
PHYSICAL REVIEW RESEARCH 6, 013303 (2024)

Photon condensation, Van Vleck paramagnetism, and chiral cavities

Alberto Mercurio ,1,* Gian Marcello Andolina ,2,* Francesco M. D. Pellegrino ,3,4,5,* Omar Di Stefano ,1

Pablo Jarillo-Herrero,6 Claudia Felser,7 Frank H. L. Koppens,2,8 Salvatore Savasta,1 and Marco Polini9,10,2

1Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
2ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3,

08860 Castelldefels (Barcelona), Spain
3Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy

4INFN, Sez. Catania, I-95123 Catania, Italy
5CNR-IMM, Via S. Sofia 64, I-95123 Catania, Italy

6Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
7Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden 01187, Germany

8ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys 23, 08010 Barcelona, Spain
9Dipartimento di Fisica dell’Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

10Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy

(Received 23 March 2023; revised 21 February 2024; accepted 22 February 2024; published 19 March 2024)

We introduce a gauge-invariant model of planar, square molecules coupled to a quantized spatially varying
cavity electromagnetic vector potential Â(r). Specifically, we choose a temporally chiral cavity hosting a uniform
magnetic field B̂, as this is the simplest instance in which a transverse spatially varying Â(r) is at play. We show
that when the molecules are in the Van Vleck paramagnetic regime, an equilibrium quantum phase transition to
a photon condensate state occurs.
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I. INTRODUCTION

Basic quantum statistical mechanics dictates that free
massless photons, despite being bosonic particles, cannot con-
dense into a single macroscopic state [1]. However, when
photons are confined to a cavity [2–6] and coupled to matter
degrees of freedom (such as excitons), condensation into a
single quantum state can occur [7]. In this article, we are
interested in the ground state of a photon condensate [8–10],
i.e., a state containing a macroscopically large number of
coherent photons, i.e., 〈â〉 ∝ √

N , where â (â†) destroys (cre-
ates) a cavity photon. This phase transition is forbidden by
gauge invariance when the vector potential Â describing the
electromagnetic properties of the cavity is spatially uniform
[11–24].

Recent studies, however, have shown that when itinerant
electron systems are coupled in a gauge-invariant fashion to
a transverse spatially varying electromagnetic vector poten-
tial Â(r), equilibrium photon condensation may occur as a
magnetostatic instability [25–29]. Key to this phenomenon is
the orbital paramagnetic character of the electronic system.
Orbital paramagnetism, i.e., a positive sign of the orbital
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magnetic susceptibility, is a rather rare phenomenon in na-
ture, as diamagnetism tends to dominate [1,30]. Nevertheless,
itinerant electron systems may display orbital paramagnetism
[31–36].

On a seemingly disconnected path, the impact of vac-
uum cavity fields on the chemical and physical properties
of molecules has been demonstrated [37–40]. A great deal
of interest emerged after seminal experiments unveiled how
photochemical reaction rates can be modified within cavities
[41,42]. This blooming field is nowadays known as polari-
tonic chemistry [40]. Fundamental theoretical work in this
field [18,22,43–46] is carried out in the framework of the elec-
trical dipole approximation, whereby molecular transitions
couple solely with the cavity electric field, thereby neglect-
ing magnetic effects. The need to transcend the electrical
dipole approximation in polaritonic chemistry is beginning to
emerge. For example, the authors of Ref. [47] go beyond it to
distinguish between two enantiomers in chiral cavities.

The key question we try to answer in this article is the
following: Can photon condensation—which, so far, has been
studied only in itinerant electron systems [25–27]—occur in
the realm of polaritonic chemistry? In this article, we show
that incorporating the effects of magnetic coupling, photon
condensation can occur in a system of molecules, which does
not display extended Bloch states and an itinerant charac-
ter. Two conditions need to be satisfied. On the one hand,
one needs to work with a molecular system whose orbital
response displays paramagnetic character. To this end, we ex-
ploit a genuinely quantum mechanical mechanism leading to
orbital paramagnetism in a molecular system, which is often
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dubbed “Van Vleck paramagnetism” [48]. This mechanism
guarantees a paramagnetic orbital response provided that the
molecule has a doublet of quasidegenerate levels. On the other
hand, one needs to confine these Van Vleck molecules to a
cavity where a transverse spatially varying A(r) is at play.
Since a spatially varying A leads to a finite magnetic field
B(r) = ∇r × A(r), the simplest cavity one can consider is a
cavity hosting a uniform B field. Our cavity falls into the
category of chiral cavities [49] with chirality of temporal
(rather than structural) character.

II. MODEL

We consider a single, spinless electron [50] hopping be-
tween the ns sites of a planar plaquette, such as a square or
triangular plaquette, lying in the x̂-ŷ plane.(Here, x̂, ŷ, and ẑ
are unit vectors in the x, y, and z directions, respectively.) This
system will be considered as a toy model of a “molecule”
since the plaquette contains a small number of sites (ns = 4
below) and the electron roaming in the plaquette is therefore
far away from the lattice regime where electronic Bloch bands
emerge.

We then consider a system of N such molecules described
by the following electronic Hamiltonian, Ĥe = ∑N

k=1 ĥe,k ,
where

ĥe,k = −
ns−1∑
j=0

(t j, j+1ĉ†
j,k ĉ j+1,k + H.c.) (1)

is the single-molecule Hamiltonian. Here, ĉ†
j,k (ĉ j,k) creates

(destroys) an electron on the jth site of the kth plaquette,
t j, j+1 = δ j,0t ′ + (1 − δ j,0)t is the tunneling amplitude be-
tween neighboring sites of a plaquette, and

t ′ = τe−i�, (2)

where τ ∈ [−t, t] (with t > 0 is assumed to be real, with-
out any loss of generality) and � ∈ [0, π [ are the tunneling
“intensity” and phase, respectively. We emphasize that we
have taken t ′ 	= t to simulate different physical conditions.
For � 	= 0 (� ∈]0, π [, yielding therefore Im[t ′] 	= 0), the
electronic Hamiltonian is not invariant under time-reversal
symmetry (TRS), and the plaquette supports a circulating
ground-state current. Viceversa, when � = 0 the system is
invariant under TRS and no ground-state currents flow. As
discussed in Appendix C, Hamiltonians like the one in Eq. (1),
which break TRS, can be physically obtained by applying an
external, classical magnetic field along the ẑ direction. Note
that, counterintuitively, also the particular case � = 0 and
t ′ = −t (which respects TRS) can be obtained by applying
a particular classical transverse static magnetic field Bcl to
a system of square molecules that, in the absence of such
field, have four identical hopping parameters t j, j+1 = t ∀ j, as
detailed in Appendix C. Note that, despite the presence of Bcl,
the Hamiltonian in this case respects TRS. This occurs for
a special magnetic field, Bcl = ±Bπ ẑ, with Bπ = cπ/(eAp).
Consider, indeed, the case in which one is in the presence of
Bcl = ±Bπ ẑ. In both cases, it is easy to check that one gets
� = 0 and t ′ = −t . Now, applying TRS has the net result of
changing the classical field from Bcl into −Bcl = ∓Bπ ẑ. We

conclude that at the fields Bcl = ±Bπ ẑ one gets a Hamiltonian
that is invariant under TRS.

We now couple the molecular system to a single-mode
cavity with a nonvanishing magnetic field oriented along the
z direction. The dynamics of the total system is governed by
the following Hamiltonian:

Ĥ = ωcâ†â−
∑
k, j

(t j, j+1e−iθ j, j+1 ĉ†
j,k ĉ j+1,k + H.c.), (3)

where ωc is the cavity photon energy (h̄ = 1), and the Peierls
phase θ j, j+1 = (−e/c)

∫ r j+1

r j
A(r) · d2r is necessary to mini-

mally couple the matter degrees of freedom living on the
plaquette to the cavity field [50]. Here, for the sake of sim-
plicity, we consider a system composed of planar plaquettes
with all the same orientation, so that the tunneling coefficients
are independent of the specific k molecule. In principle, a
system of molecules with the same orientation can be realized
by growing a molecular crystal (see, e.g., Ref. [51]).

