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Effects of noise on the overparametrization of quantum neural networks
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Overparametrization is one of the most surprising and notorious phenomena in machine learning. Recently,
there have been several efforts to study if, and how, quantum neural networks (QNNs) acting in the absence
of hardware noise can be overparametrized. In particular, it has been proposed that a QNN can be defined as
overparametrized if it has enough parameters to explore all available directions in state space. That is, if the rank
of the quantum Fisher information matrix (QFIM) for the QNN’s output state is saturated. Here, we explore how
the presence of noise affects the overparametrization phenomenon. Our results show that noise can “turn on”
previously zero eigenvalues of the QFIM. This enables the parametrized state to explore directions that were
otherwise inaccessible, thus potentially turning an overparametrized QNN into an underparametrized one. For
small noise levels, the QNN is quasioverparametrized, as large eigenvalues coexists with small ones. Then, we
prove that as the magnitude of noise increases all the eigenvalues of the QFIM become exponentially suppressed,
indicating that the state becomes insensitive to any change in the parameters. As such, there is a pull-and-tug
effect where noise can enable new directions but also suppress the sensitivity to parameter updates. Finally, our
results imply that current QNN capacity measures are ill-defined when hardware noise is present.
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I. INTRODUCTION

Overparametrization has become one of the most important
concepts for studying neural networks in classical machine
learning. When a neural network is overparametrized, it has
a capacity which is larger than the number of training points
[1]. Despite being initially counterintuitive, as increasing the
number of parameters can lead to overfitting, research has
shown that overparametrization can actually improve the per-
formance of a model [1–4]. For example, it has been observed
that the generalization error can decrease when the model size
is increased, a phenomenon known as double descent [5–7].
Additionally, overparametrization can provide convergence
guarantees, ensuring that a model will be able to find a good
solution during its optimization [8,9]. These benefits make
overparametrization an important consideration in the design
of classical machine learning algorithms.

In the past few years, there has been a significant
amount of effort towards merging concepts from classical
machine learning with those of quantum computing, leading

*cerezo@lanl.gov

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

to the blossoming field of quantum machine learning (QML)
[10–13]. The key idea here is that one can leverage the ex-
ponentially large dimension of the Hilbert space as a feature
space to process and learn from data. Crucially, there is hope
that QML has the potential of enabling a quantum advantage
in the near-term [14,15].

Within the framework of QML, parametrized quantum
circuits, or quantum neural networks (QNNs), have received
considerable attention due to their versatility and wide usabil-
ity [16–20]. While several works have studied the capabilities,
trainability and performance of QNNs [21–39], most of these
consider noiseless scenarios which do not account for the
effect of hardware noise [40–44]. However, since noise is
an intrinsic element in near-term quantum computing, it is
fundamental to understand how its presence alters noiseless
results and changes our understanding of QNNs. For instance,
it is known that there exist polynomial-time (yet unpractical)
classical algorithms for simulating random quantum circuits
in the presence of local depolarizing noise [45,46].

In this work we study how the recently developed under-
standing of overparametrization in QNNs [21–26] is affected
by the presence of quantum noise. In particular, we will re-
view the results of Ref. [21], which characterizes the critical
number of parameters needed to overparametrize a QNN. It
has been observed that underparametrized QNNs exhibit spu-
rious local minima in the optimization landscape that hinder
their trainability. By adding enough parameters to the circuit
(hence overparametrizing it), these false local traps disappear.
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(a)

(b)

FIG. 1. Schematic diagram of our main results. Consider the task
of implementing a QNN, i.e., a parametrized unitary channel on a
quantum computer. As shown in Ref. [21], the overparametrization
phenomenon is defined as the QNN having enough parameters to
explore all relevant directions in state space. (a) For certain ansatzes
the QNN can be efficiently overparametrized with few parameters,
as there only exists a small number of available directions in state
space. Moreover, for (most) such directions, changes in the parameter
values usually translate into changes in state space. (b) When the
quantum device is faulty, quantum noise will act throughout the
computation. In this work, we explore how hardware noise modifies
the overparametrization phenomenon. Our results show that quantum
noise can enable additional directions in state space. However, we
also find that as the noise probability increases, the system becomes
more and more insensitive to variations in the parameters.

Since the previous facilitates the QNN’s parameter training,
the overparametrization onset corresponds to a veritable com-
putational phase transition. Notably, in Ref. [21] the number
of parameters needed to overparametrize a QNN is defined
as those needed to saturate the rank of the quantum Fisher
information matrix (QFIM), and concomitantly the QNN’s
capacity, as introduced in Refs. [27,28].

Our results show that the presence of hardware noise can
increase the rank of a QFIM whose rank would have been
saturated in a noiseless scenario. That is, noise can turn null
eigenvalues of a noiseless-state QFIM into nonnull eigenval-
ues of the corresponding noisy-state QFIM. As schematically
depicted in Fig. 1, this means that hardware noise allows
the QNN to explore previously unavailable directions. Hence,
some of the redundant parameters in an overparametrized
noiseless QNN become relevant to control trajectories in state
space when the effect of noise is accounted for. As such,
noise can potentially render an overparametrized model into
an underparametrized one. In addition, we analytically prove
that as the noise strength (or depth of the circuit) increases, the
eigenvalues of the QFIM become exponentially suppressed.

Thus, for large noise levels (or for deep QNNs), the states
become insensitive to any change in the parameters. On the
positive side, our numerics show that for small noise levels,
the model behaves as being quasioverparametrized: Large
eigenvalues of the QFIM (the ones that are nonzero in the
noiseless setting) coexists with small ones (the ones that were
previously zero). Additionally, we prove that certain types of
noise, specifically global depolarizing noise or measurement
noise [42,47], cannot increase the rank of the QFIM. To
conclude, we discuss the implications of our results to QNN
capacity measures proposed in the literature, and to other
fields such as quantum metrology.

II. FRAMEWORK

A. Quantum neural networks

In this work we consider a QML task where the goal
is to train a model on a dataset S = {ρ (s)}N

s=1 consisting of
n-qubit quantum states. We use d to denote the dimension
of the composite quantum system, i.e., d = 2n. The quantum
model is parametrized through a QNN, which is a unitary
quantum channel Cθ acting on input states ρ (s) as Cθ (ρ (s) ) =
U (θ)ρ (s)U †(θ). Here, U (θ) is taken to be of the form

U (θ) =
M∏

m=1

Um(θm), Um(θm) = e−iθmHm , (1)

where Hm are traceless Hermitian operators taken from a set of
generators G, and θ ∈ RM is a vector of trainable parameters.
The previous allows us to express Cθ as a concatenation of M
unitary channels

Cθ = CM
θM

◦ · · · ◦ C1
θ1
, (2)

with Cm
θm

(ρ (s) ) = Um(θm)ρ (s)U †
m(θm). Thus, the output of the

QNN is a parametrized state

ρ
(s)
θ

= Cθ (ρ (s) ) = CM
θM

◦ · · · ◦ C1
θ1

(ρ (s) ). (3)

The variational parameters θ are trained by minimizing an
appropriately chosen loss function L(θ) which we consider
to be of the form

L(θ) =
N∑

s=1

fs
(
Tr[Cθ (ρ (s) )Os]

)
, (4)

where Os and fs are, respectively, a (potentially) data-
instance-dependent measurement and a post-processing
function.

While there are many aspects that define and distinguish
a given QNN from another, we note that one of the most
important is the choice of generators G from which the QNN
in Eq. (1) is built. Once G is determined, the next aspect that
defines a QNN is its depth, or equivalently, the number of
parameters M. In particular, one wants to choose G and M
such that there exist parameters values for which the task
at hand is solved. While in this work we will not discuss
how to appropriately choose G (we instead refer the reader
to Refs. [17,31]), let us consider the effect of increasing the
value of M. In a nutshell, adding more parameters to a QNN
increases its expressibility (up to a certain point) [31,48,49],
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meaning that the QNN can generate a wider breadth of uni-
taries. From a practical stand-point, adding new parameters
can potentially enable new directions in the state space,1

and concomitantly in the loss functions landscape. This can
improve the trainability of the model by removing spurious
local minima, and increasing the dimension of the solution
manifold [21,51]. In the following subsection we will see that
the overparametrization phenomenon is indeed linked to the
number of independent directions that are accessible in state
space.

