
PHYSICAL REVIEW RESEARCH 6, 013288 (2024)

Multiscale defect cluster excitations in the melting transitions of two-dimensional Yukawa systems
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In this work, we numerically demonstrate and classify the intermittently emerged multiscale defect clusters
(DCs) composed of few to tens of disclinations, in the two-stage solid-hexatic-liquid melting transition of
a two-dimensional Yukawa system. We uncover the topological pathways for their formation and how the
crystalline-ordered domains (CODs) with different lattice orientations nearby DCs can be formed, which affect
the structural order variations in the transitions. It is found that the six basic processes: the pair generation (I),
dissociation (II), scattering (III), propagation (IV), recombination (V), and pair annihilation (VI) of dislocations,
each through a single bond-breaking-replacement process, govern DC evolutions. Small DCs composed of
antiparallel dislocations through process I by localized particle-shear motion dominate in the solid phase. The
further successive combination of processes II to IV, through successive bond-breaking-replacement rotations
by stringlike cooperative hopping of several particles, are responsible for the formation of open and ring-shaped
stringlike DCs composed of connected dislocations, free dislocations, free disclinations, and CODs enclosed by
stringlike DCs, dominated in the hexatic phase. The spreading of neighboring small DCs or the emergence of
new small DCs nearby can generate larger DCs with tens of dislocations. The combinations of reversed basic
processes can break or diminish a DC. Even though the two-stage transitions can also be signified by the onsets
of the rapid rises of the free disclinations and free dislocations successively, the increases of the number and
averaged size of multiscale DCs enclosing CODs play the key roles for the successive losses of translational and
orientational orders in the two-stage phase transitions.

DOI: 10.1103/PhysRevResearch.6.013288

I. INTRODUCTION

The melting transition of the two-dimensional (2D) sys-
tem is an intensively studied fundamental physics issue
[1–35]. Unlike the single-stage solid-liquid phase transition
demonstrated in some systems [30–35], the two-stage defect-
mediated second-order transition from the crystalline phase
through the intermediated hexatic phase to the liquid phase,
has been predicted theoretically [1–4], and demonstrated ex-
perimentally and numerically in various 2D systems, mainly
with soft interactions [5–29]. Magnetic bubble arrays [5],
electrons on liquid surfaces [6], monolayer colloidal suspen-
sions in liquids [7–15], cellular (Pot model) systems [16],
skyrmion systems [17], air driven 2D granular systems
[18], dusty plasmas [19,20] and Yukawa systems [21–23],
are good examples. The well-known Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory [1–4] suggested
that the successive emergences of low-density thermally ex-
ited free dislocations (five- and sevenfold disclination pairs)
and free disclinations with increasing temperature lead to
the loss of the long-range translational order, associated with
the slow power-law decay of long-range orientational order
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in the hexatic phase, followed by the exponential decay of
both translation and orientational orders in the liquid phase,
respectively. In previous related studies, the translational and
bond-orientation orders, the scaling behaviors of their spatial
correlation functions, the numbers of free dislocations and
free disclinations, and the total number of all defects have
been used as common statistical variables to characterize the
melting behaviors and identify the different types of melting
scenarios [5,7,9–26,28–30,33,35].

In addition to free dislocations and free disclinations,
around the melting transition, multiscale defect clusters (DCs)
of connected disclinations can be observed in defect config-
uration plots of many previous works for various systems
exhibiting two-stage KTHNY transition [5,7,9–11,13–17,19–
24,26–29] or first-order transition [30,33]. Some of the small
DCs were classified [26,29]. Open- and closed-loop string-
like hoppings leading to the formations of interstitial-vacancy
defect pairs and small ringlike DCs, respectively, were also
demonstrated [27,36]. Although without specifically pointing
out, crystalline-ordered domains (CODs) with different lat-
tice orientations surrounded by DCs (mainly stringlike DCs)
can be observed in particle images of many previous papers
[11,19,21,24,28–30,33]. Nevertheless, beyond the free dislo-
cation and free disclination picture of the KTHNY theory
and the limited studies of measuring the size distributions of
DCs under different temperatures for the two-stage melting
transition [23], the following issues remain unexplored: (i)
the kinetic pathways for the formations and fluctuations of
different classes of multiscale DCs, and consequently the
formations and fluctuations of enclosed CODs, and (ii) why
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FIG. 1. Particle configurations (particles are located at the vertices of the background grid, with fivefold and sevenfold disclination defects
represented by triangles and squares), color coded by θ , at different times for the solid phase, the two hexatic phases, and the liquid phase at
T = 0.00350, 0.00400, 0.00412, and 0.00420, respectively. Different types of DCs are classified and labeled.

the slow decay of orientational order is still sustained in the
hexatic phase.

