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Exact hole-induced SU (N) flavor singlets in certain U = ∞ SU (N) Hubbard models
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We prove that the motion of a single hole induces SU (N ) flavor singlets in the U = ∞ SU (N ) (Fermi)
Hubbard model on a Husimi-like tree graph. The result is generalized to certain t-J models with singlet hopping
terms typically neglected in the literature. This is an SU (N ) generalization of the “counter-Nagaoka theorem”
introduced in [Phys. Rev. B 107, L140401 (2023)]. Our results suggest the existence of resonating flavor singlet
(RFS)-like polarons in the t-J models on a more realistic nonbipartite lattice. Such RFS polarons may be relevant
for a novel strong-coupling mechanism of superconductivity or other exotic fractionalized phases of matter.
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I. INTRODUCTION

The SU (2) Hubbard model in the presence of a hole doping
has been extensively studied as it is expected to capture es-
sential features of the high-temperature superconductivity in
cuprate superconductors [1–4]. Despite its deceptively simple
form, the model presents significant challenges and complex-
ity due to competing tendencies to develop various types
of distinct ordered phases [5]. Even in the strong coupling
(U = ∞) limit, an analytical solution on a bipartite lattice
(e.g., square lattice) exists only for single-hole doping on a
finite-sized system—the celebrated “Nagaoka theorem” states
that such a system leads to a fully polarized ferromagnet
[6–11]. In a physical context, the Nagaoka theorem implies
the formation of the ferromagnetic Nagaoka polaron, which
has been observed in numerics [12,13] and in cold-atom
experiments [14].

On the other hand, it is known that the hole motion in
the U = ∞ SU (2) Hubbard model on a nonbipartite lattice
(e.g., triangular lattice) induces antiferromagnetic correlations
around it [15–18]. However, for such a nonbipartite lattice,
even the single-hole problem is poorly understood due to
the frustration inherent in antiferromagnetism. The problem
has been recently solved in a frustration-free version of a
nonbipartite lattice, which unambiguously demonstrated that
a hole is surrounded by resonating valence bond (RVB)-like
correlations [19]. Such a result suggests the formation of an
RVB polaron on a more realistic nonbipartite lattice.

For systems with an emergent (or exact) SU (N ) symmetry
with N > 2 [20–25], e.g., systems with degenerate multiple
valleys or flavors [26–30], their physics may be characterized
by the SU (N ) Hubbard model or its generalizations under
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suitable circumstances. If so, the magnetism at the 1
N th filling

(one fermion per site) in the strong coupling regime, U � t , is
captured by the SU (N ) Heisenberg model with exchange in-
teractions J = 4t2/U . However, when t � J (U → ∞ limit),
it is the motion of a hole that is responsible for the mag-
netism upon hole doping of such a Mott insulator. Therefore,
SU (N ) generalizations of the Nagaoka and counter-Nagaoka
theorems are needed. In Refs. [31,32], it is shown that, with
the “unusual” sign of the hopping matrix element, t < 0, a
single hole motion in such a U = ∞ SU (N ) Hubbard model
leads to a fully flavor-polarized ground state. However, less
is understood for the same problem with the “usual” sign
of hopping t > 0, again due to the frustration inherent in
antiferromagnetism.

In this paper, we study the dynamics of a single hole doped
at the 1

N th filling of the U = ∞ SU (N ) Hubbard and t-J
models on certain solvable graphs. We first consider such a
problem on an (N + 1)-site graph that satisfies the connec-
tivity condition (as defined later), and show that the ground
state is in the SU (N ) flavor-singlet sector (Sec. II). Any other
flavor configurations frustrate the hole motion. From such
an (N + 1)-site subgraph, we construct a subgraph tree, on
which the single hole problem in the SU (N ) t-J model is
exactly solvable (Secs. III and IV). The ground state is a
positive superposition of SU (N ) flavor-singlet covering states.
In Sec. V, we speculate on the possibility of exotic phases of
matter in the presence of a dilute but finite hole concentration.

We note that the exact solvability of the single hole prob-
lem in a subgraph tree is due to the existence of an extensive
number of local SU (N ) symmetries—in some sense, this
is Hilbert space fragmentation [33–35] from restricted hole
motion.

