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Evolutionary adaptation is facilitated by the presence of lethal genotypes
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The rate of adaptation in theoretical models of biological evolution generally increases with the mutation rate.
However, there is a threshold beyond which mutations into lethal states lead to extinction. It would be logical to
assume that eliminating such lethal states could be advantageous for evolution. Here, we demonstrate that lethal
mutations actually accelerate adaptation on rugged fitness landscapes with multiple peaks and valleys in the
presence of competition for resources. We investigate a modified stochastic version of the quasispecies model,
incorporating two types of genotypes—viable and lethal—and show that higher rates of lethal mutations result
in shorter evolution times towards the best-fit genotype. This phenomenon can be attributed to an increased
frequency of traversing fitness valleys, facilitated by reduced selection pressure against less-fit variants.
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I. INTRODUCTION

Understanding what determines the rate with which bio-
logical organisms evolve and acquire new adaptive traits and
how to control this process is an essential problem both in
theory and practice. For example, slowing down the spread of
antibiotic resistance in bacteria, which can evolve in a matter
of hours [1–4], is an important objective of antimicrobial
stewardship. In other situations, such as directed evolution of
proteins [5,6] used, e.g., to create enzymes able to degrade
plastics [7] or produce biofuels [8] and drugs [9], it is desir-
able to speed up evolution. Moreover, the ability to manipulate
the rate of evolution holds promise in combating viral and
bacterial infections, as well as cancer [10].

The rate of biological evolution depends, among others, on
the mutation rate [11], the structure of the fitness landscape
[12–16], its temporal dynamics [17–20], fitness fluctuations
[21,22], varying environmental conditions [20,23], migration
among subpopulations [24], and population’s spatial structure
[3,4,25].

Here, we focus on the role of the fitness landscape (FL) and
the mutation rate within the framework of the quasi-species
model [26], extensively studied by physicists [27–32]. It has
been shown that the time it takes biological evolution to reach
the best-adapted genotype decreases with increasing muta-
tion rate [33–36]. However, excessive mutation rates can lead
to population delocalization, known as “error catastrophe,”
which can result in population extinction if the fitness land-
scape contains a significant number of genotypes with null
or negative fitness [37,38]. This poses a challenge in novel
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approaches to directed evolution, where organismal survival
is used for selection, bypassing the need for individual clone
screening [6]. While increasing the mutation rate is desirable
to accelerate evolution, the error catastrophe sets a limit on the
rate of evolution in real fitness landscapes, in which nonviable
mutants represent a substantial fraction of all genotypes [39].

Lethal mutations also play an important role in a novel
approach to treating infections by elevating the mutation rate
of the pathogen (bacteria, viruses, or cancer cells) through
drugs [10,40–42]. However, the underlying theory assumes
that organismal fitness is constant, which may not be true
for real diseases due to time- and density-dependent selection
[43,44]. This problem is highlighted by the inability of theo-
retical models to reproduce experiments in which evolutionary
adaptation has been shown to occur even at very high mutation
rates [42].

Motivated by these examples, in the present study we use
mathematical modeling to answer the following questions:
(1) how the presence of lethal genotypes affects the rate of
evolution, and (2) how sensitive the results are to the details of
the model. Counterintuitively, we show that lethal genotypes
can actually speed up evolution on some FLs, for mutation
rates well below the error threshold, and that this effect is quite
robust, provided that there is competition for resources in the
model, which causes selection to be density dependent.

