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Probing the state of hydrogen in δ-AlOOH at mantle conditions with machine learning potential
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Hydrous and nominally anhydrous minerals are a fundamental class of solids of enormous significance to
geophysics. They are the water carriers in the deep geological water cycle and impact structural, elastic, plastic,
and thermodynamic properties and phase relations in Earth’s forming aggregates (rocks). They play a critical role
in the geochemical and geophysical processes that shape the planet. Their complexity has prevented predictive
calculations of their properties, but progress in materials simulations ushered by machine-learning potentials is
transforming this state of affairs. Here, we adopt a hybrid approach that combines deep learning potentials (DPs)
with the strongly constrained and appropriately normed meta-generalized gradient approximation functional to
simulate a prototypical hydrous system. We illustrate the success of this approach to simulate δ-AlOOH (δ),
a phase capable of transporting water down to near the core-mantle boundary of the Earth (∼2900 km depth
and ∼135 GPa) in subducting slabs. A high-throughput sampling of phase space using molecular dynamics
simulations with DPs sheds light on the hydrogen-bond behavior and proton diffusion at geophysical conditions.
These simulations provide a pathway for a deeper understanding of these crucial components that shape Earth’s
internal state.

DOI: 10.1103/PhysRevResearch.6.013292

I. INTRODUCTION

H-bearing mineral phases are responsible for water circu-
lation from the Earth’s surface to the interior via subduction
and convection. Up to ten oceans could be stored in the Earth’s
interior as hydrous phases or nominally anhydrous minerals
(NAMs), where H exists as substitutional or interstitial defects
[1,2]. Hydrogen bonds (H bonds) transform under elevated
pressures and temperatures in these solids. Like H bonds in
H2O ice, they symmetrize under pressure, producing ionic
bonds [3,4] or disorder before melting [5,6]. Superionic diffu-
sion of protons is also expected as a precursor to dehydration
reactions responsible for melt production and volcanism. In
NAMs, the H concentration changes phase relations and plas-
tic properties, causing seismological properties irregularities
in the mantle (e.g., Refs. [7–10]). Fragile H bonds and hydrous
defects weaken the rock’s rheological properties, facilitating
plastic deformation and thermal convection in the mantle,
a central process in Earth’s evolution (e.g., Refs. [11–13]).
Therefore, a detailed understanding of H-bond behavior and
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related mineral properties is essential for understanding the
Earth’s interior’s geochemical activity, dynamic behavior, and
seismological properties.

Because the pressures and temperatures (P, T s) in the
Earth’s interior challenge the experimental determination of
materials’ properties, insights from ab initio studies have
been indispensable. Standard local-density approximation
(LDA) [14] and Perdew–Burke–Ernzerhof (PBE)-generalized
gradient approximation (GGA) functionals [15] functionals
combined with phonon calculations and the quasiharmonic
approximation (QHA) [16–18] or with ab initio molecular
dynamics (MD) [19] have been used to address the physi-
cal properties of such phases. However, anharmonicity, small
MD simulation size, inadequate density functional theory
(DFT) functionals, quantum nuclear effects, and other factors
prevented the reliable description of H-bond behavior and
property changes in these phases at relevant conditions.

Here, we focus on δ-AlOOH (δ) [20], a prototypical hy-
drous phase stable throughout the entire pressure range of
the Earth’s mantle (up to 135 GPa) [21]. It has been ex-
tensively studied experimentally (e.g., Refs. [21–23]) and
computationally (e.g., Refs. [24–27]). Therefore, experimen-
tal uncertainties and ab initio calculations’ limitations to
reproducing observations are well established. This phase has
a simple high-pressure CaCl2-type structure [20,28] and ex-
hibits anomalous elastic properties under pressure [26], with
proton diffusion expected at high temperatures [29]. δ, its
isostructural siblings ε-FeOOH, MgSiO4H2 phase H [30], and
the NAM CaCl2-type SiO2, along with their multiple solid
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solutions, are the main H-bearing phases in the deep mantle
[31]. Although δ-AlOOH is not the most dominant hydrous
phase in the lower mantle or core, the structural simplicity,
the abundance of careful measurements and calculations of δ’s
properties, and its prototypical nature make it a most suitable
model phase for testing the performance of ab initio-based
machine learning (ML) methods in addressing these systems
at high P, T s.

According to measurements, H-bonds in δ symmetrize
and form H-centered (HC) bonds at ∼18 GPa [22,23]. QHA-
based methods (e.g., Refs. [16–18]), while widely used to
describe finite-temperature properties of solids, rely on stable
phonon modes. While these methods describe effects caused
by the anomalous pressure dependence of OH-stretching
modes observed in the infrared spectroscopy below 12 GPa
[27,32], they cannot describe δ’s properties in the pressure
range of H-bond symmetrization, a transition accompanied
by strong anharmonicity and an order-disorder precursor
below ∼40 GPa in static calculations [25,27]. In addition,
previous ab initio QHA studies have used the LDA and
PBE-GGA functionals, making comparing ab initio predic-
tions and experimental measurements at the same pressures
challenging. The relatively low experimental H-bond sym-
metrization pressure of ∼8–18 GPa has not been correctly
reproduced in these DFT calculations because of the process’s
complexity and these functional’s inadequate description of H
bonds, giving a transition pressure in the 30–40 GPa pressure
range [23,27].