In the symmetric gauge, the vector potential of the single
photon mode is A(r) = −Byx̂/2 + Bxŷ/2, with ∇r × A(r) =
B = Bẑ. Quantization of the cavity field is carried out in the
usual manner by promoting B from a c-number to a bosonic
quantum operator B → B0(â + â†), where â† (â) creates (de-
stroys) a cavity photon. The final Hamiltonian describing
light-matter interactions in the cavity is

Ĥ = ωcâ†â−
∑
k, j

[
t j, j+1e−iλ(â+â† )/

√
N ĉ†

j,k ĉ j+1,k + H.c.
]
, (4)

where λ = −2π [	/(	0ns)]
√

N is a dimensionless light-
matter coupling constant, which is proportional to the ratio
between the magnetic flux 	 ≡ B0Ap piercing the plaquette
of area Ap and the flux quantum 	0 = 2πc/e. For example,
for a square plaquette (ns = 4) of side d , Ap = d2. Note that
(i) in the thermodynamic N → ∞ limit, λ is independent of
N , since B0 scales as ∼1/

√
N to make sure that the magnetic

field B = B0(â + â†) is an intensive quantity (i.e., it does not
scale with N); (ii) the physical flux is 	̂ = 	(â + â†). The
Peierls phase introduced in Eq. (4) is necessary to satisfy
the gauge principle in the presence of magnetic fields and,
more in general, in any theory beyond the electrical dipole
approximation [24,52,53]; (iii) For spinless fermions, TRS
operates as a complex conjugation on electronic operators.
For photonic operators, TRS changes the sign, i.e., â → −â,
to reverse the direction of the magnetic field. If all hopping
terms t j, j+1 are real, then the total Hamiltonian given in Eq. (4)
is invariant under TRS.

III. MEAN-FIELD THEORY AND PHOTON
CONDENSATION CRITERION

To the end of studying the possible emergence of photon
condensation, we approximate the ground state of Ĥ as a
product state of the form |
〉 = |ψ〉|φ〉, where |ψ〉 and |φ〉 are
the matter and light quantum states [54–58], respectively. In
the thermodynamic limit, the photonic state can be considered
a coherent state â|φα〉 = α

√
N |φα〉. Photon condensation oc-

curs when the photonic order parameter α ≡ 〈φα|â|φα〉/√N
acquires a nonzero value in the thermodynamic limit. From
now on, we will take α ∈ R, without loss of generality. We
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hasten to emphasize that our order parameter α is not plagued
by any gauge ambiguity [59] since it physically corresponds to
the magnetic flux—defined as the expectation value of 	̂ over
the ground state |φα〉, i.e., 2α	

√
N = 〈φα|	̂|φα〉—which is

measurable, e.g., via SQUID or NV-center magnetometry
[60,61].

We now consider the following mean-field matter Hamil-
tonian, describing only the electronic degrees of freedom:

ĤMF(α)

N
≡ 〈φα|Ĥ|φα〉

N
= ωcα

2 + 1

N

N∑
k=1

ĥe,k (α), (5)

where

ĥe,k (α) = −
ns−1∑
j=0

(t j, j+1e−i2λα ĉ†
j,k ĉ j+1,k + H.c.). (6)

Notice that ĥe,k (0) coincides with the single-molecule Hamil-
tonian ĥe,k in the absence of cavity, which has been defined
above in Eq. (1). The quantity ĤMF(α)/N in Eq. (5) can be
interpreted as an effective mean-field matter Hamiltonian per
molecule.

We denote by the symbol |ϕl (α)〉k and εl (α), with l =
0, 1, 2, . . . , ns − 1, the eigenstates and the corresponding
eigenvalues of the Hamiltonian ĥe,k (α): ĥe,k (α)|ϕl (α)〉k =
εl (α)|ϕl (α)〉k . The spectrum of ĥe,k (α) does not depend on
k since all molecules are identical.

A generic many-body eigenstate of the effective Hamil-
tonian ĤMF(α)/N can be written as [62] |ψn(α)〉 =∏N

k=1 |ϕlk,n (α)〉k . Here, lk,n is a discrete index that spec-
ifies which single-particle state is occupied for the kth
molecule and n = 0, 1, 2, . . . , nN

s − 1 is an integer. In partic-
ular, the many-body ground state (i.e., lk,0 = 0 ∀k) is given
by |ψ0(α)〉 = ∏N

k=1 |ϕ0(α)〉k . Finally, we introduce the energy
per molecule ε̄n(α) = ∑N

k=1 εlk,n (α)/N . The ground-state en-
ergy is ε̄0(α) = ε0(α). We emphasize that the quantities ε̄n(α)
and εl (α) do not include the electromagnetic energy ωcα

2.
At the onset of the phase transition, α is a small parameter

and the mean-field Hamiltonian can be therefore expanded in
a power series of α, retaining only terms up to O(α2). Using
the magnetization operator derived in Appendix B,

M̂z(α) = − λ

B0

√
N

∑
k, j

(it j, j+1e−i2λα ĉ†
j,k ĉ j+1,k + H.c.), (7)

we get

ĤMF(α)

N
= ωcα

2 + Ĥ0 + M̂p(0)α + 1

2
M̂d (0)α2, (8)

where Ĥ0 = Ĥe/N , and we have introduced the paramag-
netic M̂p(α) = ∑N

k=1 ∂α ĥe,k (α)/N = −2B0M̂z(α)/
√

N and
diamagnetic M̂d (α) = ∂αM̂p(α) contributions to the mag-
netic moment operator. We emphasize that since B0 ∼ 1/

√
N

and M̂z(α) ∼ N , both M̂p(α) and M̂d (α) are intensive quan-
tities. In Appendix B we show that M̂p(α) is proportional to
the paramagnetic current operator.

As detailed in Appendix D, the conditions for photon con-
densation to take place can be divided in two classes:

(i) If matter, decoupled from light, displays a nonzero para-
magnetic magnetization, 〈ψ0(0)|M̂p(0)|ψ0(0)〉 	= 0—where

|ψ0(0)〉 is the ground state of Ĥ0 with eigenvalue ε̄0(0)—
then the coupled light-matter system is always in a photon
condensate state for any value of the light-matter coupling
λ, and the real ground-state energy shift is linear in α.
The physical reason for this phenomenon is that, since
〈ψ0(0)|M̂p(0)|ψ0(0)〉 	= 0, the matter ground state |ψ0(0)〉
carries a persistent current, which, in turn, creates a nonzero
magnetic field in the cavity. This self-generated field corre-
sponding to a finite photonic displacement is the manifestation
of photon condensation. Persistent ground-state currents in
our planar molecules can be obtained, for example, by apply-
ing an external classical magnetic field, which yields a finite
� (see Appendix C), explicitly breaking TRS. From now on,
we will focus only on � = 0;

(ii) Conversely, as further discussed in Appendix D, if there
are no circulating currents in the uncoupled matter system,
i.e., if � = 0 and 〈ψ0(0)|M̂p(0)|ψ0(0)〉 = 0, then photon
condensation occurs if and only if

χM � ωc, (9)

where χM = −〈ψ0(0)|M̂d (0)|ψ0(0)〉/2 − χp(0)/2 is
the magnetic susceptibility, and χp(0) = −2

∑
n 	=0 |

〈ψn(0)|M̂p(0)|ψ0(0)〉|2/[ε̄n(0) − ε̄0(0)] is the static
paramagnetic susceptibility. The above expression for χM

reveals a link with Van Vleck paramagnetism, as further
discussed in Appendix E. When two states are degenerate,
i.e., ε̄1(0) → ε̄0(0), the magnetic susceptibility tends to +∞,
automatically satisfying the photon condensation criterion.

