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Stabilization of discrete time-crystalline response on a superconducting quantum
computer by increasing the interaction range
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The simulation of complex quantum many-body systems is a promising short-term goal of noisy intermediate-
scale quantum (NISQ) devices. However, the limited connectivity of native qubits hinders the implementation
of quantum algorithms that require long-range interactions. We present the outcomes of a digital quantum sim-
ulation where we overcome the limitations of the qubit connectivity in NISQ devices. Utilizing the universality
of quantum processor native gates, we demonstrate how to implement couplings among physically disconnected
qubits at the cost of increasing the circuit depth. We apply this method to simulate a Floquet-driven quantum spin
chain featuring interactions beyond nearest neighbors. Specifically, we benchmark the prethermal stabilization of
the discrete Floquet time-crystalline response as the interaction range increases, a phenomenon never observed
experimentally. Our quantum simulation addresses one of the significant limitations of superconducting quantum
processors, namely, device connectivity. It reveals that nontrivial physics involving couplings beyond nearest
neighbors can be extracted after the impact of noise is properly taken into account in the theoretical model and
consequently mitigated from the experimental data.
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I. INTRODUCTION

Quantum computers are a revolutionary technology that
have the potential to transform our society by solving prob-
lems that classical computers cannot [1]. However, these
machines are still subject to uncontrollable noise and errors
that limit their performance, which are far from the thresh-
old required for error correction. Despite these limitations,
recent progress in the realm of noisy intermediate-scale quan-
tum (NISQ) devices represents an exciting opportunity for
many-body physics by introducing new laboratory platforms
with unprecedented control and measurement capabilities [2].
Quantum simulation of the dynamics of more and more com-
plex quantum many-body systems is expected to be one of the
most promising short-term goals of NISQ quantum computing
devices, with intriguing applications in diverse areas ranging
from quantum chemistry [3–5] and material science [6] to
high-energy physics [7].

Various experimental platforms have been tested for quan-
tum computing, among the others we can cite trapped ions
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[8–11], neutral Rydberg atoms [12–14], coherent photons
[15,16], nuclear spins in molecule [17,18], nitrogen-vacancy
(NV) centers [19,20], and superconducting qubits [21,22].
Each of them has its own advantages and drawbacks [23].
In this paper we focus on superconducting quantum proces-
sors. Superconducting qubits are relatively easy to fabricate
and can be densely packed, allowing for the construction of
large-scale quantum computers. This makes them a promising
platform for scaling up quantum computing applications [24].
Moreover, they can be manipulated with a wide range of
microwave frequencies, making them versatile and flexible for
implementing various quantum gates [21].

Thanks to this flexibility, the number of quantum simu-
lations implemented on noisy superconducting devices has
steadily risen in recent years, also thanks to the possibility to
easily access these machines remotely, allowing to benchmark
a number of phenomena which were not or were very little
experimentally corroborated before. Among this plethora of
studies we may mention the following: the observation of
disorder-stabilized discrete time crystal phases [25,26], the
realization of topologically ordered states, dynamical topolog-
ical phases, and topological edge states [27–29]. One should
also cite the observation of Leggett-Garg’s inequalities viola-
tions [30], the validation of dynamical scalings [31,32], and
several studies in the context of quantum thermodynamics
[33,34]. On the other hand, the performance of supercon-
ducting NISQ devices is limited by the presence of various
sources of noise and decoherence, whose impact grows with
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the depth and complexity of the quantum circuit realized,
limiting the investigation of nonlocal effects and complex
geometries.

Long-range interactions are known to boost the perfor-
mance of quantum hardware [35–38], as they evade the
traditional constraint imposed by thermal equilibration and
noise propagation. The stability of long-range quantum
systems against external perturbations [39] and their role
as a source of unprecedented phenomena, including novel
forms of dynamical phase transitions and defect formation
[40–44], anomalous thermalization and information spreading
[45–48], metastable phases [49,50], and entanglement scal-
ings [51–53], have been widely proven [39,54]. However, the
theoretical comprehension of such behaviors is still mainly
limited to integrable quadratic systems or perturbations of
fully connected mean-field models, while systems with a tun-
able interaction range require an extremely high degree of
experimental control [54].

In this context, one main limitation of superconduct-
ing NISQ devices is their extremely limited connectivity,
since superconducting qubits are typically arranged in a one-
or two-dimensional grid with nearest-neighbor connectivity,
making it challenging to implement quantum algorithms that
require long-range interactions [1]. In this paper we aim to
advance the field of digital quantum simulation on supercon-
ducting quantum hardware by investigating the possibility of
reproducing the dynamics of systems with couplings beyond
nearest neighbors. To achieve this we utilize the universality
of the quantum processor native gates to implement cou-
plings among physically unconnected qubits. While the depth
of the resulting quantum circuit increases with the effective
range of the interaction, we show that careful consideration of
gate noise, measurement errors, and statistical errors enables
the removal of their effects from the raw results. The re-
sulting error-mitigated data closely reproduce the theoretical
expectations.

More specifically, we implement the quantum simulation
of a Floquet-driven quantum spin chain featuring interactions
beyond nearest neighbors on IBM quantum superconducting
processors. Indeed, the quantum circuit structure utilized by
IBM quantum computers is well suited for implementing dis-
crete Floquet driving protocols [2], making it a natural choice
for such applications [26].