At high temperatures, superionic proton diffusion is antic-
ipated in H-bearing systems (e.g., antigorite, diopside with
H defects), usually as a precursor to dehydration. Diffusion,
critical to understanding dehydration dynamics, has also been
found in other H-bearing systems like antigorite [33], diopside
with H defects [34], and FeOOH [35], and has been exten-
sively investigated in ice before melting (e.g., Refs. [36–41]).
A recent Born-Oppenheimer molecular dynamics (BOMD)
study using the PBE functional reported proton diffusion in
δ at 2700–3000 K [29], a temperature range higher than
the 1600–2500 K dissociation (2 AlOOH → H2O + Al2O3)
temperature measured in the 20–140 GPa range [21,28,42].
The PBE functional and the small MD simulation cell sizes
with only a few hundred atoms are likely responsible for
this discrepancy. In summary, accurately reproducing P, T
stability fields of hydrous phases and their properties is fun-
damental for mapping out phase relations and dehydration
sequences along a specific geotherm (e.g., Ref. [11]). These
results provide the basis for interpreting irregular seismic
properties caused by the nonhomogeneous distribution of
these H-bearing solids and melts in the mantle and estimating
the water content in Earth’s interior (e.g., Refs. [1,2,12]).

This challenge can be overcome by adopting ML-based
potentials (e.g., Refs. [43–48]) in MD simulations with DFT
predictive power but significantly reduced computational cost
[49]. This approach only invokes DFT while training the
potential to reproduce interatomic forces and energies us-
ing ML-based descriptors. The ML-based MD simulations
are then performed at a cost and scaling close to empir-
ical force-field simulations. Active learning schemes (e.g.,
Refs. [50,51]) help create compact reference data sets by
iteratively discovering and actively adding missing necessary

FIG. 1. LDA, PBE, and SCAN static compression curves com-
pared to 300 K measurements [21,22].

atomic configurations, reducing the DFT computation cost
in the potential training process. In particular, deep potential
(DP) is a neural network (NN)-type ML potential [43] with
a NN’s flexible fitting capability, allowing NN potentials to
represent chemical systems of varied nature. Recent bench-
marks have shown that DP forces and energies in solid and
liquid structures trained on a few thousand reference con-
figurations can be highly accurate [49,52,53]. The adoption
of ML-based potentials allows the use of the strongly con-
strained and appropriately normed (SCAN) meta-generalized
gradient approximation (meta-GGA) functional’s more accu-
rate description of the H-bonded systems [54] regardless of
being computationally more expensive. This method success-
fully calculated the water/ice phase diagram [55] and proton
diffusion in liquid water [56].

Combining deep learning potentials with the SCAN func-
tional is a promising path to simulate H-bearing systems at
extreme geophysical conditions accurately. Here, we apply
this hybrid approach to δ, a prototypical H-bearing system to
understand how well it overcomes the limitations presented
in conventional purely DFT studies. This method enables us
to perform long and large simulations that densely cover a
wide (P, T ) or (V, T ) range with changing H-bond or proton
diffusion behavior. We benchmark the potential against SCAN
calculations and experimental measurements to assess the
accuracy level achieved. We address δ’s compression curve
in its high-P H-bond symmetrization regime and its high-T
proton diffusion regime, which were not accurately described
in previous QHA- or BOMD-based studies.

II. RESULT

A. NN-potential benchmark

We employ the SCAN functional [54] to describe δ’s po-
tential energy (Born-Oppenheimer) surface and interatomic
forces. Compared to LDA’s underestimation and PBE’s over-
estimation of the pressure, SCAN’s static compression curve
is the closest to the 300 K measured one (see Fig. 1). The
slight underestimation of the SCAN volume is eliminated
when thermal effects at 300 K are included, as shown in the
subsequent discussion. Quantum nuclear effects disregarded
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FIG. 2. Comparison between SCAN-DP and SCAN-DFT pre-
dictions of (a) 1600 potential energies and (b) 10 240 atomic forces
randomly sampled from 30 128 configurations derived from 20
SCAN-BOMD NV T trajectories at 5 temperatures (T = 600, 1200,
1800, and 3000 K) and four volumes (V = 40, 44, 48, 54 Å3).
Symbol colors denote temperature.

in the present paper might spoil this good agreement [57],
and this effect must be further inspected. We are interested
in the temperature range of typical subducting tectonic plates
(slabs), i.e., along “slab geotherms” [58,59], where this phase
is stable in the mantle, i.e., ∼1000 K < T < 3000 K [21,60].
At these temperatures, classical MD should adequately de-
scribe the ionic dynamics in δ.

