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Dimensional reduction in quantum optics
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One-dimensional quantum optical models usually rest on the intuition of large-scale separation or frozen
dynamics associated with the different spatial dimensions, for example when studying quasi one-dimensional
atomic dynamics, potentially resulting in the violation of (3 + 1)-dimensional Maxwell’s theory. Here, we
provide a rigorous foundation for this approximation by means of the light-matter interaction. We show how
the quantized electromagnetic field can be decomposed—exactly—into an infinite number of subfields living
on a lower-dimensional subspace and containing the entirety of the spectrum when studying axially symmetric
setups, such as with an optical fiber, a laser beam, or a waveguide. The dimensional reduction approximation then
corresponds to a truncation in the number of such subfields that in turn, when considering the interaction with for
instance an atom, corresponds to a modification to the atomic spatial profile. We explore under what conditions
the standard approach is justified and when corrections are necessary in order to account for the dynamics due
to the neglected spatial dimensions. In particular we examine what role vacuum fluctuations and structured laser
modes play in the validity of the approximation.
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I. INTRODUCTION

The success of theoretical quantum optics describing the
tremendous experimental progress in the past decades is
largely due to effective models which provide very accu-
rate statements to physical problems via simple models that
are valid in limited parameter regimes only [1–10]. For in-
stance, lower-dimensional effective models are ubiquitously
used to describe the dynamics of Bose-Einstein condensates
(BECs) [11–17], semiconductor devices [18,19], quantum
dots [20–23] or quantum state engineering [24,25]. Care
needs to be applied, however, when quantum models are
based on different spatial dimensions as significantly differ-
ent predictions may occur; this is evident, for instance, in
thermalization [26,27], communication [28,29], or scattering
processes [12,13,30].

Cavities, in particular, are of special interest as effects
become experimentally relevant which are highly restricted
in free space, like power enhancement, spatial filtering, and
more accurate beam profiles [31–34]. Based hereon is the
concept of lasers and masers [35–38] and cavity matter-wave
interferometry [39–42], but also photonic BECs [43,44] and
quantum dots [45–48] benefit from the effects offered by cav-
ity quantum electrodynamics (QED). Altogether, this reveals
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cavity QED as a powerful area of research in quantum optics
[49–51].

Nonetheless, the mode structure of the cavity, which de-
pends on the cavity geometry, can be almost arbitrarily com-
plex. To this end there is—despite exact three-dimensional
(3D) models containing the full spectrum [5,52–54]—usually
an underlying, simpler low-dimensional model which, how-
ever, is nothing but a physically motivated educated guess.
In this context, lower-dimensional models are typically pre-
scribed ad hoc in a wide range of applications. For instance,
one might consider an atom in a cavity of length L interacting
dipolarly with the cavity field via a coupling g [45,55]:

Ĥdi = h̄
∑

l

[ωl â
†
l âl + g(σ̂ † − σ̂ )(ūl (x)â†

l − ul (x)âl )], (1)

where ωl = c|kl | are the one-dimensional (1D) cavity field’s
frequencies with â(†)

l being the creation and annihilation
operators, and σ̂ (†) being the atomic ladder operators. The
modes ul of the field are usually scalar quantities, respectively
evaluated at the atomic 1D position x, e.g., u(x) ∼ cos(klx).
Subsequent approximations lead to the 1D versions of the
Jaynes-Cummings model [45,56–61], or for an ensemble of
atoms to the Dicke model [62–65] and the Tavis-Cummings
model [66]. One might also add a semiclassical pumping that
drives the cavity with strength η or the atom with the Rabi
frequency � via [55,56,67]

Ĥpump = ih̄η(â†
l − âl ) + ih̄� cos(klx)(σ̂ † − σ̂ ). (2)

Further effective dispersive interactions in the large-detuning
limit can be obtained, e.g., [68–70]

Ĥdisp = h̄U0|ul (x)|2â†
l âl . (3)
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The common feature of these (and many more) Hamiltonians
is that they arise by considering electromagnetic fields as
scalars living in 1D, i.e., [71–73]

Ê (x) = i
∑

l

√
h̄ωl

2ε0Al
(ul (x)âl − ūl (x)â†

l ), (4)

with the (effective) cross-sectional area Al being the only
remnant of the higher dimensions. Besides the lack of two
polarizations, Maxwell’s equations do force three spatial di-
mensions [74]. Various approaches have been made to reduce
the dimensions of electromagnetism when starting from 3D,
both at the classical level, e.g., Refs. [75–79], as well as for
quantized fields, see, e.g., Refs. [73,80,81]; often employing
the method of Hadamard’s decent. That is, lower-dimensional
models are obtained by assuming that the model is constant in
certain degrees of freedom [82].

Here, however, we will not rely on descent conditions
nor impose any restrictions on our original model in order
to reduce the dimensions (apart from a symmetry consider-
ation for analytical purposes). Instead we show, starting from
the Helmholtz equation, how to rigorously realize a lower-
dimensional model from 3D cavity QED. To that end, we
consider axially symmetric geometries (such as optical fibers
or Fabry-Pérot cavities) which manifest in a separation of
the cavity modes. By projecting an appropriate ancilla basis
onto the 3D modes, the resulting reduced modes only depend
on the complementary spatial coordinates and are solutions
of a reduced Helmholtz equation. This extends Ref. [83],
where this problem has been studied with a scalar version
of the light-matter interaction, by actively accounting for the
vector nature of electromagnetism and the nontrivial coupling
of the different components due to the polarization induced
by Maxwell’s equations. Naturally, as we show, the common
light-matter interactions as well as setups with laser beams
can be incorporated.

In the process, the electromagnetic fields decompose into
an infinite collection of vector-valued subfields which live on
the remaining dimensions but encode geometrical information
of the original model. This allows us to answer the question
under which circumstances a 3D cavity can be treated as a,
e.g., 1D problem which is usually justified by having some
length scales of the cavity or the matter system much larger
than the remaining ones, or the dynamics is assumed to be
frozen in some dimensions. Here, a dimensionally reduced
simple model can be achieved via a single- or few-mode
approximation on those subfields. Due to corrections that arise
from the 3D model, it is not equivalent to the usual way of
prescribing this approximation ad hoc. As we show, this is
also not generally the case in the common regime of having a
very long but narrow fiber. Finally, we highlight the difference
between the role of vacuum fluctuations and strongly excited
modes, such as for a laser, in order to reconstruct the full 3D
dynamics.

This paper is organized as follows: In Sec. II we estab-
lish the formalism for the dimensional reduction of ideal
cavities. In particular we discuss how the 3D electromag-
netic modes decompose into lower-dimensional sectors, each
governed by its independent dynamics in the absence of in-
teractions. In Sec. III the dimensional reduction is applied to

the Hamiltonian dynamics, including interactions with matter,
showing that the common quantum optical models can be
treated in this framework. We identify the typical approach
of dimensional reduction as a truncation in the number of
the lower-dimensional fields. The validity of such a number-
of-subfield approximation is then investigated for different
parameter regimes of a waveguide and an optical cavity in
Sec. IV. Lastly, in Sec. V we provide an extension of the
dimensional reduction to structured laser beams.

II. DIMENSIONAL REDUCTION OF THE
ELECTROMAGNETIC FIELDS

We start with the free, second-quantized electromagnetic
fields inside an ideal, i.e., perfectly conducting, cavity of
volume V . The mode decomposition of the Heisenberg fields
may be written in the form

Ê(r, t ) =
∑
j,μ

[A j,μâ j,μ(t )uj,μ(r) + H.c.], (5a)

B̂(r, t ) =
∑
j,μ

[C j,μâ j,μ(t )v j,μ(r) + H.c.], (5b)

with frequency ω j,μ, the electric- and magnetic-field modes
uj,μ(r) and v j,μ(r), and the creation and the annihilation
operators in the Heisenberg picture â†

j,μ(t ) and â j,μ(t ). The
index j denotes the tuple of unspecified mode numbers, and
μ ∈ {μ1, μ2} the two polarizations. The field amplitudes read

A j,μ = i

√
h̄ω j,μ

2ε0
, C j,μ =

√
h̄ω j,μ

2ε0c2
. (6)

It follows directly from Maxwell’s equations and the dis-
persion relation, ω j,μ = c|k j,μ|, that the electric and magnetic
modes defined in Eqs. (5) are solutions of the unsourced
Helmholtz equation, i.e.,(

� + k2
j,μ

)
uj,μ(r) = 0, (7a)

with the boundary conditions for the electric modes being

n × uj,μ(r)|r∈∂V = 0, (7b)

∇ · uj,μ(r)|r∈∂V = 0, (7c)

where n is the normal vector to the cavity surface. Whereas the
Dirichlet-type boundary condition (9) is obeyed by the electric
field on a perfectly conducting cavity wall, the Neumann-type
condition (10) is physically motivated by Gauss’ law [84].
With Faraday’s law the magnetic field modes can be expressed
in terms of the electric field modes via

v j,μ(r) = |k j,μ|−1∇ × uj,μ(r). (7d)

For the boundary conditions of the magnetic modes one ob-
tains then

n · v j,μ(r)|r∈∂V = 0, (7e)

n × [∇ × v j,μ(r)]|r∈∂V = 0. (7f)

The Helmholtz equation (7a) together with the boundary
conditions (7b) and (7c), or (7e) and (7f), respectively (also
known as the short-circuit boundary conditions), form a self-
adjoint boundary problem (cf. Ref. [84], Th. 4.4.6) defined on
the Hilbert space of square-integrable functions L2(V ) on the
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FIG. 1. Axially symmetric cavity of length L with arbitrary but
integrable cross section � and sufficiently smooth boundary ∂�. The
cavity is spanned by the basis C: the symmetry axis defines the
longitudinal direction e(z), and the cross section is spanned by e(y1 )

and e(y2 ) which are the transversal directions. The normal vectors of
the cross section are ±e(z), and n(�) for the lateral surface.

cavity volume V , which is considered simply connected en-
closed by a sufficiently smooth boundary surface. Therefore,
magnetic modes v j,μ(r) and electric modes uj,μ(r) form an
orthonormal mode basis with respect to the L2 inner product
on V , i.e.,

〈uj,μ(r), uj′,μ′ (r)〉V =
∫

V
d3r u†

j,μ(r) · uj′,μ′ (r)

= δ j, j′δμ,μ′ . (8)

To perform the dimensional reduction of the 3D model we
restrict ourselves subsequently to geometries which exhibit
axial symmetry such that the model becomes separable in
the longitudinal and transverse degrees of freedom (note, we
connote these terms with respect to the symmetry axis and
not the wave vector, cf. Fig. 1). This covers a wide area of
common cavity QED setups, and later we will see how the
formalism can be extended to setups including laser beams
(see Sec. V).