II. MODEL AND RESULTS

We consider a stochastic version of the quasispecies model
with viable and nonviable genotypes. In contrast to previ-
ous works, we divide up the genotype space into a region
representing genes relevant for adaptation to a new environ-
ment, and another one for housekeeping genes crucial for
metabolism, DNA replication, etc., which have already been
highly optimized and therefore any mutation in them is likely
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FIG. 1. (a) The genotype space of the model for L = 3. Green =
viable states, red = lethal state. Lines represent mutations. (b) Mean
adaptation time 〈T 〉 decreases with increasing probability γ of lethal
mutations, for L � 5. Colors = different L. (c) The extinction proba-
bility Pext is low even for γ ≈ 0.99. (d) The distribution of adaptation
time P(T ), for γ = 0 and γ = 0.75. L = 7 in both cases.

to be lethal. This scenario is biologically more realistic than
assigning zero fitness to random genotypes in the landscape.

To be specific, we consider a population of organisms
replicating and dying stochastically. Each organism has a
genotype i = 0, . . . , 2L − 1 represented by a binary sequence
of length L. The state of the system is described by a vec-
tor {ni}, where ni is the number of organisms of type i. An
organism of type i replicates with rate fi and dies with rate
N/K , where N = ∑

i ni, and K is the (soft) carrying capacity
of the system. Upon replication, the organism produces either
a copy of itself or a mutant. The mutant can be either viable
or nonviable (lethal). We assume that faithful replication oc-
curs with probability 1 − μ − γ , a viable mutant is generated
with probability μ, and a lethal mutant with probability γ .
A lethal mutant is instantaneously removed from the system.
The genotype of a viable mutant is obtained by inverting a ran-
domly selected letter (0 or 1) of the binary representation of i.
The genotype space is therefore an L-dimensional hypercube,
with an additional node representing the lethal state connected
to all other genotypes [see Fig. 1(a)].

The replication rates { fi} are drawn independently from
the uniform distribution on [0,1), except for f0 = 0.5 and
f2L−1 = 1, which we fix so that i = 2L − 1 is always the fittest
genotype, and the initial genotype has intermediate fitness.
The system is initialized with K organisms of genotype i = 0
and the simulation stops when the first organism of the fittest
genotype emerges.

For γ = 0, the model is essentially the stochastic quasi-
species model with a maximally rugged fitness landscape
[30]. For γ > 0, the fitness landscape contains a fraction
γ /(μ + γ ) of lethal genotypes. By construction, μ + γ must
be smaller than one since it is the total mutation probability.
We cannot therefore make either μ or γ too large.

We are interested in the large-population/large-mutation
rate regime relevant for both directed evolution and lethal

mutagenesis. In this limit, low-fitness variants do not fix in
the population, and therefore the rate of evolution decreases
monotonously with population size [45]. Since the presence
of lethal genotypes reduces the population size, evolution is
expected to be slower for γ > 0. We shall see that this expec-
tation is not always correct, and that lethal genotypes, while
not participating in the evolutionary process, have a significant
effect on the rate of evolution.

To compare the model with and without lethal genotypes,
we simulated 1000 copies of the model using a kinetic Monte
Carlo algorithm [46] for K = 1000, μ = 0.04, L = 3, . . . , 8,
and a range of γ = 0, . . . , 0.96, and measured the time T
it took for a single organism of best-adapted genotype to
evolve. We used the same sequence of randomly generated
FLs for each γ . Figure 1(b) shows that the average adaptation
time increases exponentially with L. However, the increase
is slower in the model with γ > 0. In fact, for L > 4, the
presence of the lethal genotype speeds up evolution. For L = 8
and γ = 0.75, evolution is three orders of magnitude faster
than for γ = 0. The same effect can be seen in the Moran-
process version of the model, in which the population size is
kept fixed and does not fluctuate (see Fig. 5 in Appendix A),
which shows that it is not unique to the quasi-species model.
Moreover, we additionally performed the analysis for a much
larger carrying capacity and much smaller mutation rate
(see Appendix B), confirming qualitatively the same ten-
dency: the evolution process is facilitated by increasing the
probability of lethal mutations.

