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Photonic quantum metrology with variational quantum optical nonlinearities
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Photonic quantum metrology harnesses quantum states of light, such as NOON or twin-Fock states, to measure
unknown parameters beyond classical precision limits. Current protocols suffer from two severe limitations
that preclude their scalability: the exponential decrease in fidelities (or probabilities) when generating states
with large photon numbers due to gate errors and the increased sensitivity of such states to noise. Here, we
develop a deterministic protocol combining quantum optical nonlinearities and variational quantum algorithms
that provides a substantial improvement on both fronts. First, we show how the variational protocol can generate
metrologically relevant states with a small number of operations which do not significantly depend on photon
number, resulting in exponential improvements in fidelities when gate errors are considered. Second, we show
that such states offer a better robustness to noise compared to other states in the literature. Since our protocol
harnesses interactions already appearing in state-of-the-art setups, such as cavity QED, we expect that it will
lead to more scalable photonic quantum metrology in the near future.
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I. INTRODUCTION

Quantum metrology capitalizes on quantum resources to
improve measurement precision beyond classical limits [1–7].
Classically, the estimation error of an unknown parameter
ϕ using N probes is bound by the standard quantum limit
(SQL) �ϕ � 1/

√
N . However, entangled probes can offer a

quadratic improvement over the SQL, reaching the so-called
Heisenberg limit (HL) �ϕ = 1/N . In the photonic scenario
of phase estimation [8–11], quantum states of light such as
NOON [12] or twin-Fock states (TFS), i.e., the same Fock
state at each arm of a Mach-Zehnder interferometer (MZI)
[13], overcome the SQL (even reaching the HL in the case of
NOON states). Proof-of-principle experiments have already
shown the potential of this approach, but so far restricted
to up to five photons [14–16]. The underlying reason be-
hind such low numbers is that photonic quantum metrology
suffers from two limitations. (i) State-of-the-art methods to
generate metrologically relevant states involve a number of
operations [17–19] or interaction time [20,21] increasing with
the number of photons. This ultimately yields an exponential
fidelity decrease with photon number when gate errors are
considered. A way of improving fidelities consists in using
postselection [14,15,22–29], but at the price of vanishingly
small probabilities with a growing photon number. (ii) The
resource entangled states, such as NOON ones, suffer from an
increased sensitivity to noise, e.g., decoherence and photon
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loss in the channel, spoiling their quantum advantage even
if generated accurately. Thus innovative ideas are required to
scale photonic quantum metrology protocols beyond proof-of-
principle realizations.

Recently, variational quantum algorithms (VQAs) [30,31]
have emerged as a tool to make the best out of current quan-
tum hardware, which is noisy and thus can perform a limited
number of coherent operations. The key idea of these hybrid
algorithms is to use a classical optimizer to find the set of
parameters of a parametrized quantum circuit (PQC) imple-
mented on the hardware such that it minimizes a given cost
function. Recent works on spin systems have shown how these
VQAs can also be useful in the context of quantum metrology
[32–40], e.g., by using the quantum Fisher information (QFI)
[37–39] as cost function. However, in the photonic context this
potential of variational approaches for quantum metrology has
been scarcely explored and limited to either linear systems
[41,42] or PQCs with fixed nonlinearities [43].

In this work, we combine VQAs with state-of-the-art
quantum optical nonlinearities to design an algorithm that
overcomes the limitations of current protocols. In particular,
we consider two types of PQCs (the Ansätze) each formed by
two coupled cavity systems but featuring different types of
nonlinearities: the coupling to a two-level system that appears
in cavity QED and a Kerr-type one. Our method employs
the QFI as cost function to find the optimal parameters that
transform unentangled coherent states into states that approx-
imately saturate the HL. Importantly, we find that the number
of operations required is independent of the photon number
with both types of nonlinearities, which guarantees that the fi-
delity of the generated states will not decrease with the photon
number, unlike in existing protocols. For the two Ansätze, we
consider the impact of noise and show that the generated states
feature a larger robustness than NOON and TFS. In a second
step of the VQA, we consider photon number measurements
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FIG. 1. (a) Overview of the variational optimization protocol. Two identical coherent states |α〉 are the input of a variational quantum
algorithm (VQA) aimed at finding the optimal state for the estimation of a phase ϕ. This consists of a quantum part including a parametrized
quantum circuit (PQC) described by a unitary UP, a Mach-Zehnder interferometer (MZI) encoding the phase difference between its two arms,
and (optionally) a nonunitary evolution accounting for noise with decay rate κ described by a Lindbladian L acting on the density matrix of
the system ρE. The classical part of the VQA is an optimizer that changes the parameters θ of the PQC in search of the minimum of the cost
function CP. The resulting optimal state |ψE〉 (ρE in the noisy case) evaluated at the optimal parameters θopt is the input of the second part of
the VQA, which employs the PQC to prepare optimal measurements as well as a classical optimizer that aims at minimizing the cost function
CM by varying the parameters μ of the second PQC. (b) A single layer of the emitters Ansatz, consisting of a tunneling unitary Ut depending
on the tunneling amplitude J , a detuning unitary Ue for each mode depending on the cavity-emitters detuning �, and an interaction unitary Uint

for each mode depending on the light-matter coupling strength g. The upper and lower modes of the scheme correspond to the emitters, while
the two central ones are the photonic modes. (c) A possible implementation of the emitters Ansatz in a cavity-QED setup. (d) A single layer of
the Kerr Ansatz, consisting of a tunneling unitary Ut depending on the tunneling amplitude J and a Kerr unitary UKerr for each mode depending
on the nonlinearity strength U . (e) A possible implementation of the Kerr Ansatz in a photonic setup.

and maximize the classical Fisher information (CFI) to find
the optimal measurement within that scheme. Our variational
approach can be applied following two different strategies:
in situ [42,44,45], i.e., optimizing the PQC directly on the
quantum hardware, or in silicon, i.e., simulating the PQC on
a classical computer and then running the quantum hardware
with the optimal parameters [43,46]. Codes to reproduce the
results of this manuscript are available in [47].

II. ALGORITHM

Let us initially restrict ourselves to the noiseless case. Our
VQA can be divided into two steps: preparation and mea-
surement, as sketched in Fig. 1(a) (more details can be found
in Appendix A). In the preparation stage, a PQC described
by a unitary operator UP(θ) is applied to two cavity modes.
The initial state of each cavity is a coherent state with mean-
photon number |α|2 = N/2 [48], such that the mean number
of photons summing both arms is N [49]. The resulting state
|ψP(θ)〉 is then sent through a MZI consisting of a symmetric
beam splitter followed by the encoding of a phase difference
ϕ between the two modes and by another symmetric beam
splitter, resulting in a state |ψE(θ, ϕ)〉. To optimize the prepa-
ration of probe states, one needs to maximize the QFI FQ,
thus setting the cost function to CP(θ, ϕ) = −FQ. Then, this
quantity is fed to the classical optimizer, which in turn updates
the parameters θ. The lower bound on the estimation error on
ϕ is given by the quantum Cramér-Rao bound (�ϕ)2 � F−1

Q
[11]. The closer F−1

Q is to the HL, the larger the metrological
potential obtained with the PQC.