A. Separability of the modes under axial symmetry

1. General idea: Mapping onto ancilla bases

We provide first a short mathematical motivation of the
dimensional reduction. In detail, let us consider a separa-
ble cavity of simply connected volume V = � × S which is
spanned by an arbitrary cross section � � y = (y1, y2) and
a longitudinal section S � z, assuming a sufficiently smooth
boundary surface ∂V . Thus, one can, for example, consider a
rectangular, circular, or more exotic cross sections as shown in
Fig. 1. We can accordingly define an orthonormal basis with
respect to this geometry via

C = {e(y1 ), e(y2 ), e(z)}. (9)

To stress that the cross section is treated differently from the
longitudinal direction, we introduce the tuple of mode num-
bers m = (m1, m2), which is associated with the cross section,
while the mode number l is associated with the longitudinal
degrees of freedom, i.e., j = (m, l ).

Mathematically speaking a separable cavity geometry im-
plies that the modes factorize into a set of orthonormal basis
modes for the cross section � and one for the longitudinal
section S (cf. Th. 2.17 in Ref. [84]). However, these modes
couple via the polarization induced by Maxwell’s equations in
a nontrivial way.

For a separation of the equations of motion it is re-
quired that the eigenvalues of the 3D Laplace operator in the
Helmholtz equation separate. Indeed, for a separable geome-
try the wave vectors decompose as

k2
j,μ = k2

m,μ + k2
l , (10)

where km,μ is the wave vector spanned by the transverse basis
vectors of y, and kl corresponds to the longitudinal z direction.
Since we keep the cavity cross section arbitrary, km,μ may
depend on the polarization μ. Moreover, we do not impose �

to be separable in its individual degrees of freedom y1 and y2.
In that case it is not possible to give the individual components
of the wave vector associated with those coordinates. An
example of such a cavity is a cylinder [53], which we study
in detail subsequently as an example of how the dimensional
reduction can be implemented, see Sec. IV.

The idea in order to obtain a lower-dimensional model
from the originating 3D model is to project the ancilla mode
basis, which spans the cavity cross section (if one wishes
an 1D model associated with the longitudinal space S) and
has not been endowed with a polarization structure, onto the
3D mode basis such that L2(V ) → L2(S) =⊕m L2

m(S). This
results in an infinite set of Hilbert spaces L2

m(S) in 1D where
each of these, which we call longitudinal mode spaces, is asso-
ciated with fixed transversal mode numbers m. Alternatively,
one could consider a two-dimensional (2D) model: go from
the 3D model to the 2D cross section � via a mapping onto the
ancilla basis associated with the longitudinal degrees of free-
dom, i.e., L2(V ) → L2(�) =⊕l L2

l (�). Again, an infinite set
of spaces L2

l (�) is found for each longitudinal mode number
l . We denote these subspaces as transverse-mode spaces. Each
transverse and longitudinal mode space is spanned by its own
set of basis modes, cf. Fig. 2. However, it is important to note
that the modes corresponding to different longitudinal- and
transverse-mode spaces, i.e., for different m and for different
l , respectively, have a nonzero overlap. Thus, the different
subspaces are in principle coupled to each other. Nonetheless,
as we see in Sec. III, for common quantum optical interac-
tions with matter these couplings will not be of relevance.
Accordingly, the dimensional reduction results in an exact
decomposition of the 3D model where the non-orthogonal,
lower-dimensional Hilbert spaces completely decouple. For
more general dynamics, an extension to the procedure would
be required and shall not be the focus here. Additionally, the
modes living on the reduced mode spaces are the solution of a
lower-dimensional Helmholtz equation defined on the respec-
tive domain, appended with dimensionally reduced boundary
conditions.

The dimensional reduction that we construct in the follow-
ing can always be implemented for cavity QED with axial
symmetry, e.g., an optical fiber or a Fabry-Pérot cavity. More
generally, the dimensional reduction is also applicable to cav-
ities with infinite extension (such as an open-ended cavity),
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FIG. 2. Principle of the dimensional reduction of the electric field Ê(y, z, t ) and its dynamics in an arbitrary axially symmetric 3D cavity
of volume V (here example of cylinder of length L and radius R). The electric modes are represented by the grids with each dot describing
a different tuple of quantum numbers j = (m, l ), where m is associated with the cross section � and l with the longitudinal direction S, and
polarization μ. The 3D modes uj,μ(r) can be written as a product of matrices Sm(y) and U l (z), serving as ancilla bases on � and S, respectively,
and polarization ε j,μ. The reduction to 1D on S is performed by projection onto the ancilla basis Sm(y). One obtains an infinite set of subfields
Êm(z, t ), each spanned by the set of modes uj,μ(z). Every Êm(z, t ) can be seen as corresponding to an independent sector, visualized by the set
of 1D cavities. The collection of all of them recomprises the original 3D dynamics. The back transformation is applied by multiplying each
of the uml,μ(z) with their corresponding Sm(y). Likewise, a 2D model on � with subfields Êl (y, t ) built from modes s j,μ(y) is realized via
projection onto ancilla modes U l (z). The same follows for the magnetic field and extends to the common quantum optical interactions with
matter.

and to setups where the radiation field decays sufficiently fast
in some direction (for instance in a laser beam).

2. Mode decomposition using ancilla bases

To arrive at a lower-dimensional model of the electromag-
netic theory, we recast the electric and magnetic modes as a
product of components associated with the different spatial
degrees of freedom. To that end, we define for the electric
modes the matrix Sm(y) for the cavity cross section �, the
matrix U l (z) associated with the longitudinal direction S, and
the polarization vectors ε j,μ such that

uj,μ(r) = Sm(y)U l (z)ε j,μ. (11a)

A similar decomposition can be applied to the magnetic
modes. Defining a suitable matrix T m(y) for �, a matrix V l (z)
for S, and the polarization vector κ j,μ, the magnetic modes
decompose as

v j,μ(r) = T m(y)V l (z)κ j,μ. (11b)

As we show in Appendix A such decompositions are always
possible when considering axially symmetric geometries. In
particular, the transversal components Sm(y) and T m(y) are
given without polarization index even though k2

m,μ generally

depends on μ, and the orthonormality of the polarization is
preserved, i.e., ε†

j,μ · ε j,μ′ = κ†
j,μ · κ j,μ′ = δμ,μ′ .

Without specifying the cross section, the matrices U l (z)
and V l (z) can be written explicitly for any axially symmetric
cavity of finite length L. Thus, assuming that z ∈ S = [0, L],
the longitudinal degrees of freedom of the electric and mag-
netic modes read

U l (z) =
√

2

L
diag[sin (kl z), sin (klz), cos (klz)], (12a)

V l (z) =
√

2

L
diag[cos (klz), cos (klz), sin (kl z)], (12b)

where kl = lπ/L. The matrices Sm(y) and T m(y) for the
transversal degrees of freedom, on the other hand, cannot
be explicitly written without specifying the cross section �;
the same is true for the polarizations ε j,μ and κ j,μ. We
can, nonetheless, provide a simple reconstruction in terms
of a differential operator acting on the eigenbasis of the
scalar Helmholtz equation, cf. Appendix A. This will also
serve as a bridge to previous literature where the dimen-
sional reduction has been applied to a scalar version of the
light-matter interaction [83]. As worked out in the follow-
ing, the matrices Sm(y) and U l (z) (and analogously for the
magnetic field) serve as ancilla modes without polarization
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structure and allow us to generate dimensionally reduced
field modes living on a lower-dimensional subspace that
satisfy the expected orthonormalization properties and corre-
sponding lower-dimensional Helmholtz equations. Indeed, the
dimensional reduction corresponds then to a projection onto
orthonormalized basis modes of a certain subspace one wishes
to integrate out, and the reduced modes evolve independently
from the other degrees of freedom. In Fig. 2 we provide a
visualization for the procedure.

That the decomposition of the field modes also implies a
complete decoupling of the dynamics of the dimensionally
reduced problem is not guaranteed a priori due to the po-
larization coupling the different degrees of freedom. Despite
being common in the literature, leading to celebrated and
successful models in many regimes of quantum optics (e.g.,
the 1D versions of the Jaynes-Cummings and Dicke model),
decoupling of the field modes can in general not be obtained
by brute force distilling out the degrees of freedom suitable for
the lower-dimensional model. On the contrary a more general
way to realize lower-dimensional models, which is achieved
without any approximation, is the mapping of the modes onto
a lower-dimensional space.