B. Dynamical Lie algebra, quantum Fisher
information, and overparametrization

We will briefly recall here the main results in Ref. [21].
We will begin by defining the dynamical Lie algebra (DLA)
of a QNN [52,53], which can be used to characterize the
group of unitaries that it can be implemented [31,48,49]. It
follows that the DLA also determines the manifold of all
reachable states by the QNN. This will allow us to interpret
the overparametrization regime as that in which the QNN has
enough parameters to explore all accessible directions in said
manifold. In particular, we will show that the rank of the
quantum Fisher information matrix can be used to detect the
onset of overparametrization.

Definition 1 (Dynamical Lie algebra). Given a set of Her-
mitian generators G, the dynamical Lie algebra g is the
subspace of operator space spanned by the repeated nested
commutators of the elements in iG. That is

g = spanR〈iG〉Lie, (5)

where 〈iG〉Lie denotes the Lie closure of iG.
The DLA contains information about the ultimate expres-

siveness of the QNN, since the group of reachable unitaries
obtained for any possible parameter values θ ∈ RM (for an
arbitrary large number of parameters M) is obtained from the
DLA via exponentiation, i.e., as {U (θ)}θ = G = eg ⊆ SU (d ).
We remark that G is known as the dynamical Lie group.
Moreover, the manifold of states obtained from the action of
the QNN on an input state ρ, given by {UρU †,U ∈ G}, is
known as the orbit of ρ under G.

From here, we can ask: By varying the parameters in
the QNN, can we explore all accessible directions in the
orbits of the input states, i.e., are we in the overparametrized
regime? To answer this question, let us assume for now
that the dataset consist of a single parametrized pure state
|ψ〉. One can study the action of the QNN on |ψ〉 via the
Quantum Fisher Information Matrix (QFIM). To define the
QFIM, start by considering a distance measure D between two
pure states. In particular, we take D to be the infidelity, i.e.,
D(|ψ〉 , |φ〉) = 1 − |〈ψ |φ〉|2. Then, given a set of parameters
θ and an infinitesimal perturbation δ, an expansion to second
order of D between the quantum states |ψ (θ)〉 = U (θ) |ψ〉
and |ψ (θ + δ)〉 = U (θ + δ) |ψ〉 gives the Fubini-Study metric
[54,55], i.e.,

D(|ψ (θ)〉 , |ψ (θ + δ)〉) = 1
2δT · F (|ψ (θ)〉) · δ. (6)

1By “directions in state space” we refer to elements of the tangent
hyperplane defined at any point in state space [50].

FIG. 2. QFIM and directions in state space. Let U (θ) ∈ eg be
a parametrized unitary and |ψ〉 some pure state, so that |ψ (θ)〉 =
U (θ) |ψ〉. Here we schematically show that the eigenvalues and
eigenvectors of the QFIM, F (|ψ (θ)〉), inform how changes in param-
eter space translate into changes in state space. In particular, when
modifying θ following the eigenvectors of the QFIM, the state |ψ (θ)〉
explores the corresponding available direction in the tangent space
g |ψ (θ)〉. Additionally, the magnitude of the QFIM eigenvalues de-
termines the sensitivity of the state to a change along an eigenvector
direction [55]. As such, a large eigenvalue means that it is “easy” to
nudge the state in state space, while small eigenvalues indicate that
the state is insensitive to parameter changes in the direction of the
associated eigenvector.

Here, F (|ψ (θ)〉) is the QFIM for the state |ψ (θ)〉, an M × M
matrix whose elements are given by [56]

[F (|ψ (θ)〉)]i j = 4Re[〈∂iψ (θ)〉 ∂ jψ (θ)

− 〈∂iψ (θ)〉 ψ (θ) 〈ψ (θ)〉 ∂ jψ (θ)], (7)

where |∂iψ (θ)〉 = ∂ |ψ (θ)〉 /∂θi = ∂i |ψ (θ)〉, for θi ∈ θ. As
shown in Fig. 2, the eigenvalues and eigenvectors of the
QFIM provide valuable geometrical information regarding
how changes in the parameters translate into changes in the
state. Crucially, the rank of the QFIM quantifies the number
of independent directions in state space that can be explored
by making infinitesimal changes in θ.

As such, one can determine if the QNN is overparametrized
by checking if it has enough parameters so that the QFIM
saturates its maximum achievable rank.

Definition 2 (Overparametrization). A QNN is said to be
overparametrized if the number of parameters M is such that
the QFIM saturates its achievable rank R at least in one point
of the loss landscape. That is, if increasing the number of
parameters past some minimal (critical) value Mc does not
further increase the rank of the QFIM, i.e.,

max
M�Mc,θ

rank[F (|ψ (θ)〉)] = R. (8)

The main result of Ref. [21] is that Mc is directly linked to
the dimension of g (the circuit’s DLA). In particular, the rank
of the QFIM is upper bounded by dim(g). Hence, one can
potentially reach the overparametrization regime if the QNN
has ∼ dim(g) parameters. Clearly, if dim(g) ∈ �(exp(n)) (as
is the case of controllable unitaries) then one cannot effi-
ciently overparametrize the QNN. More interesting, however,
are the cases when dim(g) ∈ O(poly(n)), such as those aris-
ing in Refs. [31,57]. We remark that while we have defined
overparametrization as the regime where the number of pa-
rameters is such that the QFIM saturates its achievable rank
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in at least one point in the landscape, in practice one finds
that the rank saturates simultaneously throughout most of the
landscape (which is what brings about a computational phase
transition) [21].

To finish, we note that in Ref. [21] it was also shown that
Definition 2 has operational meaning in terms of the capacity
of the QNN [27,28]. We recall that the capacity (or power)
of a QNN is used to quantify the breadth of functions that
it can capture [58]. For instance, let us consider the capacity
measure of Ref. [28], which defines the effective quantum
dimension of a QNN as

D1(θ) = E

[
M∑

m=1

Z (λm(θ))

]
. (9)

Here λm(θ) are the eigenvalues of the QFIM for the state
|ψ (θ)〉, and Z (x) is a function such that Z (x) = 0 for x = 0,
and Z (x) = 1 for x �= 0. Moreover, the expectation value
is taken over the probability distribution from which states
are sampled from S . It is straightforward to see that for a
single-state dataset, D1(θ) = rank[F (|ψ (θ)〉)]. An alternative
definition for the capacity of a QNN can be found in Ref. [27].
In the limit of large datasets, i.e., when |S| → ∞, the effective
quantum dimension of Ref. [27] converges to

D2 = max
θ

(rank[I (|ψ (θ)〉)]), (10)

where I (|ψ (θ)〉) is the classical Fisher information matrix,
defined as

I (|ψ (θ)〉) = E

[
∂ log(p(|ψ〉 , y; θ))

∂θ

∂ log(p(|ψ〉 , y; θ))

∂θ

T
]
.

(11)

Here, p(|ψ〉 , y; θ) describes the joint relationship between
an input |ψ〉 and an output y of the QNN. In addition, the
expectation value is taken over the probability distribution that
samples input states from the dataset. As shown in Ref. [21]
the model’s capacity, as quantified by the effective dimensions
of Eq. (9) or Eq. (10), is upper bounded as

D1(θ) � dim(g), D2 � dim(g). (12)

Moreover, one can show that when the QNN is over-
parametrized, D1(θ) achieves its maximum value. This shows
that overparametrizing a QNN is equivalent to saturating its
capacity.

C. Quantum noise preliminaries

Quantum noise refers to the uncontrolled errors that oc-
cur when implementing a QNN on quantum hardware. Such
errors may arise from a wide variety of sources, such as
imperfections when implementing gates or when performing
measurements, undesired qubit-qubit couplings or unwanted
interactions between the qubits and their environment.

In this work, we model the action of the hardware noise
present throughout a QNN by considering that noise channels
Nm act before and after each unitary Um(θm) (see Fig. 3). Here,
we recall the definition of a unital Pauli channel.

Definition 3 (Unital Pauli channel). A unital Pauli chan-
nel is a CPTP map N whose action on an operator ρ is

(a)

(b)

FIG. 3. Noiseless and noisy quantum circuits. (a) Noiseless
quantum circuit consisting of parametrized unitary channels Cm

θm
.

