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We utilize the theory of local amplitude transfer (LAT) to gain insights into quantum walks (QWs) and quan-
tum annealing (QA) beyond the adiabatic theorem. By representing the eigenspace of the problem Hamiltonian
as a hypercube graph, we demonstrate that probability amplitude traverses the search space through a series of
local Rabi oscillations. We argue that the amplitude movement can be systematically guided towards the ground
state using a time-dependent hopping rate based solely on the problem’s energy spectrum. Building upon these
insights, we extend the concept of multistage QW by introducing the guided quantum walk (GQW) as a bridge
between QW-like and QA-like procedures. We assess the performance of the GQW on exact cover, traveling
salesperson, and garden optimization problems with 9 to 30 qubits. Our results provide evidence for the existence
of optimal annealing schedules, beyond the requirement of adiabatic time evolutions. These schedules might be
capable of solving large-scale combinatorial optimization problems within evolution times that scale linearly in
the problem size.
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I. INTRODUCTION

Combinatorial optimization is a fundamental problem in
computer science that has a wide range of important applica-
tions in finance [1], scheduling [2], machine learning [3,4],
database search [5], computational biology [6], and opera-
tions research [7]. However, finding optimal solutions to such
problems can be challenging and computationally expensive,
which often makes them intractable for classical computers
today. Recent advances in quantum hardware are raising the
expectations for demonstrating useful quantum computation
in the upcoming years. In particular, solving large-scale com-
binatorial optimization problems is considered one of the
great application areas of quantum computation, driving the
need for quantum optimization algorithms suitable for near-
term quantum devices [8].

Quantum walks (QW) [5,9–12] and quantum annealing
(QA) [13–22] have emerged as two promising candidates
for continuous-time quantum optimization algorithms in this
context. QWs, introduced by Aharonov et al. [9], model
the search space as a graph and govern the walker’s transi-
tions between vertices using a time-independent Hamiltonian.
On the other hand, QA employs a time-dependent Hamilto-
nian to adiabatically evolve from an initial Hamiltonian to a
problem Hamiltonian. Both algorithms have been extensively

*Corresponding author: se.schulz@fz-juelich.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

studied for various problems with tens of qubits, including
Sherrington-Kirkpatrick spin glasses [11,23], Max-Cut [12],
2-SAT [24–28], and exact cover [2] problem instances. While
these algorithms exhibit distinct dynamics, Morley et al. [29]
have argued that they can be seen as extreme cases of anneal-
ing schedules in the context of search problems. However, the
dynamics occurring in the intermediate region between QA
and QW for combinatorial optimization problems have yet to
be fully explored. We argue that these intermediate evolutions,
which go beyond the scope of the adiabatic theorem, are a very
promising regime for effective quantum computation.

In this paper, we utilize the theory of local amplitude
transfer (LAT) to investigate continuous-time quantum algo-
rithms. LAT theory focuses on the local energy structure of
the problem Hamiltonian on the hypercube graph. It provides
insights into the movement of probability amplitude between
individual elements of the search space through a series of
local Rabi oscillations.

Building upon these insights, we extend the concept of
multistage QW [11,12] by introducing the guided quantum
walk (GQW). The GQW combines multiple QWs through a
time-dependent hopping rate, effectively guiding the transfer
of probability amplitude throughout the graph. This approach
relates to the problem of finding optimal annealing schedules
[30–32], but goes beyond the requirement of adiabatic time
evolutions, placing the GQW in between QW-like and QA-
like procedures.

To evaluate the performance of the GQW, we numerically
simulate its application to exact cover (EC) [2,33,34], trav-
eling salesperson (TSP) [7,35–38], and garden optimization
(GO) [39] problems using the JUWELS Booster supercom-
puter [40]. We extensively study the GQW on problem
instances with up to 30 qubits. Our results provide evidence
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for the existence of optimal annealing schedules capable of
solving large-scale combinatorial optimization problems with
evolution times that scale linearly in the problem size.

The paper is organized as follows: In Sec. II, we intro-
duce the types of combinatorial optimization problems that
are used in our research. Section III provides a review of
QWs and explores their dynamics on search and optimization
problems using the LAT theory. We discuss how probability
amplitude can be effectively guided through the hypercube
graph, leading to the development of the GQW. Furthermore,
we examine the relationship between the GQW, QA, and
QWs at different evolution times. In Sec. IV, we present a
comprehensive performance analysis of the GQW. Finally, in
Sec. V, we summarize our findings and their implications for
future research.

II. COMBINATORIAL OPTIMIZATION PROBLEMS

This section presents the combinatorial optimization prob-
lems studied in our research. First, we describe the problem
types and their encoding into a quantum setting in Sec. II A.
Subsequently, we introduce a benchmarking metric, the so-
lution quality, which ensures fair comparisons of quantum
optimization algorithms across different problem types and
sizes in Sec. II B.

A. Definition

A broad class of real-world problems can be framed as
combinatorial optimization problems [7]. These are problems
defined on N-bit binary strings z = zN−1 . . . z0 = {0, 1}⊗N ,
with the objective of finding a string zopt that minimizes a
given classical cost function C(z) : {0, 1}⊗N −→ R�0. A nat-
ural way to express C in a quantum setting is to encode it into
the energy spectrum of the computational basis states |z〉 of a
quantum cost Hamiltonian

ĤC =
∑

z ∈ {0,1}⊗N

C(z) |z〉 〈z| . (1)

We consider the case in which C(z) consists only of lin-
ear and quadratic terms, C(z) = ∑

i j ziQi jz j . Such problems
are known as quadratic unconstrained binary optimization
(QUBO) problems, with {Qi j} denoting the QUBO coeffi-
cients. For these problems, ĤC can be written in the form of an
Ising Hamiltonian by substituting zi �→ (1 − σ̂ z

i )/2, where σ̂ z
i

denotes the Pauli-Z operator applied to the ith qubit with the
identity operator acting on the remaining qubits. One obtains

ĤC = −
N−1∑
i=0

hiσ̂
z
i +

∑
i �= j

Ji j σ̂
z
i σ̂ z

j , (2)

with the coefficients hi = ∑
j (Qi j + Qji )/2 and Ji j = Qi j/4

representing the optimization problem. In our study, we in-
vestigate three types of combinatorial optimization problems,
which can be expressed in Ising form and represent two cate-
gories of cost functions.

The first category (constraint-only) concerns cost functions
consisting entirely of constraining terms, meaning that all
states describing valid solutions to the optimization problem
(called valid states henceforth) are assigned to the same cost

value. Here, we focus on EC problem instances with N ∈
{12, 15, 18, 21, 24, 30}. Generically, these problem instances
exhibit numerous distinct energy levels with low degeneracies
and a nondegenerate ground state.

The second category (constraint+optimization) includes
cost functions that involve both constraining and optimization
terms, such that the set of valid states spans multiple energy
levels. We consider TSP and GO problem instances with N ∈
{9, 16, 25} and N ∈ {12, 15, 18, 21, 24, 30}, respectively. It is
worth noting that the GO instances generally exhibit higher
degeneracies among their energy levels compared to the TSP
instances.

The explicit cost functions for the three types of combi-
natorial optimization problems can be found in Appendix A.
For each problem type and size, we investigate 10 randomly
generated problem instances. Note that all cost functions
have been rescaled and shifted, such that C(zopt ) = 0 and
maxz C(z) = 100.

B. Solution quality

Quantum optimization algorithms are designed to find
the optimal solution to a given combinatorial optimiza-
tion problem [Eq. (1)] with high success probability Pzopt =
| 〈zopt|�〉 |2, where |�〉 = ∑

z ψz |z〉 denotes the final quantum
state. However, in many cases, approximate solutions, where
not solely the solution state but also other valid states with
a slightly larger cost function value are obtained with high
probability, are also of interest, especially if they can be found
significantly faster. Since Pzopt does not take these approximate
solutions into account, a common approach is to evaluate the
performance of quantum optimization algorithms based on the
energy expectation value

E� = 〈�|ĤC |�〉 , (3)

often in the form of the approximation ratio r(�) = E�/Emax,
where Emax = maxz Ez. Note that smaller approximation ra-
tios are supposed to represent better solutions.

We emphasize, however, that the approximation ratio r
in Eq. (3) is often not able to capture the “quality” of the
produced quantum state |�〉, that is the distribution of the
measurement probabilities with respect to the energies of the
valid states. This is because r considers not only the set of
valid states (which we are generally interested in) but also
the set of invalid states (i.e., states that violate at least one
constraint and may shift Emax arbitrarily). For the problems
under investigation, the latter correspond to the majority of
states, covering � 95% of the total energy range. Hence,
comparing the approximation ratio between different quantum
optimization algorithms does not necessarily compare their
ability to produce “good” approximate solutions, as a final
state with a large value of r might still provide valid states near
the optimal solution with higher probability than a different
state of smaller r value.

In order to address this issue of the approximation ratio, we
propose the use of a theoretical benchmarking metric termed
the solution quality

Sq =
∑

z ∈ valid states

[1 − rvalid(z)] · Pz, (4)
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where Pz = | 〈�|z〉 |2 represents the measurement probability
of the state |z〉, and rvalid(z) = Ez/ maxk ∈ valid states(Ek ) is used
to give a weight among all valid states in the energy spectrum
(note that |zopt〉 is at Ezopt = 0 by definition). Sq is designed
to capture both the characteristics of the success probability
and the approximation ratio, restricted to the set of valid
states. This provides a theoretical benchmarking metric that is
comparable across different problem instances by focusing on
the practicality of the solutions obtained. Note that Sq ∈ [0, 1],
with Sq = 1 corresponding to the solution state |�〉 = |zopt〉,
and Sq = 0 indicates a final state |�〉 that consists solely of
invalid states and highest-energy valid states with rvalid = 1.
The latter are effectively excluded from increasing the solu-
tion quality Sq, because obtaining any valid solution to the
constraint+optimization problems (TSP and GO) can be done
in polynomial time. Hence, we do not consider an information
gain from these states. Furthermore, in the case of constraint-
only problem instances (EC), we set rvalid(z) = 0, such that
Sq = Pzopt .