This behavior is counterintuitive since the total number of
organisms in the system is significantly reduced for γ > 0;
for example, for γ = 0.75 the population reaches only about
20% of the maximum capacity. Although the per-capita birth
rate does not depend on population size, the average rate with
which mutants are generated is lower because there are fewer
births. Moreover, the effect shows up only on large-enough
fitness landscapes; for L < 4, the nonlethal model is actually
faster. The lethal-genotype model is slower for any L also on
a flat landscape (all fitnesses the same, results not shown),
on which there is only genetic drift and no selection (except
for nonlethality). The effect is also unrelated to the increased
probability of extinction in the lethal model, since extinction
becomes likely only for γ very close to 1 [Fig. 1(c)]; in this
limit Fig. 1(b) shows that 〈T 〉 increases slightly with γ .

In what follows we shall focus on two cases: γ = 0
(nonlethal) and γ = 0.75 (lethal), for which the extinction
probability is effectively zero for K = 1000. The choice of
μ = 0.04, γ = 0.75 may be interpreted as about 1 in 20 mu-
tations being viable, the rest being lethal (see, however, Fig. 6
in Appendix B for much lower μ and γ ). Figure 1(d) shows
the distribution of adaptation times for L = 7. While the dis-
tributions are very broad for both models (as expected due to
the stochastic nature of the evolutionary process), we notice
that the nonlethal model has a distribution skewed to the right,
which contributes to the much longer average adaptation time.

To understand whether the two models differ only for cer-
tain fitness landscapes or all landscapes, we set μ = 0.04,
and γ = 0 (no lethal genotypes) or γ = 0.75 (lethal geno-
types present), and run the models 20 times on 1000 random
landscapes (identical for both models). We then compared
evolutionary pathways in both models for 100 landscapes
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FIG. 2. Evolutionary trajectories for L = 5. (a) Example path-
way in the nonlethal model for μ = 0.04, γ = 0. (b) and (c) Fitness
along evolutionary pathways, for the slowest 10% of 1000 random
FLs (b) and 10% fastest FLs (c). Red and blue thick lines are aver-
ages over individual trajectories. (d) Average fitness along adaptive
trajectories for slow (red) and fast (blue) FLs, for γ = 0 (solid) and
γ = 0.75 (dashed).

with largest and smallest differences in the adaptation time.
We shall call such landscapes “slow” and “fast,” respectively.
Figure 2(a) shows an example pathway in the nonlethal model
on a slow landscape. The first mutation increased fitness to
approximately that of the final genotype, but subsequent mu-
tations led through a fitness valley. This is typical for slow
landscapes [Fig. 2(b)]. In contrast, evolutionary pathways on
fast landscapes usually involve a more gradual fitness in-
crease, with fewer and shallower fitness valleys [Fig. 2(c)].
Interestingly, the average fitness profile along the evolution-
ary trajectory is similar for the lethal and nonlethal model
[Fig. 2(d)]. This suggests that the evolutionary speed-up pro-
vided by lethal genotypes does not rely on following different
pathways, but rather on the enhanced rate of crossing of fitness
valleys.

To test this hypothesis, we investigated a simpler model
with a one-dimensional (1D) fitness landscape [Fig. 3(a)].
Mutations can only change genotype i to i ± 1 with prob-
ability μ/2 in either direction, and the fitness values are
f0 = 1, f1 = f2 = · · · = fL−1 = 1 − δ, fL = 1, i.e., a flat fit-
ness valley of depth δ separates the initial and the final
genotype. This represents a single evolutionary pathway
from Fig. 2 and is a special case of a more generic prob-
lem considered in Ref. [13], which significantly simplifies

(a) (b)

FIG. 3. Evolution in a one-dimensional model with a wide fitness
valley of depth δ = 0.7. (a) Schematic representation of the fitness
landscape. (b) Time to reach genotype i = L. Points = simulation,
line = theoretical predictions from Eq. (9): L = 3 (blue), L = 4
(yellow).

mathematical analysis. Numerical simulations confirm that
indeed the lethal-genotype model leads to much faster adap-
tation time on this fitness landscape [Fig. 3(b)].