Our SCAN-DP interatomic potential trained on just a
few thousand reference configurations can reproduce SCAN-
DFT’s forces and energies for configurations sampled from
SCAN-BOMD simulations with 128 atoms, as illustrated
in Fig. 2. The root-mean-square error (RMSE) [61] of the
SCAN-DP predictions for these tests at various (V, T ) states
are listed in Table SI [62]. Configurations generated at higher
temperatures produce larger RMSEs in general. At 3000 K,
the RMSEs for potential energy and force predictions are
∼2 meV/atom and ∼0.12 eV/Å, respectively. Such accuracy
is similar to previous benchmarks (e.g., Ref. [49]) in similar
DP studies.

SCAN-DPMD also reproduces SCAN-BOMD’s structure
and bonding properties at high-P, T , as illustrated by the
comparison of SCAN-BOMD’s and SCAN-DPMD’s radial
distribution functions, g(r), in Fig. 3. The results are for 54
Å3 volume, corresponding to 9.5–28.3 GPa at 600–3000 K
obtained in 128-atom simulations. Plots detailing the contri-
bution from each type of atomic pair at other P, T ’s are shown
in Fig. S1 [62].

The g(r) at V = 54 Å3 shown in Fig. 3 is particularly
significant because this volume approximately corresponds to
the critical volume of the experimentally observed H-bond
disorder transition at 300 K [22]. At 600 K, the first peak at
∼1.1 Å corresponds to the ionic OH bond length. This peak
is asymmetric at this volume and at all sampled temperatures
due to asymmetric proton motion. At 600 K, g(r) shows a
near double-peak distribution of OH ionic bonds and H bonds;
the broad shoulder centered at ∼1.4 Å corresponds to the
distribution of H-bond lengths. The increased overlap of the
two peaks with increasing temperature suggests the onset of a
disordered state, a precursor to H-bond symmetrization [23].
A similar OH bond-length distribution was observed in 300 K
classical BOMD simulations with a quantum thermostat [63].
Some features on g(r) disappear at elevated temperatures.

FIG. 3. (a), (b) The crystal structures of δ-AlOOH with (a) asym-
metric and (b) symmetric H bonds. (c) Comparison between
SCAN-BOMD and SCAN-DPMD pair-distribution function, g(r), at
various (T,V )’s. The conventional-cell volume 54 Å3 corresponds
to 9.42, 13.67, 17.90, 22.73, and 28.34 GPa at 600–3000 K. Red
arrows show the H bond and OH ionic bond lengths in the first g(r)
peak.

For example, the 2.4 Å peak, a combination of Al–O and
O–H contributions, and the 2.7 Å peak associated with O–O
bonds (see Fig. S1 [62]) are split at 600 K but merge above
1200 K. This phenomenon results from increased atomic vi-
bration amplitudes, proton dynamic disorder, and diffusion
onset at elevated temperatures. We will elaborate further on
the diffusion process in Sec. II C. Under pressure, the first
peak at ∼1.1 Å and the shoulder at 1.4 Å evolve into a single
symmetric peak due to H-bond disorder and finally sym-
metrization [23,27] (see Fig. S1 [62]).

SCAN-DPMD with ab initio-level accuracy and improved
efficiency will help predict the thermoelastic properties of
hydrous solids, a property of first-order importance in geo-
physics [18,53,64]. Here, we compare its predictions for δ’s
high-temperature compressive behavior with ab initio SCAN-
BOMD predictions and measurements in the 300–3000 K and
20–115 GPa range. Figure 4(a) shows excellent agreement
between SCAN-DPMD’s high-temperature compression
curves fitted to third-order Birch-Murnaghan equations of
state (EoS) and the SCAN-BOMD’s predicted P,V data
points. Comparison with measurements [21,22] in Fig. 4(b)
shows a promising 3 GPa maximum error in pressure
prediction at the same V, T s. The next section will present
a more detailed analysis of the 300 K compression curve at
lower pressure and compare it with measurements.

These good agreements between the SCAN-DFT and
SCAN-DP predictions of forces, potential energies, g(r), and
high-P, T EoSs suggest that the deep-learning potentials have
reached satisfactory accuracy and are predictive at least in the
20–120 GPa pressure range and up to 3000 K.
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FIG. 4. δ’s SCAN-DPMD compression curves at various tem-
peratures compared to (a) SCAN-BOMD’s PV T data and (b) mea-
surements [21,22]. Volumes correspond to the conventional unit cell
containing two f.u. of δ-AlOOH.

