodicity.

In summary, such defined “localization” manifests in
analogs of several common localization measures, all of them
yielding similar regions in the cross section, where the distri-
bution appears localized. Whether these regions correspond to
genuine localization (with the width of the ADF peaks tending
to zero in the continuous limit, as it does exactly at the project-
ing limit or for period-2 trajectories) or to granularity (with
the peak width saturating with increasing the resolution of
discretization) requires additional analysis, which is beyond
the scope of this paper. The consideration of (non)ergodicity
and fractality below sheds more light on this question.

2. Ergodicity and fractality

We move on to consider the ergodicity indicator shown
in the upper panel of Fig. 14. The plot shows whether or
not the Markov process corresponding to M̂N with N = 105

is ergodic [whether or not GN defined in Eq. (102) has a
single SCC]. Importantly, nonergodicity does not necessar-
ily imply localization. An example is given by a granulated
case where delocalized grains are embedded in a localized
background, which is characterized by the ADF not having
full support. Such a distribution could look similar to the
curve in the lower panel of Fig. 9, where a gap of very
low density opens between intervals where the distribution is
finite. As argued above, nonergodicity of the discrete process
does imply nonergodicity of the continuous process—there
are invariant disconnected subspaces on the GC. However, an
analogous statement does not directly hold true for ergodic
regions: ergodicity of a discrete process does not necessarily
mean ergodicity in the continuous limit. Nevertheless, the
extension of ergodic regions at finite discretization observed
in Fig. 14 suggests that genuine ergodic phases should exist in
our parameter space. Indeed, these regions are remarkably sta-
ble with respect to the number of discretization cells, implying
their stability and finiteness in the continuous limit. This is
quite natural, in fact, once the existence of finite nonergodic
regions has been established for continuous processes: all the
rest should be then regarded as ergodic.

Most of the considered values of T in the cross sec-
tion correspond to ergodic distributions. However, we find
nonergodic intervals of T in the vicinity of those projective
(dash-dotted) lines, where both postmeasurement matrices
have strong eigenvalue hierarchies, i.e., the vicinity of the
double projective case. To understand this, consider two small
but finite intervals around the two “strong” eigenangles: I± :=
[θ± − δ±, θ± + δ±]. A strong eigenvalue hierarchy means
that a large fraction of the GC is mapped into the vicinity
of the eigenangle by the corresponding map (see Fig. 18,
upper-right panel). In particular,

�μ(Iμ) ⊂ Iμ, (103)

where �μ(Iμ) is the image of the interval Iμ under the action
of �μ(θ ∈ Iμ). If these “attractive regions” of the intervals Iμ
are sufficiently large to include the respective other eigenan-
gle, the condition

�μ(I−μ) ⊂ Iμ (104)

is fulfilled. In this case, no measurement operator can facilitate
escape from the intervals Iμ, which thus form an invariant
subset for the postmeasurement state [137].

The fractal (box-counting) dimension displayed in the mid-
dle panel of Fig. 14 is trivial, d ≈ 1, around the frozen and
shift cases. This is expected, since we learned from the PR
values that these cases correspond to almost uniform distri-
butions. For all projective cases, the fractal dimension shows
dips to d ≈ 1. Based on the structure of the ADF that shows
a series of exponentially shrinking peaks in this limit [see
middle panel of Fig. 9 and Eq. (81)], we indeed expect triv-
ial scaling C(m) ∝ 1/m in the exact projective limit. Some
of the observed dips are extremely narrow, which suggests
an increased susceptibility of the vicinity of the projective
case towards forming a fractal pattern, in agreement with
the argument in Sec. V D. Some of the period-2 cases also
correspond to dips in the fractal dimension. This agrees with
our expectation that, exactly in this case, there are only two
peaks in the ADF and, therefore, d = 1. All other cases have
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a nontrivial fractal dimension—this appears to be the generic
case in our system.

Although (non)ergodicity and (de)localization are not
necessarily correlated types of behavior, a connection is estab-
lished by the behavior of the support and the maximum in the
histogram of heights. Interestingly, regions of nonergodicity
are correlated with the first category of the height indicator
(analogous to the manifestation of the insulating phase in
the local density of states). Around all of the nonergodic
projective cases, the maximum ventures into the first category.
Additionally, around the projective case at T ≈ 4, there is a
small first-category dip, which is not present in the ergodicity
cross section. Further, the behavior of hmax fluctuates, which
can be due to numerical limitations [138]. The surrounding
parameter regions of category-one behavior are “transitional”
category-two regions (this does not have an analog in the
theory of Anderson transitions). Finally, ergodic regions cor-
respond to category-three behavior of heights (delocalization
in the Anderson picture) with occasional fluctuations into the
second category around special lines.

B. Phase diagram of the monitored qubit

Having investigated a generic cross section in the M-T -
parameter space, we proceed with studying (de)localization,
fractality, and (non)ergodicity in the whole parameter plane.
Figure 15 shows the same quantities as in Figs. 13 and 14, cal-
culated for a 160 × 160 grid in the domain M, T ∈ [10−2, 5]
at N = 104. The analysis of the entire diagrams is pretty much
similar to that of the cross sections, which we have elaborated
in great detail.

The upper-left panel shows the PR values RN . Again, the
localized and delocalized behavior can be distinguished based
on the special cases, in analogy to what was discussed before.
Delocalized phases are found around frozen and shift cases
(dashed and dotted lines): as discussed above, the ME with
a uniform initial condition yields delocalization along these
special lines due to averaging over localized trajectories. In
the vicinity of these lines, genuine delocalization quickly sets
in for all quantum trajectories. Almost uniform delocalization
around frozen and projective cases is remarkably stable with
respect to changes in parameters, manifesting in broad yellow
“bands” around commensurate lines.

Localization is observed around the projective limit
(orange and purple lines) and period-2-trajectories (solid
lines). The period-2 trajectory crosses the delocalized bands
through narrow “bridges” of localization (for example at
T = 0.3, M ≈ 4.7). The projective lines are surrounded by
a narrow or broad region of localization, depending on the
parameters. The case where both GC maps M̂± are almost
projective is special in that such regions always correspond
to apparent localization in finite bands. Support measure and
PR scaling phase diagrams are visually very similar to the PR
diagram.

Comparing ergodicity of the discrete process (middle-left
panel of Fig. 15) with the hmax indicator (middle-right panel
of Fig. 15) we observe that the locations of the nonergodic
regions are completely correlated with the locations of the
most localized regions. There is an astonishing agreement
between category three of the height distribution and uniform

delocalization, as well as between category one and nonergod-
icity. Categories one and three are separated by the “transient”
category two.

The fractal dimension as a function of M and T (lower-
right panel of Fig. 15) confirms our conclusions from
the analysis of the cross section. Extended regions of
almost-uniform distributions around frozen and shift cases
correspond to a trivial dimension d = 1. Away from these
regions, the fractal dimension is nontrivial (except for the
vicinity of the projective lines, which are not drawn to avoid
covering fine lines of d ≈ 1).

As discussed above, the regions where both matrices M̂μ

have a strong eigenvalue hierarchy (double-projecting limit)
are also special for ergodicity. As expected, in the vicinity
of double-projective points (intersections of orange and blue
curves in Fig. 8) we find finite regions of nonergodicity em-
bedded into the mostly ergodic phase diagrams. To estimate
the expected extension of these regions, we consider the fol-
lowing conditions for a nonergodic region:

(1) Both matrices M̂μ have eigenvectors on the GC, estab-
lishing the existence of a region according to relation (103);

(2) The eigenangles θ−μ lie within the attractive region
of the “partner” maps M̂μ, fulfilling the relation (104). This
corresponds to [139]

|�′
μ(θ−μ)| < 1. (105)

The nonergodicity criterion covers all regions, which we
find to be nonergodic at finite discretization (and which belong
to category one of the height indicator), see the left panel of
Fig. 16. Furthermore, it predicts that the regions of nonergod-
icity actually extend further in the parameter space (which
would only be visible at higher discretization in our numerical
procedures).

Under certain conditions, a direct connection between non-
ergodicity and localization can be demonstrated. Given a
nonergodic process with images �±(I ) ⊆ I for the invariant
subset I , the inequality∑

μ∈{−,+}

∣∣∣∣∂�μ(θ )

∂θ

∣∣∣∣ � c < 1, θ ∈ I (106)

guarantees a localized distribution, starting from an initial
state that is nonzero within the invariant subset, e.g.,

W0(θ ) ≡
{

1/|I|, θ ∈ I,

0, else.
(107)

To see this, we consider the support S1 of the distribution after
applying the protocol once,

|S1| = |�+(I ) ∪ �−(I )| �
∑

μ

∫
I

dθ

∣∣∣∣∂�μ(θ )

∂θ

∣∣∣∣ < c|I|.