(b) Noisy quantum circuit where unital Pauli noise channels Nm are
interleaved with the unitary channels.

given by

N (ρ) =
∑
αβ

pαβX αZβρZβX α, (13)

where {pαβ} is a probability distribution (i.e., pαβ � 0 and∑
αβ pαβ = 1), and X αZβ := X α1 Zβ1 ⊗ ... ⊗ X αn Zβn , where

α1, . . . , αn, β1, . . . , βn ∈ {0, 1}.
In other words, a unital (identity preserving) Pauli channel

consists of Pauli operators applied randomly according to a
certain probability distribution. It is easy to see that it is
diagonal in the Pauli basis. That is, its action maps a Pauli
operator X α′

Zβ′
onto itself as N (X α′

Zβ′
) = cα′β′X α′

Zβ′
, where

c00 = 1 and −1 � cα′β′ � 1 for all α′ and β′. Indeed,

N (X α′
Zβ′

) =
∑
αβ

pαβX αZβX α′
Zβ′

ZβX α

= X α′
Zβ′ ∑

αβ

(−1)α
′·β(−1)α·β′

pαβ︸ ︷︷ ︸
cα′β′

, (14)

where we used the following properties:

[X α, X α′
] = 0, [Zβ, Zβ′

] = 0, X αZβ = (−1)α·βZβX α,

together with the fact that the square of a Pauli operator is
equal to the identity. Note that c00 = 1 implies that a unital
Pauli noise channel maps the identity operator onto itself,
which is a necessary and sufficient condition for a diagonal
superoperator to be trace preserving. In what follows we will
assume that cα′β′ ∈ (−1, 1) for all α′ and β′ (this is necessary
for Lemma 2 in Appendix E to hold, i.e., for the identity
operator to be the only fixed point of the noisy channel).

Pauli unital noise includes, as a special case, local depolar-
izing noise, which acts on each qubit j ∈ [1, n] as [59]

NDepol
j (ρ) =

(
1 − 3p

4

)
ρ + p

4
(XjρXj + YjρYj + ZjρZj ),

= (1 − p)ρ + p
1 j ⊗ Tr j[ρ]

2
. (15)
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Here, 0 < p � 1 denotes the probability of depolarization,
and Xj , Yj , and Zj are Pauli operators acting on the jth qubit.
Moreover, Tr j indicates the partial trace over qubit j. Simi-
larly, we can construct an n-qubit channel consisting of a local
depolarizing channel acting on each qubit as

NDepol
loc (ρ) =

n⊗
j=1

NDepol
j (ρ), (16)

or the global depolarizing channel, whose action is

NDepol(ρ) = (1 − p)ρ + p
1

d
, (17)

where 0 < p � 1. Other examples of Pauli noise channels
include bit- and phase-flip channels, as well as T2 processes
(i.e., the dephasing channel is a unital Pauli channel).

As shown in Fig. 3, in the presence of quantum noise the
action of the QNN is modeled by noise channels interleaved
with the unitary channels. Hence, the output of the noisy QNN
is given by

ρ̃θ = C̃θ (ρ) = NM+1 ◦ CM
θM

◦ NM ◦ · · · ◦ N2 ◦ C1
θ1

◦ N1(ρ),

(18)

for some (potentially layer-dependent) noise channels Nm,
with m = 1, . . . , M + 1.

D. Mixed-state quantum Fisher information matrix

As previously discussed, in the presence of noise the quan-
tum states evolving through the circuit become mixed, and we
must extend the formula of the QFIM in Eq. (7) to account
for this. Following the same program that led to the QFIM for
pure states, we can define a mixed-state QFIM as an expansion
of the Bures distance, which is a measure of distinguishability
between mixed states. The Bures distance is defined as

B(ρ, σ ) = 2(1 −
√
F (ρ, σ )), (19)

where F (ρ, σ ) is the Ulhmann fidelity [60]

F (ρ, σ ) = (Tr[
√√

ρσ
√

ρ])2. (20)

Let ρθ be a parametrized mixed state. And let its spectral
decomposition be

ρθ =
d∑

μ=1

rμ |rμ〉〈rμ| , (21)

where {rμ}d
μ=1 are the eigenvalues of ρθ (such that rμ � 0

for all μ, and
∑

μ rμ = 1), and {|rμ〉}d
μ=1 are the associated

eigenvectors.2 Then, a second-order expansion of the Bures
distance between ρθ and ρθ+δ leads to the mixed state QFIM
[which reduces to Eq. (7) when ρθ is pure], whose entries are
[55,61]

[F (ρθ )]i j =
∑
μ,ν

rμ+rν �=0

2Re[〈rμ| ∂iρθ |rν〉 〈rν | ∂ jρθ |rμ〉]
rμ + rν

(22)

2For simplicity, we omit the θ dependency in rμ and |rμ〉.

=
∑

μ
rμ �=0

(
(∂irμ)(∂ j rμ)

rμ

+ 4rμRe
[〈∂irμ|∂ j rμ〉])

−
∑
μ,ν

rμ+rν �=0

8rμrν

rμ + rν

Re
[〈∂irμ|rν〉〈rν |∂ jrμ〉]. (23)

Here we recall a few properties of the QFIM which will be
used below, and we refer the reader to Ref. [61] for their
proof.

(1) F is a symmetric matrix: F T = F .
(2) F is positive semi-definite: F � 0.
(3) F is convex: For any pair of states ρθ and σθ and

for 0 � q � 1 we have F (qρθ + (1 − q)σθ ) � qF (ρθ ) + (1 −
q)F (σθ ).

(4) F is invariant under unitary transformations:
F (UρθU †) = F (ρθ ) for any U ∈ U (d ).

(5) F is nonincreasing under quantum channels: If  is a
quantum channel, then F ((ρθ )) � F (ρθ ).

III. RESULTS

The previous section reviewed the results of Ref. [21],
which analyzed the overparametrization phenomenon when
no hardware noise is present. However, in a realistic sce-
nario where the QNN is implemented on a near-term quantum
device [62] we can expect that quantum noise will act through-
out the circuit. Therefore, in what follows we set out to study
how the results of Ref. [21] change when noise is considered.
For simplicity, we will study the case when the dataset is
composed of a single mixed state S = {ρ}. The extension of
our results to multistate datasets is straightforward, as one
simply needs to follow the approach taken in Ref. [21].

A. Single-qubit toy model

We start with a simple toy model that will help us gather
intuition on the effects that noise may have on the rank and
the eigenvalues of the QFIM, and hence on the QNNs’ over-
parametrization. As we will show, we can expect that presence
of quantum noise will generally: (i) Increase the rank of the
QFIM, and (ii) Decrease the overall magnitude of the QFIM
eigenvalues. To illustrate these two phenomena, we consider a
simple single-qubit model undergoing bit-flip noise. The setup
is as follows. First, we initialize the state of the single qubit to

ρ = 0.9 |+〉〈+| + 0.1
1

2
. (24)

We choose a full rank state to avoid issues in the QFIM
(namely, discontinuities in its entries) arising from a change
in the rank of the state [63,64]. Then, this state is sent through
a circuit composed of four single qubit rotations

U (θ) = e−iθ4X/2e−iθ3Z/2e−iθ2X/2e−iθ1Z/2. (25)

This setup is depicted in Fig. 4(a, top). In channel notation,
this QNN is expressed as the concatenation of four unitary
channels

Cθ = CX
θ4

◦ CZ
θ3

◦ CX
θ2

◦ CZ
θ1
, (26)

where CZ
θ (ρ) = e−iθZ/2ρeiθZ/2, and analogously for CX

θ (ρ).
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(a)

(b)

FIG. 4. Single-qubit toy model examples. (a) We consider the case where the single qubit state of Eq. (24) is sent through a noiseless QNN
with four parameters as in Eq. (26). We plot in the Bloch sphere the three trajectories defined by θ1, θ2 and θ3. (b) We consider the case where
the single qubit state of Eq. (24) is sent through a noisy QNN with four parameters, as in Eq. (28). Here, bit-flip noise channels act before and
after every gate with probability p = 0.1. We plot in the Bloch sphere the three trajectories defined by θ1, θ2 and θ3. The action of the unitary
gates is marked in blue, whereas the action of the noise channels is marked in red.

The generators of the QNN are the Pauli matrices G =
{X, Z}, and it is straightforward to check that the DLA
is simply g = span{iX, iY, iZ} ∼= su(2), meaning that the
QNN is universal or controllable [31,52]. Moreover, we
can see that the maximum possible rank of the QFIM
is maxθ (rank[F (ρθ )]) = 2, as the state lives on a two-
dimensional shell inside of the Bloch sphere. As such, it
is clear that the QNN is already overparametrized, since
the maximum attainable rank of the QFIM is smaller than
the number of parameters. To exemplify how noise affects
the QNN, we evaluate the QFIM at three different sets of
parameter values,

(1) θ1 = {0, 0, 0, 0}, leading to rank[F (ρθ1 )] = 1,
(2) θ2 = {π

2 , 0, 0, 0}, leading to rank[F (ρθ2 )] = 2,
(3) θ3 = {π

2 , π
4 , π

4 , π
4 }, leading to rank[F (ρθ3 )] = 2.