III. CONTINUOUS-TIME QUANTUM WALK

In this section, we provide a concise review of the
continuous-time QW (Sec. III A) and investigate its dynamics
on search (Sec. III B) and combinatorial optimization prob-
lems (Sec. III C) using LAT theory. Our analysis shows that
the QW can be systematically guided on the hypercube graph
based on the energy spectrum of the problem Hamiltonian.
Building upon these insights, we introduce the GQW in
Sec. III D. In Sec. III E we examine the relationship between
the GQW, QA, and QWs.

A. Definition

The continuous-time QW is a quantum algorithm that as-
signs the computational basis states | j〉 of an N-qubit Hilbert
space to the set of vertex labels V = { j}2N −1

j=0 of an undirected
graph G(V, T ). In this framework, the vertices encode the
walker’s position, and the set of edges T indicate allowed
transitions between label pairs ( j, k). The latter is described
through an adjacency matrix A, whose elements satisfy Aj,k =
1 if an edge in G connects vertices j and k, and Aj,k = 0
otherwise. As G is undirected, A is symmetric and can be used
to define the quantum-walk Hamiltonian, given by

ĤQW = � · ĤD = −� ·
∑

j,k

A j,k | j〉 〈k| , (5)

where ĤD denotes the driver Hamiltonian, and � is the hop-
ping rate. It is important to note that Eq. (5) is not the only
possible Hamiltonian for a QW. In the literature, the Laplacian
L̂ = −ĤD − D̂ of G is often used instead of ĤD, with the
diagonal matrix D̂ = ∑

j deg( j) | j〉 〈 j| encoding the degree
deg( j) of each vertex j, i.e., the number of edges incident
to j [5]. However, for the regular graphs G considered in this
paper, where deg( j) is constant with respect to j, both for-
mulations are equivalent up to an unobservable global phase
factor. We chose to use the adjacency operator form of ĤQW

for consistency with other quantum optimization algorithms.
Given the QW Hamiltonian [Eq. (5)], the state of the

walker evolves from some initial state |�0〉 according to the

time-dependent Schrödinger equation, which yields the state
of the system at a time T as

|�(T )〉 = e−iĤQWT |�0〉 , (6)

where we have used units with h̄ = 1. The quantum dynamics
implemented by this evolution clearly depend on the connec-
tivity in the graph G. In the past, QWs have been studied on a
variety of graph layouts, including the complete graph, which
couples every vertex to every other, and the N-dimensional
hypercube, which connects only vertices of Hamming dis-
tance one [5]. In this paper, we focus on a hypercube, as it
provides a natural encoding for a QW into qubits. Specifi-
cally, transitioning from one vertex to a neighboring vertex
corresponds to flipping the computational state of one qubit.
As such, the driving Hamiltonian ĤD is composed of N single-
body terms,

ĤD = −
N∑

j=1

σ̂ x
j , (7)

where σ̂ x
j denotes the Pauli-X operator applied to the jth qubit

with the identity operator acting on the remaining qubits. The
corresponding QW Hamiltonian for the hypercube is given by
ĤQW = −� · ∑N

j=1 σ̂ x
j . A primary feature of this Hamiltonian

is its ability to rapidly explore the vertices in the graph G,
thereby providing high dynamics in the computational ba-
sis. By introducing a secondary problem Hamiltonian that is
diagonal in the computational basis, the graph G becomes
directed, leading to a concentration of amplitude in the ground
state of the problem Hamiltonian (see Appendix B for further
information). In the following sections, we investigate this
ability of QWs to find ground states, starting with the search
problem—a well-studied toy problem that can be analytically
solved using the QW.

B. Quantum walk search

In the search problem, we aim to find a specific bit string
zopt ∈ {0, 1}N from a set of 2N possible strings. The problem
can be mapped to a quantum setting using an oracle Hamilto-
nian

ĤO = − |zopt〉 〈zopt| (8)

that assigns one unit of energy less to the solution state
|zopt〉 compared to the rest of basis states. Solving the search
problem is then equivalent to finding the ground state of ĤO.
The QW provides a means of solving the search problem by
combining ĤO with the driving Hamiltonian ĤD [Eq. (7)],
and adjusting their relative strength via the dimensionless
hopping rate �. The computation is performed by evolving the
quantum system, initialized in the equal superposition state

|�0〉 = |+〉⊗N = 1√
2N

2N∑
j=0

| j〉 , (9)

under the QW search Hamiltonian

ĤQWS = � · ĤD + ĤO (10)

for a time T and measuring the qubit register in the computa-
tional basis afterward.
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FIG. 1. Application of the QW to an N = 12 qubit search prob-
lem using the Hamiltonian ĤQWS in Eq. (10). (a) Energy spectrum of
ĤQWS as a function of the hopping rate �. The blue and red curve
denote the ground and first exited state, respectively. The data is
shifted by the ground state energy. (b) Overlaps of the ground state
(blue) and the first exited state (red) with the solution state (solid) and
the initial state (dashed) as a function of �. (c) Solution quality Sq as
a function of the evolution time T for � = �opt = 1/2N

∑N
r=1

(N
r

)
/2r

[5] (solid blue), � = 95% · �opt (dashed red) and � = 90% · �opt

(dash-dotted green).

Childs and Goldstone have solved the QW search prob-
lem analytically for various graph layouts [5], including the
complete and hypercube graphs. For each layout, they have
calculated optimal values � = �opt (see also [10]) for which
the performance of the QW search achieves the same optimal
quadratic speed up as Grover’s search algorithm [41].

Figure 1 presents the application of the QW to an N = 12
qubit search problem, giving insights into the characteristics
of the QW’s dynamics. Specifically, the entire system evolves
periodically, with the individual measurement probabilities of
the vertices oscillating as a function of the evolution time T
[see Fig. 1(c)]. This behavior occurs because the QW per-
forms Rabi oscillations between the initial state |�0〉 and the

solution state |zopt〉. Figure 1(a) shows the two lowest energy
levels corresponding to the states |E0(�)〉 and |E1(�)〉 as a
function of the hopping rate �. When � = �opt, the rela-
tive strengths of the two contributing Hamiltonians in ĤQWS

are balanced equally, and the two energy levels undergo an
avoided level crossing. If N is large enough, |E0,1(�opt )〉 is
approximately equal to the uniform superposition of the initial
and the solution state, i.e., |E0,1(�opt )〉 ≈ (|�0〉 ± |zopt〉)/

√
2

[see Fig. 1(b)]. Hence, ĤQWS drives transitions between |�0〉
and |zopt〉 with a frequency ∝ [E1(�opt ) − E0(�opt )]. Con-
sequently, the overlap with the solution state | 〈zopt|�(T )〉 |
depends on the hopping rate � and the evolution time T ,
which both require high precision in order to obtain accurate
results [see. Fig. 1(c)].

C. Guiding a quantum walk

Combinatorial optimization problems can also benefit from
the application of QWs. We can address optimization prob-
lems within the QW by augmenting the driver Hamiltonian
ĤD with the cost Hamiltonian ĤC defined in Eq. (1). The
latter induces complex phase gradients between connected
vertices based on their assigned cost value, thereby defining
a direction of propagation for the walker in the graph. The
QW optimization Hamiltonian on the hypercube mapping is
given by

ĤQWO = � · ĤD + ĤC, (11)

with � balancing the relative strength of the two contributing
parts. The QW is performed analogously to Sec. III B, by
initializing the qubits in the equal superposition state |�0〉
[see Eq. (9)], evolving the system under ĤQWO for a time T ,
and then measuring it in the computational basis. However,
unlike for the search problem, the evolution under ĤQWO

cannot be efficiently calculated analytically. This makes it
impractical to predict optimal parameter sets �opt and Topt,
which maximize the final overlap with the solution state for
an arbitrary optimization problem. This is because the energy
spectrum of ĤC typically features numerous distinct levels
with unknown energy gaps, in contrast to the almost com-
pletely degenerate spectrum of ĤO. Consequently, the energy
levels of the combined Hamiltonian split as a function of �

and thereby undergo numerous avoided level crossings [see
Fig. 2(a)]. Since the system is initialized in a superposi-
tion across multiple energy levels, ĤQWO drives transitions
between various eigenstates, and the simple two-level descrip-
tion of the walker’s dynamics used previously is no longer
applicable [see Fig. 2(b)]. As a result, the oscillation of the so-
lution quality Sq becomes highly complex, as multiple streams
of amplitude transfers at different energy levels interfere with
each other [see Fig. 2(c)].

Previous studies have explored heuristic approaches to
obtain near-optimal hopping rates � for the QW within poly-
nomial time. For instance, Callison et al. proposed estimating
�opt from the overall energy scale of ĤC by matching the total
energy spreads of the two Hamiltonians in ĤQWO [23]. Later,
the authors extended this strategy by sampling �opt based
on a maximization of the average dynamics on Sherrington-
Kirkpatrick spin glass problems [11]. Recently, Banks et al.
investigated the link between time-independent Hamiltonians
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FIG. 2. Application of the QW to solve an EC problem for
N = 12 qubits using the Hamiltonian ĤQWO in Eq. (11). (a) Energy
spectrum of ĤQWO as a function of the hopping rate �. The blue and
red curve denote the ground and first exited state, respectively. The
data is shifted by the ground state energy. (b) Overlaps of the ground
state (blue) and the first exited state (red) with the solution state
(solid) and the initial state (dashed) as a function of �. (c) Solution
quality Sq as a function of the evolution time T for � = �opt (solid
blue), � = 1.2 · �opt (dashed red) and � = 1.5 · �opt (dash-dotted
green). The value of �opt has been computed numerically.

and thermalization, leading to an estimate of �opt through
the eigenstate thermalization hypothesis on Max-Cut problem
instances [12].

While these strategies demonstrate the general ability of
QWs to solve combinatorial optimization problems, they ne-
cessitate additional adjustments for each problem type (e.g.,
estimating energy gaps) and focus solely on the average dy-
namics in the hypercube graph. However, local variations in
these dynamics across different regions of the graph are the
primary reason for the observed distortions in the oscillation
of the solution quality in Fig. 2(c). These distortions not only
make it challenging to estimate Topt from a few samples, but
also limit the maximally achievable solution quality for any T

as the system approaches a stationary state (cf. Fig. 4 below).
The optimal solution quality typically scales exponentially
with the problem size N [cf. Fig. 8(b) below] because the QW
can only drive amplitude transfers within a fixed energy range,
neglecting the amplitude originating from exponentially many
states outside this range. Consequently, the QW as defined in
Eq. (11) is not well suited for large combinatorial optimization
problems.