(108)

This argument can be iterated indefinitely with the support
shrinking exponentially with the number of iterations. Thus,
the limiting distribution function consists of a set of δ peaks
on the invariant subset and is, therefore, localized.

The above argument provides a sufficient condition for
localization of the ADF within the chosen invariant subset
I . Generically, there can be several disjoint invariant sets I j
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FIG. 15. Diagrams illustrating localization, fractality, and ergodicity of the distributions obtained by using the ME method. All panels
were generated with N = 104 grid cells and a maximum of 104 iteration steps starting from a uniform initial distribution. (Upper-left panel)
Participation ratio, Eq. (88); large (small) values correspond to delocalization (localization). (Upper-right panel) Scaling exponent ζ of the
PR [Eq. (90)]; 0 (1) indicate localization (delocalization). (Middle left panel) Ergodicity marker of the Markov process corresponding to the
transition matrix M̂N , indicating whether the graph defined in Eq. (102) has a single strongly connected component; yellow (purple) regions
are ergodic (nonergodic). (Middle right panel) Category of the position of the maximum of the height histogram, Eq. (96); 1 and 3 indicate
localization and delocalization, respectively; 2 indicates peaks on top of the extended background. (Lower-left panel) Support SC

N , Eq. (93), with
C = 0.99. (Lower-right panel) Fractal dimension d of the distributions, Eq. (98); d = 1 corresponds to a one-dimensional curve, 1 < d < 2
describes a fractal pattern. Lines show special cases described in Sec. IV. Solid lines mark period-2 cases: Y T = (2k + 1)π with k ∈ N0.
Dashed lines denote frozen cases: Y T = 2kπ . Dotted lines denote shift cases: MT = kπ . Dash-dotted lines correspond to the projective limit
for M̂− [purple, Eq. (79)] and for M̂+ [orange, Eq. (80)].
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FIG. 16. Evaluation of nonergodicity and localization conditions. (Left panel) Ergodic and nonergodic regions obtained by using the
phenomenological nonergodicity condition in the continuous Markov process, Eq. (105). Purple and orange lines correspond to projecting M̂−
and M̂+ matrix, respectively. The M̂+ matrix has a strong eigenvalue hierarchy in the lower purple region as well, see Fig. 6. The color code is
the same as in the middle left panel of Fig. 15. (Right panel) Localization condition (106) evaluated for all the invariant subspaces obtained as
the leaf nodes in nonergodic graphs GN , see Sec. V and Appendix G. The condition for localization is fulfilled in the dark purple regions.

in the GC and a similar analysis should be performed for
each set. If the localization condition (106) holds true only for
some I j , a “granular” structure, where the ADF is localized
in some invariant subsets and delocalized over other angles,
is not forbidden. If the initial angle θ0 belongs to a “localized
subset” of this structure, the state of the system is localized in
the long-time limit.

More interesting is the truly localized regime where
Eq. (106) is satisfied in all I j . At this point, we note that,
besides for the double-projective points, the condition (106)
can never be satisfied for the entire GC, because the maps
�± are bijections from the GC to the GC: The trivial map
�(θ ) = θ has slope one everywhere, and any map that has a
slope smaller than one necessarily has the slope greater than
one somewhere, such that the image of the GC is equal to the
GC. However, this does not contradict the existence of true lo-
calization, since regions with

∑
μ |�′

μ(θ )| � 1 can be located
in the complement Ū ≡ [−π, π )\U of the union U of all I j .
Crucially, Ū is by construction unstable because of “leakage”
into invariant subsets [140] and, thus, cannot be part of the
support of the converged distribution. We conclude that the
corresponding steady-state distributions are fully localized,
since localization (in the sense of absence of states) within
the complement Ū is established in the limit N → ∞.

We numerically confirmed that the condition (106) holds
for most of the regions of nonergodic parameters, implying
that the associated ADFs feature δ peaks on the constructed
invariant subsets. To evaluate this condition numerically, we
calculate the invariant subspaces for the nonergodic parame-
ters identified in Fig. 15 as the leaf nodes of the corresponding
graphs (see also Sec. II and Appendix G). Parameters for
which the condition is fulfilled for all invariant subspaces
are indicated in the right panel of Fig. 16 as dark regions,
indicating the localized phases within the nonergodic phase
[141].

C. Summary of the numerical analysis

Combining analytical solutions for the special cases with
extensive numerical analysis, we have managed to identify

various distinct regimes and phases in the monitored qubit’s
statistics and describe its phase diagram. The analytical ap-
proach has been used to build the skeleton of the diagrams, the
numerical study has allowed us to understand the properties of
the generic cases.

Analysis of the PR has allowed us to distinguish localized
and delocalized regimes. The behavior of the system with
respect to (de)localization can be qualitatively understood in
terms of the special cases (Sec. IV). From the number of SCCs
in the graph of the discretized Markov process, we have found
ergodic and nonergodic phases. We have established the exis-
tence of finite nonergodic phases in the continuous process;
hence, ergodic phases also survive in the continuous case.
Thus, we predict a transition between the ergodic and non-
ergodic phases. The behavior of hmax establishes a connection
between (de)localization and (non)ergodicity [142]. Further,
we have identified the regions of a truly localized phase inside
the nonergodic phase. Whether the nonergodicity-ergodicity
and localization-delocalization transitions are equivalent in
the monitored qubit is a challenging question, which we rel-
egate for future work. Finally, we have found that fractal
distributions are rather generic for solutions of a continuous
functional equation governing the ADF.

The phase diagrams that are presented in this section,
which reveal fractality and transitions in the statistics of a
single monitored qubit, are our main results.

VII. DISCUSSION

A. Relation to previous work: Continuous measurements limit

In the context of weak measurements, the concept of con-
tinuous measurements [86–88] of a qubit has been extensively
discussed in the literature, both from the theoretical (see,
e.g., Refs. [77,92,95,98] and references therein) and exper-
imental [80–82,143,144] perspective. In our notations, the
corresponding limit is M/γ → ∞ and T γ → 0, with the
product M2T/γ being fixed. In this limit, after averaging over
quantum trajectories, the evolution of a qubit is described by
the famous Lindblad equation.
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A system-detector setup similar to ours was theoretically
considered in the continuous limit in Ref. [77] (see also
Refs. [95,98] and the related earlier paper [92]). Focusing on
the onset of the quantum Zeno effect, the authors of Ref. [77]
have demonstrated that this onset is characterized by a series
of dynamical transitions, which also manifested in the steady-
state probability distribution of states (analogous to our ADF).
It has been discovered that one of these transitions is seen as
an opening of a region of forbidden states in the ADF.

Let us interpret this finding in terms of our classification
of regimes and phases. The relevant example of the ADF is
shown in the lower panel of Fig. 9. It implies establishing non-
ergodicity: the stationary ADF splits into two disconnected
sectors. Specifically, a delocalized segment of angles is em-
bedded in the background of zero height. This is not genuine
localization in our language, as the delocalized region does
not shrink to zero in the continuous limit. Following the list
of expected types of behavior given in Sec. II, one can refer to
such a regime as a “granulated metal”.

We note in passing that there is another transition predicted
in Ref. [77], which reveals itself as the emergence of a sin-
gularity in the ADF. The vicinity of the projective cases is
associated with the emergence of power laws in the ADF (cf.
Ref. [115,116]), which further develop into the fractal pattern
by the mechanism of “cloning.” This type of possible transi-
tions was not addressed in our analysis of phase diagram, as
we focused on the indicators directly related to localization
and ergodicity.

The consideration in Ref. [77] has focused on the far
lower-right corner of the parameter plane, which is far beyond
the range presented in our phase diagrams. Our study of the
whole parameter plane reveals extended areas that correspond
to ergodic and nonergodic phases of the dynamical process.
Physically, the strength of the system-detector coupling and
a finite-time interval of their joint evolution conspire nontriv-
ially to give rise to regimes that are much different from the
quantum Zeno effect.

For instance, in the double-projective case, the system
state can be deduced from the outcome of a single detector
measurement, without knowing the state before the measure-
ment. However, the probabilities of the detector readouts are
independent of the previous measurements—in contrast to the
Zeno regime. Instead, the system mimics a “quantum coin”
with just two different states, which are realized at random. In
the frozen cases, the system state is completely unaffected by
the detector readouts. Clearly, deviating from the continuous
limit (stroboscopic measurements) adds complexity to the be-
havior and physical interpretation of the stationary probability
distribution. This point is further underlined by astonishing
parallels between the ADF and wave functions in the theory
of Anderson transitions.