II. SU (N) SINGLET IN AN (N + 1)-SITE GRAPH

We start by solving a single hole problem in the U =
∞ SU (N ) Hubbard model (N � 2) on an (N + 1)-site graph
that satisfies the connectivity condition (to be defined below).
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We assume that the hopping matrix elements are positive but
otherwise arbitrary ti j > 0:

Ĥ = −
∑
〈i, j〉

N∑
a=1

ti j (c
†
i,ac j,a + H.c.) + V̂ ({ni}) + [U = ∞].

(1)

Here, a = 1, 2, ..., N is a flavor index of a fermion in the
fundamental representation, i = 0, 1, 2, ..., N is a site index,
and 〈i, j〉 is an edge of the graph. V̂ ({ni}) describes ar-
bitrary on-site terms and density-density interactions (ni ≡∑N

a=1 c†
i,aci,a):

V ({ni}) =
∑

i

εini +
∑
i, j

Vi jnin j + · · · . (2)

The last U = ∞ term forbids any double occupancy.
Lemma: The ground state of the Hamiltonian (1) on an

(N + 1)-site graph that satisfies the connectivity condition in
the single hole sector is a unique SU (N ) flavor-singlet state.

In order to prove the Lemma, it is convenient to work
in a particular many-body basis in a single hole sector. In
doing so, we restrict ourselves to a flavor-balanced subspace,
where each flavor a = 1, 2, ..., N appears exactly once [36].
For example,

|·, 1, 2, ..., N〉 ≡ c†
1,1c†

2,2 · · · c†
N,N |∅〉 ≡ |0, 1, ..., N〉

≡ c0,0c†
0,0c†

1,1c†
2,2 · · · c†

N,N |∅〉 (3)

is a flavor-balanced state, where |∅〉 is the vacuum state with
no fermions, and 0 in the third expression denotes that the
site i = 0 is unoccupied. This can be reexpressed as the final
expression by creating a ghost fermion with flavor a = 0 at
the hole site and annihilating it. This is a useful notation that
will be used throughout the paper. From this state, we form
a complete orthonormal basis in a flavor-balanced subspace
by applying a permutation of (N + 1) objects (a hole and N
fermions), σ ∈ SN+1, where SN+1 is the symmetric group of
(N + 1) objects:

|σ 〉 ≡ |σ (0), σ (1), ..., σ (N )〉 ≡ (−1)isgn(σ )c†
0,σ (0)c

†
1,σ (1)

× · · · × c†
i−1,σ (i−1)c

†
i+1,σ (i+1) · · · c†

N,σ (N )|∅〉
≡ sgn(σ )ci,0c†

0,σ (0)c
†
1,σ (1) · · · c†

N,σ (N )|∅〉, (4)

where we assumed that the ith site is occupied by a hole, i.e.,
σ (i) = 0, and again we introduced a ghost fermion with flavor
a = 0 in the last expression for convenience.

Among the states in the flavor-balanced subspace are the
completely flavor-antisymmetric, SU (N ) flavor-singlet (FS)
states with the hole at site i,

|i, FS〉 ≡ 1√
N!

∑
σ∈SN+1,σ−1(0)=i

|σ (0), σ (1), ..., σ (N )〉. (5)

Connectivity condition: An (N + 1)-site graph is said
to satisfy the connectivity condition if all the basis states
in Eq. (4) can be reached from one another by re-
peated applications of hopping operators in Eq. (1), T̂i j ≡
−ti j

∑N
a=1(c†

i,ac j,a + H.c.). For example, Figs. 1(a)–1(c) are
examples of graphs that satisfy the connectivity condition. In
particular, in Fig. 1(c), starting from the state |0, 1, 2, ..., N〉,

FIG. 1. (a), (b) Examples of a complete graph with fully con-
nected edges. (c) An example of a noncomplete graph which
nevertheless satisfies the connectivity condition. (d) The ground state
of the U = ∞ SU (3) Hubbard model in the presence of a single
hole on a tetrahedron with uniform ti j = t and V̂ = 0 in Eq. (1).
Magenta trimers denote SU (3) flavor singlets, i.e., three fermions
with complete flavor antisymmetry, and circles denote the location of
the hole. The signs associated with the many-body states appearing
in |�0〉 are defined implicitly in Eq. (5).

moving a hole around the triangular loop induces a transpo-
sition (1 2) and moving it around the largest, length (N + 1),
loop induces the N cycle (1, 2, . . . , N ). These two permuta-
tions, together with hopping operations, generate SN+1. More
generally, Theorem 2 of Ref. [32] provides the sufficient con-
dition for the connectivity condition.