Inspired by these strategies, but being interested in achiev-
ing practical quantum computation (as measured by a large
solution quality) for any given evolution time T , problem size
N and problem type, we investigate the dynamics of QWs by
applying the LAT theory to the hypercube graph G shown in
Fig. 3(a). By analyzing the transfer of probability amplitude
in local subspaces spanned by basis-state pairs with Hamming
distance 1 (i.e., states connected by an edge in G), we aim to
derive a mechanism to control the movement of the walker
locally in the graph, such that backpropagation of amplitude
into (undesired) high-energy states can be suppressed. Thus,
instead of maximizing transitions in the entire graph collec-
tively, as proposed in prior study, our approach is to maximize
them only locally at a time in order to guide the walker
towards the solution state more effectively.

The LAT theory focuses on two-dimensional subspaces
spanned by pairs of basis states, | j〉 and |k〉, that are connected
in the hypercube graph G, i.e., 〈 j|ĤD|k〉 �= 0 [see inset of
Fig. 3(a)]. The effective two-level subspace Hamiltonian is
given by

Ĥ ( j,k)
QWO = �Ĥ ( j,k)

D + Ĥ ( j,k)
C , (12)

assuming the rest of the system remains in its initial state.
Here, Ĥ ( j,k)

C denotes the local cost Hamiltonian and Ĥ ( j,k)
D is

the local driving Hamiltonian, which are defined as

Ĥ ( j,k)
C =

(〈 j|ĤC | j〉 0
0 〈k|ĤC |k〉

)
Ĥ ( j,k)

D = −
(

0 1
1 0

)
.

(13)

If the system starts in the local equal superposition state,
|+〉( j,k) = (| j〉 + |k〉)/

√
2, with the local energy gaps ��D =

−2� of �Ĥ ( j,k)
D and Ej − Ek = �C

j,k = 2δ of Ĥ ( j,k)
C , the mea-

surement probability of the desired lower-energy state |k〉, is
given by

Pk (t, �) = 1

2
+ � · δ

�2 + δ2
sin(

√
�2 + δ2 · t )2. (14)

Equation (14) represents a sinusoidal oscillation with a Rabi
frequency of ω = √

�2 + δ2 similar to Sec. III B (note that
this property holds for any initial state). Specifically, if � � 1,
the driving Hamiltonian dominates Ĥ ( j,k)

QWO, and the cost Hamil-
tonian has almost no influence on the system’s evolution.
Since |+〉( j,k) corresponds to the ground state of Ĥ ( j,k)

D , the
system remains primarily in its initial state. Conversely, if
�  1, Ĥ ( j,k)

C governs the evolution. Since Ĥ ( j,k)
C is diagonal

and only induces phase rotations in the computational basis,
no amplitude transfer occurs. Only for |��D| ≈ �C

j,k , the two
Hamiltonians’ relative strengths are balanced, and transitions
in the local subspace are maximized.

As a result, amplitude transfers can only occur efficiently
among specific subsets of vertex pairs with an energy gap

013312-5



SCHULZ, WILLSCH, AND MICHIELSEN PHYSICAL REVIEW RESEARCH 6, 013312 (2024)

FIG. 3. Energy spectrum analysis of an N = 21 qubit EC prob-
lem. (a) Hypercube graph representation of ĤC , where each point
corresponds to a computational basis state | j〉, ordered by increasing
energy Ej = 〈 j| ĤC | j〉 from left to right. The color of each point
represents the total Hamming distance to the ground state zopt. Two
states | j〉 and |k〉 are connected by an edge if the bitstrings j and k
have a Hamming distance of 1, meaning that the driver Hamiltonian
ĤD drives transitions between them. The inset in panel (a) provides a
zoomed-in view near zopt, highlighting the energy gaps �C

j,k between
connected states | j〉 and |k〉. (b) Distribution of the largest energy
gaps �C

j,k from a vertex | j〉 to a lower energy vertex |k〉 as a function
of Ej . The data reveals an increasing trend of �C

j,k with respect to
Ej . The solid black curve represents a fit to the average energy gap
〈�C〉 (E ) at energy level E (using the scale of the top axis), used by
the GQW to locally adjust the relative strength of the driving and
problem Hamiltonian in Eq. (11). The dashed black curve illustrates
the optimal relative strength for a QW. The bottom axis denotes the
relative time in both algorithms, with time progressing from right
to left, as the GQW progresses from high-energy to low-energy
amplitude transfers.

�C
j,k ≈ |��D| in ĤC . Transitions between states with sig-

nificantly larger or smaller energy gaps are suppressed for
fixed �. Since the energy gaps of vertex pairs typically vary
throughout the graph, we can steer the walker’s movement ef-
fectively by selecting � to activate only the desired transitions
in the graph.

For all EC, TSP, and GO problems under investigation, we
noticed empirically that the distribution of the energy levels
acquires a characteristic “onion shape” [see Fig. 3(a)] as soon
as the problem instance is sufficiently complex (i.e., the num-
ber of qubits is sufficiently large). Additionally, the largest
energy gap �C

j,k from vertex | j〉 to a lower energy vertex
|k〉 increases approximately monotonically as a function of
its energy level Ej [see Fig. 3(b)]. Consequently, large values
of � are usually optimal in the regime of high-energy states,
while small values are preferable near the solution state.
Choosing a fixed value for � has the disadvantage of limiting
the maximally achievable success probability because not all
edges can sufficiently contribute to the amplitude transport.
In particular, only amplitude transfers within a fixed energy
range can be addressed, generally prohibiting states located
at high energies from transporting amplitude to the solution
state.

The strategy we propose in this paper is based on an
energy-dependent hopping rate, where |�̃(E ) · �D| corre-
sponds to the average 〈�C〉 (E ) of the largest energy gaps of
ĤC at energy level E in the graph. The approach is to confine
the walker to a gradually shrinking energy region around the
solution state by progressing monotonically from high-energy
to low-energy optimal hopping rates �̃. Therefore, we set
�(t ) = �̃(E (t )), where E (t ) is a monotonic sweep, and define

ĤGQW = �(t ) · ĤD + ĤC . (15)

Equation (14) shows that the frequency of the local Rabi os-
cillations depends on the size of the energy gaps, resulting in
faster amplitude transfers at larger gaps [see Fig. 3(b)]. Thus,
the GQW needs to spend less time driving transitions at high
energies than at small energies to avoid amplitude going back
to high energy state. Consequently, the energy sweep must be
rescaled according to 〈�C〉 (E ), yielding the rescaled time

s(t ) =
∫ Emax

Emax+(Emin−Emax )·t/T 〈�C〉 (E ) dE∫ Emax

Emin
〈�C〉 (E ) dE

(16)

with E (t ) = Emax + (Emin − Emax) · s(t ), where Emin and Emax

denote the lowest and highest energy levels of ĤC , re-
spectively, and T is the total evolution time. At t = 0,
the algorithm starts with a relatively high hopping rate
[� = �̃(Emax)] that maximizes amplitude transfers only at
high-energy levels and suppresses dynamics at low and in-
termediate energies. As the hopping rate is decreased over
time, the system starts to perform amplitude transfers at lower
energy levels. Simultaneously, subspaces at higher energies
become gradually detuned again, suppressing the action of
the driving Hamiltonian. This is essential as it prevents the
backpropagation of probability into high-energy states and
enables us to actively guide the walker towards low-energy
states.

The primary advantage of this approach lies in the
establishment of a continuous amplitude flow from all com-
putational basis states towards the solution state, consequently
overcoming the previous limitation on the maximally achiev-
able solution quality. Furthermore, the latter is no longer
subject to the complex oscillations, which required a precisely
chosen evolution time T [cf. Fig. 2(c)]. Instead, Sq(T ) fol-
lows a collective sinusoidal oscillation of Eq. (14), where the
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FIG. 4. Performance comparison between the GQW (blue) and
the QW (red) on the N = 21 qubit EC problem depicted in Fig. 3.
The GQW dynamically adjusts the relative strength � of the driving
and problem Hamiltonian in Eq. (15) based on the average 〈�C〉 (E )
of the largest energy gaps in ĤC . In contrast, the QW employs a
fixed hopping rate � that has been pre-optimized [see Fig. 3(b)]. The
performance is evaluated using the solution quality Sq, as defined in
Eq. (4). Note that the results presented here are indicative and require
knowledge of the complete energy spectrum.

selection of �(t ) ensures that active subspaces oscillate with
similar Rabi frequencies while high-energy subspaces become
gradually detuned, hence suppressing the backpropagation of
probability amplitude. By varying the evolution time T , the
speed at which �̃(E ) is swept can be adjusted, thereby altering
the duration that groups of subspaces remain active. As a
result, Sq(T ) depends solely on the order of magnitude of T ,
rather than its precise value.

To evaluate the efficiency of a GQW, we compare its per-
formance to a conventional QW on an EC problem instance
comprising N = 21 qubits. Figure 3(b) shows the average
〈�C〉 (E ) of the largest energy gaps between connected ver-
tices at each energy level E . We obtain |�̃(E ) · �D| by fitting a
polynomial of degree 6 to the data points [see the black arrows
in Fig. 3(b)]. The bottom axis indicates the nonlinear sweep
of E (t ). In comparison, for the QW, we determined �opt by
sampling a classical optimizer (see dashed black curve). �opt

corresponds to the optimal hopping rate that yields the highest
success probability over T ∈ [0.1, 10.0].