B. The 300 K compression curve and dynamic
stabilization of the HC phase

The 300 K compression curve is one of δ’s best-determined
properties. Experimentally, δ exhibits an anomalous change in
compressive behavior at ∼10 GPa, which is usually attributed
to a change in H-bond structure, most often with H-bond
symmetrization [24,67–69] but also with H-bond disorder
[22,23,70]. However, it has been impossible to reproduce this
compressive behavior using QHA-based DFT calculations.
This is because (a) static ab initio calculations without mul-
ticonfiguration analysis do not account for H-bond disorder
and (b) the HC phase atomic configuration is dynamically
stable above ∼35 GPa only in static GGA-PBE calculations
[25]. Strong anharmonicity produces unstable phonon modes
at lower pressures, hindering the application of the QHA for
high-temperature calculations [25,27]. Using SCAN-DPMD,
we optimize and equilibrate the cell shape at several pressures
to obtain the static and the 300 K compression curves shown

in Figs. 5(a) and 5(b). With these, we can analyze the effect
of atomic motion on the H-bond state, its effect on the vol-
ume, and compare the latter with measurements [21,22,65].
As shown in Fig. 5(b), extrapolations of a Birch-Murnaghan
EoS fit to results below and above ∼10 GPa produce divergent
curves (dotted blue and red dotted lines), indicating a change
in the OH-bond state at ∼10 GPa.

The 300 K isothermal bulk modulus, KT = V (∂P/∂V )T ,
shown in Fig. 5(c), amplifies the subtle change in compress-
ibility across this critical point. Across this state change in
the 0–20 GPa range, the OH bond-length distribution, gOH(r),
evolves from a double peak to a single modal distribution,
though not symmetric [Fig. 5(d)]. In this pressure range, the H
bond compresses quickly while the ionic OH bond stretches, a
well-known behavior of these bonds (e.g., Refs. [57,71]). δ’s
compressive behavior obtained from SCAN-DP calculation
confirms previous PBE-GGA results [26] that this change
in compressive behavior occurs in the 30–40 GPa range in
static calculations [dashed line in Fig. 5(c)].

SCAN-DPMD results at 300 K account for the ther-
mal expansion and reproduce well the 300 K experimental
compression curve [21,22,65]: in the 0–15 GPa range, the
difference between results and measurements is less than the
differences between measurements; at higher pressures, the
predicted SCAN-DPMD volume is slightly overestimated,
with an error smaller than 0.25 Å3/f.u. Although predicted
[24], it is striking to see that the inclusion of classical ionic
motion lowers the transition pressure by ∼27 GPa, giving a
transition pressure that agrees quite well with the experimen-
tally measured one at ∼9 GPa (e.g., Refs. [22,69]). This 300 K
result is surprising and puzzling. At this low temperature,
quantum proton motion, particularly tunneling [72], should
impact the H-bond behavior (e.g., Ref. [73]).

Above 10 GPa, V and KT display a smooth monotonic
dependence on pressure. Table I summarizes the Birch-

FIG. 5. (a) 300 K and static compression curve results are compared to 300 K measurements [21,22,65,66]. (b) Static and 300 K SCAN-
DPMD results and 300 K Birch-Murnaghan EoS fitted for 10–64 GPa data. (c) 300 K and static bulk modulus (K = −V ∂P/∂V ). Arrows (1)
and (2) highlight the change in compressibility at (1) 300 K at ∼10 GPa and (2) static conditions at ∼35 GPa. (d) The evolution of r(OH) bond
length distributions, gOH(r), at 0 (blue), 10 (red), and 20 GPa (brown). Color dashed lines and filled triangles indicate the r of the peaks.

013292-4



H-BONDS IN δ-AlOOH … PHYSICAL REVIEW RESEARCH 6, 013292 (2024)

TABLE I. Comparision of 300 K EoS parameters for HC-δ.

V0 (Å3) K0 (GPa) K ′
0 Notes

Sano-Furukawa et al. [22] 55.47 219 4 (fixed) 10–63.5 GPa
Duan et al. [21] 55.3 223 4 (fixed) Mie-Grüneisen, up to 142 GPa
Mashino et al. [69] 56.374 190 3.7
Simonova et al. [70] 55.56 216 4 (fixed)

Bronstein et al. [63] 58.5 183.4 PBE-BOMD
Kang et al. [67] 57.6 196 4.0 PBE-BOMD, 20–35 GPa
This paper 55.5 225 ± 2 4 (fixed) SCAN-DPMD, 10–64 GPa

Murnaghan EoS parameters resulting from the fitting of
measured and calculated 300 K P,V data above 10 GPa. Fit-
ting the SCAN-DPMD results within the 10–64 GPa pressure
range with K ′

0 = 4 gives V0 = 55.5 Å3, K0 = 225 ± 2 GPa
[red dotted line in Fig. 5(b)]. The predicted V0 is in excel-
lent agreement with the measured V0 [22] fit to the same
Birch-Murnaghan EoS, 55.47 Å3. The predicted bulk modulus
differs by ∼3% from the experimental one, 219 GPa [22], an
impressive agreement for a result extrapolated to 0 GPa.