On a more technical level, allowing for arbitrary M and T
can lead to a nonlinear implicit master equation describing the
dynamical process on the GC. At any point on the GC, both
measurement operators can induce large jumps of the state,
which give rise to extremely complex typical quantum trajec-
tories. This new (compared to the continuous limit) ingredient
is reflected, for example, in fractal peak structures that are
associated with back-and-forth cloning of peaks in the ADF,
or in the relevance of commensurability conditions. The entire

parameter space is structured by special cases, where the
associated Markov process reduces to a one-dimensional ran-
dom walk (period-2, shifting, or projective cases), complete
standstill (freezing), or displays mechanisms of projection
and translation associated with the continuous limit [77]—but
different in that both measurement operators still correspond
to finite-angle steps.

Despite these differences, the above-mentioned papers, as
well as the present paper, demonstrate the importance of the
study of the distribution functions for identifying hidden dy-
namical transitions that are hardly observed in the averaged
properties of a monitored qubit. This key message is antici-
pated to be relevant also for measurement-induced dynamics
in large systems with a macroscopic number of degrees of
freedom.

B. Implications of our findings

Our results have several immediate implications. We have
already pointed out that the attraction of the quantum trajec-
tories to the period-2 limiting cycle or to two main angles
in the double-projective case realizes passive steering of the
monitored qubit. The attraction of the quantum trajectories to
the GC, where all states have the form {cos(θ/2), i sin(θ/2)}T,
results in an effective fine-tuning of the tunneling amplitude to
a purely imaginary quantity, γ → i|γ |.

The intriguing question is whether regimes and phases vis-
ible in the diagrams of Fig. 15 are experimentally detectable.
The important argument in favor of observability is the broad
range of system parameters where the regimes and phases
show themselves. However, the phases can not be detected by
monitoring conventional observables: Consider an observable
that depends on the angle θ and introduce its mean value in
terms of the ADF,

〈A〉θ =
∫ π

−π

dθA(θ )W (θ ).

Two common examples are the expectation value of the site
occupation numbers, N1 = cos2(θ/2) and N2 = sin2(θ/2),
and the formally introduced entropy of entanglement between
the sites: S2 = −Tr[ρ̂2 log(ρ̂2)], where ρ̂2 ≡ Tr1ρ̂, and ρ̂ is
the density matrix of the qubit. Note that S2 does not describe
any entanglement of particles, since there is only one elec-
tron in the system; nevertheless, this quantity carries some
useful information about the monitored qubit. Using the re-
sults of Appendix A, it is straightforward to show that S2(θ )
at postmeasurement times can be expressed via N1,2(θ ) as
S2 = −[N1 log(N1) + N2 log(N2)] and is a smooth function
of θ .

Note that 〈N1,2〉θ and 〈S2〉θ do not necessarily distinguish
between the localized and strongly delocalized regimes. In-
deed, the same expectation value N1 = 1/2 can be obtained
for both the uniform ADF and the localized ADF with two
equal peaks at θ = ±π/2. For the same reason—the smooth
dependence of these observables on θ—their averaged values
are also unable to reflect the ergodicity-to-nonergodicity tran-
sition.

Instead, as emphasized at the end of Sec. VII A, the tran-
sition can be observed in “tomographic” measurements of
individual quantum trajectories [77,80–82], which yields the
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full-state distribution function. It would also be interesting to
relate the transition to the statistics of sequences of measure-
ment outcomes (cf. Refs. [92,98]). A search for convenient
observables that are sensitive to the transitions in the statistical
properties of the monitored microscopic qubit remains an
open question.

C. Outlook

We have demonstrated that the study of the smallest non-
trivial models of ancilla-based measurements uncovers a lot
of interesting properties of dynamical processes, physical im-
plications of indirect measurements, and even the possibility
of phase transitions in the dynamical behavior. Let us list
some questions, which we leave for future studies, including
possible extensions of our model and methods.

Introducing variations to specifics of our model, for exam-
ple, imbalanced energy levels of the qubit, or a different kind
of coupling to the ancilla, may generate a family of interesting
quantum systems. It is a priori not clear whether or not all
models can be described by a single angular variable. Another
natural modification of the protocol would be to randomize
the times between consecutive measurements, such that the
protocol would be characterized by a single period T only on
average. One can also omit the reinitialization of the detector,
allowing the system to keep a memory of the measurement
outcome (which corresponds to considering “correlated ran-
dom products” of postmeasurement matrices [115] in our
approach). Robustness of the various regimes and phases as
well as of the predicted phase transition to these modifications
is worth investigating.

Regardless of the model details, it is interesting to un-
derstand better the mechanism of fractality, if it appears. To
this end, one can use the locator expansion, e.g., close to
the double-projective case of our setup, see modern imple-
mentations of the method in Refs. [145–147]. Exploring the
possibility of multifractality in the category-two regions of the
height indicator and analyzing fractality in terms of the singu-
larity spectrum (see also the comment at the end of Sec. V D)
may establish an even closer connection of transitions in the
monitored qubits to the theory of Anderson localization. Re-
garding the numerical analysis of multifractality, a challenge
of calculating scaling exponents for higher moments is the
necessity to obtain the distribution at higher resolution N than
used for the participation ratio. Besides fractal exponents of
the limiting N → ∞ distribution, it could also be interesting
to investigate the transient “dynamical” scaling of fractal ex-
ponents with the number of time steps of the protocol.

The similarities between Anderson (de)localized wave
functions and the state distribution of the monitored qubit
gives a hint to their common mathematical origin. A search
for such an origin may start from a field-theoretical connec-
tion between Anderson and measurement-induced transitions,
which has been recently reported in Refs. [50,51]. Under-
standing (de)localization in the continuous case based on the
Master equation could rigorously establish the localization-
delocalization transition in the continuous model.

Especially interesting further studies are related to increas-
ing the number of particles in the system, which can be
achieved by considering either a two-site chain with spinful

fermions or bosons, or by slightly enlarging the number of
sites that could then accommodate more spinless fermions.
This would allow one to explore the interrelations between the
ergodicity/nonergodicity (or possible localization) transitions
in the monitored qubit with the entanglement between par-
ticles, thus going towards the field of measurement-induced
entanglement transitions. Finally, it would be interesting to
understand the influence of interparticle interactions in larger
setups on the phases and regimes discovered in the present
paper.

VIII. SUMMARY AND CONCLUSIONS

We have studied statistical properties of a single qubit un-
der the influence of stroboscopic ancilla-based measurements.
The detector (ancilla) is represented by another two-level
system. The qubit and the detector are coupled and evolve uni-
tarily between the measurements. The detector is projectively
measured at the end of each interval of the unitary evolution
and, after this, is re-initialized in a given state. This protocol
defines the two measurement (Kraus) operators (represented
by 2 × 2 matrices in our model), which map a qubit state onto
one of two possible new post-measurement states, depending
on the measurement outcome. Any quantum trajectory of the
discrete-time evolution of the qubit’s postmeasurement state is
described by a random product of these measurement matri-
ces, with the probabilities of applying them dictated by Born’s
rule.

The qubit state can be parameterized by two angles on the
Bloch sphere. We showed that, in the long time limit, the
quantum trajectories in our model are generically attracted to
a one-dimensional circle on the Bloch sphere (grand circle,
GC), which is described by a single angle θ . We have char-
acterized statistics of the qubit states in terms of the ADF
W (θ )—the angle distribution function on the GC, Eq. (22).
We have investigated the ADF by combining the analytical
approach, suitable for some special cases, with two comple-
mentary numerical methods (solution of a discretized master
equation and Monte Carlo simulations of individual quantum
trajectories). We have revealed the richness of the dynamics of
the monitored qubit and demonstrated remarkable similarities
to Anderson localization in disordered systems. Namely, as
the system parameters are varied, the ADF of a monitored
qubit exhibits a number of regimes reminiscent of those in
the theory of Anderson transitions, appearing either localized
or delocalized or even fractal.

Motivated by the analogy with Anderson localization, we
have used several standard indicators from the localization
theory and supplemented them with those from the theory
of random evolution. The indicators encompass the partici-
pation ratio [Eq. (88)] and its scaling exponent [Eq. (90)],
the support measure [Eq. (93)], the typical value of the state
distribution (Fig. 11), the box-counting dimension of the curve
representing the ADF [Eq. (98)], and the ergodicity indicator
that characterizes the structure of Markov matrices [Eq. (102)]
for the qubit evolution. Analysis of their properties has al-
lowed us to quantitatively describe W (θ ), despite fundamental
distinctions between the mechanisms underlying localization
in a monitored qubit and in disordered systems.
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Our combined approach has resulted in a solid classifi-
cation of various emergent regimes and phases, which are
reflected in the phase diagrams, Fig. 15. The analytical
consideration of special cases (in particular, related to com-
mensurability of the stroboscopic measurements) has been
used to build the skeleton of the diagrams, while the numer-
ical study has allowed us to understand the properties of the
generic cases. Concretely, we have established the existence
of ergodic and nonergodic phases and identified regimes of
localization and delocalization behavior of the ADF. In a large
portion of the parameter space, W (θ ) exhibits fractality, which
ranges from strong to weak, cf. discussion in Refs. [148–150]
and references therein. We have predicted a transition between
the ergodic and nonergodic phases and demonstrated genuine
localization inside the nonergodic phase. This is our main
result that may pave the way to the theory of various transi-
tions in monitored qubits. Our paper highlights the importance

of studying the distribution functions of quantum states, as
they can reveal concealed transitions that remain unnoticed
when focusing on the averaged properties of systems subject
to quantum measurements.
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APPENDIX A: MAIN EQUATIONS DESCRIBING THE CASE γ �= 0

In this Appendix, we describe the derivation of the one-step mapping for the case γ �= 0, see Sec. III B.