B. Lower-dimensional modes

1. One-dimensional dynamics

We begin with the dimensional reduction to the longitu-
dinal degrees of freedom which in an intuitive picture would
correspond to a very long and narrow cavity with negligible
cross section. Note, however, that at this point we impose no
approximations on the fields. In detail, the reduction from 3D
to the 1D subspace S can be defined solely in terms of the
transverse ancilla modes Sm or T m via the L2 inner product
on �. Hence, the reduced, normalized electric modes of the
1D system are given by

uj,μ(z) =
∑
m′

〈Sm′ (y), uj,μ(r)〉� = U l (z)ε j,μ. (13a)

Analogously the magnetic modes (11b) reduce to

v j,μ(z) =
∑
m′

〈T m′ (y), v j,μ(r)〉� = V l (z)κ j,μ. (13b)

The orthonormality conditions

〈Sm(y),Sm′ (y)〉� = δm,m′1, (14a)

〈T m(y),T m′ (y)〉� = δm,m′1, (14b)

with 1 being the identity matrix, emerge naturally from the
orthonormality of the 3D modes in Eq. (8). Accordingly, the
dimensional reduction can be viewed as an orthogonal (with
respect to transverse-mode numbers m) projection onto the
transversal ancilla basis on �, integrating out those degrees of
freedom. It is due to the infinite number of transverse ancilla
modes that one obtains an infinite set of longitudinal modes
uj,μ(z) and v j,μ(z), each pair corresponding to a subspace
L2

m(S) ⊂ L2(V ) with distinct transverse-mode numbers m.
With the longitudinal 1D modes (13a) and (13b) at hand,

we need to verify that their dynamics completely separates
from the dynamics of the transversal degrees of freedom.
Therefore, one has to not only split the 3D Helmholtz equa-

tion (7a) in two independent equations for transverse and
longitudinal degrees of freedom but also the boundary condi-
tions of Eq. (7). While the Helmholtz equation can be split by
a simple separation ansatz [85], it is shown in Appendix C 1
that the boundary-value problem for the electric 1D modes
becomes (

∂2
z + k2

l

)
uj,μ(z) = 0,

e(z) · ∂zuj,μ(z)|z∈∂S = 0, (15)

e(z) × uj,μ(z)|z∈∂S = 0.

For the 1D magnetic modes we have analogously(
∂2

z + k2
l

)
v j,μ(z) = 0,

e(z)∂z × v j,μ(z)|z∈∂S = 0, (16)

e(z) · v j,μ(z)|z∈∂S = 0.

We further show in Appendix D 1 that these boundary-value
problems correspond to self-adjoint, dimensionally reduced
Laplacian operators with the corresponding L2 norm on L2

m(S)
(cf. Ref. [84], Def. 3.14). In other words, each longitudinal
mode space L2

m(S) is equipped with an orthonormal basis
of the dimensionally reduced longitudinal modes (13). They
obey orthonormality conditions, for fixed cross-sectional
mode numbers m,

〈uml,μ(z), uml ′,μ′ (z)〉S = δl,l ′δμ,μ′ , (17a)

〈vml,μ(z), vml ′,μ′ (z)〉S = δl,l ′δμ,μ′ . (17b)

Lastly, the longitudinal modes are imbued with the polariza-
tion vectors ε j,μ, respectively κ j,μ, of the 3D problem. As
we will see in detail later, this induces the lower-dimensional
model to still contain information on the original 3D model.
Furthermore, the 1D electric and magnetic modes obey the
usual orthogonality condition (see Appendix B 1)

〈uj,μ(z), v j,μ(z)〉S = 0. (18)

2. Two-dimensional dynamics

Conversely, the same procedure can also be applied to the
transverse degrees of freedom by projecting the longitudinal
ancilla basis onto the 3D modes. To that end, we switch
the role of the longitudinal and transverse components. The
orthonormality condition for the longitudinal ancilla modes,
for the electric and magnetic modes respectively, read [cf.
Eqs. (12)]

〈U l (z),U l ′ (z)〉S = δll ′1, (19a)

〈V l (z),V l ′ (z)〉S = δll ′1. (19b)

Continuing analogously, one can define dimensionally re-
duced modes depending solely on the transversal coordinates
y:

s j,μ(y) =
∑

l ′
〈U l ′ (z), uj,μ(r)〉S = Sm(y)ε j,μ, (20a)

t j,μ(y) =
∑

l ′
〈V l ′ (z), v j,μ(r)〉S = T m(y)κ j,μ. (20b)

Combined with the orthonormality conditions (14) this
implies that the dimensionally reduced transverse modes are
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L2 normalized on their respective subspace L2
l (�) (for fixed

longitudinal mode number l):

〈sml,μ(y), sm′l,μ′ (y)〉� = δm,m′δμ,μ′ , (21a)

〈tml,μ(y), tm′l,μ′ (y)〉� = δm,m′δμ,μ′ . (21b)

We remark that due to the polarization-independent map
applied in Eqs. (20a) and (20b), similarly to the map to 1D,
all information of the 3D fields’ polarizations is conserved,
resulting in the usual orthogonality of the modes s j,μ(y) and
t j,μ(y) (see Appendix B 2):

〈s j,μ(y), t j,μ(y)〉� = 0. (22)

Moreover, via the same separation ansatz that led to Eq. (15),
we obtain the transverse Helmholtz equation for the transverse
electric modes on �, i.e.,(

�� + k2
m,μ

)
s j,μ(y) = 0,

n� × s j,μ(y)|y∈∂� = 0, (23)

∇� · s j,μ(y)|y∈∂� = 0.

Here n� is the normal vector of the surface ∂� (cf. Fig. 1), ∇�

the transverse nabla operator (both spanned by the cavity basis
vectors of the cross section), and �� = � − ∂2

z is the Lapla-
cian acting only on the transverse coordinates. Analogously,
one finds for the dimensionally reduced transverse magnetic
modes: (

�� + k2
m,μ

)
t j,μ(y) = 0,

n� · t j,μ(y)|y∈∂� = 0, (24)

n� × [∇� × t j,μ(y)]|y∈∂� = 0.

A derivation of the boundary conditions is shown in Ap-
pendix C 1; a proof of the self-adjointness of the boundary-
value problem on the underlying transverse-mode space
L2

l (�) can be found in Appendix (D 2). Accordingly, sm,μ(y)
and tm,μ(y) are both eigenmodes of a self-adjoint boundary-
value problem with respect to the inner product (21) and thus
form a complete orthonormal eigenbasis for fixed l . We want
to emphasize again that the separation into two independent
boundary-value problems of longitudinal (15) and transverse
(23) degrees of freedom for the electric modes (similarly for
longitudinal (16) and transverse (24) degrees of freedom in
case of the magnetic modes) assumed only a separable cavity
geometry, as discussed in Sec. II A.

Hence, we have shown that by mapping the electromag-
netic 3D modes onto a certain subspace thereof, we obtain
solutions to the Helmholtz equation associated with the com-
plement space. This directly defines a dimensional reduction
procedure such that the original cavity modes after this are
no longer dependent on the spatial coordinates associated
with the ancilla basis, which in turn acts as a means to view
the cavity as a lower-dimensional problem. In Appendix E
we provide an example for the reduction of the modes of a
cylindrical cavity to 2D as well as 1D.

C. Dimensional reduction of the quantum fields

To understand how the quantum fields themselves behave
under the dimensional reduction, we consider from now on—
without loss of generality—the dimensional reduction to 1D.

Therefore, we employ the reduced longitudinal 1D modes
from Eq. (13a) for the electric field and (13b) for the magnetic
field, respectively.

Since the electromagnetic fields are Hermitian, they have
to be reduced in a way which does not violate Hermiticity.
Accordingly, we decompose the fields into polarization inde-
pendent positive and negative (frequency) field components.
The positive field components of electric and magnetic field
read in our notation

Ê (+)
j (r, t ) =

∑
μ

A j,μâ j,μ(t )Sm(y)U l (z)ε j,μ, (25a)

B̂(+)
j (r, t ) =

∑
μ

C j,μâ j,μ(t )T m(y)V l (z)κ j,μ. (25b)

Therefore one has to map the positive field components
via the Hermitian conjugate of the transverse ancilla modes,
i.e., S†

m(y) for the electric and T †
m(y) for the magnetic field,

respectively. The same is done analogously for the negative
field components which are the Hermitian conjugate of (25).
Starting with the electric field, a dimensionally reduced field
which only depends on the longitudinal coordinate z is real-
ized as

Ê(z, t ) =
∑
j,m′

〈Sm′ (y), Ê (+)
j (r, t )〉� + H.c.

=
∑

m

Êm(z, t ), (26)

where we defined the electric field mapped onto the mth
transverse ancilla mode, i.e., the electric modes live on the
subspace L2

m(S), as

Êm(z, t ) =
∑

l

[Ê (+)
j (z, t ) + Ê (−)

j (z, t )]

=
∑
l,μ

[A j,μâ j,μ(t )uj,μ(z) + H.c.]. (27)

The field modes uj,μ(z) are the dimensionally reduced modes
of Eq. (13a). Analogously, one finds for the quantized mag-
netic fields via the map Q(S)

B̂(z, t ) =
∑
j,m′

〈T m′ (y), B̂(+)
j (r, t )〉� + H.c.