Our focus is on the stabilization of discrete Floquet
time-crystalline response as the interaction range increases.
Discrete Floquet time crystals (DFTCs) are nonequilibrium
many-body phases of matter that display a novel form of
spatiotemporal order. In particular, in such phases the discrete
time translation symmetry of the Floquet driving is broken
and an order parameter exhibits persistent oscillations with
a period which is an integer multiple of the period of the
drive [55–64]. The possibility of generating a DFTC in clean
systems has been studied in the context of long-range inter-
acting models, and our quantum simulation on IBM quantum
processors constitutes its first experimental benchmark. Our
results demonstrate the potential of superconducting quantum
computing platforms to simulate quantum systems featuring
interaction ranges going beyond the limits imposed by hard-
ware connectivity and offer insights into the fundamental
physics of long-range systems.

II. THE MODEL

The kicked Ising spin chain is a prototypical model for
the investigation of Floquet-driven quantum systems, widely
studied from a theoretical point of view [65–69]. In this paper
we consider a driven quantum spin chain described by a time-
dependent Hamiltonian of the form

H (t ) = −
N∑

j=1

R∑
r=1

JrZ jZ j+r + h(t )
N−1∑
j=0

Xj, (1)

where the time dependence is generated by a time periodic
driving with period T of the transverse magnetic field h(t ).
The driving takes the form

h(t ) = φ

∞∑
n=1

δ(t − nT ). (2)

The effect of this impulsive magnetic field applied at integer
multiples of the driving period t = nT is to impose a global
rotation of every spin by an angle 2φ along the x axis. Ac-
cordingly, the Floquet dynamics is obtained by periodically
intertwining the evolution generated by the Ising Hamiltonian
at zero transverse field,

V =
N∏

j=1

R∏
r=1

eiT Jr Z j Z j+r , (3)

with the instantaneous kick operator,

Kφ =
N∏

j=1

e−iφXj . (4)

The resulting evolution operator for a single step of the Flo-
quet protocol reads

UF = KφV. (5)

The system is initialized at t = 0 in the fully polarized state
with positive magnetization along the ẑ direction |ψ (0)〉 =
| . . . ↑↑↑ . . . 〉 = | . . . 000 . . . 〉, where |↑〉 and |↓〉 denote the
eigenstates of the Z Pauli matrix with eigenvalues +1 and
−1, respectively. In our case these eigenstates correspond to
the computational basis of the quantum processor, with the
convention |↑〉 = |0〉 and |↓〉 = |1〉.

The simplest realization of the time-crystalline spatiotem-
poral order is obtained by taking the kick operator Kφ to rotate
each spin by an angle π around a transverse axis x̂. In this case
the kick operator is given by

Kπ/2 =
N∏

j=1

e−i π
2 Xj =

N∏
j=1

Xj . (6)

As a result, the time-evolved state after n kicks, |ψ (n)〉 =
U n

F |ψ (0)〉, exhibits a sequence of perfect jumps between the
| . . . ↑↑↑ . . . 〉 and | . . . ↓↓↓ . . . 〉 states, leading to a persistent
nonvanishing value of the order parameter in both space and
time. The order parameter is given by

m(n) = 〈ψ (n)|Zj |ψ (n)〉 = (−1)n. (7)

This is the simplest example of a subharmonic response,
where the period of the order parameter evolution is twice the
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FIG. 1. Quantum circuit implementation of Floquet dynamics with varying interaction range. (a) Topology of the ibmq_mumbai quantum
processor. Black links represent the physical connections among the qubits on the quantum hardware, blue and red links represent the nearest
neighbor R = 1 and next-to-nearest neighbor R = 2 Ising interactions we effectively implemented among physically unconnected qubits
during our quantum simulation. (b) Quantum circuit implementing a single Floquet step for a kicked Ising model with R range interactions.
(c) Quantum gate implementation of nearest-neighbor Ising interaction among qubit j and j + 1. (d) Quantum gate implementation of
next-to-nearest neighbor Ising interaction among qubit j and j + 2. (e) Quantum gate implementation of r-neighbor Ising interaction among
qubit j and j + r.

period of the Floquet driving. However, this behavior depends
on the finely tuned choice of the kick angle 2φ = π . To
observe a proper discrete time-crystalline phase of matter, the
spatiotemporal order must be stable to sufficiently weak per-
turbations of the Hamiltonian parameters φ = π/2 + ε, in the
thermodynamic limit N → ∞. This condition is generally not
satisfied, as the presence of the external driving leads to the
exponential decay of the magnetization, ruling out long-lived
oscillations. Protecting ordering against relaxation requires a
mechanism to control the impact of dynamically generated
excitations [64].

In clean systems the possibility of generating a DFTC has
been studied in the context of long-range interacting models
[65–70], where the interaction between different lattice sites
decays as a power law. However, for any finite R and in
the absence of disorder, the system magnetization exhibits an
exponential decay with the number of Floquet steps:

m(n) ∝ (−1)ne−nγε,R . (8)

The decay rate γε,R goes to zero as the perfect kick case is
approached, i.e., for ε → 0. Moreover, as shown in Ref. [68],
γε,R is deeply affected by the interaction range. In the small ε

limit, we have that

γε,R ≈ ε2R+1. (9)

Therefore, increasing the interaction range exponentially en-
hances the order parameter lifetime. This difference in decay
rate should already be apparent when comparing the nearest-
neighbor R = 1 and the next-to-nearest neighbor R = 2 cases.
One of the main results of our digital quantum simulation is
to demonstrate this increase in the order parameter lifetime.