Equation (9) is the most important result of this article.
Despite being derived for a toy-model molecular Hamiltonian,
we believe that its range of validity is much more ample.
For example, the inclusion of electron-electron interactions is
not expected to modify Eq. (9) but to dramatically alter the
dependence of χM on the microscopic molecular parameters.
Also, the actual details of the cavity will certainly matter
but deviations from our toy-model temporally chiral cavity
hosting a spatially uniform fluctuating B field can be easily
encoded in the right-hand side of the inequality (9), changing
ωc into a more complicated electromagnetic form factor. Our
criterion (9) provides guidance in the experimental search for
photon condensation in polaritonic chemistry [40], emphasiz-
ing that the quest for this exotic state of matter should focus
on the combination between molecular systems with a positive
orbital magnetic susceptibility χM and chiral cavities.

IV. VARIATIONAL THEORY OF THE PHOTON
CONDENSATE STATE

The perturbative approach for α � 1 described so far
served only to reach the criterion (9) for photon condensation.
If one is interested in the actual calculation of the order param-
eter α and the spectra ε̄l of the coupled light-molecular system
as functions of the microscopic parameters of the model, then
a nonperturbative approach is needed. To this end, we fix the
parameter α by imposing that the optimal value α̃ yields a
minimum of the mean-field ground-state energy functional
E (α) ≡ 〈ψ0(α)|ĤMF(α)|ψ0(α)〉/N . Hence, we determine α̃

by imposing that ∂αE (α)|α=α̃ = 0:

∂αE (α)|α=α̃ = 2ωcα̃ + 〈ψ0(α̃)|M̂p(α̃)|ψ0(α̃)〉 = 0. (10)
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(a) (b)

FIG. 1. (a) Pictorial representation of the setup where many pla-
nar square molecules interact with a cavity’s single-mode, quantized
magnetic field, B̂. The field is perpendicular to the molecular plane.
Due to the small spatial extension of the molecule cloud compared
to the field’s wavelength, the magnetic field is assumed constant and
the electric field negligible. Note that, in each molecule, one of the
hopping integrals (yellow) is different from the other three ones.
(b) Phase diagram of the model. Results in this figure have been
obtained by setting with t = ωc and λ = 0.3. The photon condensate
order parameter α̃ (color scale) is plotted as a function of the two
microscopic parameters τ ∈ [−t, t] and � ∈ [0, π [.

The solution of Eq. (10) not only determines whether the
system is in a normal (α̃ = 0) or photon condensate (α̃ 	= 0)
phase but also yields α̃ as a function of the microscopic
parameters τ , �, and λ. If � = 0, then the photon condensate
state (α̃ 	= 0) spontaneously breaks TRS due the appearance
of a finite magnetic field and circulating currents. Conversely,
in the case � 	= 0, the system is not invariant under TRS to
begin with. Results for α̃ as a function of τ/ωc and � for
λ = 0.3 have been reported in Fig. 1.

Figure 2(a) shows the molecular spectra εl (α̃) as functions
of τ/ωc. The dashed lines describe the molecular spectra in
the absence of cavity (i.e., for λ = 0), while the solid lines de-

(a)

(b)

FIG. 2. Photon condensation of molecules in a chiral cavity. Re-
sults obtained by setting � = 0, λ = 0.3, and t = ωc. (a) Eigenvalues
εl (α̃) of the single-molecule Hamiltonian ĥe,k plotted as functions
of τ/ωc. Solid lines denote results for λ = 0.3. Dashed lines denote
results in the absence of the cavity. The vertical dotted line marks
the critical value of τ at which a transition to a photon condensate
state occurs. (b) The photon condensate order parameter α̃ is plotted
as a function of τ . When τ reaches a critical value, α̃ becomes finite,
signaling a quantum phase transition to a photon condensate state.

scribe the case of a finite light-matter coupling (λ = 0.3). The
vertical dotted line marks the critical value of τ beyond which
a transition to a photon condensate state occurs. We clearly
see that at this value of τ the spectra are largely affected by
the cavity. Figure 2(b) shows the order parameter α̃ (solid blue
line) and the orbital magnetic susceptibility χM (red dashed
line) as functions of τ/ωc. In agreement with Eq. (9), photon
condensation (i.e., α̃ 	= 0) occurs when χM/ωc > 1. Diamag-
netism (paramagnetism) corresponds to χM < 0 (χM > 0).
Note that χp(0) → −∞ (therefore yielding χM → +∞) due
to the degeneracy ε1(0) = ε0(0) shown in Fig. 2(a) (see blue
and orange dashed lines at τ = −ωc).

V. POLARITONS

Measuring directly the molecular spectrum εl (α̃) in the
presence of the cavity is of course possible but challenging.
Light-matter interactions yield also polaritons, i.e., hybrid
light-matter collective modes, which can be measured in a
variety of ways, including scanning probe methods [4,63–
65]. To find polaritons in our system, we need to study Gaus-
sian fluctuations around the mean-field state described by the
Hamiltonian (5). To this aim, we write the photon opera-
tors as â → α̃

√
N + δâ, where δâ describes a zero-average

fluctuation around the mean-field solution α̃
√

N , which has
been described above. We then introduce the collective “bright
mode” creation operator [66–71],

b̂†
l ≡ 1√

N

N∑
k=1

ϕ̂
†
l,kϕ̂0,k, (11)

with l > 0, where ϕ̂
†
l,k (ϕ̂0,k) creates (destroys) an electron in

the eigenstate |ϕl (α̃)〉k (|ϕ0(α̃)〉k). The bright mode collective
operator creates an electron-hole transition with a finite elec-
trical dipole moment by annihilating an electron in the ground
state of each molecule and creating an electron in an excited
state l > 0 with energy εl (α̃). The associate transition energy
is εl (α̃) − ε0(α̃). In the thermodynamic N → ∞, b̂†

l behaves
as a quasibosonic operator [66–71], i.e., [b̂m, b̂†

l ] ≈ δm,l . Fur-
ther details are given in Appendix F.

Hence, in the thermodynamic limit, and expanding the
shifted Hamiltonian up to the second order in the photonic
fluctuations δâ and in the bright mode bosonic operators b†

l ,
we can write an approximate polaritonic Hamiltonian Ĥpol,
describing the lowest excited states of the coupled cavity-
molecular system:

Ĥpol = ωcδâ†δâ +
ns−1∑
l=1

[εl (α̃) − ε0(α̃)]b̂†
l b̂l

+1

2
(δâ + δâ†)

ns−1∑
l=1

[
Ml,0

p (α̃)b̂†
l + M0,l

p (α̃)b̂l
]

+1

8
M0,0

d (α̃)(δâ + δâ†)2, (12)

where Ml,m
γ (α̃) = ∑N

k=1 k〈ϕl (α̃)|M̂γ (α̃)|ϕm(α̃)〉k with

γ = p, d . Note that M0,0
p (α̃) = 〈ψ0(α̃)|M̂p(α̃)|ψ0(α̃)〉 and

M0,0
d (α̃) = 〈ψ0(α̃)|M̂d (α̃)|ψ0(α̃)〉. Finally, the polariton

frequencies can be derived by diagonalizing the Hopfield
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FIG. 3. Polariton softening at finite λ. Results in this figure have
been obtained by setting with � = 0, τ = −0.5ωc, and t = ωc. The
four polariton energies �p are plotted as functions of λ. The most
important feature of this panel is the softening of the lowest polariton
mode, which occurs at the quantum phase transition to a photon
condensate state.

matrix �, i.e., the matrix that represents the quadratic
polaritonic Hamiltonian in Eq. (12). Further details are
reported in Appendix F.

Figure 3 shows the four polariton frequencies �p as func-
tions of λ and for a fixed value of τ . We clearly see that,
at λ = λc, the lowest polariton mode softens, signaling that
the transition to a photon condensate state is a second-order
quantum phase transition. When λ exceeds a critical value λc,
α̃ increases from zero to a finite value. Physically, this means
that at λ > λc, a magnetic flux appears spontaneously.