1. Postmeasurement mapping for two tunneling coupled sites

To find the postmeasurement mapping we first solve the evolution equation in the time interval 0 < t < T :

e−iĤt |1, 0〉 ⊗ |−〉 = a(+)
10 |1, 0〉 ⊗ |+〉 + a(−)

10 |1, 0〉 ⊗ |−〉 + a(+)
01 |0, 1〉 ⊗ |+〉 + a(−)

01 |0, 1〉 ⊗ |−〉, (A1)

e−iĤt |0, 1〉 ⊗ |−〉 = b(+)
10 |1, 0〉 ⊗ |+〉 + b(−)

10 |1, 0〉 ⊗ |−〉 + b(+)
01 |0, 1〉 ⊗ |+〉 + b(−)

01 |0, 1〉 ⊗ |−〉. (A2)

This yields the setup state

�(0 < t < T ) = [(α0a(+)
10 (t ) + β0b(+)

10 (t ))|1, 0〉 + (α0a(+)
01 (t ) + β0b(+)

01 (t ))|0, 1〉] ⊗ |+〉
+ [(α0a(−)

10 (t ) + β0b(−)
10 (t ))|1, 0〉 + (α0a(−)

01 (t ) + β0b(−)
01 (t ))|0, 1〉] ⊗ |−〉, (A3)

where

a(+)
10 (t ) = −i

(
sin

Mt

2
cos

Y t

2
+ M

Y
cos

Mt

2
sin

Y t

2

)
, a(+)

01 (t ) = −2γ

Y
sin

Mt

2
sin

Y t

2
,

a(−)
10 (t ) = cos

Mt

2
cos

Y t

2
− M

Y
sin

Mt

2
sin

Y t

2
, a(−)

01 (t ) = −i
2γ

Y
cos

Mt

2
sin

Y t

2
,

(A4)

and

b(μ)
10 (t ) = a(μ)

01 (t ), b(μ)
01 (t ) = a(μ)

10 (t ) − M

γ
a(−μ)

01 (t ). (A5)

The electron state after the first measurement depends on the measurement outcome,

�
(±)
1 = 1√

P(±)
1

([α0a(±)
10 (T ) + β0b(±)

10 (T )]|1, 0〉 + [α0a(±)
01 (T ) + β0b(±)

01 (T )]|0, 1〉). (A6)

Straightforward calculations yield the following expressions for the outcome probabilities of the two-site model with finite
tunneling,

P(+)
j = |α j−1a(+)

10 (T ) + β j−1b(+)
10 (T )|2 + |α j−1a(+)

01 (T ) + β j−1b(+)
01 (T )|2 (A7)

= 1

2
−4γ 2+M2 cos(Y T )

2Y 2
cos(MT )+ M

Y 2

{
Y (|α j−1|2−|β j−1|2) cos

Y T

2
−4γ sin

Y T

2
�[α j−1β

∗
j−1]

}
sin

Y T

2
sin(MT ), (A8)

P(−)
j = |α j−1a(−)

10 (T ) + β j−1b(−)
10 (T )|2 + |α j−1a(−)

01 (T ) + β j−1b(−)
01 (T )|2 = 1 − P(+)

j . (A9)
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Generalizing Eqs. (A3)–(A6) to later times, we obtain the mapping of the coefficients α j and β j at the postmeasurement time t>
j

to the successive one t>
j+1,{

α
(μ)
j+1, β

(μ)
j+1

}T = [
P(μ)

j (α j, β j )
]−1/2

M̂μ {α j, β j}T, M̂μ ≡
(

a(μ)
10 a(μ)

01

a(μ)
01 b(μ)

01

)∣∣∣∣∣
t=T

. (A10)

2. Properties of matrices M̂±

The explicit forms of the mapping matrices M̂± are given by

M̂− =
⎛⎝cos MT

2 cos Y T
2 − M

Y sin MT
2 sin Y T

2 −i
√

Y 2−M2

Y cos MT
2 sin Y T

2

−i
√

Y 2−M2

Y cos MT
2 sin Y T

2 cos MT
2 cos Y T

2 + M
Y sin MT

2 sin Y T
2

⎞⎠, (A11)

M̂+ = −i

⎛⎝sin MT
2 cos Y T

2 + M
Y cos MT

2 sin Y T
2 −i

√
Y 2−M2

Y sin MT
2 sin Y T

2

−i
√

Y 2−M2

Y sin MT
2 sin Y T

2 sin MT
2 cos Y T

2 − M
Y cos MT

2 sin Y T
2

⎞⎠. (A12)

Eigenvalues

υ (η)
μ = 1

2
(Tr[M̂μ] − η

√
Tr2[M̂μ] − 4 det[M̂μ]) (A13)

and (not normalized) eigenvectors ϒ
(η)
− of M̂± read as follows:

υ
(η)
− = cos

MT

2
cos

Y T

2
− η sin

Y T

2

√
M2

Y 2
− cos2 MT

2
, (A14)

υ
(η)
+ = −i

[
sin

MT

2
cos

Y T

2
+ η sin

Y T

2

√
M2

Y 2
− sin2 MT

2

]
, (A15)

ϒ
(η)
− =

{
(M/Y ) sin(MT/2) + η

√
(M/Y )2 − cos2(MT/2)

(2γ /Y ) cos(MT/2)
, i

}T

, (A16)

ϒ
(η)
+ =

{
(M/Y ) cos(MT/2) + η

√
(M/Y )2 − sin2(MT/2)

(2γ /Y ) sin(MT/2)
,−i

}T

, (A17)

with η = ± distinguishing the two eigenvalues (and eigenvectors) of a given matrix. Since
(M̂μ)∗ = −μσ̂3M̂μσ̂3, (A18)

we conclude that eigenvalues (eigenvectors) exist “in pairs”
{υμ; ϒμ} and {−μυ∗

μ; σ̂3ϒ
∗
μ}. (A19)

This suggest that either

μ(Tr2[M̂μ] − 4 det[M̂μ]) > 0 ⇒ υ (η)
μ = −μ

(
υ (−η)

μ

)∗
(complex eigenvalues with the same modulus) (A20)

or

μ(Tr2[M̂μ] − 4 det[M̂μ]) < 0 ⇒ υ (η)
μ = −μ

(
υ (η)

μ

)∗
(purely real/imaginary eigenvalues for μ = −/+). (A21)

In the latter case, ϒ (η)
μ = σ̂3(ϒ (η)

μ )∗, which means that ϒ (η)
μ has a purely real first element and a purely imaginary second one.

Properties (A18)–(A21) hold true for an arbitrary product of the matrices
∏

j M̂μ j .

Generically, i.e., excluding the degenerate case, vectors ϒ
(±)
− (and ϒ

(±)
+ ) are orthogonal,(

ϒ (η)
μ

)T · ϒ (−η)
μ = 0, (A22)

since the matrices M̂± are symmetric. Using the orthogonality condition (A22), one can expand matrices M̂± in terms of
eigenvalues and eigenvectors,

M̂μ =
∑
η=±

v(η)
μ P̂ (η)

μ , M̂k
μ =

∑
η=±

(
v(η)

μ

)kP̂ (η)
μ , M̂k

μM̂l
−μ =

∑
η,η′=±

(
v(η)

μ

)k(
v

(η′ )
−μ

)l P̂ (η)
μ P̂ (η′ )

−μ , (A23)

where, P̂ (η)
μ are projectors on the eigenvectors of the matrix M̂μ,

P̂ (η)
μ ≡ ϒ (η)

μ ⊗ (
ϒ (η)

μ

)T(
ϒ

(η)
μ

)T · ϒ
(η)
μ

.
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FIG. 17. Attraction of quantum trajectories to the GC: Bloch-
angle difference |�ϕ| := min(|ϕ − π/2|, |ϕ + π/2|) from the GC
after 105 steps of time evolution with the MC method, starting from a
random state on the Bloch sphere, indicating, where states converge
to the GC.