Our SCAN-DPMD results are significantly more accurate
than previous PBE-BOMD results, which reported a V0 =
58.5 Å3 and K0 = 183.4 GPa using the Vinet EoS fit to results
above 10 GPa [63]. This improvement can be attributed to (a)
SCAN’s more accurate description of the P-V relation, (b) the
denser sampling of (P,V ) states over a broader pressure range,
and (c) larger, longer, and better-converged simulation runs
enabled by DPMD’s performance leap compared to BOMD.
Nevertheless, this level of agreement between classical MD
results and measurements at 300 K is unexpected.

This good agreement between SCAN-DPMD results and
experimental data above 10 GPa suggests that our simulations
describe well the H-bond state above this pressure. As indi-
cated in Fig. 5(d), not even at 20 GPa, the first two peaks in
the gOH(r) pair distribution function have merged, indicating
that H-bond symmetrization has not yet been achieved in the
simulations. Therefore, the change in compressive behavior
at ∼10 GPa cannot be attributed to H-bond symmetrization in
this classical simulation. Figure 6 shows in detail the evolution
of gOH(r) and gHH(r) pair distribution functions from 0 to
10 GPa. Both show two clear peaks at 0 GPa and tend to merge
with increasing pressure. However, only the gHH(r) peaks are
fully merged at 10 GPa. gOH(r) still displays two superposing
broad peaks. This indicates that H bonds are not symmetric
in these classical simulations at 10 GPa (or 20 GPa). The
change in the H bonds’ state at 10 GPa seems related to
a change in H ordering, likely into a disordered state. Our
previous multiconfiguration PBE-QHA study [27] suggested
several short- to medium-range ordered H-bonded configura-
tions remain dynamically stable beyond the pressure where
the compressive behavior changes (∼10 GPa in experiments,
∼12 GPa in PBE-QHA calculations). This result supported
the notion of a more disordered H-bond state. The current
results showing an asymmetric first peak in gOH(r) and the
fully merged broad peak in gHH(r), and the previously identi-
fied multiconfiguration equilibrium state [27] suggest that the
change in compressive behavior at ∼10 GPa is associated with
the emergence of a disordered state in the simulations. Static
or dynamic disorder involves proton hopping and is a pre-

cursor to proton diffusion at higher temperatures. This 300 K
behavior might change significantly if the proton dynamics is
addressed quantum mechanically using path integrals [73].

C. Proton diffusion at high temperatures

The DP potential allows us to systematically perform large-
scale DPMD simulations to investigate proton diffusion in
δ over a wide P, T range. We perform 96 NV T DPMD
simulations covering the pressure range of 35–140 GPa and
temperature range of 1500–3000 K (see Fig. S2 [62]). They
contain 8192 atoms and run for 2 ns. We do not observe diffu-
sion, structural change, or melting of the Al and O sublattices
in this P, T range.

Proton diffusion is quantitatively characterized by protons’
mean-square displacement (MSD). Protons’ MSD over a sim-
ulation run time t , L2

H(t ), is defined by [74,75]

L2
H(t ) = 1

NH

〈
NH∑
i=1

|RH,i(t + τ ) − RH,i(τ )|2
〉
, (1)

where NH is the total number of protons, RH,i(τ ) denotes
the position of ith proton at moment τ , and 〈 · 〉 denotes the
ensemble average over the start time τ . A linear (nonlinear)
dependence of the MSD on the simulation run time, t , reflects

FIG. 6. Pair correlation function gOH(r) and gHH(r) in 0–10 GPa
at 300 K. Color dashed lines indicate peak extremes.
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FIG. 7. Proton diffusion at high temperatures for V = 47 Å3

conventional cell which corresponds to 60.9 and 67.5 GPa at 1500 K
and 2400 K. (a) Proton mean-square displacement (MSD) at 1500 K
and (b) 2400 K. (c) Proton trajectories at 1500 K and (d) 2400 K;
blue, red, and gray dots denote Al, O, and H ions.

a continuous (irregular) diffusive behavior. The self-diffusion
coefficient, DH, or the diffusivity, is related to the slope of the
MSD (L2) vs t line:

DH = lim
t→∞

L2
H

6t
. (2)

Figures 7(a) and 7(b) show the protons’ MSD over a time
span of 1 ns for V = 47 Å3 and T = 1500 K (60.9 GPa)
and 2400 K (67.5 GPa), respectively. MSD at several other
V, T conditions are available in Fig. S3 [62]. Increasing the
temperature significantly increases the protons’ diffusivity
(see Fig. S3 [62]). Diffusion is not observed at 1500 K. It
starts between 1800 K and 2100 K and becomes steady at
2400 K. Figures7(c) and 7(d) show the corresponding proton
trajectories. Figure 7(b) shows that the protons’ MSD along
the c direction is approximately twice as large as those along
the a and b axes, indicating they move more freely through
the interstitial channels along the c direction [see Figs. 3(a)
and 3(b)]. A similar phenomenon has also been reported in
the NAM phase hydrous Al-bearing stishovite, which has a
similar CaCl2-type Si-O framework [76].