The physics discussed so far does not require large val-
ues of the light-matter coupling λ. Although reaching the
ultrastrong coupling regime [39,40,72,73] is possible in a
variety of condensed matter and quantum chemistry setups,
it is highly desirable to have toy models and realistic sys-
tems where photon condensation occurs in the weak-coupling
λ → 0 limit. In Appendix F, we show that our model displays
such a pleasant feature, provided that one chooses τ = −ωc.
Indeed, for photon condensation to occur is more important
to hunt for molecular systems with a large value of χM > 0
and design cavities with a suitable electromagnetic vacuum
structure so that χM/ωc > 1 rather than achieving ultrastrong
coupling.

In summary, we have shown that photon condensation can
occur also in molecular systems (and not only in extended
electronic systems [25–27]) provided that magnetic effects
beyond the electrical dipole approximation are taken into
account. The recipe for achieving it is encoded in the sim-
ple and elegant criterion we derived in Eq. (9). One needs
to find molecules with a large and positive orbital magnetic
susceptibility χM and place them in cavities hosting a sig-
nificant magnetic component of the electromagnetic field. To
grasp the essential physics, we have deliberately analyzed, for
the sake of simplicity, single-electron toy-model molecules
placed inside a temporally chiral cavity with a uniform mag-
netic field. We hope that our results will stimulate future work
on real molecules loaded into more complex chiral cavities
[49], which can be studied with recently developed ab ini-
tio numerical approaches [43]. Finally, ultrastrong magnetic
coupling between magnons and a planar superconducting res-
onator [74] has been recently demonstrated [51]. This could
be a promising platform to test our findings. Results similar to

ours, which show the importance of a cavity with a significant
magnetic component, have been also found in a two-leg ladder
model: see Ref. [75].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ELECTRONIC HAMILTONIAN

A (single) molecule is composed by mutually interact-
ing electrons and nuclei. Their Hamiltonian Ĥ includes
their respective kinetic energies and all Coulomb interac-
tions among them (electron-electron, electron-nucleus, and
nucleus-nucleus). In the nonrelativistic limit, this Hamiltonian
reads

Ĥ = T̂N + Ĥe(R) + V̂NN, (A1)

where

T̂N = −
Z∑

I=1

P̂
2
I

2MI
, V̂NN = 1

2

Z∑
I 	=J

ZI ZJe2

|RI − RJ | ,

Ĥe(R) = −
N∑

i=1

p̂2
i

2m
+ 1

2

N∑
i 	= j

e2

|ri − r j | −
N∑

i=1

Z∑
I=1

ZI e2

|ri − RI | .
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In these equations, ri ( p̂i) and RI (P̂I ) are the position
(momentum) of the ith electron and the Ith ion, respectively.

Given the large difference in mass between electrons and
nuclei, MI � m, the dynamics of electrons in a molecule is
substantially faster than that of the nuclei. Due to this sep-
aration of time scale, we can invoke the Born-Oppenheimer
approximation, which assumes that the nuclear motion and
the electronic motion can be decoupled and, therefore, the
total wave function of the system 
(r, R) is assumed to be
a product of an electronic wave function ψ (r; R), which de-
pends on the nuclear positions, and a nuclear wave function
χ (R), 
(r, R) = χ (R)ψ (r; R).

Within this approximation, when we deal with electrons
we can ignore the motion of the nuclei, and assume that
they see a fixed arrangement of charge. Hence, the electronic
wave function satisfies the resulting electronic Schrödinger
equation:

Ĥe(R)ψ (r; R) = Ee(R)ψ (r; R), (A2)

where Ee(R) is the electronic energy corresponding to a given
nuclear configuration R. The function ψ (r; R) can be thought
of as the ground-state solution of the electronic Schrödinger
equation for fixed nuclear positions. In this expression, the
electronic Hamiltonian Ĥe(R) is only parametrically depen-
dent on the static nuclear configuration defined by R, which
can be treated as classical parameters.

Last, we project the electronic Hamiltonian Ĥe(R) on a
basis of localized wave functions to get a simplified tight
binding Hamiltonian. Given Ĥe(R), we can project it onto the
localized basis | j〉 by computing the matrix elements of Ĥe(R)
in this basis:

Hj, j′ = 〈 j|Ĥe(R)| j′〉. (A3)

Here, Hj, j′ represents the matrix element of the electronic
Hamiltonian Ĥe(R) projected on localized states |n〉 and |m〉.
If the states | j〉 and | j′〉 are well-localized, then Hj, j′ would
be zero for most pairs ( j, j′), leading to a sparse Hamiltonian
matrix—a key feature of tight-binding models.

In general, the elements Hj, j′ will generally include terms
related to the onsite energy of a particle in state | j〉, and terms
related to the hopping of a particle from state | j〉 to state | j′〉.
Hence, we obtain a tight-binding Hamiltonian in real space
for electrons:

Ĥ ≈
∑

j

ε j | j〉〈 j| −
∑
j 	= j′

t j, j′ | j〉〈 j| + H.c. (A4)

Here ε j is the onsite energy of an electron on site j, t j, j′ is
the hopping amplitude for an electron to move from the site
j′ to site j. Both ε j and t j, j′ can be determined by computing
the appropriate matrix elements of the original Hamiltonian,
as mentioned above. In what follows, we assume ε j = 0.

In second quantization, we can rewrite Eq. (A4) as

Ĥ ≈ −
∑
j 	= j′

t j, j′ ĉ
†
j ĉ j′ + H.c., (A5)

where ĉ†
j and ĉ j are the creation and annihilation operators for

an electron at site j, respectively. Equation (1) of the main text
is a particular instance of Eq. (A5), providing the addition of
a further index k to denote different molecules.

APPENDIX B: DERIVATION OF THE MAGNETIZATION
AND CURRENT OPERATORS

In this Appendix, we derive the explicit form of the magne-
tization operator for electrons hopping in a single “molecule”
in a second-quantized fashion. The position operator r̂k , as-
sociated with the kth molecule, can be written in terms of
electron creation and annihilation operators, ĉ†

j,k and ĉ j,k , for
an electron roaming on a polygon with ns sides:

r̂k =
ns−1∑
j=0

r j ĉ
†
j,k ĉ j,k . (B1)

Here, r j = dr[cos(γ j ), sin(γ j )]T is the position of the jth site
measured from the center of the molecule, dr is the distance
of the site from the center and γ j = 2π j/ns is the angle
subtended between the position vector of the first site and the
one of the jth site. The magnetic moment of a single molecule
is defined in terms of the position operator as [76]

M̂k = 1

2
r̂k ×

(
−e

c
˙̂rk

)
. (B2)

We use the Heisenberg equation of motion to find an expres-
sion for the velocity operator ˙̂rk ,

˙̂rk = i[Ĥ, r̂k]. (B3)

Replacing this result in the definition of the magnetic moment
[Eq. (B2)] we get

M̂k = −e

c

i

2
r̂k × [Ĥ, r̂k]. (B4)

We now consider the magnetic moment along the ez direction,
M̂z,k , and we use the explicit form of the total Hamiltonian Ĥ
in Eq. (B4). We find

M̂z,k = − λ

B0

√
N

×
ns−1∑
j=0

[
it j, j+1e−i λ√

N
(â+â† )ĉ†

j,k ĉ j+1,k + H.c.
]
. (B5)

In the presence of N identical molecules, the total magnetiza-
tion operator is expressed as

M̂z =
N∑

k=1

M̂z,k . (B6)

In the mean-field approach described in the main text, we
can trace out the photonic degrees of freedom by projecting
the total magnetization onto a coherent state |φα〉, i.e., onto a
state such that â|φα〉 = α

√
N |φα〉. In the thermodynamic limit

(N → ∞), this mean-field procedure reduces to the following
formal replacement â → α

√
N . In this limit, the total magne-

tization operator becomes

M̂z(α) =
N∑

k=1

M̂z,k (α), (B7)
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where

M̂z,k (α) = − λ

B0

√
N

ns−1∑
j=0

(it j, j+1e−i2λα ĉ†
j,k ĉ j+1,k + H.c.).