Microscopically, for a 2D triangular lattice, defects are the
sites with nearest-neighbor number deviating from 6 [37–40].
The accumulation of sufficient stochastic thermal or external
stress perturbations can generate stick-slip hopping in the
form of string or vortices [27,36,41–49]. The induced shear
motions of adjacent particles cause topological rearrangement
through bond-breaking reconnection, and affects defect dy-
namics [27,36,41,43,44,46–50]. However, the past works on
defect dynamics in 2D melting and cold liquids have mainly
focused on free dislocations, the generation of the small DC
formed by a pair of antiparallel dislocations, interstitial and
vacancy defects in equilibrium and nonequilibrium 2D solids
or cold liquids [13–15,27,36,41,43,46–50]; and the dimin-
ishing stringlike DCs in the relaxation of deeply quenched
liquids [44].

In essence, in the 2D melting transition, the increasing
thermal agitation can enhance stringlike cooperative hopping
and consequently different types of structural rearrangement
for generating free dislocations or even multiscale DCs from
the ordered triangular lattice. It could consequently affect
COD formation and the loss of structural order. Certainly, it
is important to construct a clear physical picture to further
unravel the following unexplored issues for the two-stage
melting transitions: (i) more detailed classification of different
types of multiscale DCs, and the corresponding basic topo-
logical pathways governing the excitations and evolutions of
different types of DCs from free disclinations to large DCs,
(ii) how CODs with different lattice orientations are generated
associated with the formation of multiscale DCs around their
interfaces through cooperative particle hopping, and (iii) the
roles of the fluctuating multiscale DCs and CODs on the struc-
tural order changes, beyond the KTNHY picture based on the
increasing free dislocation and free disclination unbinding.

In this work, the above unexplored issues are investigated
through molecular dynamics simulation for a 2D Yukawa
system. We demonstrate and classify the intermittently emerg-
ing and fluctuating multiscale DCs up to tens of connected
seven- and fivefold disclinations with increasing averaged DC
size in the two-stage solid-hexatic-liquid melting transition. In
addition to the conventional statistical measures of spatial cor-
relations functions of particle position and bond-orientation
order, and defect number at different temperatures for evi-
dencing the two-stage melting transition [5,7,9–26,29], the
above unexplored issues are uncovered through monitoring
and correlating the spatiotemporal evolutions of: (i) DC and
COD fluctuations, (ii) local bond-breaking replacements and
lattice orientation fluctuations, and (iii) cooperative particle
motion causing bond-breaking replacement and structural re-
arrangement, under different temperatures.

II. NUMERICAL METHOD

The molecular dynamic simulation using 16 384 particles
in a rectangular box with periodic boundary condition is con-
ducted, using large-scale atomic/molecular massively parallel
simulator (LAMMPS) [51]. The box aspect ratio is 2/

√
3,

allowing the loading of the perfect triangular lattice at zero
temperature. The coupled Langevin equation of motion of
particle i with mass m follows: mẍi = −∑N

j �=i ∇Ui j − νmẋi +
ζ , where Ui j , ν, and ζ are the interacting potential of particle
pair i and j, friction coefficient, and spatially and tem-
porally uncorrelated thermal (Gaussian) noise, respectively.

ζ 2/mν is the effective temperature T . Ui j = Q2e−ri j /λD

4πε0ri j
is the

Yukawa potential for particle pair with separation ri j , where
Q, λD, and ε are the particle charge, Debye length, and elec-
tric permittivity, respectively. The screening parameter κ =
rw/λD and the damping rate ν/ω0 are fixed at 0.4 and 0.14,
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respectively, where rw is the Wigner-Seitz radius and ω0 is
the one-component plasma frequency. The Yukawa poten-
tial is truncated at ri j = 8rw. The time unit is τ0 = 1/ω0 =
(Q2/2πε0ma3)−1/2. The time step for integration is 0.01 τ0.

III. RESULTS AND DISCUSSION

A. Multiscale defects at different temperatures

Figure 1 shows typical particle configurations at different
times and different temperatures T , where particles are lo-
cated at the vertices of the background grids and the time
unit τ0 is the inverse of the one-component plasma frequency.
Squares and triangles represent seven- and fivefold discli-
nation defects, respectively. The local orientational order
�6(r) = |�6|ei6θ = 1

N

∑
i ei6θi for the particle at r is mea-

sured, where N and θi are the number of its nearest neighbors,
and the angle of the bond from it to its nearest neighbor i,
respectively [39]. Figure 1 is color coded by θ , the phase
of �6(r).