To understand this, we considered a deterministic coun-
terpart of the stochastic model. Neglecting stochastic fluctu-
ations, the abundances {ni} of organisms evolve according to
the following set of equations:

dn0

dt
= n0 f0(1 − γ − μ) + μn1 f1 − n0N (t )/K, (1)

dni

dt
= ni fi(1 − γ − μ) + (μ/2)(ni+1 fi+1 + ni−1 fi−1)

−niN (t )/K, (2)

where N (t ) = ∑
i ni(t ). Assume for a while that the final state

has fitness zero, so it acts as an absorbing boundary. The
system of equations admits then a steady-state solution, with
abundances determined by the nonlinear set of equations,

0 = n0 f0(1 − γ − μ) + μn1 f1 − n0N/K, (3)

0 = ni fi(1 − γ − μ) + (μ/2)(ni+1 fi+1 + ni−1 fi−1) − niN/K,

(4)

with N = ∑
i ni. These equations will also correctly describe

the quasi-stationary distribution for the case of nonzero fitness
at i = L, as long as the transition rate from i = L − 1 to i = L
(proportional to μ) is small. For small μ, we expect ni+1 � ni,
which enables us to write

ni ≈ ni−1
fi−1μ/2

N/K − fi(1 − γ − μ)
. (5)

This means that the total population size N will be dominated
by n0. Inserting N = n0 into Eq. (1), we obtain that

n0 = N ≈ f0K (1 − γ − μ), (6)

and hence, for i > 0,

ni ≈ ni−1
fi−1μ/2

( f0 − fi )(1 − γ − μ)
, (7)

and finally

ni ≈ Kμ

2δ

(
(1 − δ)μ

2δ(1 − γ − μ)

)i−1

. (8)

The above equation shows that (1) ni decreases exponentially
with i, and (2) the rate of decrease is smaller for nonzero γ .
This means that the abundance of genotype L − 1 preceding
the best-adapted genotype increases with increasing γ , even
though the total population size decreases, as long as L is
sufficiently large, γ is not too large, and our approximations
remain valid. If the adaptation time T is now limited by the
last mutational step of going from i = L − 1 to i = L, we can
write that

T = 1
μ

2 (1 − δ)nL−1
= 4δ

Kμ2(1 − δ)

(
2δ(1 − γ − μ)

μ(1 − δ)

)L−2

.

(9)
The above formula agrees very well with computer sim-
ulations of the 1D model [Fig. 3(b)], which supports our
hypothesis that long fitness valleys slow down evolution in the
full model, and that the presence of lethal genotypes facilitates
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FIG. 4. The mean adaptation time T for the 1D model with L = 4
in which γ = Mμ, i.e., a fixed fraction M/(M + 1) of mutations is
lethal. Points = computer simulations averaged over 1000 replicates,
lines = Eq. (9). There are no points above μcrit = 1/(M + 1), which
is the maximum permitted μ in our model. Parameters: K = 103,

δ = 0.7.

valley crossing by increasing the abundance of less-fit but
viable genotypes.

It is interesting to compare this result with the observation
of Ref. [47] that decreased turnover increases the fixation
probability of a mutation with a fixed selective advantage, thus
decreasing the time to fixation if mutants occur spontaneously
and with a small rate. In our model, turnover, defined as the
sum of per-capita birth and death rates, is indeed reduced for
γ > 0: for strain i, per-capita turnover is fi + N/K , with N
decreasing with increasing γ . However, there is no fixation of
valley genotypes in our model, so the result of Ref. [47] does
not directly apply.

Thus far we kept μ fixed while varying γ . In reality, these
two mutation rates are interdependent since increasing the
viable mutation rate μ by, e.g., UV radiation also increases
the lethal rate γ . Figure 4 shows that, when γ and μ are
both varied such that their ratio remains constant, the presence
of lethal genotypes speeds up adaptation when compared to
the model without such genotypes, for the same value of μ.
The figure also shows that evolution accelerates faster with μ

[the slope of T (μ) gets steeper] for larger fractions of lethal
genotypes.