(B8)

To map this operator into a more familiar object with the
physical dimensions of a magnetic moment, it is necessary
to introduce an effective mass meff for our electrons hopping
through the lattice sites: meff = 1/(2|t |Ap), where Ap is the
area of a plaquette and t is the hopping parameter that we
have introduced in the main text. For instance, for a square
plaquette of side d (ns = 4), the effective mass is meff =
1/(2|t |d2). Introducing the effective mass into the definition
of the magnetization operator we find

M̂z(α) = − e

2meffc

∑
k, j

(
−i

t j, j+1

ns|t | e−i2λα ĉ†
j,k ĉ j+1,k + H.c.

)
,

(B9)

where the prefactor has the natural form of a magnetic mo-
ment e/(2meff c).

The total current operator Ĵ can be derived by starting
from a discretized form of the continuity equation for the
density operator. The local density n̂ j,k ≡ ĉ†

j,k ĉ j,k obeys the
Heisenberg equation of motion

˙̂n j,k = i[Ĥ, n̂ j,k]. (B10)

By comparing this equation to the following discretized con-
tinuity equation,

˙̂n j,k = − 1

d
(Ĵ j,k − Ĵ j−1,k ), (B11)

where Ĵ j,k is the current flowing from site j to site j + 1 and
d is the lattice spacing, we obtain the following expression for
the local current,

Ĵ j,k = d (−it j, j+1e−iλ(â+â† )/
√

N ĉ†
j+1,k ĉ j,k+H.c). (B12)

The total current Ĵ is the sum of all local terms, i.e., Ĵ =∑
k, j Ĵ j,k , and is given by

Ĵ = d
∑
k, j

(−it j, j+1e−iλ(â+â† )/
√

N ĉ†
j+1,k ĉ j,k + H.c). (B13)

As usual, in the mean-field approximation, we replace â →
α
√

N obtaining a current operator acting only on the matter
degrees of freedom:

Ĵ (α) = d
∑
k, j

(−it j, j+1e−i2λα ĉ†
j+1,k ĉ j,k + H.c). (B14)

As expected, the current operator Ĵ (α) and the magnetization
operator M̂z(α) in Eq. (B9) are directly proportional to each
other. Specifically, M̂z(α) = −(e/c)Ĵ (α)[Ap/(nsd )].

APPENDIX C: THE EFFECT OF AN EXTERNAL
CLASSIC FIELD

As we have seen in the main text, the orbital magnetic
response changes sign when τ < 0, i.e., when one of the
hopping parameters in the single-molecule Hamiltonian (1)

has a different sign with respect to the others (we remind
the reader that t > 0). We now explain how one can achieve
this frustrated condition on the hoppings by considering the
action of an external classical magnetic field. Starting from
the mean-field Hamiltonian [cf. Eq. (5) in the main text],

ĤMF(α)

N
= 〈φα|Ĥ|φα〉

N
= ωcα

2 + 1

N

N∑
k=1

ĥe,k (α),

ĥe,k (α) = −
ns−1∑
j=0

(e−i2λαt j, j+1ĉ†
j,k ĉ j+1,k + H.c.),

and considering the special case in which all the hopping
parameters are equal to t > 0 but for t0,1 = e−i�t , we see that
the matter Hamiltonian reduces to

ĥe,k (α) = −
ns−1∑
j=1

(te−i2λα ĉ†
j,k ĉ j+1,k + H.c.)

−(te−i�e−i2λα ĉ†
0,k ĉ1,k + H.c.). (C1)

By applying the unitary transformation ĉ0,k → e−i�ĉ0,k and
ĉ j,k → e−i�( j/ns )ĉ j,k for j 	= 0, we get

ĥe,k (α) = −
ns−1∑
j=0

(te−i�/ns e−i2λα ĉ†
j,k ĉ j+1,k + H.c.). (C2)

This suggests that a classical magnetic field Bcl = Bclez with
Bcl = −c�/(eAp) can be used to change the sign of one of
the hopping parameters, thereby paving the way for orbital
paramagnetism in our toy model and the occurrence of photon
condensation.

The phase � in (C1) can be straightforwardly obtained
by applying the Peierls substitution which describes the or-
bital effect of Bcl. Using the vector potential in Landau
gauge A(r) = (0, Bclx, 0)T which generates the static mag-
netic field Bcl, in a square plaquette with the four sites located
at (0, 0)T , (a, 0)T , (0, a)T , and (a, a)T , one finds that the
phase of the link between the sites j and j = +1, θ j, j+1 =
(−e/c)

∫ r j+1

r j
A(r) · d2r, is not zero only for the link that con-

nects (a, 0)T and (a, a)T .
The Hamiltonian in Eq. (C2) can be diagonalized by per-

forming a discrete Fourier transformation (DFT) on the index
j of the creation and annihilation operators. Let us denote the
transformed operators as ĉq,k , which is a function of momen-
tum q and molecule index k. The DFT will be as follows:

ĉ j,k = 1√
ns

∑
q

ei2π jq/ns ĉq,k, (C3)

and its Hermitian conjugate

ĉ†
j,k = 1√

ns

∑
q

e−i2π jq/ns ĉ†
q,k . (C4)

For a system with ns sites, the allowed momentum states
are given by q = 0, 1, 2, ..., ns − 1. Substituting the DFT of
ĉ j,k and ĉ†

j,k into the Hamiltonian ĥe,k (α), and performing the
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sum over j leads to

ĥe,k (α) = −2t
∑

q

cos (�/ns + 2λα + 2πq/ns )ĉ†
q,k ĉq,k .

(C5)

The ground state of this Hamiltonian, when it contains a
single electron, is denoted by ĉ†

q̃,k|0〉, where q̃ denotes the mo-
mentum corresponding to the lowest energy. In this notation,
|0〉 represents the vacuum state, the state in which there are no
electrons.

The energy of this ground state is given by ε0(α) =
minq[−2t cos(�/ns + 2λα + 2πq/ns )]. The total energy of
the system, E (α), is calculated by summing the electronic
energy and the energy of the cavity, expressed as E (α) =
ε0(α) + ωcα

2. The minimum total energy is found by setting
the derivative of the total energy with respect to α to zero, at
α = α̃, leading to the following condition:

2ωcα̃ + dε0(α)

dα

∣∣∣
α=α̃

= 0. (C6)

An important observation is that, when � = 0, α̃ = 0 is the
only solution. This means that if all the hopping parameters
are taken to be equal, the phenomenon of photon condensation
does not occur in this model.

APPENDIX D: CONDENSATION CRITERIA

In this Appendix, we derive a general criterion to study
the onset of photon condensation. Here, we will consider
the energy functional E [α,ψ] ≡ 〈ψ |ĤMF(α)|ψ〉/N as a func-
tion of the photonic order parameter α and an arbitrary
trial wave function |ψ〉. By analyzing the function E (α) =
minψE [α,ψ] = 〈ψ0(α)|ĤMF(α)|ψ0(α)〉/N , the appearance
of a finite order parameter α̃ corresponds to the instability of
the normal ground state, E (α) � E (0). Since we are interested
only in the onset of the phase transition, in this derivation we
retain only terms up to second order in α.

First of all, we remind the reader that ε̄n(0) and |ψn(0)〉 are
the eigenvalues and eigenvectors of the operator Ĥ0 ≡ Ĥe/N
[see Eq. (8) in the main text].