At 1800–3000 K, the relationship between log DH and 1/T
is linear at all volumes and can be fitted using the Arrhenius
equation (see Fig. S4 [62]),

DH(T ) = D0 exp

(−Ea

kBT

)
, (3)

where kB is the Boltzmann constant and Ea denotes the acti-
vation energy. This behavior indicates that proton diffusion in
δ is a common thermally activated process. The volume de-
pendence of the activation energy, Ea, is nearly linear (Fig. S5
[62]). Using these relationships, we interpolate DH vs V and T
using the finite temperature EoS displayed in Fig. 4. The mag-
nitude of protons’ diffusivity is shown as the background color
in Fig. 8. For diffusivity corresponding to MSD >1 Å2/ns,
(e.g., Fig. 7), diffusion is steady, stable, and characterized by
a linear dependence of the MSD vs time (reddish background
area); for diffusivity of <0.1 Å2/ns (bluish background area),
diffusion can be intermittent with nonlinear dependence of
the MSD vs time and the system is considered to be solid
[78]. Depending on the pressure, for 1800 K < T < 2100 K,
DH approaches 1 Å2/ns and starts deviating from the high-T
Arrhenius behavior (see Fig. S4 [62]). This region of the
diffusivity diagram is transiting from a blueish to a whitish
background. At these P, T conditions, one can recognize in
Fig. S3 [62] a change in the MSD’s behavior from nonlinear
to linear. We designate this regime as the onset of the fully
superionic behavior in the P, T phase space and represent this
DH = 1 Å2/ns diffusion boundary in Fig. 8 with a solid black
curve.

The experimental dehydration boundary reported in
Ref. [21] resembles our diffusion boundary. Similar measure-
ments in Ref. [42] pinpointed two δ dehydration temperatures
in two distinct pressure ranges: 1850–1900 K at 28–68 GPa
and ∼1, 959 K at 100–110 GPa. Two divergent bound-
aries were reported in the midlower mantle (68–100 GPa)
due to uncertainties related to unidentified x-ray diffraction
peaks and uncertain experimental conditions (Fig. 8). Their
lower boundary directly connects the low-pressure and high-
pressure boundaries and runs parallel to our boundary with a
200 K downward shift. It has been argued [42] that the dis-
agreement between these studies could be due to uncertainties
in granularity or the preferred orientation of samples in the
high-pressure cell, which could affect the dehydration product
detection sensitivity. The proximity of our diffusion boundary
and the experimental dehydration boundary, particularly their
similar pressure gradients, suggests that continuous proton
diffusion controls the dehydration process as in antigorite [33]
or diopside with H defects [34].

The diffusion boundary previously obtained with PBE-
BOMD [29] largely overestimates the superionic transition
temperature. It is known that supercell size could affect
the superionic diffusivity calculations, often leading to over-
estimation of the transition temperature [79,80]. The short
simulation time and the PBE’s inaccurate description of the
H bond could also contribute to the overestimation of the
diffusion boundary.

It is also possible to investigate the change in protons’
diffusivity by inspecting the constant-volume heat capacity,
CV , through the P, T range shown in Fig. S6 [62]. The
constant-volume heat capacity, CV , can be calculated from
MD ensemble averages [81] as

NCV = var(E )

kBT 2
= 1

kBT 2
[〈E2〉 − 〈E〉2], (4)

where kB denotes the Boltzmann’s constant, N denotes the
number of atoms, 〈E2〉 and 〈E〉2 denote the run average of
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FIG. 8. The diffusion phase diagram of δ. The background color represents the diffusivity DH. The solid black curve indicates the
DH = 1 Å2/ns boundary for steady proton diffusion characterized by a linear dependence of MSD vs time. The diffusion boundary from
Ref. [29] and dissociation boundaries from Refs. [21,42] are also shown. Adiabatic mantle geotherm [77] and slab geotherm [58].

energy E and its square E2. CV computed using this method
does not exhibit a size effect for simulation cell sizes varying
from 128–27 648 atoms in both the solid and diffusive states
(Fig. S6 [62]). CV of an approximately harmonic solid is
expected to plateau at the Dulong-Petit limit, 3NKB. Deviation
from this value suggests strongly anharmonic behavior, in the
present case, entering the diffusive regime.