To calculate the QFI, we use the approximation intro-
duced in Ref. [38]; see Appendix A for more details. This
requires evaluating the fidelity between the states |ψE(θ, ϕ)〉
and |ψE(θ, ϕ + δ)〉, where δ → 0 is a small phase difference.
In principle, this demands a number of measurements as well

as an amount of computation growing exponentially with the
system size [50]. In Appendix C we review some of the most
promising techniques to measure the QFI—or, equivalently,
the fidelity between two quantum states—aimed at alleviating
this problem. Besides, the small size of the platform consid-
ered in our manuscript (hosting only two photonic modes,
which implies a Hilbert space dimension scaling quadrati-
cally with N) will further reduce the complexity of fidelity
measurements.

Since the QFI is maximized irrespective of the mea-
surement scheme, in the second step of the protocol we
assess the best way to extract the information within a
specific measurement type. In particular, we first apply a
unitary UM(μ) to the output state |ψE(θopt, ϕ)〉 resulting
from the previous optimization and then we consider a
measurement in the photon-number basis. The role of the
unitary, which we label as measurement PQC, is to en-
able the algorithm to find the best possible combination
of modes before measuring. The optimal parameters μopt
are found by maximizing the CFI FC, which we use as
the new cost function of our algorithm CM(θopt, ϕ,μ) =
−FC. To compute the CFI, we construct the density ma-
trix ρM(θopt, ϕ,μ) = |ψM(θopt, ϕ,μ)〉〈ψM(θopt, ϕ,μ)|, where
|ψM(θopt, ϕ,μ)〉 = UM(μ)|ψE(θopt, ϕ)〉. With this expression
and its derivative ∂ρM(θopt, ϕ,μ)/∂ϕ, we calculate the CFI
(see Appendix A) and optimize it. An optimal measurement
should give FC = FQ; such hierarchy is again summarized by
the quantum Cramér-Rao bound (�ϕ)2 � F−1

C � F−1
Q [11].

III. PHYSICAL PLATFORMS AND ANSÄTZE

A crucial element of VQAs is the chosen PQC, since it
determines the solution space that the algorithm can explore.
In our case, the PQC will be defined by the two architectures
represented in Figs. 1(b)–1(e). Their common ingredients are
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two coupled single-mode cavities described by bosonic anni-
hilation (creation) operators a(†)

1,2, whose coupling Hamiltonian

reads Ht = J (a†
2a1 + a†

1a2), where J is the tunneling rate. The
difference stems in the source of nonlinearity.

On the one hand [see Figs. 1(b) and 1(c)], we consider a
nonlinearity coming from the coupling to a two-level emitter,
like in cavity QED setups [44,51–53]. This platform en-
ables encoding three different variational parameters per layer,
namely, J , the emitter-cavity detuning �, and the coupling
strength g, whose corresponding Hamiltonians read H (i)

e =
�σ

†
i σi and H (i)

int = g(σ †
i ai + σia

†
i ), respectively. Here, σi =

|g〉〈e| takes the emitter i from its excited state |e〉 to its ground
state |g〉. In this case, the unitary describing the PQC can be
written as

U (emit)
P,M =

d∏
j=1

U (2, j)
int U (1, j)

int U (2, j)
e U (1, j)

e U ( j)
t . (1)

Above, d is the number of layers of the PQC, U ( j)
t = e−iT (J )

j Ht ,

U (i, j)
e = e−iT (�)

j H (i)
e , and U (i, j)

int = e−iT (g)
j H (i)

int , where T (J,�,g)
j is

the physical time in which each term is applied. θ,μ =
{J̃1, �̃1, g̃1, . . . , J̃d , �̃d , g̃d} are the variational parameters,
each given by J̃ j = JjT

(J )
j , �̃ j = � jT

(�)
j , and g̃ j = g jT

(g)
j .

The number of gates is Ngates = 3d .
On the other hand [see Figs. 1(d) and 1(e)], we consider the

Kerr-type Hamiltonian H (i)
Kerr = U/2 × a†

i ai(a
†
i ai − 1) arising,

for example, from χ (3) nonlinearities in nonlinear crystals
[54]. With these interactions, we can write the Ansatz of the
Kerr nonlinear circuit as follows:

U (Kerr)
P,M =

d∏
j=1

U (2, j)
Kerr U (1, j)

Kerr U ( j)
t , (2)

where θ,μ = {J̃1, Ũ1, . . . , J̃d , Ũd} are the variational param-
eters (two per layer), each given by J̃ j = JjT

(J )
j and Ũj =

UjT
(U )
j . T (J,U )

j is the physical time in which each term is
applied. The number of gates is Ngates = 2d . Compared to ear-
lier works [43], we use the Kerr nonlinearity as a variational
parameter to check if it can provide an advantage over fixed
U Ansätze. A discussion on the physical realization of tunable
optical nonlinearities is included in Appendix D, both for the
Kerr nonlinearity and the photon-emitter interaction.

Ideally, we would like the VQA to use an Ansatz with as
few gates as possible. The reason is that, e.g., if we assume a
constant error per gate ε, the overall fidelity of state generation
after performing Ngates will be (1 − ε)Ngates .

IV. NOISELESS RESULTS

In Fig. 2 we show the convergence of our algorithm for the
QFI with respect to the number of layers d (and gates, Ngates)
of the preparation PQC for the emitters [panel (a)] and the
Kerr nonlinearity [panel (b)]Ansätze. Both panels show F−1

Q
as d is varied for different mean number of photons N ranging
from N = 10 to N = 50. For both Ansätze convergence is
rapidly obtained with only two layers, making our protocol ex-
traordinarily efficient in terms of circuit depth. What is more
important, the value of d at which convergence is attained
does not depend on N , at least for the range of N studied.

FIG. 2. Scaling of the inverse of the QFI F−1
Q as a function of the

number of layers d (and gates, Ngates) of the PQC, for different values
of the mean number of photons N . (a) Emitters Ansatz. (b) Kerr
Ansatz.

This is in stark contrast with state-of-art protocols [18,20] in
which Ngates ∼ N , and thus the fidelity decays exponentially
the number of photons.