Now we expand the energy functional E [α,ψ] up to
the second order in α. Hence, we can consistently ap-
proximate the diamagnetic magnetization with the one in
absence of light, 〈ψ |M̂d (0)|ψ〉 ≈ 〈ψ0(0)|M̂d (0)|ψ0(0)〉 =
M0,0

d (0). Up to the second order in α the energy functional
reads

E [α,ψ] = �α2 + 〈ψ |Ĥ0|ψ〉 + 〈ψ |M̂p(0)|ψ〉α, (D1)

where � ≡ ωc + M0,0
d (0)/2. By minimizing with respect to

ψ we get E (α) ≡ minψE [α,ψ]. Hence, we need to calculate

E (α) = �α2 + minψ {〈ψ |(Ĥ0 + M̂p(0)α)|ψ〉}, (D2)

Using second-order perturbation theory we obtain

minψ {〈ψ |(Ĥ0 + M̂p(0)α)|ψ〉}

= ε̄0(0) + χp(0)

2
α2 + M0,0

p (0)α, (D3)

where

M0,0
p (0) ≡ 〈ψ0|M̂p(0)|ψ0〉, (D4)

χp(0) ≡ −2
∑
n 	=0

|〈ψn|M̂p(0)|ψ0〉|2
ε̄n(0) − ε̄0(0)

� 0. (D5)

At this point, there are two different cases to distinguish:
(i) the normal ground-state paramagnetic moment is zero,
M0,0

p (0) = 0 or (ii) the normal phase has a finite paramagnetic
character M0,0

p (0) 	= 0. In case (i), Eq. (D3) reads

E (α) = ε̄0(0) +
(

� + χp(0)

2

)
α2. (D6)

It is possible to define the magnetic susceptibility χM as the
concavity of the molecular energy ε̄0(α)

χM ≡ −1

2
∂2
αε̄0(α)|α=0. (D7)

To calculate χM it is useful to notice that ε̄0(α) = E (α) −
ωcα

2 . By comparing Eq. (D6) with Eq. (D7), we establish
a relation between the magnetic susceptibility χM and the
following microscopic quantities:

−χM + ωc =
(

� + χp(0)

2

)
, (D8)

or equivalently −χM = M0,0
d (0)/2 + χp(0)/2. Hence, the cri-

terion for the occurrence of photon condensation E (α) � E (0)
is given by

χM � ωc. (D9)

Now, we focus on case (ii), where M0,0
p (0) 	= 0. Equa-

tion (D2) can be expressed at the linear order in α as

E (α) = ε̄0(0) + M0,0
p (0)α. (D10)

In this case, it is always possible to find a ᾱ such that E (ᾱ) �
E (0) by choosing ᾱ to have a different sign with respect
to M0,0

p (0). In this case, the system is always unstable and
displays photon condensation. M0,0

p (0) can be different from
zero if an additional classic field is introduced. Figure 1(b)
reproduces both conditions (D9) and (D10) in the case of an
ensemble of squared rings, varying one hopping parameter
and the external classic field.

APPENDIX E: MICROSCOPIC THEORY
OF VAN VLECK PARAMAGNETISM

In this Appendix, we briefly remind the reader about the
microscopic theory of Van Vleck paramagnetism.

We consider a generic many-electron Hamiltonian of the
form

Ĥ0 =
∑

k

[ p̂2
k

2m
+ V (r̂k )

]
+ 1

2

∑
k 	=k′

v(r̂k − r̂′
k ), (E1)

where m is the electronic mass, p̂k is the momentum of the
k− electron, V (r) is a external potential and v(r̂k − r̂′

k ) is the
electron-electron interaction. The coupling to a uniform mag-
netic field B is made as customary via the minimal coupling
substitution, i.e., p̂k → p̂k + (e/c)A(rk ).

013303-8



PHOTON CONDENSATION, VAN VLECK PARAMAGNETISM, … PHYSICAL REVIEW RESEARCH 6, 013303 (2024)

In the symmetric gauge, the vector potential can be ex-
pressed as follows:

A(r) = 1
2 Bêz × r, (E2)

where B = Bez is the magnetic field. Notice that the
symmetric-gauge vector potential obeys also the Coulomb
condition, i.e., ∇ · A(r) = 0. Carrying out the minimal
coupling in the symmetric gauge, we find the following
Hamiltonian of the many-electron systems coupled to a uni-
form external magnetic field B:

Ĥ = Ĥ0 + e

2mc
B · L̂ + e2

8mc2
B2

N∑
k=1

|r̂k|2, (E3)

where L̂ = ∑N
k=1(r̂k × p̂k ) is the (paramagnetic) angular mo-

mentum operator and the last term is the magnetostatic energy.
Note that, accordingly to the main text, we have neglected the
Zeeman coupling.

The magnetization M̂ is related to the angular momentum
and magnetic field by the following relation:

M̂ ≡ − ei

2c

N∑
k=1

r̂k × [H, r̂k]

= − e

2mc
L̂ − e2

2mc2

N∑
k=1

r̂k × A(rk )

= − e

2mc
L̂ − e2B

4mc2

(
N∑

k=1

|r̂k|2
)

ẑ

≡ M̂ p + M̂d , (E4)

where the first (second) term is the paramagnetic (diamag-
netic) contribution.

To find the orbital magnetic susceptibility, we need to study
the energy variation under the applied magnetic field. This
splits into two terms: �E = �EP + �ED. Introducing the
exact eigenstates and eigenvalues of the Hamiltonian Ĥ0, we
find

�ED ≡ e2

8mc2
B2〈ψ0|

N∑
k=1

|r̂k|2|ψ0〉

= −1

2
〈ψ0|M̂d,z|ψ0〉B2, (E5)

where M̂d,z is the ez component of the vector M̂d and

�EP ≡
( e

2mc

)2 ∑
n 	=0

|〈ψn|B · L̂|ψ0〉|2
En − E0

=
∑
n 	=0

|〈ψn|B · M̂ p|ψ0〉|2
En − E0

. (E6)

�EB is the magnetic contribution, while by construction
�ED > 0 and �EP < 0, i.e., they are a diamagnetic and a
paramagnetic contribution, respectively. If the first excited
state n = 1 is nearly degenerate with the ground state E1 −
E0 ≈ 0, then the paramagnetic contribution is dominant and
the system has a paramagnetic response (known as Van Vleck
paramagnetism).

The paramagnetic contribution can be recast as �EP =
−(1/2)χpB2, where χp is the magnetization response func-
tion,

χp ≡ −2
∑
n 	=0

|〈ψn|ẑ · M̂ p|ψ0〉|2
En − E0

, (E7)

= −2
( e

2mc

)2 ∑
n 	=0

|〈ψn|ẑ · L̂|ψ0〉|2
En − E0

. (E8)

Thus, orbital paramagnetism is governed by the angular
momentum-angular momentum response function. From the
expression for the response function in Eq. (E8), it can be seen
that nonzero orbital paramagnetic response occurs only if the
system does not have rotational invariance around the ẑ axis.
Indeed, if [Ĥ0, ẑ · L̂] = 0, then one can choose a common
eigenstate basis of the energy and the angular momentum
projection ẑ · L and the matrix element 〈ψ0|ẑ · L̂|ψn〉 vanishes,
precluding the presence of Van Vleck paramagnetism in rota-
tionally invariant systems, such as closed shell atoms.