Figure 2(a) shows gtr and g6r , the spatial correlation func-
tion of �t and �6, versus r/a at different T , where �t (r) =
eiG·r is the local translational order, G is the primary re-
ciprocal lattice vector, and a is the mean lattice constant.
Figure 2(b) shows the change of the scaling exponents α of
gtr and β of g6r with increasing temperature T . Figures 2(a)
and 2(b) manifest the earlier deterioration of the translational
order than the orientational order with increasing temperature.
Same as those in the colloidal system studies [13,14,21],
the temperatures for scaling exponents α and β reaching
−1/3 and −1/4 are used to identify the temperatures for the
solid-hexatic and the hexatic-liquid transitions, respectively.
The system enters the hexatic phase at T = 0.00388 with
power-law decays of g6r , and changes to the liquid phase at
T = 0.00414, where g6r starts to show exponential decay
[Fig. 2(a)].

As shown in the panels at different times in Fig. 1 (also see
Fig. S1 [52] for more details), multiscale DCs intermittently
emerge and diminish spatiotemporally in the hexatic phases
at T = 0.00400 and 0.00412, in contrast to the few DCs
dominated by dislocation pairs in the solid phase at T =
0.0035. Figure 2(c) shows Fn, the averaged number of DCs
with size n (the number of connected disclinations in a DC)
in a frame, normalized by 16 384 particles at different T .
The sawtooth-type curves demonstrate that DCs with 1 to a
few connected dislocations (i.e., even number of disclinations)
dominate, followed by a rapidly descending tail with n up to a
few tens. Increasing T from 0.00400 to 0.00412 increases the
total number of DCs, associated with the increasing number of
small DCs, the decreasing sawtooth heights (i.e., the ratio of
F2i to F2i−1), and the further expansion of the descending tail
of Fn contributed by large DCs. Note that the previous study
for the two-stage melting transition of 2D Yukawa systems at
κ = 2 and 4 also demonstrated the similar behaviors of the
DC size histograms [23].

B. Topological pathways for defect cluster excitations

Let us focus on classifying small DCs with n about or
less than 10 and identifying their formation pathways. As
indicated by the examples in Figs. 1 and S1 [52], in addition

FIG. 2. (a) gtr and g6r , the spatial correlations function of �t and
�6, respectively, versus r/a at different T , where a is the mean lattice
constant. (b) Scaling exponents α and β of gtr and g6r , respectively,
versus T . The solid-hexatic and the hexatic-liquid transitions occur
at T = 0.00388 and 0.00414, as α and β reach −1/3 and −1/4,
respectively. (c) Fn, the average number of DCs with size n (the
number of connected disclinations in a DC) in a frame, normalized
by the total number of particles (16 384 particles) in a frame at
different T .

to free disclinations and free dislocations, small DCs can be
roughly classified into: (i) densely packed DCs with square
or rectangular shape composed of antiparallel dislocations
connected side by side, named as Dn, and (ii) ringlike and
open-string DCs, each composed of n alternatively connected
seven- and fivefold disclinations in the form of a string. The
former is named as Rn. The C-shaped open string with two
abrupt turning ends is named as Cn. The L-shaped short string
with one abrupt bending end and four disclinations is named
as L4. Other open strings are named as Sn.

Under the conservations of Burgers vectors (BVs, the vec-
tors normal to the bonds connecting the pairs of five- and
sevenfold disclinations, each with +π/3 and −π/3 topologi-
cal charges, respectively) and the overall topological charges,
the following six basic dislocation processes as sketched in
Fig. 3(a) and their combinations play the main roles govern-
ing dislocation dynamics around melting. They are: (I) pair
generation of dislocations with opposite BVs, (II) dissociation
of one dislocation into two dislocations with 120◦ BV angle
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FIG. 3. (a) Sketches for the six basic dislocation processes. The arrows denote the Burgers vectors normal to the bond connecting five-
and sevenfold disclinations. The gray and black symbols are used to label the initial and final states of each process, respectively. (b) to (i),
examples of the sequential particle and defect configuration images, color coded by θ , showing the typical pathways for generating different
types of small DCs.

difference, (III) scattering of two dislocations with 60◦ BV
angle difference to another two dislocations with 60◦ BV
angle difference, (IV) propagation of the dislocation along
its BV, and (V) and (VI) pair annihilation and recombina-
tion of dislocations, the reversed processes of I and II, for
reducing dislocation number by two and one, respectively.
In Fig. 3(a), the gray (black) symbols are for the initial
(final) configurations. Note that, since the dislocation can
propagate along or against its BV direction, the above six pro-
cesses also occur if all the BV directions in each process are
reversed.