=
∑

m

B̂m(z, t ), (28)

where the mapping of the magnetic field onto the mth mode
of the transverse ancilla basis gives

B̂m(z, t ) =
∑

l

[B̂(+)
j (z, t ) + B̂(−)

j (z, t )]

=
∑
l,μ

[C j,μâ j,μ(t )v j,μ(z) + H.c.], (29)

with v j,μ(z) being the dimensionally reduced modes of

Eq. (13b). Here, we defined Ê (±)
j (z, t ) and B̂(±)

j (z, t ) as the
positive or negative frequency components of the reduced 1D
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fields, i.e.,

Ê (+)
j (z, t ) = 〈Sm′ (y), Ê (+)

j (r, t )〉� = Ê (−)†
j (z, t ),

B̂(+)
j (z, t ) = 〈T m′ (y), B̂(+)

j (r, t )〉� = B̂(−)†
j (z, t ). (30)

Hence, the 1D electric field (26) and 1D magnetic field
(28) decompose into an infinite set of fields Êm(z, t ) and
B̂m(z, t ) for each given set of transverse-mode numbers m
(this is analogous to the modes’ decomposition in Sec. II B).
In return, the 3D fields can be fully and without approximation
reconstructed (by definition of a mode decomposition) from
the longitudinal 1D subfields via the back transformation

Ê(r, t ) =
∑

j

(Sm(y)Ê (+)
j (z, t ) + Ê (−)

j (z, t )S†
m(y)),

B̂(r, t ) =
∑

j

(T m(y)B̂(+)
j (z, t ) + B̂(−)

j (z, t )T †
m(y)). (31)

We want to emphasize that the operators Ê(z, t ) and B̂(z, t )
are the dimensionally reduced fields and are thus not to be
confused with the physical 3D observables Ê(r, t ) and B̂(r, t ).
Since the dimensionally reduced fields describe the dynamics
corresponding to exactly one specific longitudinal mode space
L2

m(S) each, we call them subfields (in Appendix E we provide
at the example of the cylinder the explicit construction of the
subfields for 1D as well as 2D).

Comparison with ad hoc one-dimensional fields
and Maxwell’s equations

The collection of all subfields encodes information about
the geometry of the cross section which is retained even in
the lower-dimensional models [cf. Eqs. (27) and (29)]. In
particular, the wave vector has neither been restricted to point
in longitudinal direction nor are the frequencies then just 1D
in nature. Contrast this with the commonly found 1D field
structure of Eq. (4). In detail, with our choice of basis (see
Appendix A), one of the polarizations indeed corresponds to
the TE mode one would prescribe ad hoc to a 1D electric field
on z (and equivalently the TM mode for the magnetic field).
However, the second polarization then necessarily contains a
correction in the longitudinal z component that is due to the
transversal part of the 3D wave vector:

ε j,μ1 =
⎛⎝ 1/

√
2

−1/
√

2
0

⎞⎠, ε j,μ2 = 1∣∣k j,μ2

∣∣
⎛⎝−kl/

√
2

−kl/
√

2∣∣km,μ2

∣∣
⎞⎠. (32)

That entry can never be identical to zero unless one considers
the continuum limit for the cross section (corresponding to a
Fabry-Pérot cavity with infinite sized mirrors). In that case,
though, there is no energy gap to the lowest level transversal
mode, which cannot be expected to be the sole contribu-
tor to the dynamics, accordingly. In the opposite regime,
and one where one would intuitively expect to use a 1D
model, with the cross section much smaller in extension (with
characteristic scale R) than the length L of the cavity, the
transversal modes dominate the wave vector since |km,μ| ∝
1/R, whereas |kl | ∝ 1/L.

Furthermore, we showed that the lower-dimensional modes
satisfy dimensionally reduced Helmholtz equations with the

analog boundary conditions from the original 3D theory on
their respective mode space. In contrast, one could have
also tried reducing the dimensions of Maxwell’s equations to
achieve lower-dimensional Helmholtz equations [75,76]. This
can be for instance done via the method of Hadamard’s decent
[77,82], where spatial degrees which one wishes to reduce are
assumed constant. The dimensional reduction procedure used
here—where no assumptions besides an axially symmetric
cavity are applied—does in general not commute with the spa-
tial operations of Maxwell’s equations. Thus, a dimensional
reduction acting directly on the 3D Helmholtz equation (7a)
but not on the 3D modes themselves is not obtained trivially
by the maps defined in Sec. II A. Naturally, the subfields (27)
and (29) violate not only the 3D Maxwell’s equations as well
as the 3D Helmholtz equation (7a) but already the Coulomb
gauge condition. In summary this gives rise to the subfields
being an effective description as they do not represent physical
fields but a convenient representation to perform the dimen-
sional reduction.

The emergence of an effective theory is obviously given
by the noninvertible mapping from 3D to the lower di-
mensions. Here, the information that the eigenmodes of the
transverse Helmholtz equation, or the longitudinal Helmholtz
equation respectively, contribute to the mode structure is lost.
However, their eigenvalues remain, with each subfield being
associated with one of these eigenvalues. More precisely:
The subfields do still contain information of the full cavity
spectrum as the eigenvalues to the Helmholtz equation are
preserved by the dimensional reduction. Through these eigen-
values, conclusions can again be drawn about the 3D cavity
geometry from where the mode structure of the transverse
degrees of freedom may be reconstructed [83]. Nevertheless,
the subfield decomposition itself is exact, which we show
explicitly when deriving the dynamics for the subfields in
the next section. Conversely, assigning a single one of these
subfields physical significance—as is commonly the case in
the literature—can only be done in conjunction with quan-
tifying the error introduced to the physical observables. The
details of this assignment will be discussed in Sec. III C. In
essence, the subfields provide physical results only in the
same way that the few-mode approximation in quantum optics
provides accurate results. As such one does not necessarily
need the whole 3D model to back up a specific physical result
but a sufficient convergence in error with respect to some
metric.

III. DIMENSIONAL REDUCTION
AT THE HAMILTONIAN LEVEL

A. Free-field dynamics

Analogously to the fields, the free-field Hamiltonian
decomposes into an infinite number of effective 1D Hamil-
tonians (see Appendix F 1):

Ĥfield = ε0

2

∫
V

d3r [|Ê(r, t )|2 + c2|B̂(r, t )|2] =
∑

m

ĥfield
m .

(33)

Each Hamiltonian ĥfield
m is the 1D Hamiltonian analog in terms

of the 1D electromagnetic subfields (27) and (29) for a given
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transversal mode set m, i.e.,

ĥfield
m =ε0

2

∫
S

dz [|Êm(z, t )|2 + c2|B̂m(z, t )|2]

=h̄
∑
l,μ

ω j,μâ†
j,μâ j,μ, (34)

where the whole spectrum of the longitudinal modes and
polarizations contribute. Accordingly, all of these subfield
Hamiltonians taken together completely comprise the original
3D free-field dynamics. Importantly, even though the modes
corresponding to different subspaces L2

m(S) have nonvanish-
ing overlap the Hamiltonians (34) commute, and the free
dynamics does not couple these subspaces. Note that, since the
subfield Hamiltonians are realized without any approximation
from the 3D model, they differ from the usual 1D theories
discussed in Sec. I.

B. The light-matter interaction

Next we examine the dynamics of the fields induced by the
interaction with matter. Without loss of generality, we restrict
ourselves to the electric dipole Hamiltonian; extensions to
magnetic atoms, higher-order multipoles, or atomic center-
of-mass delocalization follow analogously; in Appendix F 2
we explicitly show how this applies to the electric dipole
interaction for an atom with a quantized center of mass.

Let us consider as a concrete example a general hydrogen-
like, stationary (atomic motion can be included in the
formalism in a straightforward manner) atom interacting with
the electromagnetic field within the cavity. We assume that
the atom is an effective one-particle system with a classical
nucleus that is much heavier than the electron. The atomic
Hamiltonian may be written as ĤA =∑s Es|s〉〈s|. The dipole
interaction can then be written—when prescribed from the
field’s quantization frame and in the joint atom-field interac-
tion picture—as [86,87]

Ĥ I(t ) =χ (t )
∑
s>s′

∫
V

d3r d̂ss′ (re(r), t ) · Ê(r, t ), (35)

being in position representation and the electronic position
re(r) accounts for the field’s (stationary) quantization frame to
be potentially different from the atom’s center-of-mass frame.
The dipole operator can be expressed as

d̂ss′ (re, t ) = eFss′ (re )ei�ss′ t |s〉〈s′| + H.c. (36)

in terms of the spatial smearing vector

Fss′ (re ) = reψ
∗
s (re )ψs′ (re ), (37)

where we inserted the atomic wave functions 〈re|s〉 = ψs(re ),
and we defined the atomic energy spacing h̄�ss′ = Es − Es′ .
The spatial smearing accounts for the atomic spatial profile
associated with the internal states for any considered transi-
tion process. We also introduced a switching function χ (t )
which encodes the possibly time-dependent coupling between
the atom and the field inside the cavity. To achieve the di-
mensionally reduced dipole Hamiltonian we define the spatial
smearing vector associated with the mth subfield, reading

Fm,ss′ (ze(z)) = 〈S†
m(y), Fss′ (re(r))〉�, (38)

i.e., it is the mapping of the atomic profile onto the field’s
transversal ancilla basis. Employing Eq. (31) yields

Ĥ I(t ) =χ (t )e
∑

j

∑
s,s′
s
=s′

∫
S

dz Fm,ss′ (ze(z))Ê (+)
j (z, t )

× ei�ss′ t |s〉〈s′| + H.c.