Once we guarantee the convergence of the preparation step,
we study whether optimal probe states and optimal measure-
ments can be obtained with our protocol. Our results are
shown in Fig. 3. In panel (a) we plot the estimation error
(�ϕ)2 as a function of the mean number of photons N in the
VQA protocol for a circuit depth d = 5 [55]. The values of
F−1

Q obtained with both Ansätze are smaller than (�ϕ)2 for
TFS with N/2 Fock states in each arm [12]. While the optimal
states produced by the Kerr Ansatz saturate the HL for small
N and remain very close to it as N grows, those generated
by the emitters Ansatz start approaching the HL at N � 20. A
linear fit reveals that our results follow a scaling F−1

Q ∼ 1/Nβ

FIG. 3. Estimation error (�ϕ)2 in the noiseless scenario. Panel
(a) shows our results as a function of the mean number of photons N .
In panel (b), we address the effect of a bound in the Kerr nonlinearity
strength Ũbound for a mean number of photons N = 20. In both panels,
blue squares, red circles, and green triangles correspond to the results
of the emitters Ansatz, the Kerr Ansatz with unrestricted Ũ , and the
Kerr Ansatz with fixed Ũ = 2π , respectively: filled (void) markers
are the inverse of the QFI (CFI) F−1

Q(C) in the two cases. Dashed-
dotted/solid/dashed lines signal the SQL/TFS/HL scaling. In both
panels, we employed a circuit depth d = 5.
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very similar to that of the HL: β = 2.0 for the emitters Ansatz
and β = 1.95 for the Kerr one. More details on the nature
of the states prepared by our VQA, as well as a comparison
with NOON states and TFS, are provided in Appendix F.
Regarding F−1

C , the results of the Kerr Ansatz are very close
to the respective values of F−1

Q . In the case of the emitters
Ansatz, the CFI closely follows the QFI, although complete
saturation is not attained. In any case, both Ansätze are able
to prepare almost optimal measurements. We benchmarked
these results with those of the Kerr Ansatz featuring a fixed
value of the nonlinearity variational parameter Ũ = 2π , as in
Ref. [43]. In this case, F−1

Q,C tend to the classical 1/N scaling,
signaling that the tunability of the nonlinearity strength is a
crucial factor to obtain metrological advantage.

To implement our protocol in an experiment, one needs to
verify that the optimal values of the variational parameters are
within the reach of state-of-the-art optical platforms. In partic-
ular, very strong optical nonlinearities may not be physically
realizable. In Appendix G, we show that for our tunable non-
linearity Ansätze the maximum values of g̃ and Ũ required are
of the order of 1. Since T (J,�,g,U )

i are limited by the coherence
time κ−1, g and U must be smaller than the typical decoher-
ence rates in the systems. Such coherence times are within the
reach of certain cavity-QED platforms in both the microwave
and optical regimes [56–60]. However, in Kerr optical cav-
ities the current record is held by polaritonic systems with
only U/κ ∼ 10−2 [61,62], while microwave resonators reach
U/κ ∼ 102 [63–65]. This limitation motivated us to study the
effect of restricted Kerr nonlinearities in the optimization. For
that, we introduce a bound Ũ ∈ [−Ũbound, Ũbound] in the range
of parameters that the optimizer can explore and study the
dependence of FQ and FC on Ũbound. The results are displayed
in Fig. 3(b) for fixed N = 20, showing two distinct behav-
iors for Ũbound � 10−3 and Ũbound � 10−1 with a continuous
crossover in between. In the former regime, which is the one
realistically achievable with state-of-the-art optical platforms,
the bound prevents the optimizer from exploring the region
of the Hilbert space where the minimum of the cost function
lies and the resulting values of QFI and CFI are the ones that
would be obtained using coherent states at the input of the
Mach-Zehnder interferometer (see Appendix H). However,
above a critical value of Ũbound, the optimizer finds a very
similar solution to that obtained using the emitters Ansatz. In
Appendix I, we study the dependence of this critical Ũbound

on different mean-photon numbers, showing that it does not
depend strongly on N for the photon numbers we can explore.

V. EFFECT OF NOISE

As a last step, we extend the previous study to a
more realistic situation including noise in the quantum
channels. Formally, we do it by constructing the density
matrix ρE(θopt, ϕ) = |ψE(θopt, ϕ)〉〈ψE(θopt, ϕ)| after the MZI
and letting it experience a nonunitary evolution according
to the Lindblad master equation ρ̇E = κ

∑2
i=1[LiρE(t )L†

i −
1
2 {L†

i Li, ρE(t )}], where {Li} is the set of jump operators de-
scribing the noise channel and κ is the loss rate, which for
simplicity we assume to be equal for all channels. As a further
simplification, we include noise of two types only on the
photonic degrees of freedom: amplitude (i.e., photon loss)

FIG. 4. Estimation error (�ϕ)2 as a function of the dimension-
less noise parameter κ̃ for mean photon numbers N = 10 [panel (a)]
and N = 16 [panel (b)]. Blue squares (red circles) correspond to the
results of the emitters (Kerr) Ansatz: filled (void) markers are the
inverse of the quantum (classical) Fisher information F−1

Q(C) in the two
cases. Dashed-dotted/solid/dashed lines signal the values of F−1

Q

obtained for coherent states/TFS/NOON states without preparation
PQC. The dotted line corresponds to F−1

C for coherent states without
measurement PQC. In the light gray shaded area of panel (b) the
optimal states attain values of �ϕ which are sizeably smaller than
those of TFS. The dark gray shaded area is beyond the asymptotic
bound for dephasing noise [67]. In both panels, we employed the
circuit depth d = 5.

and phase damping (i.e., decoherence) [66]. For the former,
the set of jump operators is {a1, a2}, resulting in a decay of
the photonic population in both modes. In the latter, the set
of jump operators is {a†

1a1, a†
2a2}. This in turn preserves the

diagonal elements of the density matrix (i.e., the occupation
probabilities) while producing a decay in its off-diagonal ele-
ments (i.e., erasing the coherences).