Equation (9) can be used to make predictions for the full
model with 2L genotypes by averaging T over the distribution
of fitness valley lengths (see Appendix C). Figure 8 shows that
the ratio of adaptation times for γ > 0 and γ = 0 estimated
in this way approximately agrees with the ratio obtained from
the data presented in Fig. 1.

Motivated by our examples of directed evolution and lethal
mutagenesis, we have considered high mutation rates. How-
ever, Eq. (9) shows that lethal mutations should speed up
adaptation also in the case of much smaller μ, as long as γ is
not too small. This is confirmed by data shown in Appendix B,
Figs. 6 and 7, where we consider μ = 10−5 and large pop-
ulation sizes (K = 109) typical for microbial evolutionary
experiments.

III. CONCLUSIONS

To summarize, we have observed a significant reduction of
the adaptation time in the presence of lethal mutations. The

effect is caused by reduced selection against less-fit geno-
types; this increases the abundance of valley genotypes and
hence the rate with which best-adapted mutants are generated.

Our results have important implications. Firstly, directed
evolution can be substantially sped up by deliberately making
some genotypes nonviable. This can be achieved, e.g., in
a bioreactor (either conventional or microfluidics based) by
increasing the dilution rate, which causes all variants whose
replication rate is lower than the dilution rate to be washed
out.

Secondly, our results urge caution regarding lethal mu-
tagenesis as a method for treating infections. Although the
presence of lethal genotypes lowers the threshold for the mu-
tation rate that leads to the extinction of the pathogen, it also
makes the time to adaptation fall off faster with μ in the pres-
ence of fitness valleys and density-dependent selection. These
factors must be taken into account when modeling treatment
based on lethal mutagenesis. Our results also suggest two
further problems with this approach. Since the mutation rate
is likely to vary in time and space as a result of nonuniform
distribution of the mutagenic drug, the pathogen may evolve
faster in areas of sublethal concentration of the mutagen. In
addition, increasing the rate of death by, e.g., adjuvant therapy
with pathogen-killing drugs will increase the rate of evolution
of the surviving pathogenic organisms. In combination with
drug gradients, this will create a complex, space- and time-
dependent fitness landscape in which the drugs, instead of
killing the pathogen, may help it evolve resistance to treat-
ment.

The software required to reproduce the results presented
here can be found in Ref. [48].
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APPENDIX A: MORAN PROCESS VERSION
OF THE MODEL

In order to demonstrate the validity of our main statement
regarding the acceleration of adaptation by lethal genotypes
in various evolutionary models, we examine the Moran pro-
cess, in which the population size is kept fixed and does not
fluctuate [11,49]. In the Moran-like version of our model,
during each time step, one organism is randomly chosen for
reproduction based on its fitness, while another organism is
randomly chosen for removal, regardless of its fitness. The
offspring of the selected organism replaces the removed one,
ensuring that the total population size K remains unchanged.

As in the quasispecies model considered in the main text,
the offspring can either inherit the genotype of its parent with
probability 1 − μ − γ , or it can mutate into either another
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FIG. 5. The mean adaptation time 〈T 〉 for the Moran model as
a function of the probability γ of lethal mutations, for different L.
Other parameters are K = 1000 and μ = 0.04.

viable genotype (with probability μ) or the lethal genotype
(with probability γ ). Organisms with lethal genotypes are not
removed from the system but they do not reproduce (their
fitness is zero). Other components of the model (fitness land-
scape, initial condition) are the same as for the quasi-species
model.

We take Nviable steps of the Moran process, where Nviable

is the number of viable organisms, to represent one unit of
time, so that organisms with fitness one reproduce on average
once per unit of time, similarly to the quasi-species version of
the model. Therefore, the time variable is incremented in each
step by 1/Nviable.