The (noiseless) trajectories corresponding to these choices
are presented in Fig. 4(a, bottom). While the rank of
the QFIM is indeed saturated at θ2 and θ3, for θ1 we

have rank[F (ρθ1 )] = 1 (this follows from Rz(0)ρRz(0)† and
Rz(0)Rx(0)Rz(0)ρRz(0)†Rx(0)†Rz(0)† being eigenstates of
Rx). We have thus added this example to showcase the
important role that the interplay between the initial state
and the QNN parameters has in determining the rank of
the QFIM.

Now, let us consider the case where bit-flip noise channels
act before and after every unitary gate in the circuit [see
Fig. 4(b, top) for a schematic portrayal of the setup]. For
convenience, we recall that the bit-flip channel is a special
case of Pauli noise of the form

N BF(ρ) = (1 − p)ρ + pXρX, 0 < p � 1, (27)

such that the noisy QNN channel becomes

C̃θ = N BF ◦ CX
θ4

◦ N BF ◦ CZ
θ3

◦ N BF ◦ CX
θ2

◦ N BF ◦ CZ
θ1

◦ N BF.

(28)
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(a)

(b)

FIG. 5. State space trajectories following perturbations along
QFIM eigendirections. (a) We consider that the single qubit state
of Eq. (24) is sent through a noiseless QNN as in Eq. (26), with
parameters θ3. Here we show within the Bloch sphere how the state
ρθ changes when the parameters are varied following the directions
given by three eigenvectors of the QFIM F (ρθ ). Two such directions
are associated with the two nonzero eigenvalues (blue and red curves)
and with a zero eigenvalue (green, nonvisible, curve). (b) We con-
sider that the single qubit state of Eq. (24) is sent through a noisy
QNN as in Eq. (28), with parameters θ3. Here we show within the
Bloch sphere how the state ρθ changes when the parameters are
varied following the directions given by the three eigenvectors of
the QFIM F (̃ρθ ) with associated nonzero eigenvalues (blue, red, and
green curves).

A direct evaluation of the QFIM rank at the sets of parameter
values previously considered reveals that

(1) θ1 = {0, 0, 0, 0}, leads to rank[F (ρθ1 )] = 1,
(2) θ2 = {π

2 , 0, 0, 0}, leads to rank[F (ρθ2 )] = 2,
(3) θ3 = {π

2 , π
4 , π

4 , π
4 }, leads to rank[F (ρθ3 )] = 3.

The trajectories defined by these rotations are presented in
Fig. 4(b, bottom), for a value of p = 0.1. Here we can see that
for θ1 and θ2 the rank of the QFIM is not increased. While
it is obvious that for θ1 the noise does not change the output
state of the QNN (as ρ is a fixed point of the noise model), for
θ2 the noise channels do change the output state of the QNN.
Notably, we can see that all the noise channels are effectively
applied at the end of the parametrized evolution in both cases.
As we will show below, this implies that they cannot change
the rank of the QFIM (see Theorem 1). Finally, for θ3 the noise
does increases the rank of the QFIM from two to three. Here,
the rank of the QFIM is maximal, which follows from the state
evolving in the three-dimensional Bloch sphere.

The fact that for θ3 the rank of the QFIM is increased
indicates that the presence of noise enables a new direction
in state space. As shown in Fig. 5(a), in the absence of noise
(and hence when the rank of the QFIM is two), there are only
two available directions in state space. These directions are

FIG. 6. Purity and new directions in state-space. Here, ρ is a
single-qubit input state to a noisy QNN. Then, let ρθ , ρθ+δ1 and ρθ+δ2

be the output states when the QNN parameters are θ, θ + δ1, and
θ + δ2, respectively. As schematically shown, the parameters θ + δ1

(θ + δ2) lead to the output state ρθ+δ1 (ρθ+δ2 ) having more (less)
purity than ρθ , as the output state is farther (closer) to the center of
the Bloch sphere. Note that in all cases, the output states ρθ , ρθ+δ1 ,
and ρθ+δ2 are less pure than the input state ρ due to the presence of
noise.

depicted as blue and red lines corresponding to the trajecto-
ries followed by the state when the parameters are changed
along the directions dictated by the eigenvectors of the QFIM
with nonzero eigenvalues. Since the channel is unitary, these
trajectories lie on the surface of a (fixed-purity) shell of the
Bloch sphere. We have also verified that, as expected, the
state remains unchanged when the parameters are varied along
a direction corresponding to an eigenvector associated to a
null eigenvalue of the QFIM (although the previous cannot
be visualized in the plot because the initial and final state of
the evolution are the same).

On the contrary, as shown in Fig. 5(b), when noise acts
throughout the circuit (and hence when the rank of the QFIM
is three), there are three available directions in state space.
Here, the red, blue and green curves correspond to the trajecto-
ries that the state follows when changing the parameters along
the directions given by the three eigenvectors of the QFIM
with associated nonzero eigenvalue. Crucially, we can now see
that there exists a direction (the blue curve) that preserves the
purity of the quantum state. The other two directions, how-
ever, can both increase and decrease the purity of the output
state. This is evidenced from the fact that the trajectories in the
state space move inwards and outwards from the fixed-purity
shell in the Bloch sphere.

We find it important to remark that while some of the
directions in state space can change the purity of the state ρ̃θ ,
this does not imply that the QNN is purifying the state. As
shown in Fig. 5(b), by perturbing the parameters θ along a
direction δ one can move the final state inwards or outwards
in the Bloch sphere. That is, we can decrease or increase the
purity of ρ̃θ+δ with respect to that of ρ̃θ; see Fig. 6. However,
this does not imply that ρ̃θ+δ has less entropy than the initial
state ρ. In other words, changing the variational parameters by
δ implies preparing again the initial state ρ and applying C̃θ+δ,
not evolving from ρ̃θ to ρ̃θ+δ. Physically, we can interpret
the previous as saying that the state evolving under the noisy
QNN C̃θ+δ is less sensitive to noise than that evolving under
C̃θ , and hence its purity gets less degraded by noise.
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FIG. 7. Eigenvalues of the QFIM versus noise levels. Here we
consider the case where the noisy QNN from Eq. (28) acts on
the initial single-qubit state of Eq. (24). We plot the magnitude
of the eigenvalues of the QFIM for the single-qubit toy model versus
the probability of bit-flip error p. The top, middle and bottom panels
respectively correspond to the parameter values θ1, θ2, θ3.

Next, let us evaluate how noise affects the magnitude of
the QFIM eigenvalues. In Fig. 7 we plot the eigenvalues of the
QFIM versus the probability of a bit-flip error p. In this case, it
is manifest that for all the parameter values considered above,
the magnitude of the nonzero eigenvalues decreases with p.
Crucially, the previous holds not only for the eigenvalues of
the QFIM that were nonzero in the noiseless setting, but also
for those that the noise “turns on.” This result indicates that
the state’s sensitivity to parameter changes decreases with
increasing noise levels. As we will prove below (see Theorems
3 and 4), this is a general consequence of the presence of noise
in a QNN.

B. Global depolarizing noise

Here we study the overparametrization of general QNNs
acting on an n-qubit state under a simple noise model: Global
depolarizing noise [see Eq. (17)]. We henceforth assume that
global depolarizing noise channels act before and after every
unitary channel in the QNN with the same probability p. That
is, we consider the case when

ρ̃θ = NDepol ◦ CM
θM

◦ NDepol ◦ · · · ◦ NDepol ◦ C1
θ1

◦ NDepol(ρ).

We remark here that since the noise channel NDepol acts before
the first parametrized gate in the circuit, C1

θ1
, we avoid the

change of rank in the quantum state (from a pure state to a
full-rank state) that would occur otherwise. It is not hard to
see that the action of the global depolarizing noise channels
can be commuted through to the end of the circuit, so that

NDepol ◦ CM
θM

◦ NDepol ◦ · · · ◦ NDepol ◦ C1
θ1

◦ NDepol

= NDepol ◦ · · · ◦ NDepol︸ ︷︷ ︸
×(M+1)

◦CM
θM

◦ · · · ◦ C1
θ1

= NDepol
eff ◦ CM

θM
◦ · · · ◦ C1

θ1
. (29)

Here, we have defined

NDepol
eff (ρ) = (1 − p)M+1ρ + (1 − (1 − p)M+1)

1

d
. (30)

This shows that we can express the output state of the
QNN as

ρ̃θ = (1 − p)M+1Cθ (ρ) + (1 − (1 − p)M+1)
1

d

= (1 − p)M+1ρθ + (1 − (1 − p)M+1)
1

d
. (31)

More generally, we note that the previous result can be
extended to the case when global depolarizing noise channels
with different layer-dependent probabilities pm act in between
the gates of the circuit. In particular, one now finds

NDepol
eff (ρ) =

M+1∏
m=1

(1 − pm)ρ +
(

1 −
M+1∏
m=1

(1 − pm)

)
1

d
.