Figure 4 shows the results of our algorithm in the presence
of both noise channels for a circuit depth d = 5 and fixed
photon numbers N = 10 [panel (a)] and N = 16 [panel (b)] as
a function of the dimensionless noise factor κ̃ = κTκ , where
Tκ is the typical noise timescale. For N = 16 only the results
for the Kerr Ansatz are shown, as the calculation for the
emitters one does not reach such value of N due to the numer-
ical overhead introduced by the emitters degrees of freedom.
We benchmark the optimal values obtained with our VQA
with those given by coherent states with α = √

N/2, TFS
|N/2〉 ⊗ |N/2〉, and NOON states (|N, 0〉 + |0, N〉)/

√
2 alone

without the preparation and measurement PQCs. In general, as
κ̃ increases, the values of F−1

Q obtained with both the emitters
and the Kerr Ansätze are lifted upwards, attaining values simi-
lar to those of NOON and TFS up to the value of κ̃ where these
states surpass the coherent ones. On the contrary, for larger
values of κ̃ the states generated by our VQA maintain a metro-
logical advantage over coherent states. This improvement
becomes larger with growing N , as can be seen in panel (b),
which features a range of κ̃ (shaded in light gray) in which the
variationally computed value of F−1

Q is sizeably smaller than
that of TFS, which are considered noise-robust states [11,68].
This places the states generated by our protocol amongst
the most noise-resilient ones. As κ̃ grows such improvement
diminishes, as it is expected for all generation protocols.
The dark gray shaded area represents the region beyond the
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asymptotic bound (for large N) in the presence of dephasing
noise [67]. For κ̃ � 10−1 the results of our optimal states are
close to such a bound. As for the CFI, it turns out to be more
susceptible to noise and even for small values of κ̃ it deviates
significantly from the corresponding QFI, reaching the CFI of
coherent states for smaller κ̃ . This implies that photon number
measurements are not a good choice in a noisy situation.

VI. CONCLUSIONS AND OUTLOOK

Summing up, using a variational approach, we propose a
method to generate metrologically relevant photonic states
which offer an exponential advantage over standard determin-
istic protocols when gate errors are considered. By comparing
the performance of both Kerr and emitter nonlinearities, we
predict that the emitter Ansatz will perform better in platforms
with limited Kerr nonlinearities. We also showed that the
tunable character of the nonlinearity is essential to reach a
Heisenberg scaling in the estimation error. Interestingly, our
method is able to find states which provide a metrological
advantage in the presence of moderate values of noise beyond
other noise-resilient states considered in the literature, such
as twin-Fock states. In future works, we plan to extend our
algorithm beyond the two-mode scenario in order to study
multiparameter estimation [34], as well as to apply it to
other relevant problems in metrology such as electric field
estimation [69].
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APPENDIX A: DESCRIPTION OF THE VARIATIONAL
QUANTUM ALGORITHM

In this Appendix we describe in more detail the VQA
proposed in our work. In general, we envision a quantum
system featuring two photonic modes. Each of them initially
hosts a coherent state

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (A1)

with a mean-photon number |α|2 = N/2. In practice, the infi-
nite sum above is truncated at N , ensuring that the maximum
number of photons in the system is 2N . The initial state in
the Kerr Ansatz (which does not include emitters) therefore
is |ψ0〉 = |α〉1 ⊗ |α〉2, where the subscripts 1,2 refer to the
photonic mode. In the emitters Ansatz, we assume that the
two-level emitters are initially in their ground state |g〉, thus
giving an initial state |ψ0〉 = |α〉1 ⊗ |α〉2 ⊗ |g〉1 ⊗ |g〉2. The
subscripts in the state of the emitters refer to the photonic
mode to which they are coupled.

In the preparation stage, a parametrized quantum cir-
cuit (PQC) described by a unitary UP(θ) is applied to the
initial state. As explained in the main text, the applied uni-
tary depends on the ansatz. The resulting state is |ψP(θ)〉 =
UP(θ)|ψ0〉.

Such state is then sent through a Mach-Zehnder inter-
ferometer (MZI) consisting of a symmetric beam splitter
(described by a unitary UBS = exp [−i(a†

2a1 + a†
1a2)π/4])

followed by the encoding of a phase difference ϕ between
the two modes (given by a unitary UE(ϕ) = exp[iϕ(a†

1a1 −
a†

2a2)/2]) and another symmetric beam splitter, resulting in
a state |ψE(θ, ϕ)〉 = UBSUE(ϕ)UBS|ψP(θ)〉. A second copy of
|ψP(θ)〉 is also sent through the MZI, but in this case the
encoded phase is ϕ + δ, where δ 
 1 is a small parameter.
This allows us to calculate the QFI later on. Without loss
of generality, in all our calculations we took ϕ = π/3 and
δ = 10−2.

In order to account for noise in the preparation and
encoding stages, we need to construct the density ma-
trices ρE(θ, ϕ) = |ψE(θ, ϕ)〉〈ψE(θ, ϕ)| and ρE(θ, ϕ + δ) =
|ψE(θ, ϕ + δ)〉〈ψE(θ, ϕ + δ)|, which experience a nonuni-
tary evolution according to a Lindblad master equation. We
consider two noise channels: amplitude damping and phase
damping, as explained in the main text, each featuring a loss
rate κ . However, working with density matrices is computa-
tionally expensive since it requires squaring the dimension
of the Hilbert space. Therefore, in practice, when we have
κ > 0 we work with vectorized density matrices following
the Choi-Jamiolkowski isomorphism [70], but in the noiseless
case (κ = 0) we avoid it and deal directly with state vectors.

In the noisy case the resulting state is given by

ρE(θ, ϕ, κ ) = eLpd Tκ eLad Tκ ρE(θ, ϕ)eL
†
ad Tκ eL

†
pd Tκ , where Tκ is a

typical noise timescale which for simplicity we assume
equal for both noise channels and Lad,pd are the Lindbladian
superoperators for amplitude damping and phase damping
given by

Lad,pd = κ

2∑
i=1

[
L(ad,pd)

i ρ(t )L(ad,pd)†

i

− 1

2

{
L(ad,pd)†

i L(ad,pd)
i , ρ(t )

}]
. (A2)

The sum above is over the set of jump operators belonging
to the two noise channels, given by {L(ad)} = {a1, a2} and
{L(pd)} = {a†

1a1, a†
2a2}, where ai is the annihilation operator

acting on the photonic mode i.
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FIG. 5. QFI FQ normalized in units of its converged value
max{FQ} for coherent states, NOON states, TFS, and an optimal Kerr
state with mean photon number N = 44 obtained with our VQA as a
function of δ.

The QFI FQ is then calculated following the approximate
formula [38]

FQ = 8
1 − F (ϕ, ϕ + δ)

δ2
, (A3)

where F (ϕ, ϕ + δ) is the fidelity between the states in which
the phases ϕ and ϕ + δ were encoded. This is calculated as

F (ϕ, ϕ + δ) = |〈ψE(θ, ϕ)|ψE(θ, ϕ + δ)〉|, (A4)

F (ϕ, ϕ + δ) =
√√

ρE(θ, ϕ, κ )ρE(θ, ϕ + δ, κ )
√

ρE(θ, ϕ, κ )
(A5)

in the noiseless and in the noisy case [71], respectively. Re-
member that Eq. (A3) is valid in the limit δ → 0.