APPENDIX F: BOSONIZATION AND POLARITONS

To study the polaritonic properties of our coupled light-
matter system, we start from Eq. (4). First of all, as stated
in the main text, we shift the cavity photon operators, â =
α
√

N + δâ, where δâ describes zero-average fluctuations
around the mean-field solution α

√
N . Hence, in the thermo-

dynamic limit, and expanding the shifted Hamiltonian up to
second order in the fluctuations δâ, we find the following
Hamiltonian:

Ĥ = ωc[δâ†δâ + α
√

N (δâ + δâ†) + α2N]

+
N∑

k=1

ĥe,k (α) +
√

N

2
M̂p(α)(δâ + δâ†)

+1

8
M̂d (α)(δâ + δâ†)2. (F1)

It is now useful to introduce fermionic operators, ϕ̂l,k

and ϕ̂
†
l,k , that destroy and create an electron in the energy

eigenstate |ϕl (α)〉k of the Hamiltonian ĥe,k (α), defined in
Eq. (6) of the main-text, i.e., ĥe,k (α)|ϕl (α)〉k = εl (α)|ϕl (α)〉k .
Notice that ϕ̂l,k depends on the photonic mean-field α and
we dropped that explicit dependence for the ease of read-
ability. Here, the eigenvalues εl (α) are k-independent, since
all molecules are identical. Expressing Ĥ in terms of the
operators ϕ̂l,k , we obtain

Ĥ = ωc[δâ†δâ + α
√

N (δâ + δâ†) + α2N]

+
ns−1∑
l=0

εl (α)
N∑

k=1

ϕ̂
†
l,kϕ̂l,k

+ 1

2
√

N
(δâ + δâ†)

ns−1∑
l,m=0

Ml,m
p (α)

N∑
k=1

ϕ̂
†
l,kϕ̂m,k

+ 1

8N
(δâ + δâ†)2

ns−1∑
l,m=0

Ml,m
d (α)

N∑
k=1

ϕ̂
†
l,kϕ̂m,k, (F2)
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where

Ml,m
p (α) =

N∑
k=1

k〈ϕl (α)|M̂p(α)|ϕm(α)〉k

= − 2B0√
N

N∑
k=1

k〈ϕl (α)|M̂z,k (α)|ϕm(α)〉k (F3)

and

Ml,m
d (α) =

N∑
k=1

k〈ϕl (α)|M̂d (α)|ϕm(α)〉k

= − 2B0√
N

N∑
k=1

k〈ϕl (α)|∂αM̂z,k (α)|ϕm(α)〉k . (F4)

In writing Eq. (F2) we used that the matrix elements
k〈ϕl (α)|M̂z,k (α)|ϕm(α)〉k and k〈ϕl (α)|∂αM̂z,k (α)|ϕm(α)〉k are
independent of the k index. Making use of the collective
notation

�̂l,m ≡
∑

k

ϕ̂
†
l,kϕ̂m,k, (F5)

the Hamiltonian takes a more compact form

Ĥ = ωc[δâ†δâ + α
√

N (δâ + δâ†) + α2N]

+
ns−1∑
l=0

εl (α)�̂l,l + 1

2
√

N
(â + â†)

ns−1∑
l,m=0

[
Ml,m

p (α)�̂l,m
]

+ 1

8N
(â + â†)2

ns−1∑
l,m=0

[
Ml,m

d (α)�̂l,m
]
. (F6)

By following Ref. [77], we focus on the symmetric Hilbert
subspace, which is spanned by the occupation number states
defined as

|n0, m1, · · · , pns−1〉

= 1√
n!m! · · · p!

∑
perm

|ϕ0(α)〉1 · · ·

|ϕ0(α)〉n|ϕ1(α)〉n+1 · · · |ϕ1(α)〉n+m . . .

|ϕns−1(α)〉N−p+1 · · · |ϕns−1(α)〉N , (F7)

which means that n molecules have a single electron that
occupies the state |ϕ0(α)〉, m molecules have a single electron
that occupies the state |ϕ1(α)〉, . . ., and p molecules have a
single electron that occupies the state |ϕns−1(α)〉, such that
N = n + m + . . . + p. By applying an occupation number
state on collective operators defined in Eq. (F5), we find the
following properties

�̂l,l ′ |nl , ml ′ , . . .〉 =
√

(n + 1)m

×|(n + 1)l , ml ′ − 1, . . .〉, (F8)

�̂l,l |nl , ml ′ , . . .〉 = n|nl , ml ′ , . . .〉, (F9)

where l 	= l ′. Moreover, the collective operators fulfill the
commutator identity [�̂l,l ′ , �̂m,m′ ] = δl ′,m�̂l,m′ − δm′,l�̂m,l ′ .

Here, we introduce ns − 1 couple of bosonic creation and
annihilation operators b̂†

l and b̂l such that

b̂l |n0, ml , · · ·〉 = √
m|(n + 1)0, (m − 1)l , · · ·〉, (F10)

b̂†
l b̂l |n0, ml , · · ·〉 = m|n0, ml , · · ·〉, (F11)

where l = 1, . . . , ns − 1, and the mean-field ground state
|ψ0(α)〉 = |N0, 0, · · · , 0〉 = ∏N

k=1 |ϕ0(α)〉k , that corresponds
to all molecules with a single electron in the state |ϕ0(α)〉, acts
as the vacuum state for any b̂l . Creation operators b̂†

l applied
on the vacuum state |ψ0(α)〉 describe the collective matter
excitations, which represent the bright modes. By comparing
Eqs. (F8) and (F9) with Eqs. (F10) and (F11), we write the
collective operators in terms of the bosonic fields accordingly
to a multilevel Holstein-Primakoff transformation [77],

�̂0,0 = N −
∑
l>0

b̂†
l b̂l , (F12)

�̂l,0 = b̂†
l

√
N −

∑
l ′>0

b̂†
l ′ b̂l ′ , (F13)

�̂l,l ′ = b̂†
l b̂l ′ , (F14)

where l, l ′ > 0. In the proximity of the mean-field matter
ground state |ψ0(α)〉, namely for a small number of collective
matter excitations, one can approximate

�̂l,0 ≈
√

Nb̂†
l . (F15)

By using the matter collective bosonic fields b̂†
l and b̂l to

rewrite the Hamiltonian in Eq. (F6), and we get rid of all terms
beyond the second order in the (light and matter) bosonic
fields

Ĥ � ωcδâ†δâ + ωc

√
N

[
α + M0,0

p (α)

2ωc

]
(δâ + δâ†)

+Nωcα
2 + Nε0(α) +

ns−1∑
l=1

[εl (α) − ε0(α)]b̂†
l b̂l

+1

2
(δâ + δâ†)

ns−1∑
l=1

[
Ml,0

p (α)b̂†
l + M0,l

p (α)b̂l
]

+1

8
(δâ + δâ†)2M0,0

d (α), (F16)

This Hamiltonian still depends upon the mean-field dis-
placement α. To fix the value of α, we select the value
which nullifies the derivative of the energy functional E (α) =
〈ψ0(α)|ĤMF(α)|ψ0(α)〉/N with respect to α, i.e.,

dE (α)

dα
= 2ωcα + d ε̄0(α)

dα
. (F17)

By using the Hellmann–Feynman theorem to compute
(d ε̄0(α)/dα),

d ε̄0(α)

dα
= 1

N

N∑
k=1

〈ψ0(α)|dĥe,k (α)

dα
|ψ0(α)〉,

= 〈ψ0(α)|M̂p(α)|ψ0(α)〉 = M0,0
p (α), (F18)
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we can write a nonlinear equation to determine α̃:

dE (α)

dα

∣∣∣∣
α=α̃

= 2ωcα̃ + M0,0
p (α̃) = 0. (F19)

By imposing α = α̃, the linear terms in the bosonic operators
in Eq. (F16) vanish. We clearly see that Eq. (F19) coincides
with Eq. (10) in the main text.