Figure 4 compares the performance of the GQW and the
QW as a function of the total evolution time T . For T � 2,
both strategies exhibit similar behavior, showing a rapid in-
crease in solution quality, with the QW achieving its peak at
T = 1.5. Notably, for T � 2.5, the GQW yields lower solu-
tion qualities compared to the QW. This discrepancy arises
from the relatively small optimal hopping rate of the QW,
enabling it to focus its evolution on amplitude transitions near
and into the solution state. In contrast, the GQW considers
the entire graph and therefore spends the initial part of its
evolution at high and intermediate energy levels [the right
part of Fig. 3(b)]. This approach leads to very short evolu-
tions at each energy level for small T , causing only fractions
of the probability amplitudes to be transported towards zopt.
However, as T increases, the situation changes, and the GQW
obtains superior solution qualities to the QW for T � 2.5.

Here, the QW exhibits oscillatory behavior between 10−5 to
10−2. In contrast, the GQW follows a monotonic increase,
where Sq(T ) saturates at approximately 21%, outperforming
the QW by approximately one order of magnitude.

The observed saturation results from imbalances within the
local subspaces at small E . As a large amount of amplitude
accumulates in the ground state, the system progressively
deviates from the state of equal local superposition. Conse-
quently, driving these subspaces with their respective optimal
hopping rate �̃(E ) eventually redirects amplitude back into
the higher energy state, thus limiting Sq(T ) (see also Ap-
pendix B).

D. Practical guided quantum walk

The previous section has shown the potential of GQWs
for solving combinatorial optimization problems, by adjusting
the relative strength of the two Hamiltonians in ĤGQW based
on the walker’s position in the graph. The main benefits are
an increased maximum solution quality and a suppression
of complex oscillations in Sq(t ), providing good results for
arbitrary T and N .

Of course, obtaining the optimal function �̃(E (t )) is gen-
erally not efficiently possible, because it requires knowledge
of the entire energy spectrum of ĤC . In order to still make use
of the promising methodology described above, we propose a
variational ansatz, in analogy to other quantum optimization
algorithms [42–44]. The idea is to imitate the optimal distribu-
tion �̃(E ) by a function �̃(E ,λ), which is tuned using a set of
M hyperparameters λ = (λ1, . . . , λM ). Note that henceforth
we consider only linear sweeps of the energy spectrum, i.e.,
E (t ) = (Emin − Emax) · t/T + Emax, thus encoding the sam-
pling speed in the shape of �̃. The hope is that as long as
�̃(E ,λ) describes �̃(E ) closely enough, similar dynamics to
Sec. III C can be obtained. In fact, introducing hyperparame-
ters into the algorithm even enables the guided quantum walk
to overcome its limitations at small and large T . For instance,
at small T , the GQW could selectively model �̃(E ) only up
to E < Emax, thereby operating solely on a subspace of the
entire graph near |zopt〉. Conversely, at large T , the GQW can
prevent the transfer of amplitude into higher energy states
when operating at small E by compensating the imbalances
within the local subspaces through a reduction of the final
hopping rate �̃(E = Emin).

The proposed algorithm employs a hybrid quantum-
classical ansatz, in which a classical optimizer adjusts the
set of hyperparameters λ based on the minimization of the
energy expectation value E� [see Eq. (3)] of the final quantum
state |�〉 obtained by a quantum device performing the GQW.
Note that the number M of hyperparameters is fixed, and we
investigate the impact of this optimization phase on the total
run time in Sec. IV C.

We propose a function �̃(E ,λ) based on cubic Bézier
curves. We chose Bézier curves instead of simple polynomials
because we expect the optimal hopping rate to be smooth
and monotonically decreasing in E . Although polynomials
can produce such functions for E ∈ [Emin, Emax], their param-
eters are generally hard to tune, as small changes can lead
to substantially different functions. In contrast, Bézier curves
are much easier to optimize since their general shape can
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be predetermined. Moreover, the latter varies continuously
and sufficiently slowly in its parameters, resulting in a suf-
ficiently smooth search space for λ. Due to these properties,
we strongly encourage their use in other fields of quantum
computing, such as optimizing annealing schedules [30–32]
or deriving optimal parameter sets for the quantum approxi-
mate optimization algorithm (QAOA) [2,42,45–47].

Cubic Bézier curves are based on Bernstein polynomials
and are defined through four control points Ci = (xi, yi )T in a
two-dimensional plane as

x(τ ) = x0(1 − τ )3 + 3x1(1 − τ )2τ

+ 3x2(1 − τ )τ 2 + x3τ
3, (17)

y(τ ) = y0(1 − τ )3 + 3y1(1 − τ )2τ

+ 3y2(1 − τ )τ 2 + y3τ
3. (18)

Choosing x0 < x1, x2 < x3, the curve can be mapped into
one dimension, by solving t = x(τ ) for τ (t ) and inserting
it into y. Based on the observations made in Sec. III C, we
set C0 = (0, 1) and C3 = (1, 0) to ensure a monotonically de-
creasing function, with four hyperparameters λ1,2,3,4 ∈ (0, 1)
controlling its shape, i.e., C1 = (λ1, λ2)T and C2 = (λ3, λ4)T .
The hopping rate is then given by �̃(t,λ) = y(t ) × 102·λ5 +
(1 − y(t )) × 10−3·λ6 , where we introduced two additional
hyperparameters, λ5, λ6 ∈ [0, 1], that describe the boundary
conditions �̃(t = 0,λ) = 102·λ5 and �̃(t = T,λ) = 10−3·λ6 .
λ5 determines the energy range in which the GQW operates
in the graph (see discussion for small T ) and λ6 controls the
detuning of the local subspaces near the solution state (see
discussion for large T ). Since the optimal scale of �̃(t,λ)
can vary significantly between different problem instances, we
chose an exponential rescaling to simplify the optimization
landscape. Note that the parameters −2 and 3 were found
suitable for the problems under investigation, but generally
depend on the energy scale of the cost Hamiltonian ĤC . In
Fig. 5 we present �̃(t,λ) for the aforementioned EC problem
and T = 10.

E. From quantum walk to quantum annealing

The LAT theory, used in the derivation of the GQW (see
Sec. III C), offers a perspective on the working principle of
quantum annealing (QA) and its relationship to QWs. QA
belongs to the class of continuous-time quantum optimization
algorithms that rely on an adiabatic transition from the driver
Hamiltonian ĤD [i.e., �(t = 0) → ∞] to the problem Hamil-
tonian ĤC [i.e., �(t = T ) = 0] throughout the time evolution.
According to the adiabatic theorem of quantum mechanics,
if this transition occurs sufficiently slowly, and the system is
initially prepared in the ground state of ĤD, it will remain in
the instantaneous ground state of the combined Hamiltonian
ĤGQW in Eq. (15), ultimately reaching the solution state |zopt〉.

To explore the relationship between QWs and QA, we
use the GQW to examine the strategies governing optimal
quantum evolutions across different time intervals T . Fig-
ure 7 presents simulation results of the GQW applied to
an N = 15 qubit EC problem, covering short (T = 0.5), in-
termediate (T = 2.0), and long (T = 12) evolutions. Panels
(a)–(c) depict the average measurement probabilities of the

FIG. 5. Optimal hopping rate �̃(t, λ) (blue) for the N = 21 qubit
EC problem shown in Fig. 3, with a total evolution time of T = 10.
The hopping rate is represented by a cubic Bézier curve [see Eq. (18)]
and is defined by four control points C0,1,2,3 based on the hyper-
parameters λ1−4, along with the boundary conditions �̃(t = 0, λ) =
102·λ5 and �̃(t = T, λ) = 10−3·λ6 . The curve is obtained by optimiz-
ing a set of six hyperparameters λ using the classical Nelder-Mead
optimizer [48,49], employing Nopt = 100 optimization steps starting
from a random initial configuration.

energy levels EC within the problem Hamiltonian ĤC . Panels
(d)–(f) showcase the evolution of the instantaneous energy
levels EGQW of the combined Hamiltonian ĤGQW. Further-
more, Fig. 6 presents the optimal range of �̃(t,λ) as a function
of the total evolution time T for the same EC problem.

FIG. 6. Ranges of the optimal hopping rate �̃(t,λ) (solid lines)
for an N = 15 qubit EC problem as a function of the total evolution
time T . �̃(t = 0,λ) and �̃(t = T, λ) denote the initial and final
hopping rate, respectively, as determined by the hyperparameters λ5

and λ6 (see Sec. III D). Note that �̃(t,λ) is scaled by �D to map to
the energy gaps of the local subspaces in the hypercube graph. The
heat map presents the evolution of the measurement probabilities
averaged over states with equal maximum energy gaps �C

j,k [see
Fig. 3(b)]. Dotted lines mark the range of energy gaps of local
subspaces involving the solution state.
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FIG. 7. Optimized quantum evolutions performed by the GQW on the N = 15 qubit EC problem shown in Fig. 6 for short [T = 0.5, (a) and
(d)], intermediate [T = 2.0, (b) and (e)], and long [T = 12, (c) and (f)] evolution times. Panels (a)–(c) illustrate the average measurement
probabilities of the energy levels EC of the problem Hamiltonian ĤC . Panels (d)–(f) display the evolution of the instantaneous energy levels
EGQW of the combined Hamiltonian ĤGQW [Eq. (15)]. The blue and red curves represent the instantaneous ground state and the first excited
state, respectively. Dashed lines are included in all panels to indicate the instantaneous energy expectation values of the system with respect to
ĤC [panels (a)–(c)] and ĤGQW [panels (d)–(f)]. The final solution qualities are Sq = 0.7% (T = 0.5), Sq = 13.6% (T = 2.0), and Sq = 91.3%
(T = 12.0).

Short evolutions. In the case of short evolutions, the opti-
mal hopping rate schedule �̃(t,λ) determined by the GQW
maintains a near-constant relationship between ĤD and ĤC

in Eq. (15). Consequently, the instantaneous energy lev-
els mostly remain unchanged during the evolution, and the
system starts and ends in a superposition of the instanta-
neous basis states [see the dashed line in Fig. 7(d)]. For
T = 0.5, �̃(t,λ) decreases from 0.6, approximately equiv-
alent to �̃(Emin), to 0.3. This transition initially drives the
subspaces involving |zopt〉, hence resembling a QW-like pro-
cedure, before progressively detuning them to prevent the
backpropagation of amplitude into higher energy states (see
Fig. 6). The latter is necessary as these subspaces gradually
move away from a close-to-equal superposition state (see
Appendix B). Figure 7(a) demonstrates that this strategy re-
sults in a guided movement of amplitude towards |zopt〉 for
EC � 12, evident from the emerging gradient in the measure-
ment probabilities. Probability amplitude originating from
intermediate and high energy levels, on the other hand, fails
to reach the solution state and instead becomes trapped at
these energies within the graph [see horizontal dark and bright
stripes in Fig. 7(a)]. This highlights the inherent limitations
of QWs.