In a realistic implementation, this procedure can be imple-
mented by considering two different state evolutions in the
MZI: (i) applying opposite phase shifts ±δ/2 in the two chan-
nels of the MZI and (ii) leaving the two channels unperturbed,
without applying any phase shift. The resulting states are then
used to calculate the QFI according to Eq. (A3). Therefore, δ

plays the role of the parameter to be estimated. While in our
calculations we considered a phase shift ϕ = π/3, that choice
is arbitrary and considering ϕ = 0 does not change the results,
because the value of the QFI does not depend on the choice of
ϕ [37]. We give more information on how to experimentally
estimate the QFI and the fidelity in Appendix C.

Also, to make sure that our results are converged, we plot-
ted the QFI attained by several states as a function of δ (see
Fig. 5). From such results it is evident that δ = 10−2 is a safe
choice.

To maximize the QFI we choose a cost function
CP(θ, ϕ, κ ) = −FQ. This quantity is fed to the classical op-
timizer, which in turn updates the parameters θ. We initialize
the preparation PQC close to the identity matrix (i.e., θ finite
but close to 0) and employ COBYLA [72] as the classical
optimizer, since it was the one giving the best results in a rea-
sonable convergence time. When the optimization converges,
we get the output state evaluated at the optimal parameters

ρE(θopt, ϕ, κ ) in the noisy case and |ψE(θopt, ϕ)〉 in the noise-
less one.

Such state is sent through the measurement PQC, which
is characterized by a unitary UM(μ), resulting in a state de-
scribed by ρM(θopt, ϕ, κ,μ) = UM(μ)ρE(θopt, ϕ, κ )UM(μ)†

in the noisy case and |ψM(θopt, ϕ,μ)〉 = UM(μ)|ψE(θopt, ϕ)〉
in the noiseless one.

At this point, we construct the density matrix for the
noiseless case as ρM(θopt, ϕ, κ = 0,μ) = |ψM(θopt, ϕ,μ)〉
〈ψM(θopt, ϕ,μ)|. Then, the derivative ∂ρM(θopt, ϕ, κ,μ)/∂ϕ

is computed by means of the chain rule. The density matrix
and its derivative are used to calculate the CFI,

FC =
∑

n

1

ρM,nn(θopt, ϕ, κ,μ)

(
∂ρM,nn(θopt, ϕ, κ,μ)

∂ϕ

)2

,

(A6)

where the sum is carried over the diagonal elements n, n.
To maximize the classical Fisher information (CFI), we set
a cost function CM(θopt, ϕ, κ,μ) = −FC. This value is fed
to the classical optimizer, which in turn returns the optimal
measurement parameters μopt. As for the preparation PQC,
the measurement PQC is initialized close to the identity matrix
(i.e., μ finite but close to 0), and we employed COBYLA as
the classical optimizer.

As one can see, the two optimizations for the QFI and the
CFI are carried separately in our VQA.

APPENDIX B: STARTING FROM SQUEEZED
COHERENT STATES

In this Appendix we perform an analog calculation to that
shown in the main text but employing squeezed coherent
states [48] as initial states:

|α, r〉 = 1√
cosh r

exp

(
−1

2
|α|2 − 1

2
α∗2 tanh r

)

×
∞∑

n=0

(
1
2 tanh r

)n/2

√
n!

Hn

(
γ√

sinh (2r)

)
|n〉, (B1)

where γ = α cosh r + α∗ sinh r and Hn is the Hermite poly-
nomial of grade n. The initial state is therefore |ψ0〉 =
|α, r〉1 ⊗ |α, r〉2 for the Kerr Ansatz and |ψ0〉 = |α, r〉1 ⊗
|α, r〉2 ⊗ |g〉1 ⊗ |g〉2 for the emitters one. We choose α =√

N/2 as in the coherent states case and r (the squeezing
parameter) to be 10 dB, which is within the reach of state-of-
the-art optical technology [73]. In practice, the infinite sum in
Eq. (B1) is truncated at N , ensuring that the maximum number
of photons in the system is 2N . Using squeezed coherent states
instead of coherent ones as initial states could be of help since
the algorithm already starts from nonclassical states, making
it easier to obtain a quantum advantage.

Figure 6(a) shows the estimation error (�ϕ)2 obtained
from maximizing the QFI and the CFI using our VQA as a
function of N and for a circuit depth d = 5. As one can see,
the difference between employing squeezed or coherent states
[Fig. 3(a) of the main text] as initial states is negligible: in both
cases, the optimizer is able to find almost identical values for
the QFI and the CFI. This is true for both Ansätze.
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FIG. 6. Estimation error (�ϕ)2 in the noiseless scenario starting from squeezed coherent states with α = √
N/2 and a squeezing factor

of 10 dB. Panel (a) shows our results as a function of the mean number of photons N . In panel (b), we address the effect of a bound in the
Kerr nonlinearity strength Ũbound for a mean number of photons N = 20. Panel (c) compares the results of the Kerr Ansatz with Ũbound = 10−4

with those obtained removing the preparation and measurement PQCs. In the three panels, blue squares/red circles/green squares correspond
to the results of the emitters Ansatz/Kerr Ansatz/squeezed states without preparation and measurement PQCs: filled (void) markers are the
inverse of the QFI (CFI) F−1

Q(C) in the three cases. Dashed-dotted/solid/dashed lines signal the SQL/TFS/HL scaling. All calculations were
made employing PQCs with depth d = 5.

To further explore whether squeezed states provide any
advantage over coherent ones, we also plot the values of F−1

Q,C
obtained by both Ansätze as a function of a bound in the Kerr
nonlinearity variational parameter Ũbound. We fix the mean
number of photons at N = 20. Nevertheless, we obtain a very
similar behavior to that of coherent states [shown in Fig. 3(b)
of the main text], with a threshold located at Ũbound = 10−2

separating below a regime where the Kerr Ansatz results lie
above those obtained with the emitters one and above one
where the results of both Ansätze are very similar. Therefore,
optical platforms only able to reach U/κ ∼ 10−2 at most [61]
will suffer from the same expressibility problems employing
either coherent or squeezed states. Overall, the results of
Figs. 6(a) and 6(b) discard the possibility of obtaining better
results using squeezed coherent states.

Finally, to understand better what is happening below the
Kerr nonlinearity bound threshold, we plot in Fig. 6(c) the
values of F−1

Q,C obtained with the Kerr Ansatz with a bound
Ũbound = 10−4 as a function of N . Here we also plot the
results for the inverse of the QFI and the CFI using squeezed
coherent states with α = √

N/2 and a squeezing factor of
10 dB, i.e., removing the preparation and measurement PQCs
(or equivalently setting θ = μ = 0). The results are identical
in both cases, showing that the bound Kerr Ansatz is not able
to surpass the results of squeezed states alone due to the small
value of Ũbound preventing the optimizer to explore a larger
region of the Hilbert space. In any case, these results are better
than those obtained with coherent states alone, as is shown in
Appendix H, since the former are already nonclassical. Note
that, while squeezed states saturate the TFS scaling at small
values of N , for N � 20 they deviate and start following a
classical 1/N scaling.