Figures 3(b) to 3(h) show examples of some commonly
occurring kinetic processes for small DCs with n about or
smaller than 10. In Fig. 3(b), after the pair generation of dislo-
cations from the defect-free region to form a D4, dislocation
2 dissociates to dislocations 3 and 4 and forms a C6. Then a
new D4 with different position and orientation is formed after
the recombination of dislocations 1 and 3 to form dislocation
5, followed by the pair annihilation to the defect-free state.
Figure 3(c) shows that the dissociation of dislocation 1 at one
end of the C6 into dislocations 2 and 3 forms a C8. Figure 3(d)
shows that the scattering of the dislocations 2 and 3 from the
two connected D4s with 60◦ BV angle difference also forms
a C8. Then the dissociation of dislocation 1 at one corner of
the C8 of Fig. 3(d) to dislocations 4 and 5 in the first panel of
Fig. 3(e) forms a C10. The further dissociation of dislocation
4 to dislocations 6 and 7 forms an R12 with indented upper
part, which can move outward to around the R12 through the
scattering of dislocations 7 and 8.

Free dislocations (labeled as FDLCs) can be formed by
the detachment of a dislocation from a DC through its prop-
agation along or against its BV. Figures 3(f) and 3(g) show
two examples of forming two and three free dislocations,
after dislocations 1 and 2 move apart from a D4 and a C6,
respectively. Figure S3(c) further shows another example of
forming three free dislocations with larger separations [52].

Figure 3(h) shows that two neighboring gray disclinations
of the stringlike DC composed of three connected dislocations
can re-pair to form a dislocation, which propagates against
its BV. It generates a free disclination and a stringlike DC
(named as S5) with five disclinations. Figure S3(e) shows an-
other example in which the propagation of a newly re-paired
dislocation is also responsible for breaking a mother DC with
even n to smaller DCs with odd n [52].

We also observe the formation of the interstitial-vacancy
pair. Figure 3(i) shows that the two neighboring seven- and
fivefold disclinations from the two connected C6 and D4
can form the new dislocation 1 and propagate downward. It
leads to the formation of a C10 at t = 7 t0, followed by the
dissociation of dislocation 2 into dislocation 3 and dislocation
4, and the formation of a DC composed of a ring-shaped
DC (R6) and a triangular-shaped DC (T6), each formed by
three connected dislocations at t = 14 t0. The R6 has an extra
particle at the center, in contrast to the T6 whose three sev-
enfold disclinations are connected with each other. Namely,
the centers of R6 and T6 correspond to the interstitial and
the vacancy points, respectively [27,36]. The recombination
of dislocation 5 and 6 to dislocation 7 and the pair annihilation
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of the two gray dislocations at t = 14 τ in Fig. 3(i) leads to a
free dislocation and an L-shape DC (L4) at t = 19 τ0.

In Figs. S3(a) and S3(b) [52], we also show examples of
the topological pathways for the formations of vacancies and
interstitials at the centers of small DCs with other shapes. All
the above DCs with interstitial or vacancy, and small DCs
such as L4 and C6, have been reported in the previous studies
for the hexatic phase but without addressing their topological
formation pathways [27,36].

In brief, under the conservation of BVs, the six basic
processes I to VI shown in Fig. 3(a) and the higher-order
processes through their different successive combinations lead
to the formation and evolution of different types of small
DCs described in Fig. 3. The pair generation of dislocations
is responsible for the formation of the Dn. The successive
dissociations and scattering of dislocations are responsible
for turning a single D4 into a curved stringlike DC. The
detachments of dislocations through propagation along their
BVs from mother DCs lead to the free dislocation and free
disclination formations. Interstitial and vacancy DCs are gen-
erated through the complicated combination of the above six
processes. Small DCs could diminish through reversed pro-
cesses after their sporadic emergences. Note that the above
six processes were also demonstrated as the keys governing
the DC dynamics in the cold 2D dusty plasma liquid, and the
relaxation of a quenched 2D Yukawa liquid to solid exhibiting
diminishing DCs (mainly stringlike DCs) [41,44]. Pair gen-
eration of propagating free dislocations from a D4 was also
reported in 2D dusty plasma crystal [49].