Proof of the Lemma: Any two basis states in the flavor-
balanced subspace, |σ 〉 and |τ 〉, have a nonzero hopping
matrix element only when they differ by one transposi-
tion involving a hole: σ−1(0) = τ−1(a) and τ−1(0) = σ−1(a)
for some flavor a, and σ−1(k) = τ−1(k) for k �= 0, a. Let
σ−1(0) = i and τ−1(0) = j. Any such nonzero off-diagonal
matrix element is negative:

〈σ |T̂i j |τ 〉 = −ti j < 0. (6)

Also, the interaction term V ({ni}) only contributes to diagonal
matrix elements. Therefore, the Perron-Frobenius theorem en-
sures that there exists a unique ground state |�0〉 which is a
positive superposition of all the basis states (Aσ > 0):

|�0〉 =
∑

σ∈SN+1

Aσ |σ 〉. (7)

Since this state has a nonzero overlap with a flavor-singlet
state |i, FS〉, it must be a flavor-singlet state [if it were instead
a superposition of multiple irreps of SU (N ), then it is possi-
ble to construct degenerate ground states, in contradiction to
the uniqueness of the ground state]. Therefore, it is possible
to rewrite Eq. (7) as a positive superposition (A(i) > 0) of
|i, FS〉:

|�0〉 =
∑

i

A(i)|i, FS〉. (8)

See Fig. 1(d) for the illustration of such a state. �

III. SU (N) FLAVOR-SINGLETS IN A SUBGRAPH TREE

It is now straightforward to generalize the previous result
to a “subgraph tree” constructed as follows. Starting from an
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FIG. 2. (a), (b) Examples of subgraph tree. In (a), sites are num-
bered in the way specified in the main text above Eq. (9). (c) The
ground state in the single hole sector of the U = ∞ SU (3) Hub-
bard [Theorem] and certain t-J models [Corollary 2] is a positive
(A(i) > 0) superposition of the SU (3) flavor-singlet covering states.

(N + 1)-site subgraph that satisfies the connectivity condition,
we attach other (N + 1)-site subgraphs to some (or all) of the
vertices of the initial subgraph, in such a way that it does not
create any other cycles (loops of length l � 3 in which only
the first and the last vertices are equal) than those contained
within each subgraph. This generates depth 1 tree of (N + 1)-
site subgraph. Continuing this n times will generate a depth
n subgraph tree, which has the property that all the cycles of
the graph are contained within each subgraph. Let NSG be the
number of subgraphs constituting such a subgraph tree. The
number of sites in such a graph is NNSG + 1. Figures 2(a)
and 2(b) are examples of such graphs. We will consider the
Hamiltonian (1) on such a graph in the presence of a single
hole.

The advantage of such a subgraph tree is that there is an
SU (N ) symmetry associated with each subgraph, as can be
seen as follows [37]. First, a many-body basis can be con-
structed by locating the site of the hole i, and then specifying
the flavor configuration on the rest of the sites. Once the
hole location is specified, it is easy to see that there is a
unique N-mer covering of the lattice [see Fig. 2(c) for the
illustration of such a covering]. In any step in which the
hole hops to a neighboring site, one N-mer is moved, but
in such a way that it remains inside the initial (N + 1)-site
subgraph in which it was contained. Thus, we can label the
N-mers uniquely by a subgraph index s = 1, ..., NSG, and the
total flavor SU (N ) symmetry is preserved for N fermions
contained in each s N-mer. That is, there exists SU (N )NSG =
SU (N ) ⊗ SU (N ) ⊗ · · · ⊗ SU (N ) symmetry.