APPENDIX C: MEASURING THE QFI

In this Appendix, we provide more insight on the different
techniques proposed to measure the QFI. In our calculations,
we compute the QFI by means of Eq. (A3). This procedure

consists of evaluating the evolution of the quantum state
through the MZI subjected to two different phase differences:
ϕ and ϕ + δ. Such an approximation is valid in the limit
of small δ. In order to obtain the QFI, one must evaluate
the fidelity between the states generated by the two different
evolutions. We choose to calculate the QFI this way because
the alternatives (which involve either the eigendecomposition
of the density matrix or evaluating the symmetric logarith-
mic derivative [37,74]) are computationally more expensive.
Besides, in our manuscript we are dealing with a two-mode
photonic system (with each of the modes coupled to a two-
level emitter in the case of the emitters Ansatz) in which the
dimension of the total Hilbert space scales quadratically with
respect to the mean number of photons present in the system
N . We therefore expect measurements of the QFI (or, equiva-
lently, the fidelity) to be simpler than in the most general case,
in which the complexity scales exponentially with N . Even
in that case, there exist a number of strategies aimed at miti-
gating the cost of brute-force full quantum state tomography
to access the spectrum of eigenvalues and eigenstates of the
density matrices. Here we mention the most promising ones,
although the list is not complete.

(1) In the case of states that are well approximated by
matrix product states (MPS) [50] proposed two schemes for
efficient quantum state tomography which only require a lin-
ear amount (on the system size) of local observables as well
as polynomial classical postprocessing of the data. Efficient
quantum state tomography can be also obtained by harness-
ing conditional generative adversarial neural networks [75],
which leads to orders of magnitude fewer iterative steps than
full quantum state tomography.

(2) An alternative approach to measure the fidelity between
two quantum states is given by randomized measurements
[76]. This strategy consists of repeatedly preparing and
measuring a quantum state in a randomly chosen basis. A
classical computer then processes the measurement outcome
to estimate the desired property. In particular, a fidelity mea-
surement will still feature an exponential complexity on the
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FIG. 7. Results obtained by employing preparation and measurement PQCs with depth d = 2. (a) Estimation error (�ϕ)2 in the noiseless
scenario as a function of the mean number of photons N . Blue squares (red circles) correspond to the results of the emitters (Kerr) Ansatz: filled
(void) markers are the inverse of the QFI (CFI) F−1

Q(C) in the two cases. Dashed-dotted/solid/dashed lines signal the SQL/TFS/HL scaling.
(b), (c) Scaling of the inverse of the QFI F−1

Q as a function of the number of layers d of the PQC, for different values of N . Contrary to Fig. 2
of the main text, these results are calculated by fixing d and employing the optimal parameters for N − 1 as the initial parameters for N .
(b) Emitters Ansatz. (c) Kerr Ansatz.

system size N , but better than with full tomography. Random-
ized measurements were also employed in [74] to construct a
series of polynomial lower bounds that converge to the QFI.

(3) An additional application of randomized measurements
that further simplifies the measurement of several properties
of the quantum system is classical shadows [77]. In this
approach, the number of measurements to be performed is
independent of the system size. In particular, it has been
applied to measure the fidelity of a state preparation process
[78] leading to higher fidelities with a number of operations
orders of magnitude smaller than with maximum-likelihood
estimation (which is an incomplete tomography method).

(4) One can also capitalize on the relation that exists be-
tween the quantum Fisher information and the variance of
the operator generating the parameter encoding [79–81] to
estimate the QFI thorough a tight lower bound [82]. This
can be applied in large systems while requiring few operator
expectation values.

(5) Further approaches to measure the fidelity include the
SWAP test [83] and generalizing the quantum switch em-
ployed in [84] to measure entanglement entropy.

To sum up, the two-mode nature of our system, whose
Hilbert space dimension grows quadratically with the mean
photon number, combined with the growing number of tech-
niques to experimentally estimate the fidelity (and thus the
QFI) makes us confident about the possibility of implement-
ing our scheme in experimental platforms.

APPENDIX D: PHYSICAL IMPLEMENTATION
OF TUNABLE OPTICAL NONLINEARITIES

In this Appendix we discuss in more detail the physical
implementation of the tunable optical nonlinearities required
by our protocol. The operations in which the two Ansätze are
based are given by the Trotterization of the natural evolution
of quantum states under their respective system’s Hamil-
tonian. This is an example of analog quantum computing
[85,86], which is a particularly feasible way to exploit state-
of-the-art quantum hardware. Nevertheless, a critical aspect
of our work is the access to tunable optical nonlinearities. In
the case of the emitters Ansatz, tunable emitter-photon inter-
actions can be implemented by addressing an atom featuring

a so-called lambda transition with Raman lasers [87,88]. For
the Kerr Ansatz, tunable Kerr nonlinearities have been imple-
mented in superconducting circuits working in the microwave
regime [89,90]. However, it is not so obvious how to achieve
a tunable Kerr nonlinearity at optical frequencies, although
there is a recent proposal in the few-photon regime based on
the coupling of an infrared resonator to intersubband quantum
well transition dipoles [91].

However, even in the worst-case scenario in which such
tunability cannot be realized, one can simulate the algorithm
in a classical computer and then fabricate the desired setup in
which fixed nonlinearities accounting for the corresponding
optimal values are applied to each mode. This is an example
of the in silicon approach that we mentioned in the main text.
Thus, overall, we do not expect the requirement of tunable
interactions to be a bottleneck for the implementation of our
proposal.

APPENDIX E: RESULTS FOR d = 2

In this Appendix we provide more information on the re-
sults for a circuit depth d = 2, the convergence of the QFI as
a function of the number of layers d of the preparation PQC,
and the reason behind choosing d = 5 in Figs. 3 and 4 of the
main text.

We start by providing the analog of Fig. 3 of the main text
but employing a circuit depth d = 2 for both the preparation
and the measurement PQCs. The results, shown in panel (a)
of Fig. 7, are quite similar to those obtained with d = 5. Even
though the Kerr Ansatz is able to produce states reaching the
HL for N � 20, above this value they start deviating upwards,
giving slightly larger values of F−1

Q , but still very close to the
HL. As for the emitters Ansatz, for N � 10 they saturate the
TFS scaling. A linear fit reveals that the two Ansätze follow
F−1

Q ∼ 1/Nβ with β = 1.90 for the Kerr Ansatz and β = 1.93
for the emitters one. Regarding the CFI, it closely follows the
results for the QFI. For the emitters Ansatz, this behavior is
very similar to what we found for d = 5. However, for the
Kerr Ansatz, the agreement was even better for d = 5. In spite
of this, with d = 2 our VQA is still able to generate states
featuring a large metrological advantage, reaching the value of
QFI of TFS employing the emitters Ansatz, and even beating
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FIG. 8. Fidelity F of the optimal states generated by the prepa-
ration PQC after going through a 50/50 beam splitter with respect to
NOON states and TFS after passing through a 50/50 beam splitter
(TFS + 50/50 BS), for both the emitters and the Kerr Ansätze, as a
function of the mean number of photons N . All calculations were
made employing PQCs with depth d = 5.

it and approaching the HL in the case of the Kerr Ansatz.
This supports our claim of a highly efficient method for the
generation of metrologically relevant quantum states.