As shown in the two sets of sequential images of Figs. 4(a)
and 4(b) in two different regions of the hexatic phase, large
DCs mainly composed of connected small dense DCs and
stringlike DCs, can also be formed through the coalescence
of small unconnected DCs after their spreading, and/or the
emergence of other defects between them. After that the large
DC can change its shape and size, or break into smaller DCs,
which can partially resume the lattice orientation in the region
occupied by the large DC. It is the key for sustaining the
slow decay of the temporal correlation function g6τ of �6 in
Fig. 4(c).

Note that, in a defect-free region, the six basic processes in
Fig. 3(a) mainly generated DCs composed of connected dislo-
cations, i.e., DCs with even number of disclinations, mainly in
the form of antiparallel dislocations connected side by side or
strings of dislocations connected head to tail. The additional
process of breaking a mother DC with even number of discli-
nations into smaller DCs with odd number of disclinations
(including the free disclination) is more complicated and is
harder to occur in the low-temperature regime. It leads to the
large tooth height of the sawtooth pattern of Fn (i.e., the ratio
of F2i to F2i−1, where i is an integer), which can be decreased
by increasing temperature, as shown in Fig. 2(c).

C. Shear-induced bond-breaking replacements
for DC excitations

The DC excitation is through the cooperative hopping-
induced structural (topological) rearrangement. It is found that
each of the six basic processes of dislocations sketched in
Fig. 3(a) is achieved through the stretching, breaking, and

FIG. 4. (a) and (b) Two sets of sequential images in two different
regions of the hexatic phase at T = 0.00412, showing the excita-
tion and de-excitation of larger DCs through spreading small DCs
or emerging new small DCs nearby. The large DC can also break
into small DCs and partially diminish to resume the local structural
order. (c) Temporal correlation functions g6τ of �6 at a few typical
temperatures.

replacement of an old bond by a new bond transverse to it,
caused by thermally induced shear. In the examples of Fig. 5,
in addition to the similar plots of DC evolution, we further
add future particle trajectories over time interval �t , on the
initial particle configuration plots at different t , for some of
the few basic topological processes of defect evolutions. In
each image, each red dotted line labels the bond to be replaced
by a new bond transverse to it in the next image, through
shear-induced topological rearrangement.

For example, the first trajectory plot of Fig. 5(a) shows
that the cooperative left-downward motions of particles C and
D, and the upward motion of particle A, can increase the
distance between particles A and C and decrease the distance
between particles D and B. It causes the replacement of the
bond A-C by the new bond B-D, and in turn the generation of
the D4 cluster at t = 5 τ0 in the second panel. The second
trajectory plot further demonstrates that from t = 0 to 7.5
τ0, clockwise cooperative motion of particles F, H, and I, the
left-downward cooperative motion of particles G, D, and C,
and the rightward motion of particle E, can further replace the
bond D-F by bond E-G (see the second to the third panels). It
causes the dissociation of the dislocation 1 to dislocations 3
and 4 and the formation of a C6 at t = 7 τ0; followed by the
dissociation of dislocation 4 to two new dislocations 5 and 6
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FIG. 5. (a) Left four panels: sequential particle and defect configuration images, color coded by θ , for the generation of a D4, a C6, and
a C8. In each image, each dotted line labels the bond to be replaced by a new bond transverse to it in the next image, through shear-induced
topological rearrangement. Right two panels: particle configurations at t = 0 τ0, with the subsequent particle trajectories over time interval �t
= 5 and 7.5 τ0, respectively. Each blue dotted line corresponds to the bond to be replaced by a new bond transverse to it in �t through relative
shear motion. (b) Similar plotting to those of (a) showing how the cooperative leftward (clockwise) motions of particles A, B, C, D, and E, and
the upward cooperative motion of particles F, G, and H, can lead to the pair generation of an interstitial and a vacancy at the centers of the R6
and the T6, respectively.

and the formation of C8 at t = 7.5 τ0, through the replacement
of bond G-I by bond H-J.

Figure 5(b) shows another example for the shear-induced
bond-breaking replacement for interstitial-vacancy generation
shown in Fig. 3(i). Initially, a DC composed of a C6 connected
with a D4 can be formed by breaking the three bonds in the
first panel and replacing them by three new bonds transverse
to them. Then the gray disclinations from the D4 and the C6,
respectively, re-pair to form a new dislocation 1 and move
downward through breaking replacement of the dotted bond
in the second panel. It generates a new C10. The subsequent
dissociation of dislocation 2 to dislocations 3 and 4 by the
breaking replacement of the dotted bond in the third panel of
Fig. S2(c) [52] forms the R6 connected with T6 in the fourth
panel.