Thanks to such SU (N )NSG symmetry, it is enough
to consider a subspace that is flavor balanced in each
s N-mer. Any other states in the Hilbert space can be
reached by repeated applications of raising and lowering

operators on each s N-mer. (see Appendix B for the
expression of those raising/lowering operators). We now
construct a many-body basis restricted in such a flavor-
balanced subspace analogously to Eqs. (3) and (4). We
first occupy a hole at a particular location (call it i = 0),
which will define a unique N-mer covering as discussed
above. For each s N-mer, we label the sites contained in it
by i = (s − 1)N + 1, (s − 1)N + 2, · · · , sN [see Fig. 2(a)
for the illustration of such a site numbering scheme along
with subgraph indices s] and occupy it with fermions with
flavors a = 1, · · · , N, respectively. This defines one basis
state

|0, (1, ..., N ), (1, ..., N ), ..., (1, ..., N )〉
≡ c0,0c†

0,0(c†
1,1c†

2,2 · · · c†
N,N )(c†

N+1,1 · · · c†
2N,N )

× · · · × (
c†

N ·(NSG−1)+1,1 · · · c†
N ·NSG,N

)|∅〉, (9)

where again, the ghost flavor index a = 0 is introduced for
convenience in c0,0. Using the fact that fermions in different
N-mers do not exchange one another due to the restricted
dynamics of a hole, we might as well treat them as dis-
tinguishable and rename a flavor index a in s N-mer to be
(s − 1)N + a. Hence, the basis state (9) can be denoted by

|0, 1, ..., N, N + 1..., ..., N · NSG〉
≡ c0,0c†

0,0(c†
1,1c†

2,2 · · · c†
N,N )(c†

N+1,N+1 · · · c†
2N,2N )

× · · · × (
c†

N (NSG−1)+1,N (NSG−1)+1 · · · c†
NNSG,NNSG

)|∅〉.
(10)

From this state, any other basis state that is flavor balanced
for each s N-mer can be reached by repeated applications
of hopping operators T̂i j . There are (NNSG + 1)(N!)NSG dif-
ferent such (orthonormal) basis states. Each such basis state
has a permutation operator σ ∈ SNNSG+1 associated with it
defined as a relative flavor configuration from the initial one
in Eq. (10): if site i is occupied by the flavor a, then σ (i) ≡ a.
(We emphasize that flavor indices are renamed to have values
a = 0, 1, ..., NNSG). Let P be the collection of all such per-
mutations σ . We define the basis states {|σ 〉 : σ ∈ P} with a
particular sign structure analogous to Eq. (4):

|σ 〉 ≡ |σ (0), ..., σ (NNSG)〉 ≡ (−1)isgn(σ )c†
0,σ (0)c

†
1,σ (1)

× · · · × c†
i−1,σ (i−1)c

†
i+1,σ (i+1) · · · c†

NNSG,σ (NNSG )|∅〉
= sgn(σ )ci,0c†

0,σ (0)c
†
1,σ (1) · · · c†

NNSG,σ (NNSG )|∅〉, (11)

where we again assumed that the ith site is occupied by a
hole, i.e., σ (i) = 0. The sign structure again allows us to
write the SU (N ) flavor-singlet covering (FSC) state, the state
with an SU (N ) flavor-singlet on every N-mer, as a uniform
superposition of the basis states that have their hole at site i:

|i, FSC〉 ≡ |i, FS1, · · · , FSNSG〉

= 1√
(N!)NSG

∑
σ∈P

σ (i)=0

|σ (0), σ (1), ..., σ (NNSG)〉. (12)

The following theorem is the main result of our paper.
Theorem: The ground state of the Hamiltonian (1) on a

“subgraph tree” in the single hole sector is unique and is a
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positive [A(i) > 0] superposition of the SU (N ) flavor-singlet
covering (FSC) states [38]:

|�0〉 =
∑

i

A(i)|i, FSC〉 (13)

[See Fig. 2(c) for an illustration of this state].
Proof of the Theorem: It is straightforward to show that

any nonzero off-diagonal element of the Hamiltonian matrix is
negative, 〈σ |T̂i j |τ 〉 = −ti j < 0, as in Eq. (6). Also, since any
basis state |σ 〉 can be reached from one another by repeated
applications of T̂i j , one concludes from the Perron-Frobenius
theorem that the ground state is unique and is a positive
(Aσ > 0) superposition of all the basis states

|�0〉 =
∑
σ∈P

Aσ |σ 〉. (14)

This has a positive overlap with a flavor-singlet covering state
|i, FSC〉, and hence N fermions in every N-mer must be a
flavor singlet. Hence, |�0〉 can be rewritten as a superposition
of flavor-singlet covering states as in Eq. (13). �

In Fig. 3 of Appendix A, we show the result of the fi-
nite size exact diagonalization study on the SU (3) U = ∞
Hubbard model on the four-tetrahedron geometry. The result
agrees with the Theorem.