Figure 9 shows δ’s CV vs P, T as background color. For
T < 1500 K (blueish background), CV generally follows the
Dulong-Petit limit with at most 5% excess. For T > 1800 K,
CV increases quickly. Depending on the pressure, the back-
ground color turns from blue to white then red between
1800 K and 2100 K, indicating >10% deviation from 3NkB

within this color change range. The DH = 1 Å2/ns diffusion

boundary corresponds to CV ∼ 6% above the Dulong-Petit
limit. Measurements of CV could be useful to determine the
onset of δ’s superionic state.

III. DISCUSSION

This paper demonstrates the necessity of adopting a hybrid
ab initio description aided by deep-learning potential at ex-
treme P, T mantle conditions to address the properties of a
hydrous system. The DP-GEN active learning scheme used
to develop the potential is highly efficient, requiring only
a few thousand massively parallelized DFT calculations on
reference configurations, taking only a few days. The number
of ab initio calculations needed to prepare the interatomic
potential for a wide range of P, T conditions, ∼3000 in this

FIG. 9. The ratio between CV and the Dulong-Petit limit, 3NkB, at different pressures and temperatures. Black symbols indicate a 6%
excess above the limit. The error bar is determined based on the P, T grid size. Results are compared to the DH = 1 boundary and measured
dehydration phase boundaries [21,42].
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case, is far fewer than that of a typical BOMD run necessary
for a single P, T sampling, ∼104−105. This efficiency allows
us to use more accurate functionals and perform more accurate
simulations using larger simulation cells, longer run times,
and denser sampling of points in P, T phase space. Yet, it is
still desirable to develop these potentials further to perform
under reactive conditions and detect the dehydration process
in a simulation.

The current DP-SCAN approach combined with classical
MD reproduces measurements of δ’s room temperature com-
pression curve surprisingly well. It paves the way for adopting
the path-integral approach to quantum ionic dynamics [82,83]
in low-temperature simulations of δ. Zero-point motion ef-
fects on the EoS of solids at low temperatures, particularly
in H2O ice (e.g., [57]), are well-known. On δ, the presence
of the quantum nuclear effects, e.g., tunneling, is an ongoing
debate; evidence supporting its presence [3,27] and absence
[84] have both been published. Such effects could affect H-
bond disordering, symmetrization, and details of P, T phase
diagrams of hydrous phases (e.g., Ref. [85]) but have yet to be
fully explored in hydrous minerals. At typical mantle temper-
atures of thousands of Kelvin, classical MD combined with
the SCAN functional seems to closely reproducethe thermal
EoS of a prototypical lower mantle hydrous phase changing
the H bonds’ state.

At mantle and subducting slab conditions (Fig. 8), it
remains challenging to predict the dehydration process, par-
ticularly the transition from the superionic state to the
dehydration point. The lack of detailed experimental data
in this critical range of conditions aggravates understand-
ing of this process. Electrical conductivity measurements
commonly identify diffusion. Electrical conductivity com-
prises ionic and electronic components: ionic conductivity,
according to the Nernst-Einstein relation, will be propor-
tional to free proton concentration, which varies exponentially
with temperature; electronic conductivity would require more
complex electronic structure calculation, which extends be-
yond the scope of this paper. δ’s electrical conductivity has
only been measured up to 1200 K and up to 20 GPa, and
has shown exponential dependence vs reciprocal temperature
[86] similar to ours. Extending such measurements to more
extreme conditions is desirable to better understand the rela-
tion between the superionic state and the dehydration process.

Simulations of these processes will be fundamental to un-
derstanding water circulation in Earth’s interior. Subducting
slabs carry hydrous phases into the mantle. Describing and
predicting the behavior of such phases at extreme conditions is
key to understanding mantle dynamics, e.g., volcanism, melt
generation, etc. While here we focus on the superionic state,
we see a relationship between the onset of the superionic
state and the dehydration boundary. Our predicted diffusion
boundary (see Fig. 8), the dehydration boundary reported by
Ref. [21], and Ref. [42]’s lower boundary, all share a similar
slope that is less steep than the temperature profiles along the
subducting slab. These diffusion and dissociation boundaries
intercept the subducting slab geotherm [58,59] at a depth
of ∼2400−2700 km near the bottom of the lower mantle,
and the normal mantle geotherm [77] at ∼1200−1500 km,
i.e., approximately midmantle. These results confirm previous
suggestions that δ could remain stable up to near the bottom

of the mantle and only then release water. H2O released from
δ should react with its environment to form other H-bearing
phases or melts, e.g., ε-FeOOH and FeHx [42,87] in the deep
mantle. Understanding the entire diffusion to dehydration pro-
cess and the P, T conditions for these transitions will help
clarify the deep water cycle, the potential signature of water
presence in seismic tomography, and the effects of water on
mantle properties.