III. QUANTUM CIRCUIT IMPLEMENTATION
OF THE FLOQUET DYNAMICS

The aim of our quantum simulation is to implement the
dynamics of the Floquet-driven quantum spin chain with tun-
able interaction range, introduced in the previous section,
on an IBM quantum processor. Specifically, we utilize the
ibmq_mumbai 27-qubit processor, whose topology is depicted
in Fig. 1(a) [further technical details can be found in the
Supplemental Material (SM) [71] Appendix]. Our quantum
circuit is optimized using the available connectivity and native
gates of the device, including the controlled-NOT gate (CNOT),
the identity gate ID, rotations along the z axis RZ , the NOT gate
X , and the SX = √

X gate (see Appendix A).
We notice that the Floquet unitary evolution operator at

stroboscopic times t = nT can be obtained by applying the
unitary operator corresponding to each Floquet step UF n
times, i.e., U (nT ) = (UF )n. Importantly, no Trotter approxi-
mation is required, which is a significant advantage of Floquet
drivings, making them well suited for quantum circuit im-
plementation [2]. Furthermore, the kicked Floquet protocol
of interest can be further decomposed into the successive
application of the kick operator Kφ and the Ising evolution
operator V [see Eq. (5)]. The former can be expressed in
terms of single-qubit gates, corresponding to local rotations
along the x axis, and the latter can be written as a product
of mutually commuting unitaries that connect pairs of qubits
at progressively larger distances as the interaction range is
increased, i.e., Kφ = ∏N

i=1 RX,i(2φ) and V = ∏R
r=1 Vr , respec-

tively. Each Vr can be implemented by applying the general
method to effectively realize r-range interactions introduced
in the previous section.
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The quantum circuit corresponding to a single Floquet step
is shown in Fig. 1(b), where blue gates represent nearest-
neighbor Ising interactions Vj, j+1, red gates represent Ising
interactions beyond nearest neighbors Vj, j+r , and green gates
represent the final kick rotation Kφ applied equally to each
qubit. In particular, as shown in Fig. 1(c), the unitary oper-
ator associated to nearest-neighbor Ising interactions can be
decomposed in terms of the elementary gates as

Vj, j+1 = eiT J1Z j Z j+1

= CNOT j, j+1RZ (2J1T )CNOT j, j+1. (10)

On the other hand, the limited processor connectivity does
not allow for a simple decomposition of r-range Ising inter-
actions. The idea to overcome this limitation is to exchange
the qubit states by applying a sequence of SWAP gates among
the couples of physically connected qubits that lie between
j and j + r. By doing so, the initial state of qubit qj+r is
effectively encoded in qubit qj+1. Specifically, we achieve this
by applying the gate sequence

Sr =
r−1∏
l=1

SWAP j+l, j+l+1. (11)

Next, we apply Vj, j+1 on the two connected qubits q j+1 and q j .
Finally, we need to bring back the state encoded in qubit qj+1

to the r-neighbor qubit q j+r . This is achieved by applying the
inverse sequence of SWAP gates S†

r . Summarizing, we obtain
the quantum circuit identity shown in Fig. 1(e), reading

Vj, j+r = S†
r Vj, j+1Sr

= S†
r CNOT j, j+1RZ (2J1T )CNOT j, j+1Sr . (12)

This enables us to realize the desired tunable-range interac-
tions among physically unconnected qubits. However, there is
a tradeoff involved: the implementation of these interactions
requires the insertion of 2(r − 1) additional SWAP gates into
the quantum circuit. Since each two-qubit gate typically intro-
duces noise, it becomes imperative to optimize our quantum
circuit for each Floquet step of the dynamics [as depicted in
Fig. 1(b)]. This optimization involves breaking down each
operation into the native gates of the quantum device and
strategically reordering our quantum circuit to minimize the
involvement of two-qubit gates. A comprehensive description
of this procedure is provided in Appendix A.

Furthermore, we will need to mitigate effect of the noise as
the interaction rate increases. We address this problem in the
following sections.

IV. THE ROLE OF NOISE AND NOISE MITIGATION

The analysis of the raw experimental data clearly demon-
strates that the decay of magnetization is predominantly
influenced by the effect of noise, as illustrated in Fig. 2. The
figure depicts the absolute value of the average magnetization
|mz| as a function of the stroboscopic time n for nearest neigh-
bors (R = 1, in blue) and next-to-nearest neighbor (R = 2,
in red) interactions. The raw experimental data (triangles in
Fig. 2) are obtained by running n repetitions of the quantum
circuit corresponding to a single Floquet step UF , as depicted
in Fig. 1(b), on the ibmq_mumbai quantum processor using

FIG. 2. Modulus of the magnetization |mz| as a function of the
stroboscopic times n for nearest neighbor R = 1 (blue points) and
next-to-nearest neighbor R = 2 (red points) Ising interactions. Trian-
gles represent the raw experimental data measured on our quantum
simulation of the ibmq_mumbai quantum processor, which involves
N = 18 qubits undergoing a kicked Ising dynamics with kick angle
φ = π/2 + ε with ε = 0.2. Square points and the corresponding
error bars represent the estimators for the average magnetization
and its statistical error E(mz ) ± 2σ (mz ), obtained through statistical
bootstrapping. Dashed lines represent the best fit of the data with an
exponential decay.