IV. SU (N) t-J MODEL

Now we generalize the previous results to the SU (N ) t-J
model. In the presence of a finite but large U (�t) term,
U
2

∑
i n̂i(n̂i − 1), one can obtain the SU (N ) t-J model from

the SU (N ) Hubbard model by projecting out the states with
multiply occupied sites [39–41]:

Ĥt-J = Ĥ +
∑
〈i, j〉

Ji j

(
λ̂i · λ̂ j − N − 1

2N
n̂in̂ j

)

−
∑
〈i, j,k〉

∑
1�a<b�N

Ki jk�̂
ab†
jk �̂ab

i j + O

(
t3

U 2

)

≡ Ĥ +
∑
〈i, j〉

Ĵi j +
∑
〈i, j,k〉

K̂i jk + O

(
t3

U 2

)
. (15)

Here Ĥ is the Hamiltonian for the U = ∞ Hubbard model (1),
Ji j = 4t2

i j/U and Ki jk = 2ti jt jk/U , 〈i, j, k〉 denotes the triplet
of sites such that j is a nearest neighbor to i and k, and �̂ab

i j ≡
1√
2
(ci,ac j,b − ci,bc j,a) is the annihilation operator of a flavor-

antisymmetric state on a bond 〈i, j〉. λ̂i = (λ̂(1)
i , ..., λ̂

(N2−1)
i )

denotes (N2 − 1) generators of the SU (N ) group at site i with
the normalization Tr(λ(r)

i λ
(r′ )
j ) = 1

2δr,r′δi, j [42]. The Heisen-
berg operator can be rewritten in terms of a flavor-permutation
operator P̂i j as Ji j (λ̂i · λ̂ j − N−1

2N n̂in̂ j ) = 1
2 Ji j (P̂i j − 1̂)n̂in̂ j . In

the last line, we defined Ĵi j ≡ Ji j (λ̂i · λ̂ j − N−1
2N n̂in̂ j ) and

K̂i jk ≡ Ki jk
∑

1�a<b�N �̂
ab†
jk �̂ab

i j . The following two corollar-
ies generalize the Lemma and the Theorem to certain t-J
models.

Corollary 1: Let us define Ĥt-J on an (N + 1)-site graph
that satisfies the connectivity condition. Ji j � 0 and Ki jk � 0
do not have to be related to one another and can be arbitrary
independent parameters. Then, the ground state of Ĥt-J in the

presence of a single hole is unique and is a positive superpo-
sition of flavor-singlet states (8) as in the Lemma.

Corollary 2: For Ĥt-J defined on a subgraph tree, let Ji j =
Js � 0 be uniform within each subgraph and connect any two
sites within it. Also, let Ki jk � 0 terms act only on three
sites 〈i, j, k〉 fully contained within a subgraph. Again, Ji j

and Ki jk can be independent parameters, except for the above
constraints. Then, the ground state of Ĥt-J in the presence
of a single hole is unique and is a positive superposition of
flavor-singlet covering states (13) as in the Theorem [43].

Proof of Corollary 1: For a single hole problem in an
(N + 1)-site graph, the total SU (N ) symmetry is intact even
in the presence of Ĵ and K̂ terms, and one can work in the
flavor-balanced basis (4). Again, it is then sufficient to show
that all the nonzero off-diagonal matrix elements are negative.
In particular, for σ �= τ , 〈σ |Ĵi j |τ 〉 is nonzero only when σ and
τ differ by one transposition between occupied sites: σ (i) =
τ ( j) �= 0, σ ( j) = τ (i) �= 0, and σ (k) = τ (k) for k �= i, j. In
such a case, one obtains

〈σ |Ĵi j |τ 〉 = −Ji j/2 < 0. (16)

Similarly, any nonzero off-diagonal element of K̂i jk is
negative:

〈σ |K̂i jk|τ 〉 = −Ki jk/2 < 0. (17)

This completes the proof. �
Proof of Corollary 2: For a subgraph tree, consider first the

case when Ĵ = 0. When Ki jk are nonzero only for triplets of
sites 〈i, j, k〉 fully contained in a subgraph, SU (N )NSG symme-
try is intact. Thus, one can still work in the flavor-balanced ba-
sis (11) and the same proof as in the Theorem can be applied.