APPENDIX B: ATTRACTION OF A GENERIC QUANTUM
TRAJECTORY TO THE GRAND CIRCLE

In this Appendix, we consider the possible origins of the at-
traction of a generic quantum trajectory to the GC (cf. Figs. 5
and 17). The case where all eigenvectors of the matrices M̂±
belong to the GC is trivial, as can seen from the expansion
of matrices in terms of these eigenvectors. Let us discuss two
other cases in detail.

1. Two eigenvectors pointing to the GC
and the other two pointing to the equator

Let the eigenvectors of the matrix M̂μ ≡ M̂EQ belong to
the equator and eigenvectors of M̂−μ ≡ M̂GC point to the GC.
The matrix M̂EQ itself is unable to provide the attraction to the
GC. This is clear from the properties of a sequence of these
matrices, as follows from Eq. (A23):

(M̂EQ)k =
∑

η

(
v

(η)
EQ

)kP̂ (η)
EQ. (B1)

The kth power of the “equator matrix” (M̂EQ)k is a matrix
with the eigenvectors located on the equator and generically
complex eigenvalues [except for commensurate cases where
arg(v(η)

μ ) = lπ/k]. There is no reason to assume that such a
matrix is able to project an arbitrary state onto the GC. Numer-
ical results confirm the absence of attraction in postselected
realizations, where there is no matrix M̂GC .

Next, consider the product

M̂k
EQM̂q

GC = (v(+)
GC )q(M̂k

EQϒ̄
(+)
GC ) ⊗ (ϒ̄ (+)

GC )T

+ (v(−)
GC )q(M̂k

EQϒ̄
(−)
GC ) ⊗ (ϒ̄ (−)

GC )T, (B2)

where the bar means that the eigenvectors are normalized.
Since the GC is the invariant manifold, the vectors ϒ

(η,k)
GC ≡

M̂k
EQϒ̄

(η)
GC also belong to the GC, such that M̂k

EQM̂q
GC with

q > 1 generically projects a state |ψ〉 onto the vector ϒ
(η,k)
GC

that corresponds to the larger eigenvalue v
(η)
GC . Convergence

(and the speed) of the attraction is determined by the ratio
max|v(η)

GC |/min|v(η)
GC | and by the typical value of the exponent

q. The former approaches unity if the eigenvectors (ϒ̄ (η)
GC )T are

close to intersections of the GC with the equator. The typical
value of q can be estimated as qtyp ∼ 〈1/PEQ〉 (the typical
length of the continuous chain of GC matrices). The position
of the attractor depends on the typical value of the exponent k,
which can be estimated as 〈1/PGC〉 (the typical length of the
continuous chain of equatorial matrices).

2. All eigenvectors pointing to the equator

If the endpoints of eigenvectors of both matrices M̂± are lo-
cated on the equator, the attraction to GC can also be provided
only by some products

M̂(k, l ) = (iM̂+)kM̂l
−; (B3)

here, the factor “i” has been added only to simplify equations.
Numerical simulations show that, for any values of M and
T (excluding the trivial commensurate case Y T = 2nπ ), at
which M̂± are equatorial matrices, one can find a pair of
exponents {k, l} that make the inequality

tr2[M̂(k, l )] − 4 det[M̂(k, l )] < 0

⇒ −2 <
∑

η,η′=±

(
v(η)

μ

/∣∣v(η)
μ

∣∣)k(
v

(η′ )
−μ

/∣∣v(η′ )
−μ

∣∣)l

× tr
[
P̂ (η)

μ P̂ (η′ )
−μ

]
< 2 (B4)

hold true. This means that the eigenvalues of M̂(k, l ) are real
and M̂(k, m) is the GC matrix, which is able to project an
arbitrary state onto the GC.

APPENDIX C: EVOLUTION ON THE GRAND CIRCLE

In this Appendix, we consider the evolution of the state
parameterized by angle θ on the GC of the Bloch sphere under
the application of matrices M̂+ and M̂− to the state vector
(cos θ, i sin θ ). The click and no-click matrices transform an-
gle θ according to [cf. Eq. (14)]

tan �+(θ ) = (Y cY sM − McMsY ) tan θ − √
Y 2 − M2 sY sM

Y cY sM + McMsY + √
Y 2 − M2 sY sM tan θ

,

(C1)

tan �−(θ ) = (Y cY cM + MsMsY ) tan θ − √
Y 2 − M2 sY cM

Y cY cM − MsMsY + √
Y 2 − M2 sY cM tan θ

,

(C2)

where cY , cM , sY , sM are defined in Eqs. (51). The inverse
functions F±(θ ), defined in Eq. (15), satisfy the following
relations:

tanF+(θ ) = (Y cY sM + McMsY ) tan θ + √
Y 2 − M2 sY sM

Y cY sM − McMsY − √
Y 2 − M2 sY sM tan θ

,

(C3)

tanF−(θ ) = (Y cY cM − MsMsY ) tan θ + √
Y 2 − M2 sY cM

Y cY cM + MsMsY − √
Y 2 − M2 sY cM tan θ

.

(C4)
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To obtain explicit mappings θ �→ θ one has to perform a
case analysis to take into account the quadrant of the state
vector in the cartesian plane, for example by employing the
two-argument function atan2 [151]. The click and no-click
probabilities read as

P±(θ ) = 1

2
∓ Y 2 − 2M2s2

Y

2Y 2

(
c2

M − s2
M

)
± 2McY sMcM

Y 2
[Y cY cos(2θ ) +

√
Y 2 − M2sY sin(2θ )].

(C5)

When the eigenvectors of M̂± belong to the GC, their “eige-
nangles” θ (η)

μ (η = ±1) are expressed as:

tan θ
(η)
+ = −

√
Y 2 − M2sM

McM + η

√
M2 − Y 2s2

M

, (C6)

tan θ
(η)
− =

√
Y 2 − M2cM

MsM + η

√
M2 − Y 2c2

M

. (C7)

APPENDIX D: PERIOD-2 TRAJECTORY ON GC:
ANALOGY WITH RANDOM WALKS IN 1D

In this Appendix, we analyze the quantum trajectories for
the period-2 case (see Sec. IV C) in light of the analogy
with a random walk. If the commensurability condition Y T =
π (2l + 1) with l ∈ N is fulfilled, M̂2

μ = 1. Then, all possible
products of M̂+ and M̂−—corresponding to all possible quan-
tum trajectories—simplify to be proportional to

(M̂+M̂−)k or (M̂−M̂+)k, Nt even

M̂+(M̂−M̂+)k or M̂−(M̂+M̂−)k, Nt odd (D1)

after Nt time evolution steps. Here k is an integer with k ∈
[0, �Nt/2�].

From Eq. (D1), we already know all states with a finite
probability after Nt steps of time evolution. All that is left to
do is to determine the probability of ending up in a specific
state, taking into account all possible quantum trajectories that
lead to this point. For this purpose it is instructive to draw the
possible matrix products as a tree:

Due to the reduction rule M̂2
μ = 1 the exponentially growing

number of states in the generic case (cf. Fig. 4) reduces to
linear growth for the period-2 case.

Generally, for angle dependent transition probabilities
P±(θ ), it is still difficult to determine the weight of a given
node in above tree as there are still exponentially many pos-

sible outcome sequences that traverse the tree. Therefore, as
a first step, consider a simplified situation with P+(θ ) = P =
1 − P−(θ ). We limit our consideration to even Nt ; the gener-
alization to odd Nt is achieved by performing one more step
of time evolution. If P = 1 − P = 1/2 counting the number
of paths leading to one node in the tree suffices to determine
the weight of the corresponding state, because each path of
length Nt has a probability of 2−Nt . The counting generates
the binomial coefficients:

We thus find a distribution of the following form (note that
this is not an ADF):

WNt (θ |θ0) = B[Nt , Nt/2]

2Nt
δ(θ − θ0)+

Nt /2∑
n=1

B[Nt , (Nt + 2n)/2]

2Nt

× {δ(θ − angle[(M̂+M̂−)nψ0]) + (+ ↔ −)},
(D2)

where B[n, m] denotes the binomial distribution, ψ0 is the
initial state of the system (characterized by angle θ0) repre-
sented as column vector [cf. Eq. (11)], and we introduced the
short-hand notation angle[ψ] for the angle θ of state ψ on the
GC.