=
∑

m

ĥI
m(t ), (39)

where in the last step we defined the subfield-dipole Hamilto-
nians ĥdipole

m for fixed transverse-mode numbers m. Therefore,
the projected smearing vector Fm,ss′ (ze(z)) accounts for how
much the atom couples to the corresponding subfield Êm(z, t ).
Analogously to the free-field Hamiltonian, the interaction
Hamiltonian too decomposes into an infinite number of
dimensionally reduced Hamiltonians, each prescribing the
atom-light interaction on its respective Hilbert space.

C. The number-of-subfields approximation

In a similar fashion, the decompositions of the Hamilto-
nians (33) and (39) could have been also attained in terms
of a reduction to a 2D problem, that is via the mapping onto
the longitudinal mode spaces presented in Sec. II B. Since we
have performed no approximation hitherto, both descriptions
can be used to reconstruct the dynamics induced by the in-
teractions discussed so far. Therefore, they correspond merely
to a different basis expansion and thus correspond to different
subspaces, cf. Sec. II A. Both cases are, however, intuitively
connected to different cavity shapes and thus to different mode
structures inside a cavity.

To illustrate this, take two opposite regimes of a cylin-
drical cavity: a thin disk-shaped cavity (R � L) and a long
fiber-shaped cavity (R � L), with radius R and length L.
For the disk-shaped cavity, the frequency difference between
two modes with neighboring transverse-mode numbers m but
equal longitudinal mode number l is much larger than for
equal m but neighboring l . Thus, if we choose a fixed po-
larization and neglect the polarization index for compactness,
we obtain the condition (in reference to frequency ωm,l )

R � L : min {ωm+(1,0),l , ωm+(0,1),l} � ωm,l+1. (40a)

In contrast with this we have for the fiber-shaped cavity

R � L : max {ωm+(1,0),l , ωm+(0,1),l} � ωm,l+1. (40b)

Let us consider how lower-dimensional models will intu-
itively be achieved when considering an atom near resonance
to one cavity mode, i.e., �A ≈ ωmres,l res . For a disk-shaped
cavity with Eq. (40a) one would intuitively pick the single
subfield from the dimensionally reduced 2D model with lon-
gitudinal mode number l res. However, in case of the thin fiber,
one would pick instead the resonant subfield corresponding to
the 1D model with transverse mode number mres.

The two limits are also well known when describing a
quantum-mechanical particle in an axially symmetric har-
monic trap. There, two cases can be distinguished based on
the axial and perpendicular harmonic-oscillator length az and
a⊥, respectively. When az � a⊥, the system reduces to a two-
dimensional disk, whereas for a⊥ � az, a one-dimensional
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tube is obtained. In both cases the frequency spacing along
the strongly confined direction is too large to allow for any ex-
citation, effectively freezing the system in the corresponding
ground state of that direction, fully analogously to Eq. (40).

Furthermore, in a BEC with interacting atoms, the picture
is more complicated due to additional intrinsic length scales
imprinted by the interaction. Here, the spectrum separates in
collective and single-particle excitations at the healing length
ξ . If in addition to above criteria either az � ξ (disk) or
a⊥ � ξ (tube), the collective excitations of the BEC in the
strongly confined direction are frozen out. Such circumstances
allow for the description of the dynamics with a dimensionally
reduced Gross–Pitaevskii equation [11,12]. Note that the local
scattering between two atoms still retains its 3D character un-
til the oscillator length reaches the order of the 3D scattering
length [88,89]. This is in analogy to the models presented here
where the 3D character due to the polarization of the field is
preserved locally.

What we have achieved so far is to decompose—without
approximation—the full light-matter interaction in terms of
subfields of the electromagnetic field and associated spatial
profiles of the atom coupling to those subfields. To formulate
an approximation scheme for dimensional reduction, and to
connect this procedure with the ad hoc prescription in the
literature, we have to discuss how many of the subfields are
necessary so as to have an accurate representation of the
full 3D dynamics. Then a subfield approximation based on
Eq. (26) is nothing but a number-of-modes approximation,
equivalent to a single- or few-mode approximation.

For that truncation, an observable has to be chosen. A nat-
ural choice for this is atomic transition probabilities that can
be attained via an experiment. That is to say, we address the
question of how many subfields we need to take into account
in order to only deviate slightly from the full 3D statistics.
In particular, we see that the atomic transition probabilities
can also be decomposed into a sum of independent terms each
governing the transition probability induced by the appropri-
ate subfield.

To calculate the transition probabilities we use a Dyson
series [55] in the weak-coupling regime to first order, which is
valid as long as the relevant parameters are sufficiently small.
We assume that the initial state of the joint system is a prod-
uct state of the field in the vacuum state |�〉 =⊗ j,μ |0〉 j,μ
and the atom in an arbitrary energy eigenstate |s〉. Thus, the
transition probability between an initial atomic level |s〉 and
the arbitrary (yet distinct) level |s′〉 can be, to leading order,
written as

Ps→s′ ≈
∑
j′,μ′

∞∑
n=1

∣∣∣∣∣〈n j′,μ′ ; s′|
∑

m

(
i

h̄

∫
R

dt ĥI
m(t )

)
|�; s〉

∣∣∣∣∣
2

=
∑

m

|cm,s→s′ |2, (41)

where |n j,μ〉 is the single-mode Fock state with n field excita-
tions in mode ( j, μ) and all other modes in the vacuum state.
Accordingly, the total transition probability is decomposed

into probabilities induced by the corresponding mth subfield:

|cm,s→s′ |2 =
∑
l,μ

ω j,μe2

2ε0 h̄

∣∣∣∣∫
R

dt χ (t )ei(ω j,μ−�ss′ )t

×
∫

S
dz uj,μ(z) · Fm,ss′ (ze(z))

∣∣∣∣2. (42)

Let us come back to our issue at hand: How many subfields of
the reduced cavity are required? In particular, does there exist
special regimes where one can approximate the 3D model by
a small number of subfields (perhaps one)? We assume that
we restrict the number of subfields to some subset N such that

PN,s→s′ =
∑
m∈N

|cm,s→s′ |2. (43)

Such a truncation can be analogously thought of as a modi-
fication in the atomic spatial profile, cf. Eq. (38). Intuitively,
removing all but a few subfields is valid if the atomic shape is
such that it couples only strongly to a few subfields. Of course,
the field’s mode functions are generally not of the shape of an
atomic wave function, and a truncation needs therefore careful
analysis. We can evaluate the validity of the truncation via
the relative difference to the full transition probabilities (for
a detailed discussion on different measures for the truncation
error, see Ref. [83]):

δN,s→s′ = P−1
s→s′ |Ps→s′ − PN,s→s′ |. (44)

IV. EXAMPLE: DIMENSIONAL REDUCTION
FOR A CYLINDRICAL CAVITY

We now perform a numerical study as a working exam-
ple of the dimensional reduction laid out in the previous
sections and consider a cylindrical cavity of length L in the
longitudinal direction and radius R in the transverse direction.
A single two-level atom is placed in the center of the cavity
at z = L/2 such that y = ye (see Fig. 3), with the field’s quan-
tization frame having its origin at z = 0. For a discussion on
transforming the interaction Hamiltonian to different frames,
see Refs. [86,90].

The atom is modeled as a 3D quantum harmonic oscillator
where we only consider the ground state and one excitation
associated with the longitudinal z direction (the transverse di-
rections being frozen out as is commonly assumed), expressed
in the electric field’s quantization frame:

ψg(r, z) = 1

π3/4σ 3/2
e− r2

2σ2 e− (z−L/2)2

2σ2 , (45a)

ψe(r, z) = 21/2

π3/4σ 3/2
e− r2

2σ2 e− (z−L/2)2

2σ2
z − L/2

σ
, (45b)

with harmonic-oscillator length σ = √
h̄/(M�A) [91], �A

being the frequency gap between excited and ground state,
and M being the mass of the atom.

We further consider two different time-dependent cou-
plings in Eq. (42). First a top-hat switching χTS(t ) and an
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FIG. 3. Atom in the center of a cylindrical cavity with radius
R and length L. The electronic (cylindrical) coordinates are re =
(ye, ze ) with respect to the atomic center of mass, and r = (ye, ze +
L/2) with respect to the field’s quantization frame. The atom is mod-
eled as a two-level system with the harmonic-oscillator eigenstates
ψ000(re ) = ψg(re ) and ψ001(re ) = ψe(re ) with the energy gap h̄�A.

adiabatic Gaussian switching χGS(t ):

χTS(t ) = θ (t )θ (t − T ), χGS(t ) = exp

(
− t2

2T 2

)
, (46)

respectively. Both depend on the interaction time parameter T
which gives a characteristic time the atom is exposed to the
field.

Considering the Hamiltonian (39), due to the axial symme-
try the e(ϕ) component of the overlap from electric field and
smearing function vanishes in this setup. Moreover, for axially
symmetric atomic wave functions centered on the symmetry
axis the integration will fix the azimuth quantum number m2

to zero. The vanishing e(ϕ) and e(z) component of the TE
modes and the ϕ derivative in e(r) will then lead to a vanishing
interaction of the atom with the TE mode μ1. Thus we drop
the polarization index for compactness of notation.