The particle trajectory plot in Fig. 5(b) shows that the
process of interstitial-vacancy generation is associated with
the two separated hopping strings. The clockwise stringlike
cooperative motion of particles A to E and the counterclock-
wise cooperative motion of particles F, G, and H, can make the
region around particle A overdense and the region surrounded
by particles E, D, F, and G underdense, which generate an
interstitial and a vacancy in the above two regions (the centers
of the R6 and the T6), respectively.

Figures S2 and S3 [52] show more examples of DC
formation and evolution through successive single bond-
breaking-replacement events.

D. Correlating structural order variations
and multiscale defect excitations

What are the statistical behaviors of important order and
disorder (defect) parameters with increasing temperature from
the solid state to the liquid state? The top panel of Fig. 6
shows the changes of global translational and orientational
orders |〈�t 〉| and |〈�6〉| with T , where the averages are taken
over all particles in the simulation box and total time interval
105 τ0. The middle panel of Fig. 6 shows the averaged num-
bers of different types of DCs versus T in one frame, where

FFDCL, FFDLC, FD4, Fother are the averaged numbers of free
disclinations, free dislocations, D4s, and other DCs different
from the above DCs, respectively, normalized by the total
particle number in each frame. The bottom panel of Fig. 6
shows NFDCL (= FFDCL), NFDLC (= 2FFDLC), ND4 (= 4FD4),
and Nother versus T , corresponding to the averaged numbers of
all disclinations in all free disclinations, all free dislocations,
all D4s, and all other DCs different from the above DCs in a
frame, respectively, normalized by the total particle number
in each frame. Note that one thousand frames with 100 τ0

sampling intervals are used for the statistics. The inset shows
the blown-up curves around the transition region of the bottom
panel of Fig. 6.

Now we construct a physical picture for understanding the
change of translational and orientational orders in the melt-
ing transition from the view of multiscale defect excitations.
Note that, as shown in Figs. 5, S2, and S3 [52], the shear-
type relative motion of two neighboring particles can easily
rotate and extend the bond connecting them and cause the
stretching-breaking of that bond and the replacement by a
new bond transverse to it. Each of the six basic dislocation
processes is achieved by a single bond-replacement event. It
takes: (A) a single bond-breaking replacement by localized
shear for forming a D4 through process I (pair generation),
and (B) further successive bond-breaking-replacement steps
for different combinations of processes I to VI of dislocations
through the successive hopping of particles in the cooperative
hopping string, and the formation of other types of DCs.

The four sets of plots of sequential particle trajectories
over 40 τ0 interval, color coded by �r/a (�r is the particle
displacement over 40 τ0 and a is the mean lattice constant) in
Fig. 7, illustrate cooperative motions at different temperatures.
In the solid phase, the low temperature mainly allows more lo-
calized shear excitation (see Fig. 7). Process A and its reverse
process thereby dominate. It allows easier excitation and de-
excitation of the D4, a quadrupole composed of disclinations
with +π/3 and −π/3 topological charges (note that FD4 starts
to rise at T = 0.0028). It causes 50 times higher probability
of D4s than other DCs in the solid phase at T = 0.00350, as
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FIG. 6. Top panel: |〈�6〉|, and |〈�t 〉| versus T , where the aver-
ages are taken over all particle sites in the simulation box and total
time interval 105 τ0. Middle panel: averaged numbers of different
types of DCs versus T in a frame, where FFDCL, FFDLC, FD4, and Fother

are the averaged numbers of free disclinations, free dislocations,
D4s, and other DCs different from the above DCs, respectively.
Bottom panel: NFDCL (= FFDCL), NFDLC (= 2FFDLC), ND4 (= 4FD4),
and Nother versus T , corresponding to the averaged numbers of all free
disclinations; and disclinations in all free dislocations, all D4s, and
all other DCs different from the above DCs in a frame, respectively.
The inset shows the blown-up curves around the transition region.
Note that each data is normalized by the total particle number in a
frame. One thousand frames with 100 τ0 sampling intervals are used
for the statistics.

shown in Fig. 2(c). This can also be evidenced by the growth
of the DC cluster number dominated by the growth of FD4

(D4 number) with increasing T shown in Fig. 6. The small
contribution by the growth of Fother is mainly by C6 with
three connected dislocations, D8 and D12 with two and three
connected D4s, respectively, or D2, D6, and D10 by detaching
one dislocation from D4, D8, and D12, respectively. Note that,
because of their extremely low emergence probabilities, not
all of them appear in Figs. 1 and S1 [52].