Once we set α = α̃, the approximate Hamiltonian in
Eq. (F16) becomes a polaritonic Hamiltonian Ĥpol the low-
energy hybrid excitations (polaritons) on top of the mean-field
ground-state solution,

Ĥpol = ωcδâ†δâ +
ns−1∑
l=1

[εl (α̃) − ε0(α̃)]b̂†
l b̂l

+1

2
(δâ + δâ†)

ns−1∑
l=1

[
Ml,0

p (α̃)b̂†
l + M0,l

p (α̃)b̂l
]

+1

8
M0,0

d (α̃)(δâ + δâ†)2. (F20)

Polaritons are linear combinations of light and matter opera-
tors,

p̂ν = Xνδâ + Yνδâ† +
ns−1∑
l=1

(Wν,l b̂l + Zν,l b̂
†
l ). (F21)

Since the polariton is a proper bosonic excitation of the
system, the operator p̂ν fulfills the equation of motion of a

harmonic ladder operator

[Ĥpol, p̂ν] = −�p,ν p̂ν . (F22)

Since the polariton is a combination of â, â†, b̂l , b̂†
l , to cal-

culate Eq. (F22) we need the equations of motion for these
light and matter operators. These are given by the following
commutators:

[Ĥpol, δâ] = −ωcδâ − 1

4
M0,0

d (α̃)(δâ + δâ†)

−1

2

ns−1∑
l=1

(
Ml,0

p (α̃)b̂†
l + M0,l

p (α̃)b̂l
)
, (F23)

[Ĥpol, δâ†] = ωcδâ† + 1

4
M0,0

d (α̃)(δâ + δâ†)

+ 1

2

ns−1∑
l=1

(
Ml,0

p (α̃)b̂†
l + M0,l

p (α̃)b̂l
)
, (F24)

[Ĥpol, b̂l ] = −[εl (α̃) − ε0(α̃)]b̂l − 1

2
M0,l

p (α̃)(δâ + δâ†),

(F25)

[Ĥpol, b̂†
l ] = −[εl (α̃) − ε0(α̃)]b̂†

l + 1

2
Ml,0

p (α̃)(δâ + δâ†).

(F26)

By using these commutators and Eq. (F21), the equation of
motion expressed in Eq. (F22) can be mapped in the following
eigenvalue problem:

�vν = �p,νvν, (F27)

where vν = (Xν,Yν,W ν, Zν )T , and

� =

⎛
⎜⎜⎜⎜⎝

ωc + 1
4M

0,0
d (α̃) − 1

4M
0,0
d (α̃) g(α̃) −g∗(α̃)

1
4M

0,0
d (α̃) −ωc − 1

4M
0,0
d (α̃) g(α̃) −g∗(α̃)

g∗T (α̃) −g∗T (α̃) �(α̃) 0

gT (α̃) −gT (α̃) 0 −�(α̃)

⎞
⎟⎟⎟⎟⎠, (F28)

where g(α̃) = (1/2)[M1,0
p (α̃), . . . ,Mns−1,0

p (α̃)] and �(α̃) = diag[ε1(α̃) − ε0(α̃), . . . , εns−1(α̃) − ε0(α̃)].
Eigenvalues of the Hopfield matrix � can be determined by the roots of the determinant D(�p,ν )

D(�p,ν ) = Det(�p,ν1 − �) = 0. (F29)

The determinant D(�p,ν ) can be calculated by using the following algebraic property of the block matrices

Det

(
A B
C D

)
= Det(D)Det(A − BD−1C),

which leads to

D(�p,ν ) =
ns−1∏
l=1

{
�2

p,ν − [εl (α̃) − ε0(α̃)]2
}

× Det

(
ωc + [

1
4M

0,0
d (α̃) + 1

4χ (α̃)
p (�p,ν )

]− �p,ν −[ 1
4M

0,0
d (α̃) + 1

4χ (α̃)
p (�p,ν )

]
[

1
4M

0,0
d (α̃) + 1

4χ (α̃)
p (�p,ν )

] −ωc − [
1
4M

0,0
d (α̃) + 1

4χ (α̃)
p (�p,ν )

]− �p,ν

)
, (F30)

where

χ (α̃)
p (ω) = 2

ns−1∑
l=1

∣∣Ml,0
p (α̃)

∣∣2[εl (α̃) − ε0(α̃)]

ω2 − [εl (α̃) − ε0(α̃)]2
. (F31)

The static limit of χ (α̃)
p (ω) generalizes the static paramagnetic

susceptibility for a finite value of α̃, such that χ (0)
p (0) = χp(0),

where χp(0) has been defined in the main text as

χp(0) = −2
∑
n 	=0

|〈ψn(0)|M̂p(0)|ψ0(0)〉|2
ε̄n(0) − ε̄0(0)

. (F32)
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To verify this generalization, we note that the matrix element
〈ψn(0)|M̂p(0)|ψ0(0)〉 connects the mean-field many-body
ground state |ψ0(0)〉 with a mean-field many-body state
|ψn(0)〉 with only an excited molecule, namely the N-tuple
{l1,n, . . . , lk,n, . . . , lN,n} associated with the many-body ex-
cited state |ψn(0)〉 consists of N − 1 zeros and a single
nonzero element lk�,n = l�

n > 0.
Thus, the energy difference between the many-body ex-

cited state and the many-body ground state can be expressed
in terms of the single-particle energy difference between ex-
cited states and the ground state as ε̄n(0) − ε̄0(0) = [εl�n (0) −
ε0(0)]/N . Moreover, since we are dealing with N identical
molecules, there are N different excited states (with a single
excitation) associated with the gap ε̄n(0) − ε̄0(0). Thanks to
these remarks and by means of Eq. (F3), the static paramag-
netic susceptibility [in Eq. (F32)] can be expressed as

χp(0) = −2
ns−1∑
l=1

∣∣Ml,0
p (0)

∣∣2
[εl (0) − ε0(0)]

. (F33)

Comparing this expression with Eq. (F31) evaluated at ω = 0,
we conclude that

χ (0)
p (0) = χp(0). (F34)

With few algebraic manipulations, the determinant can be
expressed as

D(�p,ν ) =
ns−1∏
l=1

{
�2

p,ν − [εl (α̃) − ε0(α̃)]2
}{

�2
p,ν

− ωc

[
ωc +

(
1

2
M0,0

d (α̃) + 1

2
χ (α̃)

p (�p,ν )

)]}
.

(F35)

Hence, polaritonic eigenenergies are given by the following
nonlinear equation

�2
p,ν − ωc

{
ωc +

[
1

2
M0,0

d (α̃) + 1

2
χ (α̃)

p (�p,ν )

]}
= 0, (F36)

where we remind that χ (α̃)
p (�p,ν ) is a function of α̃. The

onset of the superradiant phase transition corresponds to a
softening of a polariton, i.e., a polariton with zero energy.

FIG. 4. Polariton softening at λ → 0. Results in this figure have
been obtained by setting with � = 0, τ = −ωc, and t = ωc. The four
polariton energies �p are plotted as functions of λ. Softening of the
lowest polariton mode occurs for λ → 0.

Equation (F36) for �p,ν = 0 reduces to

ωc + 1
2M

0,0
d (α̃) + 1

2χ (α̃)
p (0) = 0. (F37)

We note that for α̃ = 0, employing Eq. (F34), the previous
equation coincides with the instability criterion shown in
Eq. (D9).

In Fig. 4 we show the polariton eigenenergies, by di-
agonalizing the Hopfield matrix expressed in Eq. (F28). In
this figure, we illustrate the same quantities as in the ana-
log figure of the main text but for a larger value of τ , i.e.,
for τ = −ωc. In this case, polariton softening occurs in the
weak-coupling λ → 0 limit. The reason is easy to understand.
The criterion (D9) for the occurrence of photon condensation
in molecular systems we derived in this article depends on
the intrinsic orbital magnetic response χM of the molecular
system, i.e., on the dependence of χM on the microscopy of
the molecular Hamiltonian ĥe,k in the absence of light-matter
interactions. For τ = −ωc, the susceptibility χp(0) diverges
due to a zero in the denominator of a term in the sum given in
Eq. (D5). This divergence arises from the double degeneracy
of the ground state of the molecular system in the absence
of light-matter interactions, which results in ε̄1 − ε̄0 ≈ 0. Due
to the explicit structure of χM (see Eq. (D8)), an infinites-
imal λ is sufficient to achieve a large χM that satisfies the
criterion (D9).
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