For the sake of analytical results, we assume that the atom
is sufficiently localized far from the cavity walls. That is,
σ � R, L. In Appendix G 1 we calculate the overlap of the
atomic smearing function (38) with the subfields. We find the
following transition probabilities to leading order:1

P(±) = (ecσ )2

2πε0h̄R4L

∑
m1,l

χ2
m1

exp
(− χ2

m1
σ 2

2R2 − 2π2l2σ 2

L2

)
ω(m1,0),2l J2

1

(
χm1

) {
T 2sinc2

(
�(m1,0),2l,(±)T

)
, χ (t ) = χTH(t )

2πT 2 exp
[− 2(�(m1,0),2l,(±)T )2

]
, χ (t ) = χGS(t ),

(47)

where we defined χm1 as the m1th zero of the zeroth-
order Bessel function J0, the frequencies ω(m1,0),2l =
c[(χm1/R)2 + (2π l/L)2]1/2, and the detuning � j,(±) = (ω j ±
�A)/2, with (−) denoting spontaneous emission (e → g),
and (+) denoting vacuum excitation (g → e). We now exam-
ine different regimes for the subfield approximation reaching
from the general waveguide regime with σ � R � L to the
general optical resonator regime with σ � R � L. By that
notion, one would expect that the long-and-narrow waveguide
is a much better regime for a small-number approximation in
the subfields.

A. Numerical results

We discuss the numerical results for the validity of the
subfield approximation in terms of the four dimensionless
parameters L/R, R/σ , �AT , and ω j/�A. First, we investigate
the geometric imprints (i.e., effects induced by varying the
parameters R/L, R/σ , and consider different resonance con-
ditions ω j/�A). Second, the impact of the dynamics, i.e., in
terms of �AT and different switching functions, are studied.
Therefore, we particularize the relative error Eq. (44) to our

1Note that time T is upper and lower bounded within perturbation
theory. The upper limit is given by the convergence radius of the
first order, dependent on switching, mode and atomic frequencies
([92], Chap. 5); roughly translating to �AT � 1. At the lower bound
transitions to higher levels start getting relevant. Therefore, T → 0
is excluded in the analysis.

example, reading

δN,(±) = P−1
(±)|P(±) − PN,(±)|, (48)

where PN,(±) = P(N,0),(±) is the transition probability defined
in Eq. (43) with the azimuthal mode number being fixed at
zero, i.e., m2 = 0, and m1 ∈ N .

1. Imprint of the geometry

Here, we only discuss spontaneous emission, where the
impact of the geometry is particularly pronounced, and drop
for simplicity the (−) index in this section and Fig. 4. First
of all, see Figs. 4(a) and 4(b) for the example of Gaus-
sian switching, the individual subfield probability amplitudes
|c(m1,0)|2 are insensitive to the (intuitively important) ratio
L/R. This can be understood, cf. Eq. (47), by noting that
the ratio L/R appears only in the field frequencies. For the
parameter space considered with L/R � 1, then, the most
resonant subfield mres

1 has the property that χ res � 2π l resR/L,
where χ res := χmres

1 ,0. Note that the resonant mode is identi-
cal over the whole parameter regime from optical cavity to
waveguide in these plots because it is only weakly affected
by L/R. Nonetheless, the number of subfields necessary for
a proper subfield approximation are impacted by the chosen
resonant subfield mres

1 . To keep the error δN fixed, the number
of subfields needed grows linearly with the resonant subfield
mres

1 : for δN ≈ 0.1, Fig. 4(a) with mres
1 = 10 requires 24 and

Fig. 4(b) with mres
1 = 100 requires 240 subfields.

The parameter R/σ , on the other hand, is considerably
more relevant to the truncation [see Figs. 4(c)–4(f)]. The sub-
field with the maximum contribution mmax

1 to the transition
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(e)

(f)

(b)

(c)

(d)

(a)

FIG. 4. Normalized subfield probabilities relative to the maximum transition probability |c(m1,0)|2/|c(mmax
1 ,0)|2 plotted as a function of

subfield label m1 and L/R in panels (a) and (b) or R/σ in panels (c)–(f) for different resonance conditions with �AT = 1 for spontaneous
emission of the two-level system in a cylindrical cavity, cf. Eq. (47). The resonant subfield mres

1 is depicted as a red dotted line, the subfield
with maximum transition probability mmax

1 as a green dashed line. Parameters are (a), (b) R/σ = 103, (c)–(f) L/R = 103. We further exemplarily
show δN [cf. Eq. (48)] via the vertical bar indicating the set of subfields N needed for a relative error of about 10%. Note that the subscript (−)
has been dropped here for convenience.

probabilities, which is distinct from the most resonant sub-
field mres

1 , grows linearly with R/σ : mmax
1 ≈ 2R/(π

√
2σ ) for

R/σ � πmres
1 /

√
2. This is due to the geometrical parameter

R/σ dominating the energetic factor until the point of the reso-
nance condition ω j = �A is reached. From there the energetic
part starts to dominate and, for interaction times �AT ≈ 1 and
spontaneous emission,

mmax
1 ≈ 2χ res

π (�AT )2 , (49)

cf. Appendix G 2 for a derivation of mmax
1 for both vacuum

excitation and spontaneous emission. In particular, due to
the impact of the cavity geometry the maximum transition
probability lies with a subfield higher in energy than predicted

from the resonance condition; in our examples of Figs. 4(c)–
4(f) this amounts to about two times the resonant mode
number.

On top of that, the number of significant subfields for a
given error δN grows linearly with R/σ until the resonance
condition is reached. After that, the number of subfields
needed stays approximately constant, being proportional to
mres

1 , as already found for Figs. 4(a) and 4(b). Moreover, the
number of subfields needed for a given error δN and fixed
R/σ grows linearly with the resonance frequency. This can
be seen, for instance, when comparing δN between Figs. 4(d)
and 4(f). Thus in order to obtain the same accuracy for the
number-of-subfield approximation, for the optical resonator
(R � σ ) a significantly higher number of subfields is required
than for the waveguide (R � σ ).
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FIG. 5. Relative difference, Eq. (48), between full and subfield-truncated (indexed by the set N) transition probabilities as a function of
interaction time �AT for a two-level atom in a cylindrical cavity with R/σ = 20, L/R = 105, corresponding to a typical waveguide. The error
for spontaneous emission is given by δN,(−) and for vacuum excitation by δN,(+). The left column shows Gaussian switching, the right top-hat
switching. In panels (a) and (b), the atom is strongly off-resonant with all subfields (�A = 6 × 1012s−1 � min j ω j); spontaneous emission and
vacuum excitation coincide. In panels (c)–(f), the atom is resonant with the fifth subfield (�A = ω(5,0),2). The (most-)resonant subfields are
indicated. An arrow shows the direction of increasing number of subfields from the resonant one.

2. Imprint of the dynamics

Next, we investigate the influence of the dynamical process
when the interaction time is varied. We consider two regimes
of the cylindrical cavity; first, a waveguide (R = 20σ , R � L)
[93–97] in Fig. 5, and second, an optical resonator (R =
104σ, R < L) [98–100] in Fig. 6. Even though the parameter
R/σ determines an upper bound of how many subfields gen-
erally might have to be included, as discussed in the previous
section, the actual dynamical process can indeed result in a

much improved accuracy for a lower number of subfields.
When considering the case of a waveguide and studying the
off-resonant coupling between atom and subfields with �A �
min j ω j , cf. Figs. 5(a) and 5(b), the processes of spontaneous
emission and vacuum excitation are identical. For Gaussian
switching, it is indeed possible to just choose one subfield
when considering interaction times that are sufficiently long.
For shorter times, nonetheless, it is possible to chose just a
few—where of course more need to be taken into account for
shorter times. For sudden switching, this is never the case and
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FIG. 6. Relative difference, Eq. (48), between full and subfield-truncated (indexed by the set N) transition probabilities as a function
of interaction time �T for a two-level atom in a cylindrical cavity with R/σ = 104, L/R = 102, corresponding to a typical optical
resonator. The error for spontaneous emission is given by δN,(−) and for vacuum excitation by δN,(+). The left column shows Gaussian
switching, the right top-hat switching. In panels (a) and (b), the atom is strongly off-resonant with all subfields (�A = 6 × 1012s−1 �
min j ω j), and spontaneous emission and vacuum excitation coincide. In panels (c)–(f), the atom is resonant with the 40th subfield (�A =
ω(40,0),1000). The (most-)resonant subfields are indicated. An arrow shows the direction of increasing number of subfields from the resonant
one.

one is always required to choose several subfields for a low
enough error.

In the case of resonant atom-field coupling, cf. Figs. 5(c)–
5(f) (with �A = ω(5,0),2), we see that again for spontaneous

emission with Gaussian switching one subfield may suffice in
the long-interaction-time regime. Now, however, for vacuum
excitation in Figs. 5(c) and 5(d) the error does not converge to
zero with the one resonant subfield and may not even diminish
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when considering the near-resonant subfields (there emerges
a unique interaction time where the error may assume a mini-
mum). This can be understood from the exponential factor in
Eq. (47). Therefore, the subfield truncation will generally be
better for spontaneous emission than for excitation processes.
For small interaction times the impact of the resonant term is
comparatively small, leading to an increase of the number of
subfields needed. As before, with sudden switching it is not
possible to just choose the one resonant subfield to arrive at a
reasonable approximation.

Studying now the optical resonator (σ � R < L), we see
first of all that, in order to achieve the same error as for
the waveguide, we need significantly more subfields. This is,
as noted in the previous section [cf. Fig. (4)], related to the
ratio of R/σ having increased. One can observe that the error
has a minimum for the case of spontaneous emission. This
is due to the fact that, the larger the ratio R/σ , the more
the maximum subfield loses its unique status as term which
predominantly influences the transition probability. Second,
even for off-resonant Gaussian switching the single-subfield
approximation may no longer be viable for long interaction
times. The same holds for resonant Gaussian interactions; and
only a sufficient number of subfields result in a diminishing
truncation error. For sudden switching, again, we observe a
generally oscillating error that does not reduce in time, both
resonant and off-resonant.