Now we further clarify why we picked d = 5 for Figs. 3
and 4 in the main text. Actually, such figures are calculated
differently from Fig. 2. In the latter figure, the total mean-
photon number N was fixed and then the data for d was
computed using the optimal parameters for d − 1 as the new
initial parameters. In Figs. 3 and 4, d was fixed and the data for
N was computed using the optimal parameters for N − 1 as
initial parameters. This implies that, for the same value of d ,
using the latter method more optimizations have been carried
for values of N > d , which leads to better results than in the
former case.

This is visible in panels (b) and (c) of Fig. 7, where we
show the analog of Fig. 2 of the main text but carrying the
optimization using the latter method (i.e., fixing d and increas-
ing N). The inverse of the QFI F−1

Q is plotted as a function
of the circuit depth d for several values of the mean-photon
number N , for the emitters [panel (b)] and the Kerr [panel
(c)] Ansätze. In the two cases, even with d = 1 the VQA
gives results which are close to the converged ones presented
in Fig. 2 of the main text. As mentioned before, this is a
consequence of the larger number of optimizations carried
with this method before reaching the value of N considered.
For d > 1, F−1

Q oscillates, with some values of d performing
better than others. After an exploration of the results obtained
with different values of the circuit depth in the range d = 1–6,
we concluded that PQCs with d = 5 attained slightly better
results for both Ansätze. This is why we employed this value
in Figs. 3 and 4 of the main text.

APPENDIX F: PROPERTIES OF THE OUTPUT
STATES OF THE VQA

In this Appendix we explore the nature of the optimal
states prepared by the VQA and how close they are to NOON
states and TFS. In Fig. 8(a) we calculated the fidelity (i.e., the
complex modulus of the scalar product between two quantum
states) of the states generated by the emitters and Kerr Ansätze
in the preparation stage of the VQA (with depth d = 5) after
going through the first symmetric (50/50) beam splitter of

FIG. 9. (a) Von Neumann entropy of entanglement of the reduced
density matrix of the first photonic mode S(ρ1) as a function of
the mean number of photons N . The dashed-dotted line shows the
maximum entropy log2 (N + 1) for a mode with N + 1 possible
states. (b) Purity of the reduced density matrix of the first photonic
mode P (ρ1) as a function of the mean number of photons N . In
both panels, blue squares (red circles) are the results of the emitters
(Kerr) Ansatz after passing through the first symmetric (50/50) beam
splitter of the MZI. The solid (dashed) lines represent the results for
NOON states (TFS), while the dotted lines are obtained with TFS
sent through a symmetric beam splitter. All calculations were made
employing PQCs with depth d = 5.

the MZI with respect to TFS after passing through the same
symmetric beam splitter (TFS + 50/50 BS) as well as with
respect to NOON states. This is the correct comparison as
TFS are defined prior to entering the first beam splitter of
the MZI interferometer, while NOON states are directly sent
through the phase encoding. As one can see, as N grows, the
fidelities with respect to TFS + 50/50 BS rapidly decay to
zero. On the other hand, the fidelities with respect to NOON
states are finite even for large values of N . This is true for
both Ansätze. In other words, the states generated by our VQA
hold some similarity with NOON states even for mean-photon
numbers N � 40. The fact that they share a relatively low
fidelity (F � 0.2–0.25 for N � 40) should not be disturbing,
as metrological advantage can be obtained with a variety
of different states. Besides, our VQA does not employ the
fidelity with respect to a target state as cost function, but rather
aims to maximize the QFI without caring about the particular
state obtained.

In order to further dive into the nature of the optimal states
produced by our VQA, an interesting benchmark is to ad-
dress whether there is entanglement between the two photonic
modes (similar to what happens in a NOON state) or if both
of them are uncorrelated (like in TFS). To explore this, we
calculated the Von Neumann entropy of entanglement [shown
in Fig. 9(a)] as well as the purity of the reduced density matrix
[see Fig. 9(b)] of the first photonic mode.

We start from the density matrix describing the two pho-
tonic modes of our system ρphot. In the case of the emitters
Ansatz, such density matrix can be obtained by tracing out the
emitters degrees of freedom, i.e., ρphot = Tremit{ρ}, where ρ

is the density matrix describing the total system of photons
and emitters. At this point, and without loss of generality,
we can trace out the second photonic mode, obtaining ρ1 =
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FIG. 10. Diagonal elements of the reduced density matrix of the first photonic mode ρ
(n,n)
1 as a function of the number of photons in that

mode n. The total number of photons is fixed at N = 20. (a) Optimal state maximizing the QFI prepared using the emitters Ansatz. (b) Optimal
state maximizing the CFI prepared using the emitters Ansatz. (c) Optimal state maximizing the QFI prepared using the Kerr Ansatz. (d) Optimal
state maximizing the CFI prepared using the Kerr Ansatz. All calculations were made employing PQCs with depth d = 5.

Tr2{ρphot}. The entropy of entanglement is given by [92]

S(ρ1) = −Tr(ρ1 log2 ρ1), (F1)

or equivalently by

S(ρ1) = −
∑

i

λi log2 (λi ), (F2)

where {λi} is the set of M eigenvalues of ρ1 and the sum above
runs from i = 1 to i = M.

The results obtained with the states generated by the emit-
ters and the Kerr Ansätze are shown in Fig. 9(a) (again,
taking such states after they have gone through the first 50/50
beam splitter of the MZI). These are benchmarked against the
values of the entropy of entanglement for TFS [which are
separable and thus give S(ρ1) = 0], NOON states [in which
only two states are entangled, and thus S(ρ1) = log2(2) = 1],
TFS going through a symmetric (50/50) beam splitter (for
which all possible combinations featuring an even number
of photons are entangled), and the maximum possible value
S(ρ1) = log2(N + 1) for N + 1 available quantum states. As
the mean number of photons N increases, the values of S(ρ1)
obtained with the two Ansätze increase following a logarith-
mic law, surpassing the entropy of entanglement of NOON
states as soon as for N = 4, although their values lie below
those obtained by TFS passing through a symmetric beam
splitter. This is telling us that both Ansätze are generating
entanglement between the two photonic modes. Therefore,
tunneling between the two modes is a crucial resource for
the Ansätze. This also confirms that the optimal states of our
formalism do not resemble TFS.