When Ĵ �= 0, the SU (N )NSG symmetry is lost. However,
for the special case where Ji j = Js is uniform within each
subgraph and connects any two sites within it, one can rewrite
the Heisenberg term as [density-density interactions in Ĵ can
be absorbed in V̂ term in Eq. (1)]:

∑
〈i, j〉

Ji j λ̂i · λ̂ j =
NSG∑
s=1

Js

2

⎡
⎣

(
N+1∑
i=1

λ̂(s,i)

)2

−
N+1∑
i=1

λ̂
2
(s,i)

⎤
⎦. (18)

Here (s, i) denotes the site i = 1, 2, ..., N + 1 in a subgraph s.
This Heisenberg operator takes the lowest possible eigenvalue
for the flavor-singlet covering states (12):

∑
〈k,l〉

Jkl λ̂k · λ̂l |i, FSC〉 = −N2 − 1

4

NSG∑
s=1

Js|i, FSC〉. (19)

This means that the ground state of Ĥt-J is still in the flavor-
singlet covering subspace spanned by states (12) and is of the
form Eq. (13) with positive A(i) > 0. �

V. DISCUSSION

Our result demonstrates the fundamental importance of the
sign of the hopping matrix elements ti j on a kinetic mag-
netism of the Hubbard model, which in turn manifests as a
particle-hole asymmetry in the magnetic phase diagram. More
precisely, in the usual SU (2) Hubbard model, the particle-hole
transformation ci,σ → c†

i,σ , with σ =↑,↓, maps the single
doublon problem to the single hole problem with the opposite
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sign of ti j [4]. This implies that for a bipartite lattice—where
the sign of ti j can be changed by a gauge transformation—the
phase diagram is particle-hole symmetric around half-filling.
On the other hand, for a nonbipartite lattice the phase diagram
exhibits a particle-hole asymmetry. For example, the single
hole dynamics in the triangular lattice U = ∞ Hubbard model
leads to a 120◦ antiferromagnetic ordering [16,17], whereas
the single doublon problem satisfies the Nagaoka theorem and
leads to a fully polarized ferromagnet (except for one singlet
for a doublon). Performing such a particle-hole transformation
to the SU (N ) Hubbard model, one maps a single hole problem
at 1/N filling to a single N-on (N fermions at a site) problem at
(N − 1)/N filling with the opposite sign of ti j . Since (N − 1)
fermions at the same site must be completely flavor anti-
symmetric, such N − 1 electrons form a complex conjugate
representation N̄ of the fundamental representation. Hence,
we see that with the usual sign of the hopping ti j > 0, while
the Nagaoka ferromagnetic state appears for a single fermion
doping of the (N − 1)/N filled Mott insulator, a single hole
doping at 1/N filling generically induces antiferromagnetism.

We note that in a more realistic nonbipartite lattice (e.g., a
triangular or pyrochlore lattice), it is likely that the hopping
operators T̂ and exchange interactions Ĵ (or singlet hopping
terms K̂) favor different local magnetic correlations. In such a
case, the hole can only delocalize in a finite number of sites,
leading to the formation of an RVB polaron.

Going from such a single RVB/RFS polaron problem to
a multipolaron (or multihole) problem requires yet another
technical development, but we can speculate on possible
outcomes (apart from a trivial phase separation scenario).
First, it is possible to have a broken-SU (N )-symmetry phase
with a long-range flavor-antiferromagnetic order when fla-
vor singlets are supported over a sufficiently long distance
[16–18,44]. When SU (N ) flavorsinglets are supported on suf-
ficiently short distances, one can have a flavor-disordered
phase with topological order [45–49]. The flavor-disordered
state with a broken translation symmetry corresponds to
various topologically ordered crystalline phases [50,51]. Fi-
nally, it is possible to have various exotic liquid phases
with a topological character such as a ZN topologically or-
dered Fermi liquid (FL* phase) [52] or high-temperature
superconductivity.
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FIG. 3. Ground state and several first excited states of
SU (3) U = ∞ Hubbard model on the four-tetrahedron geometry.
The horizontal axis denotes the Young diagram corresponding to
the irrep of the SU (3) group of the trimer (shown in gray) in the
specified subgraph s. The three first excited states shown are the ones
that have adjoint representation in s = 2, 3, 4 trimer, respectively;
trimers in the subgraphs that are not specified are SU (3) singlets.
FSC is the sector which has SU (3) singlet on every trimer. The
ground state is of the form Eq. (13) and has the same energy as
the noninteracting problem with the same hopping matrix elements,
EGS = −4.1326383.