V. LASERS

Previously, we developed the formalism for dimensional
reduction for closed cavities where the modes are compactly
supported. In the following, we see that it can be extended
to more general setups such as lasers where the modes decay
sufficiently fast in transverse direction. In the case of a laser
beam mostly one or a few modes are being significantly ex-
cited [101]. This results in the increased coupling between the
pumped modes and matter, which in general highly exceeds
the coupling to the nonpumped vacuum modes discussed in
the previous section. Considering a predominant direction of
propagation in z and a sufficiently quickly decaying amplitude
Am,μ(r, k) in transverse direction, the modes take the form

um,μ(r, k) = Am,μ(r, k)eikz, (50)

with a continuous wave vector |k| = k in the z direction.
The amplitude satisfies a paraxial wave equation that can
be achieved from the Helmholtz equation (7a) via a slowly
varying envelope approximation [36,37,102–104]:

[�� + 2ik∂z]Am,μ(r, k) = 0, (51)

where �� is, again, the transverse Laplacian but now on the
unbounded domain. Note that, in contrast with the Helmholtz
equation, the paraxial wave equation is no longer self-adjoint.

The paraxial modes (50) emerge from the zeroth-order ex-
pansion in (

√
2kw0)−1 of the paraxial wave equation and thus

solve Maxwell’s equations only up to this order. By taking
higher terms into account, longitudinal polarization, e.g., to
first order, and cross polarization, e.g., to second order, are
introduced. A slightly different method to obtain higher or-
ders is implemented by expanding the momentum-space wave
function in terms of a small opening angle representing per-

FIG. 7. Intersection in the (x, y) plane of a Gaussian beam with
focus at z = 0 interacting with matter modeled by a Gaussian two-
level system with ground state ψ000(re ) and excited state ψ001(re ) in
center-of-mass coordinates re and an energy gap of h̄�A. The beam is
symmetric in the z = 0 plane in which the beam radius w0 is defined.

turbations from the central momentum along the propagation
axis [104], leading to the same results of cross polariza-
tion and longitudinal fields. Unfortunately, going to second
order the orthogonality of the modes will be lost, causing
couplings between laser modes of nonequal mode numbers
[103]. However, for large cross sections compared with the
beam’s wavelength, a zeroth-order approximation, which is
most commonly found in the literature [35–37,102,105], gives
robust results.

Most lasers generate electromagnetic waves with rectan-
gular symmetry [103] which are given by Hermite-Gaussian
wave profiles. Then, the L2 normalized solutions of (51) can
be expressed in Cartesian coordinates as

Am,μ(r, k) =
Hm1

(√
2x

w(z)

)
Hm2

(√
2y

w(z)

)
e− x2+y2

w2 (z) eiθm(r,k)√
2m1+m2−1m1!m2!πw2(z)

εμ, (52)

with Hmi being the Hermite polynomial of order mi and εμ

being the polarization. The beam contour (see Fig. 7)

w(z) = w0

√
1 +

(
z

zR

)2

(53)

is determined by the beam radius w0 and the Rayleigh length
zR = kw2

0/2. The phase θm(r, k) is given by

θm(r, k) = k
x2 + y2

2R(z)
− (m1 + m2 + 1)ψG(z), (54)

where we define the radius of curvature of the phase front and
the Gouy phase, respectively:

R(z) = z

(
1 + z2

R

z2

)
, ψG(z) = arctan

(
z

zR

)
. (55)

Note that the following considerations are not restricted to our
example but can also be applied to general laser modes such
as Laguerre-Gaussian beams.
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From these modes the quantized electric field of the laser
can be constructed, reading

Ê(r, t ) = i
∑
m,μ

∫
R

dk

√
h̄ω

2ε0
[âm,μ(k)um,μ(r)eiωt − H.c.]

=
∑

m

[Ê (+)
m (r, t ) + Ê (−)

m (r, t )], (56)

where ω = ω(k) = c|k|. Only at higher orders of the paraxial
approximation is the frequencies’ degeneracy in the transver-
sal mode numbers m lifted [104]. Here, the frequencies
observe an infinite level of degeneracy for each k, which
will prevail throughout the dimensional reduction procedure.
Accordingly, the field Hamiltonian reads

Ĥfield =
∑
m,μ

∫
R

dk h̄ωâ†
m,μ(k)âm,μ(k). (57)

With the quantized electromagnetic fields and the field Hamil-
tonian of the laser at hand, a reduction to 1D fields and the 1D
dynamics can be performed.

A. Dimensional reduction of a Hermite-Gaussian beam

Recall that dimensional reduction requires (if one is in-
terested in analytic results) the separability of modes, cf.
Eqs. (11a) and (11b). Due to the phase term (54) and the
z dependence of the beam waist (53), separability does not
apply to the general form of the laser modes defined in
Eq. (52). However, we may consider the matter content to be
strongly localized around the center of the beam, i.e., via a
long-wavelength approximation:∣∣∣∣∣∣∣∣ x̂e

w0

∣∣∣∣∣∣∣∣� 1 ∧
∣∣∣∣∣∣∣∣ ŷe

w0

∣∣∣∣∣∣∣∣� 1 ∧
∣∣∣∣∣∣∣∣ ẑe

zR

∣∣∣∣∣∣∣∣� 1. (58)

with x̂e, ŷe, and ẑe being the electronic position operators,
and ||Â|| = 〈ψ | Â |ψ〉 /〈ψ |ψ〉. Additionally, we require suf-
ficiently low mode numbers,

max
m

(m1 + m2 + 1) �
∣∣∣∣∣∣∣∣ ẑe

zR

∣∣∣∣∣∣∣∣−1

, (59)

such that the phase θm(r, k) becomes independent of z. Note
that higher-order corrections to the paraxial equation will have
to be taken into account long before this condition is violated
[103,104]. Under the given assumptions, we get laser modes
which separate in transversal scalar modes and a plane wave
in the longitudinal direction, reading

um,μ(r, k) = ϕm(x, y)eikzεμ, (60)

where we defined

ϕm(x, y) =Hm1

(√
2x

w0

)
Hm2

(√
2y

w0

)
e
− x2+y2

w2
0√

2m1+m2−1m1!m2!πw2
0

, (61)

which are L2 orthonormalized on R2. The magnetic-field
modes vm,μ(r, k) of the laser are obtained fully analogously
to Eq. (60) with the same functional form except for a polar-
ization that is orthogonal to the electric mode to leading order
in the paraxial approximation [103].

We are now in the position to perform the dimensional
reduction, which in contrast with the closed cavity has a
simpler form due to the scalar nature of the longitudinal and
transverse components. Following Eq. (13a), a map defined by
the transversal modes (61) of the laser yields dimensionally
reduced plane-wave modes

uμ(z, k) =
∑
m′

〈ϕm′ (x, y), um,μ(r, k)〉R2 = eikzεμ. (62)

Analogously to (26) we map the complete transverse ancilla
basis onto the 3D laser field

Ê(z, t ) =
∑

m

∫
R

dk

(∑
m′

〈ϕm′ (x, y), Ê (+)
m (r, k, t )〉R2 + H.c.

)

=
∑

m

Êm(z, t ), (63)

with the subfields for the electric field of the laser being

Êm(z, t ) = i
∑

μ

∫
R

dk

√
h̄ω

2ε0
[âm,μ(k)ei(kz−ωt )εμ − H.c.].

(64)

Decomposing the fields (64) in positive- and negative-
frequency parts, we can apply the same dimensional reduction
method as already shown in Sec. (III B). Therefore, the dipolar
interaction Eq. (39) decomposes into a sum of subfield Hamil-
tonians with the dimensionally reduced smearing functions
[cf. Eq. (38)]

Fm,ss′ (ze ) = 〈ϕ†
m(xe, ye ), Fss′ (re )〉R2 . (65)

B. Example: Atom interacting with a laser

We consider the electric dipole interaction of Eq. (39) (in
the limit of V → ∞) and choose again a Gaussian two-level
atom. The calculation of the transition probabilities follows
very closely the derivation from Sec. III C. Due to selection
rules we assume that, for a linear polarization in the x direc-
tion, the laser, with coherent-state amplitude α(k), is pumping
into the TE10 mode which we denote as ν = (1, 0, εx ), assum-
ing a sufficiently small bandwidth. Thus, for the atom being
centered in the laser beam, the transition probabilities read to
first order (see Appendix G 3 for details)

PN,εx,(±) ≈ |cν,(±)|2 +
N∑

m 
=(1,0)

∣∣cm,εx,(±)

∣∣2
= g(|α(k)|2| f(−)(T ) + f̄(+)(T )|2 + γN | f(±)(T )|2),

(66)

where |cν,(±)|2 is the transition amplitude due to the laser
mode and |cm,εx,(±)|2 for the vacuum modes up to the mode
numbers N = (N1, N2). The interaction-time-dependent func-
tion is

f(±)(T ) =
{

T sinc(�(±)T ), χ (t ) = χTS(t )√
2πT e−(�(±)T )2

, χ (t ) = χGS(t ),
(67)

with �(±) = (ω ± �A)/2 being the detuning, which is inde-
pendent of the mode numbers in the zeroth-order paraxial
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wave approximation. Moreover, we defined the dimensionless
coupling constant g and the mode-number-dependent function
γN :

g = 3c2k3σ 6

h̄ε0π4ω4
0

e− (kσ )2

2 ,

γN = 1

3

(
4�
(

5
2 + N1

)
�
(

3
2 + N2

)
3π�(1 + N1)�(1 + N2)

− 3

4
θ1(N1 − 1)

)
, (68)

where we employed the (nonstandard) Heaviside function
with θ1(0) = 1.