(32)

Next, we study how the rank of the QFIM and the magni-
tude of its eigenvalues change due to the presence of global
depolarizing noise. In this context, we find it convenient to
first present a useful theorem.

Theorem 1. Consider the case when a single noise channel
acts at the end of the QNN as

C̃θ = N ◦ CM
θM

◦ · · · ◦ C1
θ1
. (33)

The rank of the QFIM cannot be increased by the action of the
noise. That is

rank[F (̃ρθ )] � rank[F (ρθ )], (34)

where ρθ and ρ̃θ respectively denote the output states of the
noiseless and noisy QNNs (see Eqs. (3) and (18)).

We refer the reader to Appendix A for a proof of Theorem
1. The key implication of this theorem is that if the noise
acts exclusively at the end of the circuit, then the rank of
the QFIM cannot be increased. Hence, it follows that one can
overparametrize the noisy QNN, C̃θ , with the same number of
parameters needed to overparametrize the noiseless one, Cθ .

Using Theorem 1 we can readily prove the following result
for the case of global depolarizing noise.

Theorem 2. When global depolarizing channels act before
and after every unitary in the QNN, then the rank of the QFIM
cannot be increased by the action of the noise.

The proof of this theorem can be found in Appendix B.
Theorem 2 shows that the presence of global depolarizing
channels cannot increase the number of available directions in
state space, as the rank of the QFIM is nonincreasing. Again,
this means that one can overparametrize the noisy QNN with
the same number of parameters needed to overparametrize the
noiseless QNN, when global depolarizing noise acts through-
out the circuit.

In addition, we can also analyze how the eigenvalues of the
QFIM change due to the presence of the global depolarizing
channels. Here, the following theorem holds.

Theorem 3. When global depolarizing channels act before
and after every unitary in the QNN, the entries of the QFIM
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(and therefore its eigenvalues) satisfy

[F (ρθ )]i j ∈ O(e−p(M+1)), (35)

i.e., they become exponentially suppressed with the product of
the number of gates M and the probability of depolarization p.

This theorem is proven in Appendix C. Theorem 3 indi-
cates that while global depolarizing noise cannot increase the
number of available directions in state space, it does suppress
the sensitivity of the state to any variations in the parameters.
This result can be used to further understand the so-called
noise-induced barren plateau phenomenon [40,41] whereby
noise erases all the features in the QML model’s training
landscape. For instance, let us note that given a linear loss
function [i.e., fs(x) = x in Eq. (4)], one has

L(θ) = Tr[C̃θ (ρ)O]

= (1 − p)M+1Tr[Cθ (ρ)O] + (1 − (1 − p)M+1)Tr[O].

(36)

Equation (36) shows that the optimization landscape becomes
exponentially flat with M and p (hence a noise-induced barren
plateau). As such, our results show that noise-induced insensi-
tivities arise already at the level of state space, thus providing a
more fundamental understanding of the noise-induced barren
plateau phenomenon.

C. Local depolarizing plus unital Pauli channels

In this section we show that some of the intuition gathered
from the previous sections can be extended to more general
Pauli noise models. Namely, we here consider how noise
affects the QFIM for a QNN acting on n-qubits when a fairly
general Pauli noise acts. As we will show, the entries of the
QFIM, and concomitantly its eigenvalues, get exponentially
suppressed with the product of the number of noise channels
and the noise probability. We note that here we will not at-
tempt to prove that, on average, noise increases the rank of
the QFIM. This is due to the fact that there can exist special
types of noise and parameter values for which the rank is
not increased (see Secs. III A and III B). Because of these
subtleties, we will leave a more detailed rank analysis for
future work.

In what follows we will consider a general noise model
where noise channels are interleaved with the unitary channels
of the QNN as

C̃θ = NM+1 ◦ CM
θM

◦ NM ◦ · · · ◦ N2 ◦ C1
θ1

◦ N1, (37)

for some (potentially layer dependent) noise channels Nm,
m = 1, . . . , M + 1. Again, we note that N1 acts before C1

θ1
,

which avoids the state changing from pure to mixed after
the first parametrized gate. Moreover, as shown in Fig. 8,
we will assume that each noise channel is composed of local
depolarizing noise channels acting on each qubit plus some
general unital Pauli noise. That is,

Nm = NDepol
loc (ρ) ◦ N P

m (ρ), (38)

where N P
m (ρ) is an arbitrary unital Pauli quantum channel and

NDepol
loc is a product of local depolarizing channels as given

by Eq. (16). For simplicity, we will assume that all local

FIG. 8. Schematic representation of a QNN under the general
noise model considered. Our results are derived for a general noise
model where unitary gates are interleaved by noise channels com-
posed of local depolarizing noise channels acting on each qubit plus
some general unital Pauli noise.

depolarizing noise channels have the same probability p. In
Appendix F we show how our results can be generalized to the
case where they have different (qubit- and layer-dependent)
probabilities. Moreover, we note that the order in which
NDepol

loc (ρ) and N P
m (ρ) act in Eq. (38) will be irrelevant for

our purposes, as our results can also be shown to hold when
the order is reversed (see Appendix F).

For this noise model, we prove the following theorem.
Theorem 4. Let C̃θ be a noisy channel as in Eqs. (37) and

(38), where a Pauli noise channel (composed of a local de-
polarizing noise acting on each qubit plus a general unital
Pauli channel) acts before and after each gate of the QNN.
Furthermore, let p be the probability of the local depolarizing
channels as in Eq. (15). The entries of the QFIM, and thus its
eigenvalues, are exponentially suppressed with the product of
M and p as O(e−2p(M+1)).

See Appendix D for a proof of Theorem 4. This theorem
states that under very general noise models, the entries of the
QFIM and its eigenvalues vanish exponentially with the noise
probability and the number of gates. Crucially, we will have
that irrespective of whether the rank of the QFIM is increased
or not by the noise, if the circuit is too deep (large M), or
if the noise levels are too high (large p), the state becomes
insensitive to parameter changes. Similarly to Theorem 3, this
result sheds new light into the noise-induced barren plateau
phenomenon [40,41].

IV. NUMERICAL RESULTS

In this section we present numerical results that extend
and complement our theoretical findings. All the simulations
presented here have been performed in double precision with
the open-source library qibo [65], using the fast qibojit
backend [66]. The simulations have been carried out on CPUs,
namely IntelCore i7-9750H and AMD Ryzen Threadripper
PRO 3955WX cores.

In particular, we consider the problem where the QNN
is given by a Hamiltonian Variational Ansatz (HVA)
[22,67] with generators inspired by the transverse-field Ising
model with periodic boundary conditions. That is, we have

013295-9



GARCÍA-MARTÍN, LAROCCA, AND CEREZO PHYSICAL REVIEW RESEARCH 6, 013295 (2024)

FIG. 9. Eigenvalues of the QFIM under global depolarizing
noise. Here we consider a problem where an n = 10 qubit state is sent
through an HVA quantum circuit as in Eq. (40), with L = 20 (i.e.,
with M = 40 parameters). In the simulations, global depolarizing
noise acts on all qubits before and after each gate. We show the
magnitude of the mth eigenvalue of the QFIM for different noise
values p, at a random point in the landscape. The inset shows the
scaling of two nonnull eigenvalues with p.

G = {H0, H1}, with

H0 =
n∑

i=1

σ z
i σ z

i+1 , H1 =
n∑

i=1

σ x
i , (39)

and σ z
n+1 ≡ σ z

1 . Here, the action of the noiseless QNN U (θ) is
given by

U (θ) =
L∏

l=1

e−iθl1H1 e−iθl0H0 , (40)

where L is the number of layers. Thus, the QNN has M = 2L
parameters. We have fixed the initial state of the QNN to be
the state |+〉⊗n. As shown in Ref. [21], the DLA associated
with this ansatz has dimension dim(g) = 3

2 n, meaning that the
QNN can be overparametrized with only a polynomial (linear)
number of parameters (or layers). In what follows, we will
study how the presence of noise affects the QFIM. In all cases,
the computations have been carried out at random points in
parameter space.