A similar metric addressing the entanglement between the
two photonic modes is the purity of the first photonic mode,
i.e.,

P (ρ1) = Tr
{
ρ2

1

}
. (F3)

Since a pure state always satisfies P = 1, if there is no entan-
glement between the two photonic modes we should obtain
P (ρ1) = 1. On the contrary, this value will be lower than 1 if
entanglement is present.

The results are shown in Fig. 9(b), and they go along the
lines of Fig. 9(a): the purity of states generated by the two
Ansätze (as before, taking such states after they have gone
through the first 50/50 beam splitter of the MZI) rapidly
diminishes as N increases. The obtained values of P (ρ1) are

below 1, signaling that the resulting ρ1 is a mixed state for
both Ansätze and that the two photonic modes are entangled.
These results are benchmarked with the values of P (ρ1) re-
sulting from NOON states, TFS, and TFS going through a
symmetric beam splitter. As one can expect from Fig. 9(a),
the optimal states found with our VQA provide values of
the purity between those of NOON states and TFS passing
through the beam splitter.

Overall, the results presented in this Appendix confirm that
the two Ansätze are generating states that are different from
the NOON and TFS, and also different between them.

Finally, in Fig. 10 we plotted the diagonal terms of the
reduced density matrix of the first photonic mode ρ

(n,n)
1 in

the Fock states basis |n〉, where n is the number of photons
in that mode, after going through the preparation (a), (c) and
measurement (b), (d) PQCs. We fixed the mean number of
photons at N = 20. Panels (a), (b) show the results for the
emitters Ansatz, while panels (c), (d) display those obtained
with the Kerr one. As one can see, the optimal probe states
given by the preparation stage are already different from
coherent states, which would feature a Poisson distribution.
Moreover, the measurement PQC further modifies the shape
of the states.

Regarding the effect of noise, we have checked that the
states prepared by our VQA still feature similar properties for
finite values of κ .

APPENDIX G: OPTIMAL PARAMETERS

In this Appendix we examine the optimal parameters θopt

and μopt obtained by the classical optimizer in the noiseless
case (κ = 0), for preparation and measurement PQCs with
depth d = 5, and for N = 20 photons. The aim is to make
sure that the parameters maximizing the QFI and the CFI
can be attained in real experimental platforms. This is es-
pecially concerning for the variational parameters g̃ and Ũ ,
which encode correspondingly the interaction strength in the
emitters and Kerr Ansatz and are of the order of g/κ and
U/κ , respectively. Figures 11(a)–11(c) show the values of J̃ ,
�̃, and g̃ obtained with the emitters Ansatz. As one can see,
the maximum value of the emitter-photon coupling required is
|g|/κ � 5. This can be realized in state-of-the-art cavity-QED
experiments [56–60].
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FIG. 11. Optimal parameters θopt and μopt for the noiseless (κ = 0) case with N = 20 and a circuit depth d = 5. (a) Emitters Ansatz.
(b) Kerr Ansatz with Ũbound = 10−4. (c) Unbound Kerr Ansatz. The tunneling parameter J̃ is plotted in units of that of a symmetric beam
splitter J̃sym = π/4.

Regarding the Kerr Ansatz, we have to distinguish between
the behavior below and above the expressibility threshold
shown in Fig. 3(b) of the main text. Therefore, we com-
pare the results for a Kerr nonlinearity bound Ũbound = 10−4

[shown in Figs. 11(d) and 11(e)] with those for a boundless
nonlinearity [shown in Figs. 11(f) and 11(g)]. As we can
see, in the first case the optimal values of |Ũ | given by the
optimizer saturate |Ũbound| for all layers, thus signaling that
the Kerr nonlinearity bound is forcing the optimizer to stay in
a restricted region of the Hilbert space where it cannot find the
global minimum of the cost function, and therefore limiting its
expressibility.

However, once we eliminate the Kerr nonlinearity bound,
we see in Fig. 11(g) that the optimal parameters contain values
of U/κ ∼ 1. In a real experiment, this would require mi-
crowave platforms, which are capable of reaching U/κ ∼ 102

[63–65]. However, going above the expressibility threshold
may be also within the reach of systems working in the optical
regime, as the current limit in U/κ ∼ 10−2 [61] lies just in the
middle of the Ũbound threshold.

FIG. 12. Estimation error (�ϕ)2 as a function of the mean num-
ber of photons N for the Kerr Ansatz with Ũbound = 10−4 and a circuit
depth d = 5, as well as for two input coherent states with mean
photon number |α|2 = N/2 without the preparation and measurement
PQCs.

APPENDIX H: KERR ANSATZ BELOW
THE NONLINEARITY THRESHOLD

In this Appendix we apply our VQA to a Kerr Ansatz
featuring a nonlinearity bound Ũbound = 10−4, i.e., below the
expressibility threshold, and in the noiseless case (κ = 0).
We will show that such bound Ansatz is unable to provide
a quantum advantage. Figure 12 shows the results of our
VQA for the inverse of the QFI (F−1

Q ) and the CFI (F−1
C )

as a function of N . As one can see, although the inverse
of the QFI lies slightly below the SQL, it follows the same
1/N scaling, while the CFI does not reach the corresponding
values of QFI and follows the SQL. A circuit depth d = 5
was employed. These are the same results that are obtained
employing coherent states with α = N/2 at the input of the
MZI and removing the preparation and measurement PQCs
(i.e., taking θ = μ = 0). This supports the results shown in
Fig. 11(e) of Appendix G, signaling that having a Ũ above
the threshold in Ũbound is indispensable to allow the clas-
sical optimizer to explore the region of the Hilbert space
where solutions that feature a quantum advantage can be
found.

FIG. 13. Inverse of the QFI F−1
Q (a) and CFI F−1

C (b) for the Kerr
Ansatz as a function of the bound in the Kerr nonlinearity strength
Ũbound for several values of the mean number of photons N . All
calculations were made employing PQCs with depth d = 5.
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APPENDIX I: CRITICAL BOUND FOR DIFFERENT
PHOTON NUMBERS

In this Appendix we study the dependence of the critical
value of Ũbound above which the Kerr nonlinearity Ansatz is
able to provide optimal solutions with respect to the mean

number of photons N . To do it, in Fig. 13 we plot the equiv-
alent of Fig. 3(b) of the main text for several values of N .
As one can see, the crossover between the two regimes takes
place around Ũbound = 10−2 independent of N for both the
QFI [panel (a)] and the CFI [panel (b)]. A circuit depth d = 5
was employed throughout all these calculations.
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