Intermediate evolutions. In the case of intermediate evo-
lution times, the optimal hopping rate schedule operates over

a wider range of values, with the initial hopping rate �̃(t =
0,λ) increasing monotonically as a function of T (see Fig. 6).
In doing so, the GQW extends the subset of the hypercube
graph in which amplitude is actively guided through the local
subspaces. This is evident from the increased final success
probability and the gradual transport of amplitude from high-
to low-energy states for t � 0.5 [see Fig. 7(b)]. The presence
of bright stripes at EC � 10 indicates that the GQW is still op-
erating on a subset of the hypercube graph, causing amplitude
from high-energy states to become trapped at intermediate
energy levels. This demonstrates that even for intermediate
evolution times, it is more advantageous to neglect amplitude
at high-energy states and focus on amplitude transfers near the
solution state. Interestingly, also the final hopping rate �̃(t =
T,λ) increases for longer evolution times T up to a maximum
at T ≈ 2. Subsequently, for T > 2, �̃(t = T,λ) declines,
again detuning the local subspaces at small E . The shape of
�̃(t = T,λ) is likely influenced by the density of states of ĤC .
As Fig. 3(a) illustrates for an N = 21 qubit EC problem, the
state density of ĤC for our EC instances rapidly increases for
smaller E , reaching a peak at Ep, followed by an exponential
decline. Consequently, as �̃(t = 0,λ) initially increases, the
accessible amplitude likely grows faster than the transport of
amplitude into |zopt〉 within T . This keeps the local subspaces
surrounding |zopt〉 closer to an equal superposition state, re-
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quiring less final detuning. The peak of �̃(t = T,λ) aligns
with the point where �̃(t = 0,λ) ≈ �̃((Ep). As �̃(t = 0,λ)
further increases, the growth of accessible amplitude slows
down, causing the local subspaces at lower E to move away
from an equal superposition state. Consequently, a larger final
detuning is required, resulting in a smaller �̃(t = T,λ).

Long evolutions. For long evolutions, the optimal hopping
rate schedule determined by the GQW resembles a QA-like
schedule by transitioning nearly entirely from ĤD to ĤC in
Eq. (15) (see Fig. 6). Consequently, the system follows the
instantaneous ground state of ĤGQW throughout the evolution,
indicated by the dashed line in Fig. 7(f). Throughout this pro-
cess, the GQW effectively drives amplitude transfers across
the entire graph, initiating from high-energy levels and mov-
ing towards low energies, evident by the absence of horizontal
stripes in Fig. 3(c). Notably, the confinement of amplitude oc-
curs exponentially in t , indicating a nonlinear sweep through
the energy spectrum [cf. Eq. (16)]. Furthermore, the propa-
gation of amplitude follows a wave-like pattern, as illustrated
by the dashed line in Fig. 7(c). This pattern arises due to the
confinement of amplitude in a decreasing number of vertices,
leading to deviations from the equal superposition states in the
local subspaces. This results in a temporary backpropagation
of amplitude into higher energy states (see Appendix B). Nev-
ertheless, the continuous decrease of the hopping rate �̃(t,λ)
ensures, on average, the transportation of amplitude into the
solution state.

The hopping rate schedules derived from the GQW not
only emphasize the intrinsic connection between QWs and
QA but also highlight the existence of optimal quantum evo-
lutions that extend beyond the scopes of these two algorithms.
While a QW-like strategy proves optimal for short evolutions
and a QA-like procedure is favored for long evolutions, our
investigations reveal that intermediate values of T necessitate
a combination of both strategies to maximize the solution
quality.

This observation can be explained through LAT theory (see
Sec. III C and Appendix B), as QWs and QA can be viewed
as two distinct formulations of the same underlying concept.
Both approaches aim for the optimal transfer of probability
amplitude within local subspaces of the graph. QWs achieve
this by employing a constant, small hopping rate �, focusing
exclusively on direct transfers into the solution state during
short evolutions. However, this strategy becomes less effective
for long evolutions, where sufficient time is available to guide
amplitude at higher energy levels as well. Consequently, QA
guides amplitude through the entire graph by linking multiple
local QWs together, employing a continuously decreasing
hopping rate �̃(t ). Thus, QWs and QA represent the two
extremes within the GQW framework, with one concentrating
solely on subspaces around the solution state [i.e., �̃(t = 0) ≈
�̃(t = T )  1] and the other considering the entire graph
[i.e., �̃(t = 0) � 1 and �̃(t = T )  1, cf. Fig. 5].

The GQW operates in the transition region between these
two extremes, striking a balance between the number of
guided local subspaces (i.e., the amount of guided amplitude)
and the time spent at each energy level (i.e., the amount
of amplitude transferred within each local subspace) for a
given T . As will be discussed in Sec. IV B, these intermediate

evolutions, which surpass the limitations of adiabatic time
evolutions, might be capable of effectively solving large-scale
optimization problems.

IV. RESULTS

In this section, we present a comprehensive performance
analysis of the GQW. We compare the solution quality Sq

both as a function of the evolution time T and the system
size N to the conventional QW and QA (see Sec. IV A).
Section IV B provides scaling results of the three algorithms
in the regime of large problem instances (i.e., N � 1). Our
analysis indicates that the GQW achieves significantly higher
solution qualities within a linearly growing timespan, render-
ing it a promising candidate for near-term quantum devices.
Finally, in Sec. IV C we address the impact of the classical
optimization phase on the total run time, demonstrating that
the average time-to-solution scales better by a factor of ≈2
(≈4) compared to linear QA (QW).

A. Comparison of GQW, QW, and QA

We assess the effectiveness of the GQW through nu-
merical simulations carried out on the JUWELS Booster
supercomputer at the Jülich Supercomputing Centre of the
Forschungszentrum Jülich [40]. We compare its perfor-
mance against a conventional QW and QA. Our simulations
consider EC and GO instances with problem sizes N ∈
{12, 15, 18, 21, 24, 30}, as well as TSP instances with N ∈
{9, 16, 25} qubits. To demonstrate the generality of our find-
ings, we examine 10 randomly generated problem instances
for each problem type and size. We remark that the energy
spectrum of each problem has been obtained classically, pro-
viding the total energy range and the individual energies of the
valid states for the calculation of Sq [see Eq. (4)]. Note, how-
ever, that this is done only for the purpose of benchmarking,
and it is not required to apply the GQW in a practical scenario.

To obtain the final quantum state of the system at the end of
each algorithm, we use the second-order Suzuki-Trotter prod-
uct formula algorithm [51,52] to solve the time-dependent
Schrödinger equation, i ∂t |�(t )〉 = H (t ) |�(t )〉, with a time
step of 10−5 and total evolution times T ranging between 0.1
and 12.0. Given the consistency of our findings, we present the
results for the EC instances in Fig. 8, showing the obtained so-
lution qualities averaged within each system size, along with
the standard deviations. The analogous results for the TSP and
GO problems are available in Appendix C and support the
same conclusions.

Guided quantum walk. The GQW is optimized for each
problem instance and evolution time T individually by tuning
its six hyperparameters λ to minimize the energy expectation
value E� [see Eq. (3)] of the final quantum state |�〉. Each
parameter set is thereby selected from a pool of Nrep = 100
repetitions of the Nelder-Mead classical optimizer, where in
each sample the six parameters are initialized randomly and
adjusted a maximum of Nopt = 100 times. We choose this
approach to ensure that the algorithm converges to a near-
optimal minimum in the parameter search space. However,
we note that a sufficient set of parameters is typically found
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FIG. 8. Performance comparison of (a) the GQW, (b) the QW, and (c) QA as a function of the total evolution time T on EC problems with
problem sizes N ∈ {12, 15, 18, 21, 24, 30} (see legend). Panel (c) presents simulation results for both linear QA (solid lines) and optimized
locally adiabatic QA [50] (dashed lines). The latter uses a rescaled time based on the size of the instantaneous energy gap during the annealing
process, assuming complete knowledge about the optimization problem. The performance of all algorithms is assessed based on the solution
quality Sq defined in (4). Each problem size N is evaluated using a set of 10 randomly generated problem instances, and the presented data
corresponds to the geometric mean solution qualities (solid curves) along with the geometric standard deviations (shaded areas). Note that
the GQW and the QW undergo a prior classical optimization phase. The dotted gray lines indicate horizontal cuts (Sq ∈ {1%, 10%, 90%}),
which are detailed in Fig. 9. The inset in panel (a) provides a zoomed-in view of the region corresponding to large evolution times T .
Additionally, the dashed lines in panel (b) indicate the stationary solution quality that the damped oscillation of Sq(T ) approaches for the QW at
large T .

within the first Nrep = 20 repetitions. In Sec. IV C, we discuss
the impact of this optimization phase on the total run time.

Figure 8(a) presents the simulation results of the GQW,
showing the scaling of the solution quality Sq(T ) as a func-
tion of the evolution time T . Across various problem types
and sizes, we observe consistent patterns in the scaling of
Sq(T ), corresponding to the three regimes of evolutions (see
Sec. III E).

Initially, the solution quality exhibits rapid growth, match-
ing the results obtained by the QW algorithm for T � 0.5
[see Fig. 8(b)]. At Sq ≈ 10%, however, the scaling deceler-
ates, with solution qualities above 70% for all investigated
problem instances at T = 12. This scaling behavior is pri-
marily influenced by the energy range considered during the
algorithm’s evolution. Since the GQW cannot sufficiently
transport amplitude from all states towards the solution state
at short evolution times T , the algorithm focuses its efforts
on a subset of the graph to maximize the accumulation of
amplitude into |zopt〉. As T increases, the GQW accesses a
larger number of states, and consequently, Sq(T ) seems to
scale according to the amount of accessed amplitude (cf.
discussion in Sec. III E).