Figure 5 shows the adaptation time versus the lethal mu-
tation probability γ for this model, for different sequence
lengths L and identical parameters μ, K as in Fig. 1(b) in the
main text. The results are qualitatively the same as in Fig. 1(b)
for the quasi-species model: the adaptation time decreases
with increasing γ for L > 4.

APPENDIX B: LARGE POPULATION SIZES

Performing an exact kinetic Monte Carlo simulation [46]
of the quasispecies model becomes impractical when dealing
with large population sizes (on the order of K ∼ 109 or more),
which are commonly encountered in laboratory experiments
on microbial evolution. This is due to the algorithm’s run-
ning time, which increases linearly with the population size.
To examine the applicability of our theory [Eq. (9)] to such
large populations, we employ an approximate but much faster
tau-leaping method [50], originally developed for stochastic
simulations of chemical systems.

In this new algorithm, the state of the system is described
by the same vector of genotype abundances {ni(t )}, with
i = 0, . . . , 2L − 1, as in the exact algorithm. However, instead
of dealing with only a single organism in each time step, we
determine by how much the state vector should change during
a small but finite time interval �t > 0, and update it accord-
ingly. Assuming that the rates of all processes (replication,
death, mutation) are approximately constant during this small
time interval, Ref. [50] shows that the number of events for
each process will be a binomially distributed random number

FIG. 6. The mean adaptation time 〈T 〉 as a function of the lethal
mutation probability γ for the full model with L = 4, K = 109,

μ = 10−5. The simulation has been carried out using the tau-leaping
algorithm.

with the probability of success equal to the rate of the process
times �t , and with the number of trials equal to the number
of organisms that participate in said process.

A single step of the algorithm that simulates our stochas-
tic quasispecies model consists of drawing three binomially
distributed random numbers for each genotype i:

ri = Binomial[�t fi(1 − γ − μ), ni],

di = Binomial[�t (N/K ), ni],

mi = Binomial[�t fiμ, ni],

where Binomial(p, n) represents a binomial random number
with n trials and the success probability p, ri is the number
of reproduction events that lead to viable, nonmutated or-
ganisms, di is the number of deaths, and mi is the number
of mutated viable organisms created during the time interval
�t . The number of organisms ni is then updated as ni →
ni + (ri − di ), and each of the mi viable mutants is assigned
a new genotype according to our mutation graph (hypercube)
and the corresponding ni is increased by 1. After all ni’s have
been updated, the time variable t is increased: t → t + �t .

In the limit �t → 0, this algorithm reduces to the exact
kinetic Monte Carlo algorithm used in the main text. For a
finite �t , a small error is introduced because the assumption
of the rates not changing during the time interval is violated.
In our simulations, we take �t = 1/128 as a reasonable com-
promise between the speed and the accuracy of the simulation.
We do not dynamically change �t as is custom in similar
algorithms because the rates in our model do not change
very much; adaptive control of �t would be an unnecessary
computational burden.

We applied the algorithm to determine the time to adapta-
tion for different lethal mutation probabilities γ for a much
larger carrying capacity (K = 109) and much smaller muta-
tion rate (μ = 10−5) than in Fig. 1 in the main text. Figure 6
confirms that our predictions obtained before for small popu-
lation sizes remain valid also for large K : the adaptation time
decreases with increasing probability of lethal mutations.
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FIG. 7. The mean adaptation time 〈T 〉 as a function of γ for
the one-dimensional model with a wide fitness valley. Parameters:
K = 109, μ = 10−5, δ = 0.6. All results have been obtained using
the tau-leaping algorithm.

We also investigated the one-dimensional fitness landscape
model with a wide fitness valley as in Fig. 3(a), with the
same K = 109, μ = 10−5, and L = 3. Figure 7 shows that the
adaptation time again decreases with increasing γ .