APPENDIX A: EXACT DIAGONALIZATION RESULT

In order to demonstrate the result of our main Theorem,
we performed exact diagonalization calculation on the
SU (3) U = ∞ Hubbard model in the single-hole sector on a
four-tetrahedron geometry as shown in Fig. 3 (13 sites; shown
in the inset). Hopping matrix elements are set to ti j = 1 for
all bonds. The ground state is the positive superposition of
SU (3) flavor-singlet covering states, consistent with the result
of the Theorem.

APPENDIX B: RAISING AND LOWERING OPERATORS

The local SU (N ) symmetry on each subgraph of the U =
∞ SU (N ) Hubbard model in the single-hole sector allows
one to define raising and lowering operators on each s N-
mer. Such operators for the SU (2) case in terms of fermionic
operators can be written as follows:

Ŝ
±
s =

∑
i∈V1

ĥi

⎛
⎝ ∏

j /∈{i,2,3}
n̂ j

⎞
⎠Ŝ±

(23)

+
∑
i∈V2

ĥi

⎛
⎝ ∏

j /∈{i,1,3}
n̂ j

⎞
⎠Ŝ±

(31) +
∑
i∈V3

ĥi

⎛
⎝ ∏

j /∈{i,1,2}
n̂ j

⎞
⎠Ŝ±

(12).

(B1)

Here ĥi = 1 − n̂i is the hole number operator at site i and
Ŝ±

(i j) is the raising/lowering operator of the total spin of two
fermions at sites i and j.V1,2,3 are the set of sites defined in

Fig. 4. The operator Ŝ
±
s is defined for every s = 1, ..., NSG. In

the single hole sector, it is straightforward to show that they
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FIG. 4. One can classify sites according to the index of a branch
stemming from sth subgraph. Green, blue, and magenta sites are in
the first, second, and third branches of the s subgraph. The set of
all sites contained in each branch can be denoted by V1, V2, and V3.
V1 ∪ V2 ∪ V3 is the set of all sites in the graph.

commute with the hopping operators and number operators,
and hence, with the Hamiltonian Ĥ (1) of the main text

P̂N̂h=1[Ŝ
±
s , T̂i j]P̂N̂h=1 = 0,

P̂N̂h=1[Ŝ
±
s , n̂i]P̂N̂h=1 = 0,

P̂N̂h=1[Ŝ
±
s , Ĥ ]P̂N̂h=1 = 0 ∀s. (B2)

Here, P̂N̂h=1 is the projection to the single hole sector and T̂i j is
the electron hopping operator defined in the main text: T̂i j ≡
−ti j

∑N
a=1(c†

i,ac j,a + H.c.). Note that “local” raising/lowering

operators Ŝ
±
s become nonlocal in terms of fermion operators.

APPENDIX C: DERIVATION OF EQ. (19)

Here, we show that the smallest eigenvalue of the following
operator defined for each subgraph is −N2−1

2 when the number
of electrons is N or N + 1:

(
N+1∑
i=1

λ̂i

)2

−
N+1∑
i=1

(λ̂i )
2. (C1)

λ̂i ≡ ∑N
a,b=1 c†

i,a[λi]a,bci,b are SU (N ) generators in the fun-
damental representation in terms of fermion operators with
normalization Tr(λ(r)

i λ
(r′ )
j ) = 1

2δr,r′δi, j . First, when the num-
ber of fermions is N + 1, every site of the subgraph is
occupied, so (λ̂i )2 = N2−1

2N · 1̂. Also, the Casimir operator has
the smallest eigenvalue when N of the fermions form a singlet
[i.e., when N + 1 fermions form a fundamental representation

of
∑N+1

i=1 λ̂i], so that (
∑N+1

i=1 λ̂i )2 = N2−1
2N · 1̂. In such a case,

(
∑N+1

i=1 λ̂i )2 − ∑N+1
i=1 (λ̂i )2 = −N2−1

2 · 1̂.
On the other hand, when the number of fermions is N ,

(
∑N+1

i=1 λ̂i )2 has the smallest eigenvalue, zero, when they
form an SU (N ) singlet. Again, this implies (

∑N+1
i=1 λ̂i )2 −∑N+1

i=1 (λ̂i )2 = −N2−1
2 · 1̂.
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