The shear motion and bond-breaking replacement also
cause bond rotations and change θ (local bond orientation,
e.g., see the orange and purple regions in Figs. 3, 4, S2,
and S3 [52]). The D4 and other Dn are only associated with
highly localized change of θ in or around them induced by
the localized shear. With increasing T in the solid phase, the
increasing fractions of D4 and other Dn only slowly decrease
|〈�t 〉| and |〈�6〉|, as shown in Fig. 6.

FIG. 7. Four sets of sequential plots of particle trajectories over
40 τ0 interval (middle and bottom row), color coded by particle
displacement δr/a (a is the mean lattice constant) over 40 τ0, at
T = 0.00350, 0.00400, 0.00412, and 0.00420.

Further increasing temperature allows the excitations of
longer cooperative hopping strings with several particles (see
Fig. 7), and consequently the higher probability for process B
to turn dense DCs mainly into C- and ring-shape small DCs,
and free dislocations detached from the above DCs. Some
larger DC can also be sporadically excited. It leads to the
larger increase rates of FFDLC, Fother, NFDLC, and Nother, which
cause the onset of the rapid loss of the translational order,
evidenced by the onsets of the rapid drop of α and |〈�t 〉| at
the solid-hexatic phase transition.

The successive topological processes dominated in the hex-
atic phase cause θ changes in the regions enclosed by C- and
ring-shaped small DCs, or the curved stringlike large DCs
composed of disclinations up to a few tens. It induces the
sporadic formation of CODs with lattice orientations different
from the background lattice which sustains the long-range
orientational order. The COD disappearance can resume the
local lattice orientational order. Namely, the spatiotemporally
intermittent emergence and disappearance of DCs in the hex-
atic phase only causes the slow decays of g6r in Fig. 2(a) and
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g6τ in Fig. 4(c), with increasing r and τ , respectively, in the
first half-temperature regime of the hexatic phase.

Further increasing T leads to the rapid rises of FFDLC,
Fother, NFDLC, and Nother, and the transition to the liquid phase,
shown in the middle panel of Fig. 6. In the liquid phase, the
higher temperature facilitates larger-scale and more frequent
cooperative hopping (Fig. 7). It induces more complicated
combinations of topological processes I to VI for forming
many larger CODs separated by long dislocation strings to
accommodate the different lattice orientations (Fig. 1). The
large CODs can further split to smaller CODs or coalesce
to form larger CODs with different orientations (Figs. 4 and
S1 [52]). It is hard to reverse all the complicated sequential
processes one by one and thereby causes the losses of the spa-
tiotemporal orientational memory and in turn the fast decay
of g6r and g6τ with increasing r and τ , as shown in Figs. 2(a)
and 4(c), respectively, and the rapid drop of |〈�6〉| to zero with
increasing T shown in the top panel of Fig. 6.

The increasing temperature from the hexatic phase to the
liquid phase also facilitates the breaking of a mother DC
composed of dislocations (i.e., DC composed of even number
of disclinations) to two separated DCs each with odd num-
ber of disclinations (see the examples of Figs. 3(h), S3(d),
and S3(e) [52]). It leads to the rapid rise of free-disclination
fraction around the hexatic-liquid transition. Intuitively, a sin-
gle fivefold (sevenfold) disclination strongly bends the lattice
lines toward (away) it and strongly deteriorates the long range
structural order correlation [37–40]. However, in our melting
transition, a free disclination sporadically detached from a
mother DC is achieved through a single bond-breaking re-
placement which only slightly changes the surrounding local
orientational order (see the very small changes of colored
(coded by θ ) patterns in the sequential images of Fig. 3(h)
and S3(d) [52]). It thereby has a much smaller contribution
on the deterioration of long range structural order than its
mother DC, other abundant multiscale DCs, and their nearby
CODs.