It was shown in Sec. IV that the matrix product
(M̂−μM̂−μ)n attracts the state to either θ = π/2 or to θ =
−π/2 (depending on μ) for large n. This means that we can
find a number n1, such that angle[(M̂μM̂−μ)lψ0] ∈ [π/2 −
ε, π/2 + ε] ∩ [−π/2 − ε,−π/2 + ε] ≡ Iε for any small ε

and l � n1. We compare the probability within these ε regions
to the probability anywhere else on the GC,∫

[−π,π )\Iε
dθWNt (θ |θ0)∫

Iε
dθWNt (θ |θ0)

= B[Nt , Nt/2] + 2
∑n1

n=1 B[Nt , (Nt + 2n)/2]

2
∑Nt

n=n1
B[Nt , (Nt + 2n)/2]

� (1 + 2n1)B[Nt , Nt/2]

2Nt − (1 + 2n1)B[Nt , Nt/2]

=
�(Nt /2+1/2)√
π�(Nt /2+1) (1 + 2n1)

1 − �(Nt /2+1/2)√
π�(Nt /2+1) (2n1 + 1)

Nt →∞→ 0. (D3)

This proves that the distribution converges to arbitrarily nar-
row peaks around the angles θ = ±π/2 for Nt → ∞. Since
the tree structure is completely symmetric between the two
attractive points for P+ = P−, the time-averaged ADF reads
after regularizing the δ peaks of individual trajectories,

W (θ ) = 1
2 (δ(θ − π/2) + δ(θ + π/2)). (D4)
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In order to generalize this result to imbalanced and non-
constant P±, it is useful to think of the tree structure as a
one-dimensional random walk. The states of the random walk
represent the different states that can be reached by forming
combinations of M̂+ and M̂− matrices:

Clearly, for constant P+ �= P− the random walk on this chain
still follows a diffusion law without a preferred direction.
The distribution of states at any given time can still be found
exactly by diagonalizing the transition matrix

[Ti, j] =
(

0 δi, jP + (1 − P)δi, j−1

δi, jP + (1 − P)δi, j+1 0

)
,

(D5)

where indices label the unit cells (dotted boxes) and the matrix
elements are written in the A − B space of orange and blue
nodes. Without calculating the state distribution explicitly, we
can see from the symmetry of the random walk that the time-
averaged ADF in this case still converges to the form (D4).

In the general case of angle-dependent probabilities P±(θ ),
the calculation of the distribution of states more tedious. How-
ever, it stands to reason that the probability for the random
walker to be found within the central region of the chain
(around the node labeled 1) still vanishes as Nt → ∞. If
the random walker is sufficiently far from the central region,
all states are close to the two special points ±π/2. In this
situation, both matrices mediate transitions to the vicinity
of the respectively opposite special point, such that the time
evolution is again described by a simple random walk in state
space, corresponding to the limiting time-averaged ADF (D4).
We thus conclude that this distribution describes the period-2
case, as long as there is no other special mechanism confining
the state to the central region.

APPENDIX E: NUMERICAL METHODS

In this Appendix, we describe the two numerical ap-
proaches that we have used to obtain the ADF on the GC:
solution of a discretized ME and Monte Carlo simulations.

1. Discretized master equation

Let us discretize the ME, aiming to solve it numerically
(cf. Refs. [116,118], where numerical approaches to solving
similar implicit functional equations on a discretized circle
were discussed). To discretize the ME, we partition the GC
into N equally-sized subintervals (grid cells) ci,

ci := [θi − �θ/2, θi + �θ/2], i ∈ [0, N − 1],

θi = −π + (2i + 1)�θ/2, �θ = 2π

N
. (E1)

With this, the discrete Markov process is derived as

P̃ri :=
∫ θi+�θ/2

θi−�θ/2
dθW (θ ) ≈

N∑
k=1

[M̂N ]ik P̃rk,

[M̂N ]ik ≡ 1

�θ

∑
μ∈{+,−}

Pμ(θk )| fμ(ci ) ∩ ck|. (E2)

Here P̃ri is the “true” probability corresponding to integrated
weight of the stationary solution W (θ ) to the continuous ME
(21) in the bin ci. To obtain a set of linear equations for
the {P̃ri} from the bin integrals of W (θ ), we used Eqs. (27)
and assumed that Pμ(θ ) is constant on the scale of �θ . This
corresponds to an expansion to the first order in �θ .

Using the Markov matrix [M̂N ] derived from the ME,
we define another set of probabilities {Pri} as the stationary
solution of the discrete Markov process

Pr := M̂N Pr. (E3)

Finding the stationary state Pr of the discrete ME (E3)
is equivalent to solving a set of N linear algebraic equa-
tions for the “vector” of probabilities Pr = {Pr1, . . . , PrN }
from Eq. (100), with the matrix M̂N defined in Eq. (99): In
our numerical calculations, the defining equation for Pr is
Eq. (100); with this vector, we obtain the approximate version
of W (θ ) that is shown in our plots via the relation

W (θ ) ≈
N∑

i=1

θ [−θ + (θi + �θ/2)]θ [θ − (θi − �θ/2)]
Pri

�θ
.

(E4)

In the limit �θ → 0, the approximation in the derivation of

the discrete ME (E2) becomes exact, such that Pr
�θ→0→ P̃r.

In this limit, the infinite set of probabilities P̃r recovers the

true distribution W (θ ) via the relation P̃ri/�θ
�θ→0→ W (θi ).

Therefore also

Pri/�θ
�θ→0−→ W (θi ). (E5)

The number of nonzero matrix elements in row i of the
Markov matrix M̂N [or, equivalently, the number of cells
that overlap with the image fs(ci ) of ci] can be estimated as
follows:

| fμ(ci )|/�θ = |Fμ(θi + �θ/2) − Fμ(θi − �θ/2)|/�θ

≈ |F ′
μ(θi)|. (E6)

As the maps fμ are invertible away from the projective limit,
this derivative is typically of order one.

The matrices M̂ defined in Eq. (99) are sparse. Figure 18
shows examples of matrices M̂N , for N = 102 and four differ-
ent parameter sets. Finite-matrix elements [M̂N ]ik are shown
in orange and blue. Each matrix features two continuous
“bands” of nonzero entries, corresponding to f±. As the maps
fμ are invertible, both bands are monotonous and cover all
rows and columns, being periodic on a torus. These bands
have small widths, rendering M̂N extremely sparse.

The upper-left panel corresponds to generic parameters. In
the upper-right panel, each of the mapping matrices M̂± has
a strong hierarchy between its eigenvalues (“almost projec-
tive”), see Sec. IV D, such that a large interval of the GC is

013313-31



PAUL PÖPPERL et al. PHYSICAL REVIEW RESEARCH 6, 013313 (2024)

FIG. 18. Structure of the matrix M̂102 [defined in Eq. (99)]
obtained from discretizing the master equation for parameters
M = 2.92, T = 3.0554 (upper-left panel), M = 2.410, T = 3.2554
(upper-right panel), M = 1.979, T = 2.2663 (lower-left panel), and
M = 2.258, T = 1.4369 (lower-right panel). The axes i and k show
the row and column indices of the matrix. Nonzero matrix elements
[M̂102 ]ik form colorful “bands” (appearing as thin curves on this
scale) corresponding to the matrices M̂+ (orange bands) and M̂−
(blue bands).

mapped to close vicinity of the dominant eigenvalue—note
the steep slopes of the “bands” near j ≈ 250, 750. The pa-
rameters in the lower-left panel are close to the frozen case,
Y T ≈ 2.03, see Sec. IV B 1. In the frozen case, we have
M̂± ∝ 1, such that also M̂N ∝ 1, since no transition away
from a given bin takes place. The lower-right panel is close
to the shift case, MT ≈ 1.03, see Sec. IV B 2. In the shift
case, one of the matrices reflects θ → −θ on the GC. The
other matrix causes a constant shift of θ , that depends on the
parameters.

It should be noted that the generic case in the upper-left
panel looks somewhat similar to the almost-shift case in the
lower-right panel. This supports the idea that the generic case
can be understood based on the different special cases we
analyzed: there is always a “similar” special case. In par-
ticular, if the bands in the upper-left panel were deformed
further, they might resemble, for example, the projective case
(upper-right panel) instead. This approximate similarity will
allow us to comprehend the overall “phase diagram” based on
the (analytical) knowledge about special cases, represented in
the M-T plane by a set of curves, see Sec. VI.

A stationary solution of the discretized ME corresponds
to an eigenvector of M̂N with eigenvalue 1. As can be seen
from Eq. (99), all entries of M̂N are positive. Furthermore,
probability conservation is manifestly built into the ME,

N∑
i=1

[M̂N ]ik = 1. (E7)

For this reason, M̂N is a positive Markov matrix and, as
such, necessarily has an eigenvector corresponding to the
eigenvalue 1 [152]: At least one stationary state of the ME
always exists, regardless parameters and discretization. Such
a state can be efficiently found for sparse matrices M̂N by
repeatedly applying the matrix to an arbitrary initial state Pr0

until convergence is reached (“power iteration”)—provided
that the eigenvalue λ = 1 is not degenerate and there is no
other eigenvalue of modulus one [153,154].