First, to validate Theorem 2 we have simulated the action
of global depolarizing channels acting before and after each
gate. The results are depicted in Fig. 9, where the eigen-
spectrum of the QFIM is plotted for n = 10 qubits, M = 40
parameters, and different noise probabilities. Here we see that
the rank of the QFIM is unaffected by global depolarizing
noise as indicated by Theorem 2. These numerical results
also allow us to verify the exponential decrease of the QFIM
eigenvalues with the probability of the depolarizing noise,
predicted by Theorem 3 (see inset in Fig. 9).

Second, we have simulated the case where local depolar-
izing channels act on each qubit before and after every gate
in the circuit. The results are shown in Fig. 10, where we plot
the eigenspectrum of the QFIM for n = 10 qubits, M = 40
parameters, and different noise probabilities. In contrast to
global depolarizing channels, local noise does increase the
rank of the QFIM. This can be observed in the plot from the

FIG. 10. Eigenvalues of the QFIM under local depolarizing
noise. Here we consider a problem where an n = 10 qubit state is
sent through an HVA quantum circuit as in Eq. (40), with L = 20
(i.e., with M = 40 parameters). In the simulations, local depolarizing
noise channels act with the same probability p on all qubits before
and after each gate. We show the magnitude of the mth eigenvalue
of the QFIM for different noise values p, at a random point in the
landscape.

fact that as soon as p is larger than zero, all the eigenvalues
of the QFIM become nonnull (as opposed to the noiseless
case). As already discussed, this implies that noise enables
new directions in state space. Moreover, here we can see that
according to Definition 2, noise can turn an overparametrized
QNN (with saturated rank) into an underparametrized one
(where the rank of the QFIM is equal to the number of pa-
rameters). Notably, Fig. 10 shows that there exists a certain
robustness to noise in the overparametrization phenomenon.
This is evidenced from the fact that when the probability
of noise acting is small (e.g., p ∼ 10−5), there still exist a
gap of about two orders of magnitude between the dominant
eigenvalues and the “newly appeared” ones. Hence, for small
noise levels the system can be considered to be in a quasiover-
parametrized regime, where large eigenvalues of the QFIM
(the ones that were previously nonzero) coexist with small
eigenvalues (the ones that were previously zero).

This separation in eigenvalue magnitude disappears when
noise levels increase. As shown in Fig. 10, for large enough
noise probability (e.g., p = 0.08) all the eigenvalues are expo-
nentially vanishing. Moreover, in Fig. 11 we show the scaling
of the QFIM entries and eigenvalues with the number of gates
and noise probability. As in the case of global depolarizing
noise, these decrease exponentially (with some statistical fluc-
tuations observed). Taken together, the results in Figs. 10 and
11 numerically confirm the result established in Theorem 4.

V. IMPLICATIONS TO CAPACITY MEASURES

Let us briefly discuss the implications of the previous re-
sults for the capacity measures of Refs. [27,28]. In particular,
we have seen that both these measures are related to the
maximum rank of the quantum or classical Fisher information
matrix. For simplicity, we will consider first a noiseless QNN
that has enough parameters M to be well beyond the over-
parametrization threshold. In this case, the rank of the QFIM,
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(a)

(b)

FIG. 11. Average magnitude of the QFIM entries and eigenval-
ues in the presence of local depolarizing noise. Here we consider
a problem where an n = 10 qubit state is sent through an HVA
quantum circuit as in Eq. (40), with fixed parameter values for each
(L, p). In the simulations, local depolarizing noise channels act with
the same probability p on all qubits before and after each gate. We
show the average magnitude of the entries of the QFIM and its
eigenvalues for different (a) number of layers L and (b) noise values
p. Bars depict the standard deviation across the different entries (or
eigenvalues) of the QFIM.

and concomitantly its capacities D1(θ) = rank[F (̃ρθ )] and D2,
are saturated, and are such that D1(θ), D2 < M (see Ref. [21]).

The results presented in this work indicate that if hardware
noise is present, then the rank of the QFIM can increase
(e.g., the QFIM can become full rank). Using D1(θ) as ca-
pacity measure [28] would imply that the QNN’s capacity
is increased by noise. Moreover, a similar conclusion can
be drawn for the capacity measure of Ref. [27] as follows.
Indeed, when the noise renders the QFIM full rank, then it
becomes invertible and the following inequality holds [68]

I−1(̃ρθ ) � F−1(̃ρθ ). (41)

This implies that the classical Fisher information is also in-
vertible, and thus full rank. Since rank[F (ρθ )] � rank[I (ρθ )]
[69], this means that when the rank of the QFIM increases
and becomes full rank, so does the rank of the classical Fisher
information matrix. Hence, using Eq. (10) we see that noise
can also increase the capacity of the QNN when D2 is used as
capacity measure.

We remark that it is true that new directions are enabled in
state space by the action of noise, and that these can be some-
what partially controlled (see Fig. 5). However, it is also worth
recalling that the sensitivity of the noisy state to parameter

updates along these direction decreases exponentially with the
noise magnitude. In fact, one can expect that in the regime
where the noise is sufficiently large, the QFIM can be full rank
(i.e., rank[F (̃ρθ )] = M) but the magnitude of its eigenvalues
exponentially small (see Theorem 4). In this scenario, the
QNN has a seemingly increased capacity due to noise, but the
state is rendered insensitive to parameter changes.

The critical issue here is that the rank of the QFIM is a dis-
crete number that depends on the number of strictly nonzero
eigenvalues of the QFIM, but not on their magnitude. Such
issue could be potentially alleviated by considering capacity
measures that depend on the magnitude of the eigenvalues.
For instance, one could modify the measure of Ref. [28] [see
Eq. (9)] as

D(ε)
1 (θ) = E

[
M∑

m=1

Z (ε)(λm(θ))

]
, (42)

where λm(θ) are the eigenvalues of the QFIM for the state ρθ ,
Z (ε)(x) = 0 for x � ε, and Z (x) = 1 for x > ε. As such, one
would only account for the eigenvalues of the QFIM that are
larger than a given tuneable constant ε. We leave however the
study of such a measure for future work, as more research is
needed to understand the interplay between the capacity of
QNNs and quantum noise.

VI. CONCLUSIONS

Theoretically understanding the performance of QNNs is
a fundamental step to guaranteeing their success in practical
realistic scenarios. While there has been tremendous efforts in
studying noiseless QNNs, little is known about their perfor-
mance when hardware noise acts throughout the computation.
However, since noise is a defining property of near-term
quantum devices, more research is needed to bridge the gap
between our understanding of noiseless and noisy QNNs.

In this work we focus on the overparametrization of noisy
QNNs. To analyze this phenomenon, we first present a toy
model example which showcases how noise acting through-
out a quantum circuit can indeed increase the rank of the
QFIM. Crucially, this means that noise can transform an over-
parametrized QNN into an underparametrized one. Moreover,
this toy model also illustrates a second general effect that
noise exerts on QNNs, namely it produces a decrease in the
magnitude of the QFIM eigenvalues and thus in the sensitivity
of the quantum state to parameter updates.

We then derive analytical results proving that a noise chan-
nel at the end of a quantum circuit cannot increase the rank
of the QFIM. This implies that certain noise models, like
global depolarizing noise interleaved with unitary gates, or
measurement noise, leave the rank of the QFIM unaffected. In
turn, this means that the noisy QNN can be overparametrized
with the same number of parameters as the noiseless QNN.
However, we also prove that global depolarizing channels
suppress the QFIM entries and its eigenvalues exponentially
with the product of the number gates and the probability of
depolarization. This renders the output of the QNN insensitive
to changes in the variational parameters.

Furthermore, we prove that for fairly general Pauli noise
models (consisting of local depolarizing channels and unital
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Pauli noise), the eigenvalues and entries of the QFIM get
exponentially suppressed with the circuit depth and the noise
probability. Our results point to a combined effect arising
from noise, whereby the rank of the QFIM can be increased,
but at the same time the magnitude of all the eigenvalues
of the QFIM (both the pre-existing ones and the ones that
the noise “turned on”) get suppressed. Therefore, although
noise enables new directions, it also makes the noisy state
insensitive to changes in the parameter values.