IV. METHOD

A. Machine-learning potentials

The NN potential for δ was developed based on the Deep
Potential Smooth Edition (DEEPPOT-SE) model [48] imple-
mented in DEEPMD-KIT v2.1 [88,89]. Two-body embedding
with coordinates of the neighboring atoms (se_e2_a) was
used for the descriptor. The embedding network shape is (25,
50, 100). The fitting network shape is (128, 128, 128). The
cutoff radius is 6 Å, and the smoothing parameter is 0.5 Å.

The model was trained using the ADAM optimizer [90]
for 1×106 training steps, with the learning rate exponential
decaying from 1×10−3 to 3.51×10−8 throughout the training
process. The loss function L(pe, p f ) is [88]

L(pe, p f ) = pe|�e|2 + p f

3N
|� fi|2, (5)

where pe decays linearly from 1.00 to 0.02, and p f in-
creases linearly from 1×100 to 1×103 throughout the training
process.

B. Active learning scheme

The DP-GEN concurrent learning scheme [91] was em-
ployed to create the training data set and generate the
potential. We randomly extracted 118 labeled configurations
from 59 BOMD runs at various V, T s to generate the initial
potentials and kick-start the DP-GEN training process. Six
DP-GEN iterations were performed to explore the config-
uration space and eventually generate a potential reaching
satisfactory accuracy requirement for DPMD for a tem-
perature range of 300 < T < 3000 K. Four candidate DP
potentials initialized with different random seeds were trained
in each iteration. They were used to perform NV T DPMD
simulations at various V, T s for a few thousand time steps.
After the simulations, the error estimator (model deviation),
εt , was calculated every 50 MD steps based on the force
disagreement between the candidate DPs [51,91],

εt = max
i

√
〈‖Fw,i(Rt ) − 〈Fw,i(Rt )〉‖2〉, (6)

where Fw,i(Rt ) denotes the force on the ith atom predicted by
the wth potential for theRt configuration. For a particular con-
figuration, if εt satisfies εmin � εt � εmax, the corresponding
configuration is collected, then labeled with DFT forces and
total energy then added into the training data set; if εt < εmin,
these configurations are considered covered by the current
training data set; if εt > εmax are considered failed discarded.
After a few iterations, almost no new configurations are col-
lected according to this standard (>99% are accurate for a
few iterations) and the DP-GEN process is then complete. The
parameters for these DP-GEN iterations are listed in Table SII
[62] in detail.
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After these DP-GEN iterations, our training data set con-
sists of 3487 configurations labeled with ab initio force and
energy. DPMD simulations were performed using the LAMMPS

code [92] with 0.5 fs time steps.

C. DFT calculations

Training and testing data sets were based on ab initio cal-
culations performed with the VIENNA AB INITIO SIMULATION

PACKAGE, v6.3 [93]. The strongly constrained and appropri-
ately normed (SCAN) [94] meta-GGA functional with PAW
basis sets were adopted. The cutoff energy for the plane-wave-
basis set was set to 520 eV. The Brillouin zone sampling
for the 2×2×4 supercells (with 16 f.u. of δ, or 128 atoms)
used a shifted 2×2×2 Monkhorst-Pack k-point mesh. BOMD
simulations were performed with a time step of 0.5 fs.

D. MD simulations

A data set for validating the DP potential was created by
performing both BOMD and DPMD NV T canonical ensem-
ble simulations on 2×2×4 supercells (128 atoms) with the
Nóse-Hoover thermostat and barostat [95]. These simulations
were performed at 6 T s (T = 300, 600, 1200, 1800, 2400,
and 3000 K) and 4 V s (the conventional cell volume V = 40,
44, 48, and 54 Å3). This mesh covers the pressure range of
∼20−150 GPa. These simulations start from configurations
produced after 104 DPMD equilibration time steps at each
given (V, T ) and run for a minimum of 1 ns at each (V, T ).
The DPMD simulation time scales linearly with the number of
atoms (see Fig. S7 [62]), similarly with previous benchmarks
[96].

The investigation of the 300 K compression curve involves
DPMD simulations with 1024-atom (or 4×4×8) supercells.
We performed NPT simulations for 50 ps to equilibrate the

structure. Then, we performed NV T simulations for another
50 ps to obtain the pressure at the given volume. The investi-
gation of high P, T s, involved systematic DPMD simulations
with 8192-atom (or 8×8×16) supercells. We performed
NV T simulations. Ninety-six DPMD simulations at different
(P, T )′s covered the P, T range from 1500 K to 3000 K and
10 GPa to 180 GPa (see Fig. S2 [62]). Each MD simula-
tion at equilibrated V, T conditions ran for 2 ns, or 4×106

time steps. These simulations were performed concurrently on
96 GPUs.

E. Workflow management

Our workflows, including the DP-GEN active learning it-
erations and subsequent MD simulations, were implemented
and managed using the Snakemake [97,98] workflow manage-
ment system.
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