N = 18 qubits. At the end of each quantum evolution, a
projective measurement of each qubit in the Z basis is per-
formed. To collect sufficient statistics, the experiments for
each value of n and R are repeated over a sample of size
N = 213, allowing us to compute the sample average 〈Zi〉
over the measurement outcomes. Finally, the spatial average
of the magnetization over different sites of the processor is
computed as

mz = 1

N

N∑
i=1

〈Zi〉, (13)

where N = 18 in our case.
Estimating the statistical error from multiple instances of

each quantum simulation to evaluate the sample mean E(mz )
and standard deviation σ (mz ) is not feasible due to the time
taken to produce each magnetization estimate. Instead, we
rely on the statistical tool of bootstrapping, which is further
detailed in Appendix C, to generate resampled data from
the empirical measurement outcomes. Since the bootstrapped
data conforms to the central limit theorem, we may assume
normality and evaluate E(mz ) and σ (mz ) from these artifi-
cially generated samples of data. The results for the statistical
averages E(mz(n)) are represented by squares in Fig. 2, while
we use two standard deviations, 2σ (mz(n)), as statistical er-
rors, depicted as error bars in the plots. Notably, we observe
that the statistical error increases with the number of Floquet
steps involved in the dynamics n. This can be understood by a
simple statistical argument: we are trying to sample a quantity,
the modulus of the magnetization |mz|, which exponentially
decreases with n. Consequently, the resolution with which we
can estimate this quantity deteriorates as mz approaches the
value mz ∼ e−γ n ∼ 1/

√
N , i.e., the statistical uncertainty due
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to the finite size of the sample increases as we approach the
stroboscopic time n ∼ (1/2γ ) lnN .

The decay of magnetization with stroboscopic time n can
be described by an exponential fit |E(mz(n))| = ae−bn, which
is obtained using a weighted least-squares regression method.
This approach accounts for points with high statistical un-
certainty, penalizing them in the extrapolation. The resulting
exponential decay is depicted as a dashed line in Fig. 2, show-
ing a rapid decline with increasing n. Notably, the decay rate
is more pronounced for next-to-nearest neighbor interactions
(R = 2) compared to nearest-neighbor interactions (R = 1).
This discrepancy can be attributed to the fact that the quantum
circuit implementing next-to-nearest neighbor interactions in-
volves more gates, resulting in larger noise effects.

In order to effectively simulate desired physical phenom-
ena in a quantum system, it is crucial to account for and
mitigate the detrimental effects of noise. Real-world quantum
hardware is susceptible to various sources of errors, such as
noisy gates, environmental decoherence, and spurious time
dependence of circuit parameters [2]. To explicitly model
these errors, a common approach is to consider one- and
two-qubit depolarizing channels that act on the system’s state
ρ. Specifically, after each single-qubit gate acting on qubit
i, the single-qubit channel φ

1q
i is applied, while after each

two-qubit gate on bond (i, j), the two-qubit channel φ
2q
i, j is

applied. These channels are defined as [2,72]

φ
1q
i (ρ) = (1 − p1)ρ + p1

3
(XiρXi + YiρYi + ZiρZi ), (14)

φ
2q
i, j (ρ) = (1 − p2)ρ + p2

15

3∑
α,β=1

(σα,iσβ, jρσα,iσα, j ), (15)

where σ1,i = Xi, σ2,i = Yi, and σ3,i = Zi are the Pauli matrices
for qubit i, and σα,i and σβ, j are the corresponding matrices for
qubits i and j, respectively. By studying the dynamics of the Zi

operators under these depolarizing channels, we can estimate
the magnetization decay rate induced by the noisy gates.

To isolate the effect of noise, we consider the case of
perfect kick dynamics with ε = 0. Under this condition, Zi

is invariant under the two-qubit Ising interaction gates and
simply acquires a minus sign under the π rotation around the
x axis. However, after each two-qubit gate, Zi decays under
φ

2q
i, j as

φ
2q
i, j (Zi ) = (1 − 16p2/15)Zi, (16)

and after each single-qubit gate as

φ
1q
i (Zi ) = (1 − 4p1/3)Zi. (17)

Overall, Zi decays to −e−γdep Zi, over one noisy Floquet step
with perfect kicks, with γdep given by

γdep,R = − ln[(1 − 16p2/15)Q2q,R (1 − 4p1/3)Q1q,R ], (18)

where Q2q,R and Q1q,R are the number of two-qubit and
single-qubit gates involved in a Floquet-step quantum cir-
cuit with R-neighbor interactions. A naive estimate of these
numbers based on the general method previously introduced
would yield Q2q,R = 2R3 + 2 and Q1q,R = 2R + 5, respec-
tively (see Appendix A for more details). However, for the
specific case of the kicked Ising model considered in our

quantum simulations, we were able to optimize the quantum
circuits corresponding to R = 1, 2 Floquet steps, reducing the
number of two-qubit native gates, involved in the quantum cir-
cuit longest path, to Q2q,R = 9R2 − 14R + 7, with a reduction
from cubic to quadratic range dependence. In particular, for
R = 1, 2 we have

Q2q,R =
{

4 R = 1
15 R = 2 , Q1q,R =

{
7 R = 1
9 R = 2 . (19)

More details on the quantum circuit optimization strategy are
provided in Appendix A.