With the help of numerical simulations we are able to iden-
tify three regimes for the overparametrization phenomenon in
the presence of noise. The first corresponds to small noise
levels. Here, the magnitude of the new nonzero eigenval-
ues is very small compared to that of pre-existing ones,
whose magnitude remains largely unchanged, indicating a
certain robustness to noise. In this “quasioverparametrized”
regime, the state is mostly insensitive when the parameters
are moved along the directions associated with the newly
appeared nonzero eigenvalues. We leave for future work to
study the performance and potential for quantum advantage of
parametrized quantum circuits in this quasioverparametrized
regime. Indeed, there is evidence that specific types of noise
can be useful to improve the trainability of noisy quantum
circuits [70]. Then, there exists an intermediate regime where
the magnitude of the new nonzero eigenvalues is comparable
to that of the previous nonzero ones, but smaller than in the
noiseless scenario. That is, in this regime there is no gap
between large and small eigenvalues, but rather the eigenval-
ues (sorted from larger to smaller) lie on a continuous line.
Finally, in the third regime, all the eigenvalues vanish and the
state becomes (almost) completely insensitive to changes in
the parameter values. Moreover, we find that some of the new
directions are purity altering, meaning that the QNN can map
the state to regions where it is more, or less, sensitive to the
effects of noise.

We then study the implications of our results to current
QNN capacity measures proposed in the literature [27,28]. We
find that measures based on the QFIM rank can be misleading
when noise is taken into account. In the presence of noise,
the QFIM can be transformed from singular to full rank,
indicating (according to rank-based measures) that noise can
increase a QNN’s capacity. However, the eigenvalues of the
QFIM are exponentially suppressed, meaning that the state
does not significantly change with parameter updates. This
dissonance arises from the fact that the eigenvalue magnitude
is not accounted for in rank-based measures, only the num-
ber of strictly nonzero eigenvalues. These capacity measures
should then be modified accordingly, which is left for future
work.

To conclude, we discuss the impact of our results be-
yond the overparametrization phenomenon. For instance, our
results can be understood as shedding new light on the
noise-induced barren plateau phenomenon whereby the op-
timization landscape of QML models gets exponentially flat
with the noise (or the depth) of the circuit [40]. Namely, the
flatness in the landscape arises from the state being insensitive
to changes in the parameters, as evidenced by the expo-
nentially suppressed eigenvalues of the QFIM. In addition,
our results have critical implications to noisy-state quantum
sensing [71–75]. Since the ultimate precision achievable for

sensing external parameters depends on the quantum Fisher
information through the quantum Cramér-Rao bound [76,77],
our results demonstrate how the utility of a noisy state as a
sensor gets degraded by the presence of noise. Finally, an
open question that has recently received a lot of attention
[78–80] is whether QNNs with poly sized DLAs are clas-
sically simulable. Although a very relevant question to the
present study—poly-DLA circuits are the only ones admitting
efficient overparametrization—we want to stress that their
efficient classical simulation is not always guaranteed with-
out the access to samples from a quantum computer [80].
Moreover, even if shown fully classically simulable, over-
parametrized QNNs would still find application in problems
where one does not seek a computational advantage, e.g., in
quantum sensing [72,81].
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APPENDIX A: PROOF OF THEOREM 1

Proof. Recalling that the QFIM is nonincreasing under
quantum channels, we have that F (̃ρθ ) � F (ρθ ), meaning that
F (ρθ ) − F (̃ρθ ) is positive semi-definite. Assuming that F (ρθ )
has rank R = rank[F (ρθ )], then there exists M − R orthogonal
vectors {ω}R−M

k=1 such that

ωT
k · F (ρθ ) · ωk = 0, ∀k. (A1)

These {ωk} vectors form a basis of the null space of F (ρθ ).
From the previous we have that

ωT
k · (F (ρθ ) − F (̃ρθ )) · ωk = −ωT

k · F (̃ρθ ) · ωk. (A2)

But since both F (̃ρθ ) and (F (ρθ ) − F (̃ρθ )) are positive
semidefinite we must have xT · F (̃ρθ ) · x � 0 and xT ·
(F (ρθ ) − F (̃ρθ )) · x � 0 for any x. Combining this realization
with Eq. (A2) implies that

ωT
k · F (̃ρθ ) · ωk = 0. (A3)

In other words, the vectors F (̃ρθ ) of the null space of F (ρθ )
are also in the null space of F (̃ρθ ). Hence, the action of the
noise channel at the end of the QNN cannot increase the rank
of the QFIM. �
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APPENDIX B: PROOF OF THEOREM 2

Proof. We recall that the results in Eqs. (29) and (30) show
that adding global depolarizing noise channels at every layer
is equivalent to first acting with the noiseless unitary channel
Cθ and then with an effective depolarizing noise channel with
probability of depolarization of 1 − (1 − p)M+1. That is,

NDepol ◦ CM
θM

◦ NDepol ◦ · · · ◦ NDepol ◦ C1
θ1

◦ NDepol

= NDepol
eff ◦ CM

θM
◦ · · · ◦ C1

θ1
, (B1)

where we have defined

NDepol
eff (ρ) = (1 − p)M+1ρ + (1 − (1 − p)M+1)

1

d
. (B2)

Using the right-hand side of Eq. (B1) we know that the
action of the depolarizing noise can be pulled to the end of the
circuit. Then, the proof follows from Theorem 1. �

APPENDIX C: PROOF OF THEOREM 3

Proof. To show that the eigenvalues are exponentially sup-
pressed, we can recall that since the QFIM is convex, we have

F

(
ρ̃θ ) = F ((1 − p)M+1ρθ + (1 − (1 − p)M+1)

1

d

)
� (1 − p)M+1F (ρθ ), (C1)

where we have used the fact that F (1) = 0M×M , where 0M

denotes the M × M null matrix. Here we can see that as M in-
creases, (1 − p)M+1F (ρθ ) approaches a matrix whose entries
are exponentially suppressed by M. In the limit M → ∞, the
matrix (1 − p)M+1F (ρθ ) → 0M .

Rewriting the previous equation we find that
(1 − p)M+1F (ρθ ) − F (̃ρθ ) � 0, implying that ((1 − p)M+1

F (ρθ ) − F (̃ρθ )) is a positive semi-definite matrix.
Respectively denoting as {̃λm(θ)} and {̃λm

(θ)} the sets of
eigenvalues and eigenvectors of F (̃ρθ ), we have

(̃λ
m

(θ))T · ((1 − p)M+1F (ρθ ) − F (̃ρθ )) · λ̃
m

(θ)

= (1 − p)M+1(̃λ
i
(θ))T · F (ρθ ) · λ̃

m
(θ) − λ̃m(θ) � 0.

(C2)

Then, we can further use the fact that xT · F (ρθ ) · x � λmax(θ)
for any x, where λmax(θ) is the largest eigenvalue of the
QFIM for the noiseless state F (ρθ ). Combining this result
with Eq. (C2) leads to

λ̃m(θ) � (1 − p)M+1λmax(θ), (C3)

or alternatively, λ̃m(θ) ∈ O((1 − p)M+1). Using that 1 − p �
e−p, we have λ̃m(θ) ∈ O(e−p(M+1)). Hence, we find that the
eigenvalues of the noisy-state QFIM become exponentially
suppressed with circuit depth and the noise probability.

Next, we can also directly show that the entries of the
QFIM are also exponentially suppressed by recalling from
Eq. (31) that the state at the output of the noisy QNN is
ρ̃θ = (1 − p)M+1ρθ + (1 − (1 − p)M+1)1d . This allows us to
find that the noisy eigenvalues and eigenvectors change due to
the presence of noise as

r̃μ = (1 − p)M+1rμ + (1 − (1 − p)M+1)

d
, (C4)

and

|̃rμ〉 = |rμ〉 . (C5)

From the previous, we can see that the noisy state QFIM is

[F (̃ρθ )]i j

=
∑

μ,ν
rμ+rν �=0

2(1 − p)2(M+1)Re[〈rμ| ∂iρθ |rν〉 〈rν | ∂ jρθ |rμ〉]
(1 − p)M+1(rμ + rν ) + 2(1−(1−p)M+1 )

d

.