Assuming a hierarchy between the eigenvalues of M̂N ,
convergence to the stationary state happens at an exponential
rate, which is proportional to the difference �λ = |λ1| − |λ2|
between the dominant and the second-dominant eigenvalues
(largest and second-largest eigenvalues by modulus),

||Pr − (M̂N )nPr0|| ∝ exp (−a0�λ n), (E8)

where n is the iteration number and a0 is a positive number.
There are two cases where the ME method can run into

problems. (i) If the eigenvalue λ = 1 is degenerate, the con-
verged state depends on the initial state. In this case, we
cannot make an immediate connection to the asymptotic
behavior of quantum trajectories. (ii) If there is only one
eigenvector corresponding to λ = 1, but other eigenvectors
have |λ′| = 1, the power iteration can converge to a state that
does not correspond to a stationary solution of the ME.

In practice, we are able to find nondegenerate stationary
states by power iteration efficiently for most parameter sets.
There are two exceptions, corresponding to lines of special
parameters:

(i) Frozen trajectories are maximally degenerate, as every
basis state (a probability vector comprising N − 1 zeros and
one unity) solves the discretized ME.

(ii) For certain “periodic” trajectories an iterative solution
does not necessarily converge at all, as it can get stuck switch-
ing periodically between different angle bins [say, if there is
a period-2 trajectory between two bins, there is a vector Pr,
such that M̂N Pr �= Pr but (M̂N )2Pr = Pr, corresponding to
λ = −1]. The nondegenerate solution to the ME in this case
corresponds to balanced occupation of the two peaks.

The structure of the matrix M̂N allows us to understand
important features of the resulting ADFs regarding local-
ization or delocalization, see Sec. VI. For example, in the
lower-left panel of Fig. 18 we show the structure of the
Markov matrix close to the frozen case: The degenerate diag-
onal “band” of matrix elements splits into two separate bands,
which are slightly shifted from the main diagonal and bent
towards opposite sites (crossing close to the middle and the
ends). On the discretized level, it can be understood that a
slight shift of the bands away from the main diagonal should
lead to delocalization, since it essentially introduces transi-
tions between neighboring grid cells. If the cells are smaller
than the distance of the band to the diagonal at some point,
then there is a next-nearest-neighbor transition, but the other
band can facilitate a back-transition to the cell in between,
and so on. At the same time, perturbing the frozen case,
the outcome probabilities P± are almost independent of the
state, such that the stationary state is almost translationally
invariant. From the trajectory point of view, we can think
of the state performing short-distance hops on the GC in a
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random direction, eventually covering many points on the GC
in a diffusive fashion. Similarly, in the shift case, existing
commensurability is also broken by a perturbation, leading to
delocalization around the corresponding curve.

As a consequence of the above mechanism, the PR would
reveal a sharp jump moving onto or off a frozen line, if we
had chosen a localized initial state. Dynamically, this jump
would appear as a crossover, since the distance from the
commensurate line controls the “diffusion coefficient” in a
postmeasurement trajectory. Close to the frozen case, the time
average of a postmeasurement trajectory converges slowly.
Similarly, the difference between the two dominant eigenval-
ues of the Markov matrix is controlled by the distance to the
frozen line, such that the convergence rate of power iteration
goes to zero as the commensurability is approached.

2. Monte Carlo simulation

The idea of the Monte Carlo (MC) approach here is to
simulate (at most) a few postmeasurement trajectories for
a given initial state θ0, by randomly drawing measurement
outcomes according to the Born rule, and performing time
evolution according to the maps M̂± corresponding to the
chosen outcomes. Specifically, for every measurement time
t j , we draw a random number q(t j ) ∈ [0, 1] (uniformly dis-
tributed). Considering the probability P(+)

j to apply the (+)
map at that time (depending on the current position on the
GC), we evolve the state with M̂+, if q(t j ) � P(+)

j , and with

M̂− otherwise. Importantly, one instance of the simulation
follows one individual quantum trajectory (corresponding to
a pure state). The resulting postmeasurement trajectories are
then time averaged; a histogram of visited angles is obtained.

This procedure provides information about the coarse-
grained distribution W (ε)(θ |θ0), if the outcome average
(containing exponentially many terms in the number of time
steps) is well described in terms of typical postmeasurement
trajectories, see Eq. (23) of the main text. As this numerical
procedure is based on randomly sampling possible outcomes
according to their quantum mechanical probabilities, we refer
to this method as MC simulation. The stability of the obtained
histogram with respect to the number of initial time evolution
steps, as well as the number of successive time points after
the initial phase, indicates that the chosen m is sufficient for
convergence.

We use the MC method to
(1) verify that quantum trajectories generically converge

to the GC (see Figs. 5 and 17);
(2) compare the time average over a single trajectory to

the ME result (see Fig. 19 in Appendix F).
While the MC method is useful owing to its simplicity,

it converges rather slowly compared to the Markov method
discussed below (with decreasing ε).

In Appendix F, we numerically confirm the convergence of
generic postmeasurement trajectories to the GC and find good
agreement between the time-averaged distribution obtained
from the MC simulations and the power iterated solution of
the ME. The stationary state of the discretized ME is non-
degenerate and its eigenvalue λ = 1 is always well separated
from the other eigenstates of the Markov matrix (99), except
for the vicinity of frozen and shift cases. This means that the

GC distribution is generically independent of the initial state
and can be obtained from the time average or stationary state
equivalently. The general independence of the GC distribution
from the initial state allows us to drop the initial state argu-
ment θ0 from W (θ |θ0) and investigate the distributions W (θ )
within the chosen parameter range. All following distributions
are obtained with the verified ME approach, allowing us to go
to higher N and parameter grid resolutions, see Fig. 10.

APPENDIX F: COMPARISON OF STATIONARY
SOLUTION AND TIME AVERAGE

We start by verifying the applicability of the MC and ME
approaches for calculating the GC distribution. In the left
panel of Fig. 19, we show the difference |�λ| between the two
dominant eigenvalues of M̂103 . While the largest eigenvalue
always fulfills λ = 1, the difference between this eigenvalue
and the second-largest in modulus determines the validity of
the power iteration procedure as described in Appendix E 1.
We note that |�λ| approaches zero towards the curves corre-
sponding to the frozen and shift cases, as well as the period-2
trajectories. This confirms the exceptions discussed in Ap-
pendix E 1—maximum degeneracy for the frozen- and shift
cases, and the existence of a solution with (λ = −1) in the
period-2 case. Deviating from these lines of special parame-
ters, |�λ| increases rapidly (note the logarithmic scale). This
means that the discrete ME, away from the special lines, has
a unique solution, which can be found efficiently using power
iteration.

Next, we calculate distributions from both ME (power
iteration) and MC simulation (time average over a single
postmeasurement trajectory) on N = 103 grid cells. For the
MC simulation, starting from a random state on the Bloch
sphere for every parameter set, we perform time evolution
for 107 steps, using the last 9.9 × 106 steps to obtain the
GC distribution (having checked that generic trajectories are
converged to the GC after 105 steps, see Fig. 6).

Assuming that a single MC trajectory captures the prob-
ability distribution W (�θ )(θ ), we can estimate the number
of time steps necessary for convergence. An approximate
requirement for “qualitative” convergence of the MC distri-
bution is then to have a large number of sampling points per
bin, nGC/N 
 1 where nGC is the number of time steps on the
GC from which the distribution is obtained. To get sufficient
accuracy for every component of Pr, we need to require

nGC min
i∈{1,...,N}

(Pri ) = nGC�θ min
θ

[W (�θ )(θ )] 
 1. (F1)

We thus estimate that we get 1%-accurate components of
the probability vector if �θW (�θ ) � 102/nGC ≈ 10−5, which
should give a good qualitative picture of the distributions.