Another source of noise arises from the finite decoherence
time T1 of the qubits, which introduces an additional timescale
contributing to the magnetization decay. Taking into account
all the contributions, we can estimate the decay rate of mag-
netization for a Floquet step with imperfect kicks of an angle
φ = π/2 + ε to be approximately given by

�1,R ≈ γdep,R + τR/T1 + γε,R, (20)

where τR represents the time required to practically implement
the Floquet step on the quantum hardware. This can be esti-
mated as

τR = Q1q,Rτ1q + Q2q,Rτ2q + τm, (21)

where τ1q and τ2q denote the time needed to execute each
single-qubit and two-qubit gate, respectively, while τm repre-
sents the readout time required for measurements. Estimates
of these quantities, as obtained from the engine calibration,
are provided in the Supplemental Material [71].

A third source of errors arises from readout errors, which
can be modeled as a stochastic process where the outcome of a
qubit-state measurement (in the Z computational basis) is ran-
domly flipped with a probability of pm away from its correct
value [2]. Specifically, if we define the probability that qubit i
points up (down) at time n as �± = 〈(1 ± Zi(n))/2〉, then the
result of the noisy measurement process is Zi = ±1, with a
probability of �̃±(n) = �±(1 − pm) + �∓ pm. Accordingly,
the estimate for the expectation value of Zi becomes

�̃+ − �̃− = (1 − 2pm)(�+ − �−)

= (1 − 2pm)〈Zi(n)〉. (22)

Hence, averaging over positions yields m̃z = (1 − 2pm)mz,
i.e., a damping by a time-independent and range-independent
overall prefactor Cm = (1 − 2pm).

The inclusion of noise in our model provides a compelling
explanation for the rapid exponential decay of magnetization,
as observed in Fig. 2. Moreover, by inserting the estimated
values of the parameters p1, p2, τ , and T1, which were ex-
tracted from the calibration data provided by IBM and detailed
in the SM Appendix [71], we find that the calculated decay
rate is in good agreement with that obtained from fitting the
experimental data with a stroboscopic time dependence of the
form predicted by our theoretical model,

|mz(n)| = Cme−n�1,R . (23)

This understanding of the noise effect justifies our exploration
of the possibility of mitigating it through a technique called
zero noise extrapolation.
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FIG. 3. Decay rate of magnetization as a function of noise scale
s for R = 1 (blue points) and R = 2 (red points). Error bars rep-
resent two standard deviations σ (mz ) estimated through statistical
bootstrapping. Dashed lines indicate the best linear fit obtained using
weighted least-squares regression. Empty points are excluded from
the fitting data.

The basic idea of zero noise extrapolation is to inten-
tionally increase the noise level by amplifying the depth of
the quantum circuits by a factor of s through a procedure
called circuit folding (see Appendix B for a more detailed
description). Subsequently, we perform quantum simulations
for different noise scales s, and for each scale we extract the
magnetization decay rate from the measured data. Our noise
model then allows us to theoretically estimate the decay rate
at noise scale s as

�s,R ≈ s(γdep,R + τR/T1) + γε,R. (24)

Accordingly, a linear fit of the measured decay rates with
respect to the parameter s enables us to separate the contri-
bution coming from the noise, γnoise = γdep,R + τR/T1, from
γε,R, which represents the decay rate due to the internal system
thermalization that destroys the time-crystalline order at finite
ε and should be stabilized by the presence of longer-range
interactions. More precisely, γε,R is obtained as the zero noise
extrapolation of the decay rate in (24), γε,R ≈ �s=0,R. The
results of this procedure are shown in Fig. 3, where the mea-
sured decay rate is plotted as a function of the noise scale s.
To estimate �s,R and its uncertainty δ�s,R, we first estimate
the magnetization as a function of the stroboscopic time n at
different values of s and R from the measured data, along with
the corresponding statistical uncertainty from the standard
deviation obtained through the statistical bootstrap method,
E(mz ) ± 2σ (mz ). Then the decay rate and its uncertainty are
obtained through the exponential fit

|E(mz ) ± 2σ (mz )| = (Cm ± δCm)e−n(�s,R±δ�s,R ). (25)

In particular, the exponential fit is performed using weighted
least-squares regression, and the last two points with R = 2
and s > 1.5 are excluded from the fitting data (empty points
in Fig. 3). This exclusion is justified by the fact that the decay
rate for these points falls within the range of 0.2 < �s>1.5 <

0.8, and thus the magnetization can be reliably estimated
only for stroboscopic times n < n∗ ≈ (1/2γ ) lnN , where
6 < n∗ < 22. Therefore, not all the time steps 1 < n < 16

considered in the exponential fit of mz(n) from which we
extracted this decay rate are within the reach of our statistical
resolution. The difficulty of establishing a reliable bootstrap-
estimated value confirms this phenomenon, as shown in Fig. 3,
where the statistical error bars for these points are significantly
larger than those for the other points, indicating the challenge
of obtaining a trustworthy value for the magnetization in this
regime. Despite the failure of the bootstrap procedure, we in-
clude these data as empty points in the plot for completeness,
noting that the corresponding error bars are sufficiently large
that the resulting fit is still compatible with these unreliable
values within ±2σ (mz ).