According to the KTHNY theory [1–4], the rapid rises
of free dislocations and free disclinations, unbinding from
other DCs, lead to the solid-hexatic and the hexatic-liquid
transitions, respectively. Our findings indeed show that the
increasing rates of FFDLC and Fother both start to increase
around the solid-hexatic transition, followed by their rapid
rises at the hexatic-liquid transition. FFDCL also starts to
increase in the second half-temperature regime of the hexatic
phase and exhibits a high increase rate at the hexatic-liquid
phase transition. However, Nother is much larger than NFDLC

and NFDCL in the two transitions. A single other type DC not
only has low |�t | and |�6| at their constituting disclination
sites but also induces a nearby COD with different orienta-
tions for reducing translational and orientational orders, and
spatial order correlations.

Namely, the two transitions can both be signified by the
onsets of the rises of the numbers of free dislocations and
free disclinations, respectively (see Fig. 6). Nevertheless, the
onset of the rise and the steepest rise of the fraction of
multiscale DCs dominated by abundant amount of connected
dislocations are predominantly responsible for the successive
deteriorations of translation order and orientational order for
the two transitions, respectively.

IV. CONCLUSION

In conclusion, we have numerically demonstrated the spon-
taneous excitations of multiscale DCs, dominated by a large
fraction of small DCs composed of a few dislocations and
a small fraction of large DCs composed of disclinations up
to a few tens, in the two-stage melting transitions of a 2D
Yukawa system. Different types of DCs are classified. The ki-
netic pathways for their formation and fluctuations, the origins
for forming multiscale CODs surrounded by stringlike DCs,
and their effects on the spatiotemporal variations of structural
orders in melting transitions are unraveled. The major new
findings are listed below.

(i) DCs can be classified into: (a) dense DCs with anti-
parallel dislocations, (b) stringlike DCs each composed of
disclinations with alternating topological charges, and (c)
large DCs composed of the above two types of DCs.
The stringlike DCs can be further classified into ringlike,
short-sticklike, C-shape, L-shape, and other weakly curved
stringlike DCs. The small interstitial and vacancy DCs are
also observed. Under BV and topological charge conserva-
tions, the combination of the following six basic processes:
(I) pair generation, (II) dissociation, (III) scattering, (IV)
propagation, (V) recombination, and (VI) pair annihilation of
dislocations, each caused by the shear-motion-induced single
bond-breaking-replacement event, mainly govern the forma-
tion and evolution of DCs from free disclination to DCs with
n up to a few tens.

(ii) In the solid phase, process (I) through thermally in-
duced local shear is responsible for generating dense DCs
dominated by D4s and D8s. In the hexatic phase, the higher
temperature allows stronger stringlike cooperative hopping
involving a few particles for causing successive bond-
breaking replacements. It is responsible for the generation of
L-, C-, and ring-shaped small stringlike DCs with around or
less than 10 disclinations, free disclinations, free dislocations,
interstitials, and vacancies, mainly through different combina-
tions of processes (II) to (IV). Reversed processes also occur
for diminishing a small DC. The spreading and/or the emer-
gence of nearby small DCs can generate a large DC composed
of tens of stringlike disclinations. In the liquid phase, the en-
hanced hopping with increasing temperature leads to the more
complicated successive topological processes for the genera-
tion of more DCs with larger size. The temporary detachment
of free disclinations from mother DCs leaves daughter DCs
with odd number of connected disclinations.

(iii) The successive shears and bond-breaking replace-
ments in the DC formation can cause bond rotations, and the
formation of CODs enclosed by stringlike DCs for accommo-
dating the different lattice orientation from background lattice
orientation.

(iv) In the hexatic phase, the sporadic emergence and disap-
pearance of multiscale DCs and nearby CODs only intermit-
tently change the local lattice orientation from the background
ordered lattice. It is the key for the slow spatiotempo-
ral power-law decays of orientational order. However, in
the cold liquid phase, the complicated successive topologi-
cal processes through complicated cooperative hopping are
hard to reverse, which lead to the steep rise of multi-
scale DC numbers and the rapid loss of the spatiotemporal

013288-8



MULTISCALE DEFECT CLUSTER EXCITATIONS IN THE … PHYSICAL REVIEW RESEARCH 6, 013288 (2024)

orientational memory. The increases of the number and aver-
aged size of multiscale DCs enclosing CODs with different
lattice orientations play the key roles for the successive losses
of translational and orientational orders in the two-stage phase
transitions, even though the transitions can be signified by
the onsets of the rapid rises of the free disclinations and free
dislocations successively.

This study sheds light on and opens new studies for un-
derstanding the generic dynamical behaviors of multiscale

DC and associated COD excitations, and their impacts on the
structural order variations in the two-stage melting transitions
for other different 2D systems with softcore interactions.
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