We note that the mutation probability we used here (μ =
10−5) is still much higher than what is typical for nonmutator
bacterial strains (μ ∼ 10−9) but lower than for RNA-based
viruses (μ ∼ 10−4) [51]. Mutator strains which have a defec-
tive DNA repair system can have 100-fold higher mutation
rates [52], approaching μ = 10−7. Simulations for such a
small μ are certainly not feasible because the adaptation time
(and hence the CPU time) increases quickly with decreasing
μ as shown by Eq. (9).

However, in the case of directed evolution, which is our fo-
cus here, the mutation probability can be artificially increased
to μ = 10−4–10−3 [6], which is within the range of μ used in
this work.

APPENDIX C: ADAPTATION TIME IN THE FULL
MODEL FROM THE ANALYTIC EXPRESSION

FOR THE 1D MODEL

We can use Eq. (9) to make predictions for the full model
with 2L genotypes. First, we notice [Fig. 2(d)] that for a fixed
fitness landscape with a sufficiently deep and wide valley,
evolution quickly reaches a local fitness maximum one mu-
tation away from the initial genotype. To use Eq. (9) we must
find the distribution pl of fitness valley length l . We can then
calculate the ratio of the adaptation times for the model with
and without lethal genotypes as follows:

L−1∑
l=0

Tl (γ )pl

/ L−1∑
l=0

Tl (0)pl . (C1)

(a) (b)

FIG. 8. The linear-FL model predicts the adaptation time in the
full model. (a) Probability of finding a fitness valley of length l , for
different L. See the main text for the definition of l . (b) The ratio
of adaptation times for the model with γ = 0.75 and γ = 0, for
different L. Points = results from Fig. 1, black line = Eq. (C1), blue
line = Eq. (C2).

To find {pl} numerically, we generated 10 000 random FLs,
and found all fitness valleys, defined as consecutive runs of
genotypes with monotonously decreasing fitness. Specifically,
for each FL we found all such valleys along trajectories start-
ing at the single-mutated genotype with maximum fitness and
ending at the best adapted genotype. For each trajectory, we
found the length (the number of links along which fitness
decreases) of the shortest valley. We then took the minimum
of all maximum lengths for each trajectory, and repeated this
process for all trajectories and FLs. This gave the distribution
of the minimum-length valley that evolution might encounter
in our model. Such valleys would form a bottleneck, limiting
the rate of evolution on each specific FL.

Figure 8(a) shows the distribution of fitness valley lengths
for different sizes L of the FL. Using the numerically obtained
pl (L), we calculated the ratio (C2) for different L, assum-
ing δ = 0.3 (average depth of fitness valley from Fig. 2).
Figure 8(b) shows that this estimate approximately agrees
with the ratio obtained from the adaptation times from Fig. 1.

Interestingly, an even simpler approach amounting to re-
placing L → L − 1 in Eq. (9) and calculating the ratio of
adaptation times as

TL−1(γ > 0)

TL−1(γ = 0)
=

(
(1 − γ − μ)

(1 − μ)

)L−3

(C2)

qualitatively reproduces the data [Fig. 8(b)]. This is because,
as seen in Fig. 8(a), a fitness landscape for binary sequences
of length L always has a nonzero probability of having a
fitness valley of length L − 2. These longest valleys dominate
the adaptation time due to its exponential dependence on
the fitness valley length. Even though the probability pL−2

decreases exponentially with L as ∼ exp(−0.5L) [Fig. 8(a)],
the rate of decrease is not sufficient to overcome the exponen-
tial increase of Tl (γ ) with rate 2δ(1 − γ − μ)/[μ(1 − δ)] as
long as μ is sufficiently small. However, due to the presence
of shorter fitness valleys in many landscapes [Fig. 8(a)], the
lethal-genotype model will perform better only on a subset of
FLs which do not have such short valleys.
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