Remarkably, upon extrapolation to the zero noise limit, the
decay rate of the R = 2 case is found to be smaller than that
in the nearest-neighbors case R = 1. Specifically, we obtain

�0,2 ± δ�0,2 < �0,1 ± δ�0,1. (26)

Most significantly, we find that the decay rate analytically pre-
dicted from the theoretical model, γε,R ≈ ε2R+1, is compatible
with the extrapolated values within the estimated uncertainty,
i.e.,

γε,R ∈ [�0,R − δ�0,R, �0,R + δ�0,R], (27)

indicating that the extrapolated decay rate is consistent with
the theoretical expectations within the statistical uncertainty
δ�0,R, which has been estimated by extrapolating δ�s,R

to s = 0.

V. CONCLUSION

In this paper we have demonstrated the potential of su-
perconducting quantum hardware for advancing the field of
digital quantum simulation by investigating the possibility of
implementing quantum dynamics of systems with couplings
beyond nearest neighbors. We have utilized the universality
of the native gates in quantum processors to implement cou-
plings among physically disconnected qubits and carefully
mitigated the effects of gate noise, measurement errors, and
statistical errors from the raw results. Our focus has been on
the stabilization of discrete Floquet time-crystalline response
as the interaction range increases, and we have implemented,
on IBM quantum superconducting processors, a quantum
simulation of a Floquet-driven quantum spin chain with in-
teractions beyond nearest neighbors.

Our results, as shown in Fig. 2, reveal that the magneti-
zation dynamics under a kicked Floquet driving exhibits a
fast exponential decay dominated by noise in the raw data,
with a faster decay rate for larger interaction ranges due to
the increased depth of the quantum circuit. However, after
applying the zero noise extrapolation procedure, we were able
to separate the role of noise from the true decay caused by
the dynamical generation of excitations in the system during
the Floquet driving. The mitigated data for the magnetization
decay rate, in Fig. 3, show a clear trend of slower decay in
the zero noise limit compared to the raw data, indicating the
effectiveness of our error mitigation approach.

Furthermore, we have estimated the statistical uncertainty
of the mitigated data, represented by the error bars in Fig. 3,
which grows with the noise level as expected. Importantly, we
have observed that the regions corresponding to the zero noise
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extrapolated values of the magnetization decay rate for differ-
ent interaction ranges do not intersect within the considered
values of the parameters, indicating that the effects of noise
have been effectively removed from the data.

We have also compared our results with the theoretical
expectations and found that the magnetization decay rate an-
alytically predicted from the theoretical model, γε,R ≈ ε2R+1,
is compatible with the final results of our quantum simula-
tion within the estimated uncertainty. This agreement between
theory and experiment provides evidence for the validity of
our approach in simulating quantum systems with interaction
ranges beyond the limits imposed by hardware connectivity.

It is important to highlight that, in principle, the quantum
circuit we used for implementing beyond nearest-neighbor
interactions on quantum superconducting computers has the
potential to enable tunable interaction ranges. However, there
is a fundamental limitation that led us to restrict our quan-
tum simulations to cases where R = 1, 2. This is due to the
fact that increasing the effective range of interaction will
inevitably require a deeper quantum circuit, which in turn
increases the impact of noise. Practically speaking, we antici-
pate that already at R = 3, 4, the noise level may be significant
enough to prevent a reliable estimate of the magnetization
decay. Another way of looking at this is that for the re-
sult to be within our resolution, the noise level should be
at most comparable with the decay rate γε,R ≈ ε2R+1. For
R � 3, this noise level could already exceed the threshold for
fault-tolerant quantum error correction and therefore surpass
the capabilities of the available NISQ devices.

Nevertheless, there are several steps that can be taken to
overcome this problem. For example, the noise level of quan-
tum devices is expected to decrease as the performance of
available quantum computers improves. Additionally, classi-
cal algorithms can be used to further optimize the quantum
circuit we proposed, reducing the number of two-qubit gates
involved. Furthermore, it would be instructive to benchmark
our results on different experimental platforms that naturally
allow for the implementation of long-range interactions, such
as trapped ions or Rydberg atoms devices. These exciting
problems are beyond the scope of the present work and hence
we leave them for future research.

Another crucial aspect to emphasize is that in our quantum
simulation, we utilize 18 functional qubits out of the total 27
nominal qubits of the ibmq_mumbai device. This distinction
is significant since the number of functional qubits is often
smaller in other applications. For instance, in quantum chem-
istry applications, as described in Ref. [73], noise mitigation
strategies are employed to simulate molecules whose Hamil-
tonian can be encoded in only three qubits in order to achieve
the desired chemical accuracy. This exemplifies the suitability
of Floquet dynamics, similar to those analyzed in our work,
for implementation on NISQ quantum computers.