We compare the distributions obtained from the MC sim-
ulation (time average of random quantum trajectories) to the
stationary states of the discretized ME in the right panel of
Fig. 19. We obtain the ME results using 105 grid cells and up
to 104 iteration steps. Using a uniform distribution as an initial
state for power iteration, the iterated solution is guaranteed
to contain all stationary states, in case the stationary state is
degenerate. If this is the case, the iterated state cannot be the
same as the time-averaged state from a single postmeasure-
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FIG. 19. Characterization and comparison of discretized ME and MC methods for obtaining the GC distributions. (Left panel) Difference
of moduli between the first and second dominant eigenvalues of the ME matrix [M̂103 ]. The dominant eigenvalue is always equal to one.
(Right panel) The χ 2 distance (F2) between GC distributions with N = 103 grid cells, obtained from the MC and ME methods. For the MC
simulation, we start for each parameter tuple from a random state on the Bloch sphere and perform time evolution for 107 steps. We obtain
the distribution from the last 107 − 105 states. The ME is solved starting from a uniform distribution on the GC with N = 105 bins, iterating
for up to 104 steps. The converged distribution is then coarse grained on N = 103 grid cells. Solid lines: period-2 cases Y T = (2k + 1)π with
k ∈ N0. Dashed lines: frozen cases TY = 2kπ . Dotted lines: shift cases MT = kπ . Orange lines: projective limit, where an eigenvalue of one
of the postmeasurement matrices M̂± becomes zero.

ment trajectory. The iterated distribution is coarse grained to
N = 103 cells. The distributions are compared by calculating
the χ2 distance between the probability vectors from ME and
MC calculations,

dχ2 [PrMC, PrME] ≡ 1

2

N∑
i=1

(
PrMC

i − PrME
i

)2

PrMC
i + PrME

i

∈ [0, 1]. (F2)

We observe good agreement, dχ2 < 10−2 � 1, for most
values of parameters. Some exceptions are related to the
frozen and shift cases (note bright markers exactly on dashed
and dotted lines). If the freezing condition is perfectly ful-
filled, both ME and MC methods preserve the initial state,
which is localized at one point of the GC for MC evolution,
and a uniform distribution on the GC for the ME calculation.
In the numerical comparison, we ignore the fact that the MC
initial condition does not necessarily lie on the GC and just
compare the distributions over θ , keeping in mind that the
frozen cases should be excluded from further analysis. This

gives a large deviation dχ2
N→∞→ 1 between the distributions.

In the shift cases, there is again no convergence of the MC
trajectory to the GC, while the ME calculation takes place en-
tirely on the GC. Therefore, these cases must also be excluded
from the comparison between MC and ME distributions.

Other points where the difference between MC and ME
distributions is large are related to a strong eigenvalue hi-
erarchy for M̂+ or M̂−. Vanishing λ

μ
min for μ ∈ {+,−}

corresponds to the orange lines in the plot, and for small
M λ+

min/λ
+
max becomes small (see the dark-blue region in

Fig. 19, right panel). In the projective limit, the GC distribu-
tion can be calculated to high accuracy from a small number
of terms in Eq. (81) and is independent of the initial angle.
This distribution is also the unique stationary state of the ME.
However, writing the ME according to Eq. (99) would no
longer be valid, as the projective GC map is not invertible.
This can also lead to inaccuracies close to the projective case.

Other inaccuracies with dχ2 ∼ 10−2 do not correspond to
systematic problems with the methods but only to insufficient

FIG. 20. Examples for ADFs (22) obtained as the stationary state of the discrete master equation (E3) (solid-blue line) and the time average
of a single Monte Carlo postmeasurement trajectory (23) (dotted-orange line).
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FIG. 21. Example of a graph G5 corresponding to an ergodic
Markov process described by M̂5. It can be verified that every node
can be reached from every node, such that all nodes belong to the
same SCC.

convergence (number of time points for the MC method, num-
ber of grid cells for the ME method). To demonstrate this, we
show in the left panel of Fig. 20 a comparison between MC
and ME distributions at one of the yellow parameter points
with dχ2 ∼ 10−2, but increase the number of time steps in the
MC simulation to 108, and the grid size for the ME to 106,
coarse graining both results to �θ = 2π/103 to approximate
the corresponding W (�θ ). As the inset shows, the distributions
agree perfectly. Note that dχ2 ∼ 10−2 is still good agreement
between the distributions, sufficient for the following numer-
ical investigations. In the discussed example distribution it
corresponds to a slightly different weight distribution in the
heavy right peak between the two methods.

We have thus verified the convergence of our MC dis-
tribution and confirmed the validity of obtaining the GC
distribution from the ME approach. A comparison between
MC and ME calculations shows agreement between the dis-
tributions in all but the frozen and shift cases, demonstrating
that generic trajectories initiated at random states on the Bloch
sphere eventually evolve according to a unique distribution on

FIG. 22. (Left panel) Example of a graph G4 that corresponds to a nonergodic Markov process with M̂4 and thus to a nonergodic
continuous process. Nodes belonging to different SCCs are drawn in different colors. Transitions from orange to blue are possible, but not vice
versa. (Right panel) The condensation of the graph shown on the left. It contains two supernodes v1 and v2, corresponding to the two SCCs of
G4. There is an edge from v1 to v2 (but not vice versa), because there are edges in G4 leading from the orange set of nodes to the blue one (but
not vice versa). The condensation is indeed acyclic as there are no circular paths. v2 is a leaf node of the condensation, because no transitions
out of v2 are possible. Thus, it defines an invariant subset for the continuous process.

the GC. The ME-matrix M̂103 has for all but the frozen, shift,
and period-2 cases a single eigenvalue of modulus one. The
nondegeneracy of the stationary probability vector confirms
the uniqueness of the GC distribution at the chosen grid size.
In the special frozen and shift cases, the stationary distribution
is not unique and depends on the initial state. In the period-2
case, we can analytically calculate the stationary distribution,
see Sec. IV C. In this case, the distribution W (θ |θ0) is unique
and independent of the initial state, but it cannot be reliably
found using power iteration. It should be instead obtained
either from the MC simulation or by explicitly finding the
eigenvector of M̂N corresponding to λ = 1.

APPENDIX G: NONERGODICITY IN THE DISCRETE
AND CONTINUOUS PROCESS

In this Appendix, we explain in detail how finding noner-
godicity in the process described by a finite-matrix M̂N at any
number of discretization cells N has immediate implications
for the continuous process. To see this, a simple example of
a nonergodic process is helpful: Let us say that the set of
nodes VN of the graph GN splits into two strongly connected
components (SCCs) v1 and v2,

v1, v2 ⊂ VN v1 ∩ v2 = ∅ v1 ∪ v2 = VN . (G1)

Consider the directed edges that lead either from a node in v1

to a node in v2 or vice versa. In general, two situations are
possible:

(i) No such edges exist.
(ii) Edges exist only in one direction, say v1 → v2 without

loss of generality.
Edges in both directions v1 → v2 and v2 → v1 are not

possible, because this would mean that GN consists only of
a single SCC. In both cases (i) and (ii), the subset of the nodes
in v2,

I2 ≡
⋃
i∈v2

ci ci = [θi − �θ/2, θi + �θ/2] (G2)
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FIG. 23. (Left panel) More complicated example for a graph G12 that corresponds to a nonergodic Markov process with M̂12 and thus
to a nonergodic continuous process. Nodes belonging to different SCCs are drawn in different colors. (Right panel) The condensation of the
graph shown on the left. It contains four supernodes, corresponding to the four SCCs of G12. Edges of the condensation correspond to possible
transitions between SCCs. The condensation is acyclic, as there are no circular paths. The condensation has a single leaf node (blue, v4), which
does not have any outgoing edges. The leaf node again defines an invariant subset of the continuous process.

forms an invariant subset for the continuous postmeasurement
evolution on the GC: A trajectory with θ0 ∈ I2 can never
transition into the set v1,

�μ(I2) ⊆ I2 ⇒ θ j /∈
⋃
i∈v1

ci ∀ j ∈ N (G3)

as none of the maps M̂± will allow for such a transition by
construction of GN via M̂N .

This is because a matrix element [M̂N ]i,k is nonzero
((k, i) ∈ EN ) if and only if one of the maps permits a transition
k → i with nonzero probability,∑

μ∈{−,+}
Pμ(θk )| fμ(ci ) ∩ ck| > 0. (G4)

Calculating the overlap | fμ(ci ) ∩ ck| does not involve any
discretization-induced approximation for the angles, since the
intervals ci and fμ(ci ) are continuous. In other words, this
continuous mapping between the intervals is not equivalent
to a discrete mapping between the labels i of the cells. The
discretization of the GC into a finite number of intervals estab-

lishes the resolution of an “instrument” exploring the mapping
between the continuous angles. Therefore, our nonergodic-
ity construction leads to a statement about the continuous
process and is independent of the fact that the subset v2

was found by discretizing the GC. Examples of the finite-N
representation of an ergodic process and a nonergodic one
described by situation (ii) are shown in Figs. 21 and 22,
respectively.

The argument is readily generalized to situations where
GN splits into more than two SCCs. Formally, by using the
language of the graph theory, one can define one “supernode”
for each SCC of GN and introduce a directed edge between
two supernodes, if there exists a corresponding transition be-
tween the two represented sets of nodes [155]. This defines
the acyclic condensation graph of GN [156]. The construction
of the condensation is illustrated in Fig. 22 and also for a
more complex example with more than two SCCs in Fig. 23.
The leaf nodes (nodes without outgoing edges) in this graph
correspond to invariant subsets of the GC. In the steady state,
all of the weight of the distribution is accumulated in the
invariant subset corresponding to the leaf nodes, with zeros
everywhere else.
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