(C6)

Note that the scaling with the noise probability p is O((1 −
p)M+1). Then, we can use the fact that 1 − p � e−p, to find
[F (̃ρθ )]i j ∈ O(e−p(M+1)), which shows that the entries of the
QFIM decrease exponentially both with circuit depth and with
the noise probability. �

APPENDIX D: PROOF OF THEOREM 4

Proof. We start by recalling that the QFIM is obtained as
a second-order expansion of the Bures distance B (̃ρθ, ρ̃θ + δ)
in Eq. (19). That is,

B (̃ρθ, ρ̃θ+δ) = δT · F (ρθ ) · δ + O(‖δ‖3). (D1)

Then, we recall that the trace distance

D(ρ, σ ) = 1
2‖(ρ, σ )‖1 (D2)

is related to the Bures distance by the inequality

B(ρ, σ ) � 2D(ρ, σ ). (D3)

Using the triangle inequality of the trace distance, we have

B(ρ, σ ) � 2

(
D

(
ρ,

1

d

)
+ D

(
σ,

1

d

))
. (D4)

Then, leveraging Pinsker’s inequality [82]

D(ρ, σ ) � 2 ln(2)S(ρ|σ ), (D5)

with S(ρ|σ ) being the relative entropy

S(ρ|σ ) = Tr[ρ(log(ρ) − log(σ ))], (D6)

leads to

B(ρ, σ ) � 4 ln(2)

(
S

(
ρ

∣∣∣ 1
d

)
+ S

(
σ

∣∣∣ 1
d

))
. (D7)

Which can be used to find

B (̃ρθ, ρ̃θ+δ)) � 4 ln(2)

(
S

(
ρ̃θ

∣∣∣ 1
d

)
+ S

(
ρ̃θ+δ

∣∣∣ 1
d

))
. (D8)

First, let us note that the following lemma holds (see Ap-
pendix E for a proof).

Lemma 1. Let NDepol
loc ◦ N P be a noise channel composed

of a general unital Pauli noise channel N P followed by a noise
channel NDepol

loc where local depolarizing noise channels with
probability p act on each qubit as in Eq. (16). Then, we have
that

S

(
NDepol

loc ◦ N P(ρ)
∣∣∣ 1
d

)
� (1 − p)2S

(
ρ

∣∣∣ 1
d

)
. (D9)
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Using Lemma 1 iteratively (M + 1) times we can find

S

(
ρ̃θ

∣∣∣ 1
d

)
� (1 − p)2(M+1)S

(
ρ

∣∣∣ 1
d

)
,

S

(
ρ̃θ+δ

∣∣∣ 1
d

)
� (1 − p)2(M+1)S

(
ρ

∣∣∣ 1
d

)
.

(D10)

Combining the result in Eq. (D8) with those in Eq. (D10)
leads to

B(ρθ, σ ) � 8 ln(2)(1 − p)2(M+1)S

(
ρ

∣∣∣ 1
d

)
. (D11)

Then, from Eq. (D1) we find that to second order,

δT · F (̃ρθ ) · δ � 8 ln(2)(1 − p)2(M+1)S

(
ρ

∣∣∣ 1
d

)
, (D12)

which shows that δT · F (ρθ ) · δ is exponentially suppressed as

O(pM+1), because S(ρ|1d ) � log d . Since the previous holds
for every possible value of δ, it necessarily follows that the
QFIM matrix is suppressed as O((1 − p)2(M+1)), or concomi-
tantly, as O(e−2p(M+1)). �

APPENDIX E: PROOF OF LEMMA 1

Proof. First, we will leverage the following lemma
Lemma 2 (Müller-Hermes/França/Wolf [83], Theorem

6.1, Rephrased). Let N be a noisy channel as in Eq. (16)
where local depolarizing noise channels with probability p
acts on each qubit. Then

S

(
N (ρ)

∣∣∣ 1
d

)
� (1 − p)2S

(
ρ

∣∣∣ 1
d

)
. (E1)

From Lemma 2 we then have

S

(
NDepol

loc ◦ N P(ρ)
∣∣∣ 1
d

)
� (1 − p)2S

(
N P(ρ)

∣∣∣ 1
d

)
. (E2)

Then, recalling that N P is a unital noise channel that maps the
identity to the identity, we will have N P(1) = 1, and hence

S

(
N P(ρ)

∣∣∣ 1
d

)
= S

(
N P(ρ)

∣∣∣N P(1)

d

)
. (E3)

Finally, we can use the monotonicity of the relative entropy to
find

S

(
N P(ρ)

∣∣∣N P(1)

d

)
� S

(
ρ

∣∣∣ 1
d

)
. (E4)

Combining Eqs. (E2) and (E2) leads to

S

(
N (ρ)

∣∣∣ 1
d

)
� (1 − p)2S

(
ρ

∣∣∣ 1
d

)
. (E5)

�

APPENDIX F: EXTENSION OF OUR RESULTS
FOR GENERAL NOISE MODELS.

As mentioned in the main text, we can extend the results
in Theorem 4 to the case when the noise model in Eq. (37) is
composed of a general unital Pauli channel followed by local

depolarizing channels where the depolarization probability is
qubit dependent. That is, when

Nm = N̂Depol
loc (ρ) ◦ N P

m (ρ), (F1)

and where

N̂Depol
loc (ρ) =

n⊗
j=1

N̂Depol
j (ρ), (F2)

with

N̂Depol
j (ρ) = (1 − p j )ρ + p j

1 j ⊗ Tr j[ρ]

2
. (F3)

Here, 0 < p j < 1 denotes the qubit-dependent probability of
depolarization. As such, the case presented in the main text
corresponds to p j = p for all j. As we will see below, the
results in Theorem 4 can be generalized as follows:

Theorem 5. Let C̃θ be a noisy channel as in Eqs. (37)
and (F1), where a Pauli noise channel (composed of qubit-
dependent local depolarizing noise acting on each qubit plus
a general unital Pauli channel) acts before and after each gate
of the QNN. Furthermore, let q = min j{p j} be the minimum
(nonzero) probability of the local depolarizing channels as in
Eq. (F3). The entries of the QFIM, and thus its eigenvalues,
are exponentially suppressed with the product of M and q as
O(q2(M+1)).

Proof. First, let us show that for every noise channel one
has

N̂Depol
loc (ρ) ◦ N P

m (ρ) = NDepol
loc (ρ) ◦ Ñ Peff

m (ρ), (F4)

where NDepol
loc (ρ) is a channel composed of local depolarizing

channels on each qubit with probability q = min j{p j} and
where N Peff

m (ρ) is a unital Pauli channel. We start by noting
that given a local depolarizing channel with probability p j >

q, one has

N̂Depol
j (ρ) = NDepol

j (ρ) ◦ ÑDepol
j (ρ), (F5)

where

NDepol
j (ρ) = (1 − q)ρ + q

1 j ⊗ Tr j[ρ]

2
,

ÑDepol
j (ρ) = (1 − τ j )ρ + τ j

1 j ⊗ Tr j[ρ]

2
,

(F6)

and

τ j = p j − q

1 − q
. (F7)

That is, the local depolarizing channel acting on the jth qubit
with probability p j > q can always be expressed as a concate-
nation of two depolarizing channels, one with probability τ j

and another with probability q.
From the previous, we can write

N̂Depol
loc (ρ) =

n⊗
j=1

NDepol
j (ρ) ◦

n⊗
j=1

ÑDepol
j (ρ)

= NDepol
loc (ρ) ◦ ÑDepol

loc (ρ), (F8)

where NDepol
loc (ρ) = ⊗n

j=1 N
Depol
j (ρ) is a noise channel where

local depolarizing noise acts on each qubit with probability q,
and where ÑDepol

loc (ρ) = ⊗n
j=1 Ñ

Depol
j (ρ) is a channel where a
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local depolarizing channel with probability τ j acts on the jth
qubit. Replacing the previous result in Eq. (F1) leads to

Nm = N̂Depol
loc (ρ) ◦ N P

m (ρ)

= NDepol
loc (ρ) ◦ ÑDepol

loc (ρ) ◦ N P
m (ρ) (F9)

= NDepol
loc (ρ) ◦ Ñ Peff

m (ρ),

where we have defined the unital Pauli channel Ñ Peff
m (ρ) =

ÑDepol
loc (ρ) ◦ N P

m (ρ).
From here one can follow the proof of Theorem 4.
Finally, we note that, as discussed in the main text, Theo-

rem 4 was derived for the case when

Nm = NDepol
loc (ρ) ◦ N P

m (ρ). (F10)

However, the theorem also holds if

Nm = N P
m (ρ) ◦ NDepol

loc (ρ). (F11)

The previous can be seen by noting that the following lemma
holds.

Lemma 3. Let N P ◦ NDepol
loc be a noise channel composed

of a noise channel NDepol
loc where local depolarizing noise

channels with probability p act on each qubit followed by a
general unital Pauli noise channel N P. Then, we have that

S

(
NDepol

loc ◦ N P(ρ)
∣∣∣ 1
d

)
� (1 − p)2S

(
ρ

∣∣∣ 1
d

)
, (F12)

where the proof of Lemma 3 follows that of Lemma 1. Hence,
we can use Lemma 3 iteratively M + 1 times and recover the
same result as that in Theorem 4.
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