In conclusion, our quantum simulation on IBM quantum
superconducting processors has demonstrated the potential of
these platforms for simulating quantum systems with cou-
plings beyond nearest neighbors and has offered insights into
the fundamental physics of long-range systems. Our error
mitigation approach has been effective in removing the effects
of noise and measurement errors from the raw results, and
the mitigated data are in good agreement with theoretical

expectations. This work opens up new possibilities for study-
ing quantum systems with long-range interactions and paves
the way for further advancements in the field of digital quan-
tum simulation on superconducting quantum hardware.
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APPENDIX A: QUANTUM CIRCUIT OPTIMIZATION

As discussed in the main text, minimizing the number
of operations in the quantum circuit for implementing the
Floquet dynamics is crucial due to the increase in noise with
each quantum gate, resulting in a rapid magnetization decay.
In particular, two-qubit gates are more prone to errors, so our
focus is on reducing their number in our circuits.

We start by obtaining an estimate of the number of op-
erations required to implement the quantum circuit shown
in Fig. 2(b) of the main text using the native gates of the
ibmq_mumbai processor used in this work, without any op-
timization. The native gates include the controlled-NOT gate
(CNOT), identity gate (ID), rotations along the z axis (RZ ), the
NOT gate (X ), and the SX = √

X gate.
Regarding single-qubit gates, only the rotations around the

X axis, corresponding to the Floquet driving kicks, need to be
further decomposed into native gates, which can be efficiently
done as follows:

RX (φ) = RZ (π/2)
√

X RZ (φ)
√

X RZ (5π/2). (A1)

Thus, each kick requires five additional single-qubit gates,
resulting in a total of Q1q,R = 2R + 5 gates. The only native
two-qubit gate available is the CNOT gate. To estimate Q2q,R,
we need to count the number of CNOT gates involved in the
hardware implementation of each Floquet step. As shown
in Fig. 2(c) of the main text, each nearest-neighbor Ising
interaction is implemented using two CNOT gates. Moreover,
each SWAPgate is realized using three CNOT gates, as it can be
decomposed as

SWAP j, j+1 = CNOT j, j+1CNOT j+1, jCNOT j, j+1. (A2)

Moreover, each r-range interaction is implemented by adding
2(r − 1) SWAP gates to the nearest-neighbor interaction.
Therefore, each r-range interaction gate requires 2 + 6(r − 1)
CNOT gates for implementation. If we want to realize in-
teractions with ranges r = 1, . . . , R, then the longest path,
determining the circuit depth, contains r nonparallelizable
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(a) (b)

FIG. 4. Quantum circuit optimization techniques using circuit identities. (a) Cancellation of CNOT gates in adjacent Vj, j+1 and SWAP gates.
(b) Rearrangement of the quantum circuit to implement Ising interactions with r = 1, . . . , R ranges while maximizing the number of adjacent
Vj, j+1 and SWAP gates.

copies of each r-range operation for r > 1 and two copies for
r = 1. Summing up all the contributions, we obtain

Q2q,R =
R∑

r>1

(2 + 6r(r − 1)) + 4 = 2R3 + 2. (A3)

We can optimize the structure of our quantum circuit
[Fig. 2(b) of the main text] to reduce its depth and com-
plexity. First of all, we notice that, as shown in Fig. 4(a),
each time we have a sequence Vj, j+1SWAP j, j+l , we can use
the fact that CNOT2 = I to eliminate two adjacent CNOT

gates. To systematically exploit this fact, we can rearrange our
quantum circuit using the circuit identity in Fig. 4(b). Here,
we utilize the properties [Vj, j+l ,Vj, j+r] = 0 for all l, r, and
[Vj, j+1, SWAP j, j+l ] = 0 to maximize the number of adjacent
Vj, j+1SWAP j, j+l , and thereby increase the number of CNOT

gates that cancel out. for a circuit implementing a sequence
of Ising interactions of ranges r = 1, . . . R, we can cancel up
to 2(R − 1) CNOT gates using this trick. The depth of each
subcircuit of this form is then given by

2R + 6(R − 1) − 2(R − 1) = 6R − 4. (A4)

To realize a kicked Ising model with interaction range up to
R in a chain of N qubits, we can divide the N qubits into sub-
sets of size 2R that can be processed in parallel. To compute
the circuit depth, which refers to the number of operations in
the longest path, we can focus on only one subset at a time.
Each subset contains R subcircuits with interaction ranges
r = 1, . . . , R, following the form shown in Fig. 4(b). The
depth of each of these subcircuits is 6R − 4. The remaining R
subcircuits include interactions of range r = 1, . . . , l , where
l varies from l = 1 to l = R − 1, corresponding to a depth of
6l − 4 for each circuit. By summing up all the contributions,
we obtain the optimized number of CNOT gates as

Q2q,R = R(6R − 4) +
R−1∑
l=1

(6l − 4)

= 9R2 − 11R + 4. (A5)

Finally, we observe that the last sequence of SWAP gates in
the circuit shown in Fig. 4(b) is only necessary if we need
to apply different gates on different qubits after that. If this
is not the case, we can simply substitute the SWAP gates with
a relabeling of the qubit numbers, which must be taken into
account when reading the final measurement outcomes. This
fact allows us to eliminate (R − 1) SWAP gates and 3(R − 1)

CNOT gates in the last subcircuit of this form. Therefore, we
obtain

Q2q,R = 9R2 − 14R + 7. (A6)

As a final remark, we note that for large values of maxi-
mum range R, and hence large circuit complexity, additional
simplifications of the circuit may be possible by using opti-
mized relabelings of the qubit numbers during the evolution,
which can increase the number of parallelizable operations.
However, such an optimization strategy is circuit and range
dependent and can only be carried out numerically or in an
approximate manner. On the other hand, for the case of R = 2
that we considered in our quantum simulation, we can claim
that our circuit is optimal with respect to the number of CNOT

gates involved.