Quantum walk. For simulating the conventional QW, we
employ a procedure similar to that of the GQW. Specifically,
we determine the optimal hopping rate � for each problem
instance and T separately, using the Nelder-Mead optimizer
with Nrep = 100 repetitions and a maximum of Nopt = 100
parameter evaluations, aiming to minimize the final energy
expectation value E� .

Figure 8(b) illustrates the evolution of Sq(T ) as a function
of T for the QW. Across all problem instances, Sq(T ) exhibits
a damped oscillation pattern, converging to a stationary solu-
tion quality (indicated by dashed lines) below 1 at T � 12.
Notably, this stationary solution quality decreases exponen-
tially in the problem size N , because the QW, with a constant
hopping rate �, can only drive a few local subspaces suffi-
ciently (cf. discussion in Sec. III C). Consequently, the GQW
surpasses the QW in terms of performance even for short
evolution times (e.g., T = 0.5), highlighting the significance
of local adjustments to � already at short time scales. Fur-
thermore, it is noteworthy that the QW is the only algorithm
investigated that fails to achieve solution qualities greater than
20% for any problem instance and T .

Quantum annealing. In the context of QA, we examine two
annealing schemes: a linear annealing scheme represented by
�(t ) = (1 − s(t ))/s(t ), where s(t ) = t/T , and an optimized
locally adiabatic schedule [50] employing a rescaled time
sopt (t ). The latter is determined by numerically computing the
instantaneous energy gap �(s) between the ground and first
excited state of ĤGQW across various values of s, followed by
solving dsopt/dt ∝ �2(sopt ) to derive sopt (t ). This approach
yields an optimized schedule that decelerates the annealing
process in regions with small energy gaps while accelerating
it elsewhere. A comprehensive discussion on this approach is
given in [50]. It is important to note that the linear scheme
represents the baseline performance of QA, where no prior op-
timization phase is required. Conversely, the optimized locally
adiabatic schedule mirrors the theoretical best performance
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of QA for T � 1, assuming complete knowledge about the
optimization problem.

Figure 8(c) presents the solution qualities achieved with
linear QA (solid lines) and optimized locally adiabatic QA
(dashed lines) as a function of T . As expected from the adia-
batic theorem, Sq(T ) increases with the evolution time T for
both approaches, with optimized locally adiabatic QA achiev-
ing up to one order of magnitude higher solution qualities
at T = 12 then linear QA. Interestingly, for the N ∈ {21, 24}
qubit problems, linear QA beats the optimized locally adia-
batic schedule for T � 4. This is likely caused by diadiabatic
transitions in the context of fast annealing. When comparing
QA to both the GQW and the QW, we observe a signifi-
cantly steeper increase in solution quality for the latter two,
underscoring the importance of focused amplitude transfers
near the solution state for short time scales. For intermediate
and long evolution times, QA surpasses the QW. The GQW,
however, outperforms both algorithms across all investigated
problem instances and T . Interestingly, even in the case of
long evolutions (e.g., T = 12) the optimized locally adiabatic
QA fails to match the solution qualities achieved by the GQW,
indicating the existence of optimal schedules beyond the adi-
abatic theorem.

B. Performance on large problem instances

The previous section has demonstrated the efficiency of
the proposed guiding procedure for quantum walks in solving
combinatorial optimization problems. The GQW outperforms
both the QW and QA by providing significantly higher
solution qualities across all studied problem instances and
evolution times T . However, to determine how these algo-
rithms compare for real-world problem sizes (N � 1) that
exceed the capabilities of our numerical simulations, we ana-
lyze the scaling of the evolution time TSq (N ) required to reach
a solution quality Sq ∈ {1%, 10%, 90%} as a function of the
problem size N . The corresponding data is shown in Fig. 9(a)
together with linear (a + b · N) and exponential (a · 2b·N ) fits
to the data points obtained by the GQW and QA, respectively.
The QW was excluded from this analysis, as it could not reach
the required solution qualities. It is worth noting that the QW
is not designed as a single-shot algorithm, and we will discuss
the multishot QW in the subsequent section.

The data demonstrates that quantum annealing (QA) ex-
hibits exponential scaling for both linear and optimized
locally adiabatic schedules, with scaling coefficients b ∈
[0.12, 0.26] for the three solution quality levels Sq. This is
in line with the expectation derived from the adiabatic the-
orem, stating the instantaneous energy gaps, which shrink
exponentially in N , demand an exponentially slow annealing
process for the system to remain in its instantaneous ground
state [53,54]. Notably, the optimized locally adiabatic QA
[50] achieves the best scaling with b = 0.12 for Sq = 0.9,
showing that local adjustments to the annealing speed can
significantly reduce the annealing time needed to reach high
solution qualities. In contrast, TSq (N ) follows a linear scaling
in N for the GQW. This can be explained by the fact that
the depth of a hypercube graph scales linearly in the number
of qubits N (i.e., the largest Hamming distance between any
two states cannot be larger than N). Hence, the GQW must

FIG. 9. Scaling of the total evolution time TSq (N ) required to
achieve a specified solution quality Sq on EC problems as a function
of the problem size N for the GQW (circles and solid lines), linear
QA (triangles and dotted lines), and optimized locally adiabatic QA
[50] (squares and dashed lines). Colors indicate results for various
target solution qualities: Sq = 1% (blue), Sq = 10% (red), and Sq =
90% (green). The solid lines depict linear fits (a + b · N), while the
dashed and dotted lines represent exponential fits (a · 2b·N ) applied to
the data points (see legend).

at most drive amplitude transfers within N local subspaces
to transport amplitude from any state into the solution state.
Since the Hamming distance from zopt to each computational
basis state seems to correlate positively with the energy gaps
of these states [cf. Fig. 3(b)], these amplitude transfers are
performed simultaneously for all states, yielding a linear in
N evolution time T . In the regime of large T , the GQW can
thus be seen as an optimized annealing schedule, where the
algorithm selectively spends more time in critical parts of the
graph, while progressing faster elsewhere.

Although more extensive studies are required to verify the
observation of a linear scaling, our findings identify the GQW
as a highly efficient algorithm that achieves high solution
qualities within short time scales. This makes the GQW an
attractive choice for near-term quantum devices with limited
coherence times.

C. Classical optimization phase

We have examined the performance of the GQW, showcas-
ing its capability to achieve optimal quantum evolutions by
guiding amplitude transfers locally in the hypercube graph.
Our findings indicate a linear scaling of the total evolution
time TSq (N ) with respect to the problem size N , surpassing
the performance of both the QW and the QA when provided
with an optimal set of hyperparameters λ. However, our inves-
tigation has primarily focused on the quantum aspect of this
hybrid algorithm, without counting the classical optimization
phase responsible for fine-tuning the six hyperparameters λ.

In Fig. 10, we investigate the influence of the classical
optimization phase on the GQW by analyzing the scaling
of the average solution quality Sq as a function of the total
evolution time T and the number of parameter evaluations
Nopt. The latter refers to the number of iterations performed
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FIG. 10. Scaling analysis of the solution quality Sq as a function of the total evolution time T and the number of parameter evaluations Nopt

performed by the Nelder-Mead algorithm during the classical optimization phase of the hyperparameters λ in the GQW. Panels (a)–(e) depict
the results for EC problems of sizes N ∈ {12, 15, 18, 21, 24}, respectively. The data is sampled with a granularity of �T = 1 and �Nopt = 5.
Each data point represents the average solution quality obtained from 100 repetitions of the optimization phase. Furthermore, the data is
averaged across 10 random problem instances for each problem size N . The blue circles mark the configurations of T and Nopt that yield the
lowest T T S99.99% [see Eq. (19)]. The dashed curves indicate exponential fits to the Sq = 0.5 contour. In panel (f) we show the scaling of the
optimal (smallest) T T S99.99% achieved by the GQW (blue), linear QA (red), and the QW (green) as a function of the problem size N . The solid
lines correspond to exponential fits (a · 2b·N ) applied to the data points.

by the Nelder-Mead algorithm during the initial optimization
phase. Panels (a)–(e) present the averaged results for the EC
problems with sizes N ∈ {12, 15, 18, 21, 24}, respectively.

The data reveals consistent characteristics across all in-
vestigated problem instances. Specifically, we observe that
the number of parameter evaluations N

Sq

opt necessary to reach
a minimum solution quality Sq decreases exponentially as a
function of the total evolution time T [see dashed curves in
panels (a)–(e)]. Additionally, for a fixed value of T , N

Sq

opt scales
exponentially in the problem size N . These observations in-
dicate that for short evolutions, where the GQW prepares
QW-like hopping rate schedules, the parameter search space
tends to be more complex, thereby requiring longer opti-
mization phases. This complexity arises, as the GQW is
considering only a few subspaces, making it crucial to pre-
cisely set the hyperparameters λ to effectively drive amplitude
transfers within these subspaces. Notably, the performance
of the GQW is particularly sensitive to the choice of λ4 and
λ5 in this regime of T . On the other hand, in the case of
long evolutions, high-quality solutions can be obtained with
just a few iterations from the classical optimizer. This is

because deviations from the optimal schedule have minimal
impact on the overall evolution of the quantum system, as
the optimal hopping rate schedules approach a QA-like evo-
lution, and success is increasingly guaranteed by the adiabatic
theorem.

To incorporate the classical optimization phase into our
performance evaluations, we consider the time-to-solution

T T SPtarget = ln(1 − Ptarget )

ln(1 − Pgs)
· T + Nopt · T, (19)

where Pgs and T denote the success probability and the evo-
lution time of the algorithm, respectively. T T SPtarget represents
the total run time required to measure the solution state |zopt〉
at least once, with a probability of Ptarget, over multiple runs of
the algorithm. Note that the optimization phase is accounted
for through the offset Nopt · T .