APPENDIX B: CIRCUIT FOLDING AND ZERO
NOISE EXTRAPOLATION

Zero noise extrapolation (ZNE) is a well-studied error
mitigation method in the literature [73–76]. It is a powerful
technique that allows for the estimation of noiseless expec-
tation values of observables from a series of measurements
obtained at different levels of noise. The ZNE process involves
two steps: intentional scaling of noise and extrapolation to the
noiseless limit. In the first step, the target circuit is executed
at varying error rates denoted by s, with expectation values
estimated for the original circuit (s = 1) as well as circuits
at increased error rates (s > 1). Then, in the second step, a
function, motivated by physical arguments, is fitted to these
expectation values and used to extrapolate to error rate s = 0,
providing an error-mitigated estimate.

There are various methods to increase the error rate s.
Examples in the literature include pulse stretching [75] or, at
a gate level, unitary folding [74,77]. In our implementation of
ZNE, we increase s using a local unitary folding technique.
This technique involves increasing the number of operations
by applying a mapping U → UU †U to individual gates of
the circuit. Specifically, the unitary gates to be folded are
randomly chosen from the set of gates composing the circuit
in such a way that the circuit depth is approximately increased
by the desired factor s. This random selection helps to ensure
that the circuit is exposed to a variety of gate sequences and
interactions, allowing for a more comprehensive study of the
circuit’s behavior under different noise conditions.
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APPENDIX C: STATISTICAL BOOTSTRAPPING

We utilize the statistical technique of bootstrapping to
quantify the uncertainty in our magnetization estimates. In
an ideal scenario we would repeat quantum experiments
multiple times to obtain a comprehensive understanding of
the “true” magnetization distribution. However, this approach
is impractical due to the significant time required for each
magnetization estimate. Instead, we conduct the experiment
once and generate resampled measurement data from the
empirical distribution using bootstrapping, a widely used
statistical technique. This method makes the statistical anal-
ysis very convenient, and it is then becoming a common
practice to estimate the statistical errors in digital quantum
simulations [73].

Let us assume we perform an N -shot quantum experiment
and obtain a collection of N outcomes. Each measurement
outcome is represented as a string of 0s and 1s, denoted as
Z1,a . . . ZN,a, where Zi = 0, 1, N is the number of measured
qubits, and the index a labels the different outcomes (a =
1, . . . ,N ). The magnetization associated with each string can
be computed by averaging over the qubits as follows:

mz,a = 1

N

N∑
i=1

Zi,a. (C1)

This gives us the set of magnetization values mz,a with a =
1, . . . ,N . We define the empirical magnetization distribution
P1(mz,a) as the histogram of the mz,a set. The average over
this empirical distribution, denoted as mz, corresponds to the
experimentally obtained quantum expectation value on the
final state of the system and can be expressed as

mz = 1

N

N∑
i=1

〈Zi〉 =
N∑

a=1

P1(mz,a)mz,a. (C2)

The bootstrapping approach involves resampling from the
empirical measurement distribution P1(mz,a). We sample el-
ements from the set mz,a (or, equivalently, from the set of
strings {Z1,a . . . ZN,a}) N times to create a new set of measure-
ment outcomes, and from this, a new empirical distribution
P2(mz,a). We repeat this process as many times as possible
given the available computational resources, say M repeti-
tions, to obtain a set of distributions P1, P2, . . . , PM . From
each of these distributions, we can compute the average mα

z
with α = 1, . . . , M, and from the histogram of the set of
averages, we obtain their distribution �(mα

z ). Since each re-
sampling is independent, the distribution of averages should
tend to a Gaussian in the large-M limit, according to the

FIG. 5. Bootstrap distribution of averages obtained by re-
sampling M = 1000 times the measured data of three quantum
simulations with range R = 1, noise scale s = 1.4, and different
numbers of Floquet steps n = 0, 5, 8. The number of bins considered
in each histogram is 100.

central limit theorem. Accordingly, we can define our estima-
tor for mz and its statistical error as the average of the �(mα

z )
distribution,

E(mz ) =
M∑

α=1

�
(
mα

z

)
mα

z , (C3)

and its standard deviation,

σ (mz ) =
√√√√ M∑

α=1

�
(
mα

z

)(
mα

z − E(mz )
)2

. (C4)

This method enables us to obtain error bars in Figs. 2 and
3 of the main text as E(mz ) ± 2σ (mz ). Figure 5 shows, as an
example, the distributions �(mα

z ) obtained through M = 1000
resamples of the measured data of three quantum simulations
with range R = 1, noise scale s = 1.4, and number of Flo-
quet steps n = 0, 5, 8, respectively. These are compared with
Gaussian distributions with the same mean and standard de-
viation, finding good agreement. We notice that, as expected,
the mean E (mz ) is smaller for a larger number of Floquet steps
n, signaling the magnetization exponential decay. Moreover,
distributions at later stroboscopic times become broader, sig-
naling the growth of the statistical error due to the fact that
we are trying to sample a quantity which is exponentially
decaying with n.
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