In Fig. 10(f), we show a comparison of the scaling of
the optimal (smallest) T T S99.99% achieved by the GQW, the
QW, and linear QA as a function of the problem size N .
Note that optimized locally adiabatic QA is excluded from
this analysis, as it requires knowledge of the full spectral
information about the optimization problem. Exponential fits
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(a · 2b·N ) are included as a reference. The data reveals that for
small problem sizes, both the QW and linear QA demonstrate
faster convergence to the solution state compared to the GQW,
due to the GQW’s initial optimization phase. However, for
N � 15 and N � 21, respectively, the GQW surpasses both
algorithms with a scaling factor of b = 0.12, which is approx-
imately four (two) times better than b = 0.47 (b = 0.22) for
the QW (linear QA). Although the initial optimization phase
in the GQW leads to an exponential scaling of T T S99.99%, the
GQW’s ability to focus solely on a subset of the graph for
intermediate values of T enables a significantly more efficient
utilization of computational resources compared to the other
algorithms. Furthermore, the fact that the exponential scaling
is shifted into the optimization phase, while the single run
times T scale at most linearly with N (see Sec. IV B), offers
the opportunity to distribute the optimization phase across
multiple quantum computing devices, thereby providing an
option to parallelize the process. This is a feature generally
not feasible for QA due to the exponential scaling of T , but
it could potentially allow solving large optimization problems
on near-term quantum devices.

V. CONCLUSIONS

We have utilized the theory of local amplitude transfer
(LAT), which offers a perspective on the operational princi-
ples of quantum annealing (QA) and quantum walks (QWs)
beyond the adiabatic theorem, while also providing insights
into the design of optimal quantum evolutions. The theory is
rooted in the description of a quantum evolution within the
eigenspace of the problem Hamiltonian ĤC . In this context,
the search space is represented as a graph G where the states
are interconnected through the driving Hamiltonian ĤD [see
Fig. 3(a)]. By decomposing G into two-dimensional subspaces
spanned by pairs of eigenstates, we have demonstrated that
probability amplitude traverses the graph through a sequence
of local Rabi oscillations occurring within these subspaces.
The amplitude of these oscillations depends on the relative
strengths of the local driving and problem Hamiltonians, con-
trolled by the hopping rate �.

We have highlighted that for sufficiently complex prob-
lems, the average energy gap of the local problem Hamil-
tonian monotonically increases as a function of the energy
level [see Fig. 3(b)], allowing to selectively drive amplitude
transfers within distinct regions of the graph. This prop-
erty provides an understanding of how probability amplitude
propagates through the search space during continuous-time
quantum algorithms.

In particular, we have identified QWs and QA as two
formulations of the same underlying principle (see Fig. 7),
with QA corresponding to a sequence of distinct QWs with
gradually decreasing hopping rates �. We have shown that a
QW-like approach employing a small and constant hopping
rate is generally optimal for short evolutions, as it allows for
localized dynamics near the solution state. However, it be-
comes suboptimal for long evolutions, as it fails to effectively
transfer amplitude from higher energy states. Conversely, a
QA-like strategy is preferred for long evolutions, as it guides
amplitude throughout the entire graph, but it is suboptimal
for short evolutions, since it spends insufficient time in sub-

spaces near the solution state. Based on these insights, we
have argued that optimal quantum evolutions must adapt to
the total evolution time T by striking a balance between the
number of guided local subspaces (representing the amount
of guided amplitude) and the time spent at each energy level
(reflecting the amount of amplitude transferred within each
local subspace).

Within the LAT framework, we have introduced the guided
quantum walk (GQW) as a promising approach for solving
large-scale combinatorial optimization problems in the transi-
tion region between QWs and QA. The GQW progressively
drives local subspaces at gradually decreasing energy levels
by utilizing a monotonically decreasing hopping rate �(t ).
The hopping rate is controlled through a cubic Bézier curve
(see Fig. 5) defined by six hyperparameters, which allows for
fine-tuning the quantum evolution to each problem instance
(i.e., energy spectrum of ĤC) and evolution time T .

We assessed the performance of the GQW in comparison
to QA and QWs on exact cover (EC), traveling salesperson
(TSP), and garden optimization (GO) problems ranging from
9 to 30 qubits. Across all investigated problem instances and
evolution times T , the GQW outperformed both the QW and
QA significantly. Specifically, at intermediate timescales, our
data reveals an up to four (three) orders of magnitude better
performance on 30 qubit problems compared to QA (QW), see
Fig. 8. This observation is further supported by the scaling of
the minimal evolution time necessary to reach a fixed solution
quality as a function of the problem size. In contrast to the
exponential scaling observed for QA, the GQW demonstrates
a linear scaling, strongly indicating the existence of opti-
mal quantum evolutions that solve combinatorial optimization
problems in linear time T , thus surpassing the limitations of
adiabatic time evolutions.

It is worth noting that the achieved linear scaling is made
possible by shifting the exponential scaling to the classi-
cal optimization phase of the hyperparameters. Nonetheless,
even when considering the parameter tuning in the total run
time, the GQW exhibits a time-to-solution scaling that is
approximately two (four) times better than for QA (QWs),
see Fig. 10(f). This positions the GQW as a powerful tool for
deriving optimal annealing schedules. Furthermore, the pres-
ence of the exponential scaling in the classical optimization
phase, rather than in the single run times, offers the oppor-
tunity to distribute the optimization phase across multiple
quantum computing devices, thereby enabling parallelization
of the process. Moreover, short evolution times also suggest
the possibility of discretizing the GQW into a few time steps,
therefore adapting the Bézier curve parametrization into a
QAOA-like scheme on gate-based quantum computers. These
are features generally not feasible for QA due to the expo-
nential scaling of T , but it could potentially allow solving
large optimization problems on near-term quantum devices.
While further investigation is needed to determine how these
observations translate to real quantum devices in the presence
of environmental noise and on problems with noncanonical
energy spectra (e.g., with large degeneracies), our results
strongly support the practicality of the GQW for real-world
optimization problems, and we expect that our strategy is eas-
ily applicable to other types of optimization problems, beyond
EC, TSP, and GO instances.
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FIG. 11. Performance comparison of (a) the GQW, (b) the QW, and (c) QA as a function of the total evolution time T on GO problems
with problem sizes N ∈ {12, 15, 18, 21, 24, 30} (see legend). The performance is assessed based on the solution quality Sq defined in (4). Each
problem size N is evaluated using a set of 10 randomly generated instances, and the presented data corresponds to the geometric mean solution
qualities (solid curves) along with the geometric standard deviations (shaded areas). Note that the GQW and the QW undergo a prior classical
optimization phase. The dotted gray lines indicate horizontal cuts (Sq ∈ {1%, 10%, 90%}), which are detailed in Fig. 13. The inset in panel
(a) provides a zoomed-in view of the region corresponding to large evolution times T . Additionally, the dashed lines in panel (b) indicate the
stationary solution quality that the damped oscillation of Sq(T ) approaches for the QW at large T .
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APPENDIX A: PROBLEM COST FUNCTIONS

In this Appendix, we provide an overview of the cost
functions C(z) for the EC, TSP, and GO problems under
investigation.

1. Exact cover problem

The EC problem [2,33] involves a set U =
{x0, x1, . . . , xP−1} with P distinct elements and N subsets
Vi ⊆ U , such that U = ⋃

i Vi. An EC is a subset L of the set
of sets {Vi}, such that the elements of L are disjoint sets, and
their union is U . The problem can be expressed in matrix
form using a Boolean problem matrix A ∈ {0, 1}N×P, where
the matrix columns refer to the P elements xk in U and the
matrix rows correspond to the N subsets Vi. If Aik = 1, then
element xk is included in subset Vi, otherwise not. Thus, L is
the subset of matrix rows such that the entry 1 appears in each

column exactly once, leading to the cost function

C(z) =
P−1∑
k=0

[
N−1∑
i=0

Aikzi − 1

]2

, (A1)

where z ∈ {0, 1}⊗N encodes the selection of subsets Vi. Note
that the minimum of C(z) is zero and represents the EC solu-
tion. By expanding the square and collecting linear, quadratic,
and constant terms in zi, we obtain the QUBO coefficients

Qi j = P +
{∑P

k=0 2AikA jk, i < j∑P
k=0 Aik · (Aik − 2), i = j

. (A2)

2. Traveling salesperson problem

The TSP problem [7,35–38] involves a list of M locations
and a cost matrix ck j between each pair of locations (k, j). The
goal is to find the most optimal route, with the lowest total
cost, that visits each location exactly once and returns to its
starting location. We represent the problem using a Boolean
problem matrix A ∈ {0, 1}M×M , where the matrix rows cor-
respond to the M locations, and the matrix columns denote
the order in which the locations are visited. If Ak, j = 1, then
the location k is visited at time step j, otherwise not. The
solution to the TSP problem is the lowest-cost arrangement
of 0’s and 1’s in A, such that an 1 is contained in each
row and in each column exactly once, leading to the cost

013312-15



SCHULZ, WILLSCH, AND MICHIELSEN PHYSICAL REVIEW RESEARCH 6, 013312 (2024)

FIG. 12. Performance comparison of (a) the GQW, (b) the QW, and (c) QA as a function of the total evolution time T on TSP problems with
problem sizes N ∈ {9, 16, 25} (see legend). The performance is assessed based on the solution quality Sq defined in (4). Each problem size N
is evaluated using a set of 10 randomly generated instances, and the presented data corresponds to the geometric mean solution qualities (solid
curves) along with the geometric standard deviations (shaded areas). Note that the GQW and the QW undergo a prior classical optimization
phase. The dotted gray lines indicate horizontal cuts (Sq ∈ {1%, 10%, 90%}), which are detailed in Fig. 14. The inset in panel (a) provides
a zoomed-in view of the region corresponding to large evolution times T . Additionally, the dashed lines in panel (b) indicate the stationary
solution quality that the damped oscillation of Sq(T ) approaches for the QW at large T .

function

C(z) =λ

M−1∑
k=0

M−1∑
j=0

M−1∑
t=0

ck jzkM+t z jM+t+1

+
M−1∑
k=0

[
M−1∑
t=0

zkM+t − 1

]2

+
M−1∑
t=0

[
M−1∑
k=0

zkM+t − 1

]2

,

(A3)

with zi = Ak, j with i = kM + j and λ denoting a free parame-
ter to scale the cost matrix with respect to the constraints. We
can determine the QUBO coefficients Qii′ by stepping through
the terms in Eq. (A3) and summing up the respective contri-
butions. It is important to note that we fix the starting location,
reducing the number of problem variables zi to (M − 1)2.
Moreover, the number of optimal routes is even because each
route can be traveled in one direction or the other.

3. Garden optimization problem

The GO problem was first introduced by Gonzalez Calaza
et al. [39] and refers to the problem of arranging plants in
a garden. The garden is represented by M pots randomly
distributed on a grid, with a Boolean matrix J ∈ {0, 1}M×M

encoding the adjacency of pots. Given P distinct plant species,
with c j plants per species, the goal of the GO problem is
to find the optimal arrangement of plants in the pots with
respect to the relationships between different plant species.
These relationships are encoded in the companions matrix

A ∈ {−1, 0, 1}P×P, yielding the cost function

C(z) =
M−1∑

k,k′=0

Jk,k′

⎡
⎣1 +

P−1∑
j, j′=0

zkP+ jA j, j′zk′P+ j′

⎤
⎦

+ λ1

M−1∑
k=0

⎡
⎣1 −

P−1∑
j=0

zkP+ j

⎤
⎦2

+ λ2

P−1∑
j=0

[
c j −

M−1∑
k=0

zkP+ j

]2

, (A4)

where λ1 and λ2 are free parameters. The M × P Boolean
problem variables z indicate whether a plant of species j is
placed in pot k (i.e., zkP+ j = 1) or not. By stepping through
the terms in Eq. (A4) and summing up the respective contri-
butions, we can determine the QUBO coefficients Qii′ in the
same way as for the other problems.

APPENDIX B: LAT THEORY ON GENERAL STATES

In this Appendix, we explore the generalized scenario of
the LAT theory, where the computational basis states may not
be in an equal superposition state. For an in-depth discussion,
we refer the reader to [55].

Considering the GQW Hamiltonian ĤGQW = �(t ) · ĤD +
ĤC , with the time-dependent hopping rate �(t ), the driv-
ing Hamiltonian ĤD [see Eq. (7)] and the cost Hamil-
tonian ĤC [see Eq. (1)], the time evolution operator Û
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reads

Û (T ) = exp

[
−i

∫ T

0
ĤGQW(t ) dt

]
(B1)

≈
P∏

k=1

exp[−i �(k · �t ) �t ĤD]︸ ︷︷ ︸
ÛD (�(k·�t ) �t )

exp[−i ĤC �t]︸ ︷︷ ︸
ÛC (�t )

. (B2)

Here we have used the first-order Suzuki-Trotter product
formula [51,52] to decompose Û into small-time steps �t .

Applying one time-step to a quantum state |�〉 = ∑
j ψ j | j〉

expressed in the computational basis {| j〉}, yields

ψ j = r j e−iα j (B3)

ÛC (γ )−−−→ r j e−i (α j +�t E j ) (B4)

ÛD (β )−−−→
N∑

l=0

il · cosN−l (β ) sinl (β ) ·
⎡
⎣ ∑

∀k : �(k, j) = l

rk e−i (αk + �t Ek )

⎤
⎦ (B5)

β1−−→ r j e−i (α j +�tE j ) ·
⎡
⎣cosN (β ) + i cosN−1 (β ) sin (β )

∑
∀k : �(k, j) = 1

rk

r j
e−i (�αk, j +�t �Ek, j )

⎤
⎦, (B6)

with β = �(k �t ) · �t , γ = �t , �αk, j = αk − α j , �Ek, j = Ek − Ej = 〈k| ĤC |k〉 − 〈 j| ĤC | j〉, and �(k, j) denoting the Ham-
ming distance between the labels k and j. In the limit of �t  1, ĤD simplifies to first-order interactions, enabling amplitude
transfers solely between states of Hamming distance one and thus revealing the hypercube graph [e.g., see Fig. 3(a)]. Considering
one of these two-dimensional subspaces spanned by the basis states | j〉 and |k〉 (i.e., �(k, j) = 1), the amplitude transfer during
one time-step is given by

ψ j = r j e−i α j (B7)

Û (�t )−−−→ r j e−i (α j + γ ·Ej )

[
cosN (β ) + rk

r j
cosN−1(β ) sin(β ) sin(�αk, j + γ · �Ek, j )

+ i
rk

r j
cosN−1(β ) sin(β ) cos(�αk, j + γ · �Ek, j )

]
, (B8)

ψk = rk e−i αk (B9)

Û (�t )−−−→ rk e−i (αk + γ ·Ek )

[
cosN (β ) − r j

rk
cosN−1(β ) sin(β ) sin(�αk, j + γ · �Ek, j )

+ i
r j

rk
cosN−1(β ) sin(β ) cos(�αk, j + γ · �Ek, j )

]
. (B10)

Equations (B8) and (B10) demonstrate that complex phase
shifts caused by ĤC result in opposing signs of the second
terms of the squared brackets, with the lower (higher) en-
ergy state having a “+” (“−”). When r j/rk ≈ 1 and β is
small, the amplitude of each basis state after one time-step
is mainly defined by cosN (β ), which denotes the amount
of amplitude that remains at each basis state. The second
term increases this amplitude for the low energy state, while
decreasing it for the high energy state, resulting in a local-
ized amplitude transfer between the two. As a result, the
hypercube graph becomes directed and probability amplitude
is steered towards the ground state of ĤC . It is important
to note, however, that for a time-independent β (e.g., in a
QW) this process will eventually reverse, causing amplitude
to flow back into the high energy state. This occurs because
the fraction r j/rk grows as amplitude is exchanged between
the two states. Thus, the higher energy state’s second term
eventually overwhelms the cosN (β ) resulting in an increased
amplitude, while the lower energy state’s second term be-
comes suppressed causing an overall decrease in amplitude

as cosN (β ) < 1. This leads to oscillations in the probability
amplitude between the two states (see e.g., Fig. 2). To prevent
this, the GQW makes use of a time-dependent monotonically
decreasing hopping rate �(t ), which counteracts the increas-
ing fraction r j/rk through the sin(β ). By doing so, the GQW is
able to prohibit the back-propagation of amplitude even in the
case of large detuning by suppressing the amplitude transfer
locally.

APPENDIX C: GO AND TSP RESULTS

In this Appendix, we present the simulation results for
the GQW, the QW, and QA applied to GO and TSP prob-
lems. We investigate GO problems with problem sizes N ∈
{12, 15, 18, 21, 24, 30} and TSP problems with problem sizes
N ∈ {9, 16, 25}, considering a total of 10 randomly gener-
ated instances for each problem size and type. Similar to
the EC results from the main text, the GQW and the QW
are tuned for each problem instance and evolution time
T separately by optimizing their hyperparameters to mini-
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FIG. 13. Scaling behavior of the total evolution time TSq (N ) re-
quired to achieve a specified solution quality Sq on GO problems as
a function of the problem size N for the GQW (circles) and linear
QA (triangles). Colors indicate results for various target solution
qualities: Sq = 1% (blue), Sq = 10% (red), and Sq = 90% (green).
The solid lines depict linear fits (a + b · N), while the dashed lines
represent exponential fits (a · 2b·N ) applied to the data points (see
legend).

mize the energy expectation value E� of the final quantum
state |�〉. Each set of hyperparameters is selected from a
pool of Nrep = 100 runs of the Nelder-Mead classical opti-
mizer, where for each run, the hyperparameters are initialized
randomly and adjusted up to a maximum of Neval = 100
times. The QA results are obtained using a linear annealing
scheme.

Figures 11 and 12 depict the scaling of the solution quality
Sq as a function of the evolution time T and the problem
size N for the three algorithms on GO and TSP problems,

FIG. 14. Scaling behavior of the total evolution time TSq (N ) re-
quired to achieve a specified solution quality Sq on TSP problems as
a function of the problem size N for the GQW (circles) and linear
QA (triangles). Colors indicate results for various target solution
qualities: Sq = 1% (blue), Sq = 10% (red), and Sq = 90% (green).
The solid lines depict linear fits (a + b · N), while the dashed lines
represent exponential fits (a · 2b·N ) applied to the data points (see
legend).

FIG. 15. Scaling analysis of the optimal (smallest) time-to-
solution T T S99.99% [see Eq. (19)] for the GQW (blue), QA (red), and
the QW (green) on GO problems as a function of the problem size
N . The solid lines correspond to exponential fits (a · 2b·N ) applied to
the data points (see legend).

respectively. The data exhibit similar characteristics to the
EC problems presented in Fig. 8 and are qualitatively con-
sistent with the discussion in Sec. IV A. Notably, the GQW
achieves higher solution qualities for some large GO problems
(e.g., N = 30) compared to some smaller problem sizes (e.g.,
N = 18) for long evolutions [see inset in Fig. 11(a)]. This
indicates that the hardness of the combinatorial optimization
problems varies throughout the problem sizes, such that some
large problem instances are easier to solve than their small
counterparts once the GQW considers the entire graph. Con-
sequently, we expect similar characteristics in the scaling of
Sq to appear for QA for long evolutions.

In Figures 13 and 14, we present the scaling of the min-
imum evolution time TSq (N ) required to achieve a specified
solution quality Sq as a function of the problem size N . Similar
to the results obtained for the EC problems, TSq (N ) exhibits
linear scaling for the GQW, in contrast to the exponential

FIG. 16. Scaling analysis of the optimal (smallest) time-to-
solution T T S99.99% [see Eq. (19)] for the GQW (blue), QA (red), and
the QW (green) on TSP problems as a function of the problem size
N . The solid lines correspond to exponential fits (a · 2b·N ) applied to
the data points (see legend).
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scaling observed for QA. This further supports the existence
of optimal hopping rate schedules that can solve combina-
torial optimization problems in linear time. Note, however,
that for the GO problems, T0.9(N ) neither corresponds to an
exponential nor a linear scaling, due to the differences in the
hardness of the optimization problems.

Figures 15 and 16 show the scaling of the time-to-solution
[see Eq. (19)] as a function of the problem size N . For both
problem types, the GQW achieves a superior scaling com-
pared to QA and the QW by factors of ≈2 (QA on GO
problems), ≈4 (QW on GO problems), and ≈2 (QA and QW
on TSP problems).
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