The first term in Eq. (66) originates from the laser, and
the second one comprises the contributions from the vacuum
modes. To quantify their respective contribution, we define a
measure ζN,(±) which can be upper bounded:

ζN,(±) =
N∑

m 
=(1,0)

∣∣cm,εx,(±)|2
|cν,(±)|2 � γN

4|α(k)|2 . (69)

Consequently, a single-subfield approximation is indeed a
very good approximation for strong lasers (cf. Appendix G 3).
This is, for example, achieved in matter-wave interferometry
where high-powered laser pulses (e.g., 6–8 W [106] or also up
to 43 W [107]) in the terahertz regime are applied producing
average photon numbers of order 1020, exceeding significantly
the coupling of the vacuum modes.

VI. CONCLUSION AND OUTLOOK

In this paper we develop a systematic procedure to dimen-
sionally reduce 3D quantum optical models; thereby yielding
a precise measure of how the reduction can be applied as an
approximation. To that end, we decompose the electromag-
netic modes into appropriate ancilla bases. The mapping of
the modes onto an ancilla basis results in the elimination of the
corresponding spatial dimension(s). The reduced modes obey
independent, lower-dimensional Helmholtz equations which
extend to the common interactions with matter. We show how
lower-dimensional models emerge which comprise effective
subfields yet constitute an exact reformulation of the 3D prob-
lem. An overview of the procedure can be found in Fig. 2.

By construction, this is generally not identical to the often
ad hoc applied approximation in the literature. However, by
defining a measure with respect to some observable, for in-
stance the relative difference to the statistics of an experiment,
we are able to provide a handle on how good of an approxi-
mation the dimensional reduction should be; i.e., as a kind of
number-of-mode approximation which is ubiquitously done
in quantum optics. We show at the example of a two-level
atom inside a cylindrical cavity that the number of subfields
needed strongly depends on the parameters of the joint system
and its dynamics. In general, however, a single subfield is
not sufficient when considering the environment of the field’s
vacuum fluctuations. In particular, we find that the intuitive
idea of a very long and narrow cavity as a 1D model is not
easily justifiable. We further apply the dimensional reduction
to laser beams and see that a single-subfield approximation
can be valid given the laser intensity is strong enough. This
provides a justification for the standard approach.

Even though the framework established here applies to a
wide range of setups commonly found in the literature, we
only study a handful in detail. For instance, we only consider
stationary atoms, yet motion (as was done for a toy model in
Ref. [5]) or more generally the quantization of the center of
mass of the atom may also be considered (the dimensional re-
duction of the electric dipole interaction for a fully quantized
atom is derived in Appendix F 2). This extension could then
be of interest to dynamical applications such as cavity-based
atom interferometry in which high laser energies are focused
into a very narrow area [71]. Due to technical limitations in the
stability of the modes one can excite cavity modes transverse
to the laser propagation, leading to an adversarial impact on
the experiments [40,41]. Consequently, one has to consider
degrees of freedom that are not taken into account in the 1D
case but could be better understood by the procedure derived
here. For that, one would have to combine the cavity and laser
aspects discussed in this paper, i.e., by considering one or
more lasers inside a cavity [31].

On the other hand, we see that the subfields still contain
information about the full spectrum. Thus in metrological
applications one could imagine that by only measuring atoms
one can reconstruct the cavity geometry or imperfections
thereof [108]. Furthermore, the free choice of the trans-
verse modes also suggests that the dimensional reduction can
be applied to more general mode bases such as wavelets
[109–111]. Additional setups might be of interest such as
transmission lines interacting with superconducting qubits
[6,65], or optomechanical interactions [70,112,113] where
lower-dimensional models are commonly found. Lastly, treat-
ing leaky cavities within this formalism is beyond the scope
of this paper and will undoubtedly be studied in the future.
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APPENDIX A: CONSTRUCTING THE
ELECTROMAGNETIC MODES FROM

THE SCALAR HELMHOLTZ EQUATION

Starting from the eigenspectrum of the scalar Laplacian
and the requirement of an orthonormal mode basis we show
in a straightforward and simple fashion how expressions for
the components of the mode decompositions of Eqs. (11a)
and (11b) can be obtained in terms of the scalar Laplacian’s
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eigenfunctions for arbitrary geometries. In particular, we ver-
ify Eq. (12) for the longitudinal (recall, with respect to the
cavity’s symmetry axis) components of this decomposition
and find general expressions for the transversal degrees of
freedom and polarization vectors. To this end, let us consider
the scalar Helmholtz equation(

� + k2
j,μ

)
ψ j,μ(r) = 0, (A1)

which is solved by the eigenfunctions ψ j,μ of the Laplacian
with discrete eigenvalues −k2

j,μ [cf. Eq. (10)] corresponding
to the electromagnetic theory. The index μ, which corre-
sponds to the polarization for the electromagnetic theory,
indicates here the solutions to the scalar Helmholtz equa-
tion under (so far not specified) different boundary conditions.
From the definition of the cavity volume as a Cartesian prod-
uct of transversal and longitudinal space, i.e., V = � × S, one
can use the separation ansatz [114]

ψ j,μ(r) = ψm,μ(y)ψl,μ(z). (A2)

Then one has two independent scalar Helmholtz equations;
one being the transverse Helmholtz equation(

�� + k2
m,μ

)
ψm,μ(y) = 0, (A3a)

where �� is the Laplacian with respect to the transverse coor-
dinates y only, and the other being the longitudinal Helmholtz
equation, (

∂2
z + k2

l

)
ψl,μ(z) = 0, (A3b)

where we made use of the wave-vector separation (10). Here
we set, without loss of generality, the constant emerging from
the separation of variables to zero. Since this constant just
adds an energy offset to the spectrum, the resulting energy
spectrum will not be altered. To arrive at the correct bound-
ary conditions for the electromagnetic modes, cf. Eq. (7),
we preordain ψl,μ1 (z) to obey Dirichlet boundary conditions
and ψl,μ2 (z) to obey Neumann boundary conditions; in Ap-
pendix C 2 we derive the boundary conditions of the scalar
modes which will enable us to explicitly determine the scalar
modes for a given geometry. Granted this, we can write—
without specifying the cross section—the two longitudinal
solutions as

ψl,μ1 (z) =
√

2

L
sin (klz), ψl,μ2 (z) =

√
2

L
cos (klz), (A4)

where kl = π l/L is the longitudinal wave-vector component.
From the L2 normalization for the complete solution Eq. (A2)
it follows for the longitudinal part∫

S
dz ψ

†
l,μ(z)ψl ′,μ′ (z) =

{
δl,l ′ if μ = μ′
δμ,μ′ if l = l ′, (A5)

and additionally for the transversal part∫
�

d2y ψ†
m,μ(y)ψm′,μ′ (y) =

{
δm,m′ if μ = μ′
δμ,μ′ if m = m′. (A6)

Once the scalar modes are garnered—requiring to know
the transversal geometry—one can construct, see, e.g.,
Refs. [84,115] or Ref. [116] for a detailed derivation, the

electric and magnetic modes (in the absence of charges and
currents) via

uj,μ1 (r) = α j,μ1∇ × eψ j,μ1 (r), (A7a)

v j,μ1 (r) = β j,μ1∣∣k j,μ1

∣∣∇ × ∇ × eψ j,μ1 (r), (A7b)

for polarization μ1, and analogously for the μ2 polarization:

uj,μ2 (r) = α j,μ2∣∣k j,μ2

∣∣∇ × ∇ × eψ j,μ2 (r), (A7c)

v j,μ2 (r) = β j,μ2∇ × eψ j,μ2 (r), (A7d)

satisfying the boundary conditions of Eq. (7). Here, e is an a
priori arbitrary unit vector (or pilot vector) such that different
choices yield different basis sets for uj,μ(r) and v j,μ(r). In
general, however, the symmetry of the problem gives a pre-
ferred choice for e. For our purpose, and assuming cavities
with axial symmetry, selecting the unit vector e(z) in the lon-
gitudinal direction is most natural. Note that the normalization
constants α j,μ, β j,μ depend on the form of the unit vector e.
For our choice, we require

α j,μ = β j,μ = |km,μ|−1, (A8)

such that the electromagnetic modes are normalized on L2(V ).
Accordingly, the electromagnetic modes can be expressed
as a differential operator acting on the scalar solutions of
the Helmholtz equation (A1), appended with a suitable pilot
vector. Only the further decomposition of this operator in
combination with the separability of the scalar modes defines
a separable problem. This is in contrast with Ref. [83] where
the dimensional reduction is applied to a scalar theory and
thus only the separability of the scalar modes is required. We
see in the following that the lower-dimensional modes are
given by a reduced differential operator acting on the scalar
solutions ψl,μ(z) for the longitudinal part or on ψm,μ(y) for
the transverse part, respectively.

We are now in a position to find the explicit expressions for
the elements of the electromagnetic mode decompositions of
Eqs. (11a) and (11b) in terms of the scalar solutions. We define
the components of the gradient in the transverse directions,
reading

∂(y1 ) = e(y1 ) · ∇ and ∂(y2 ) = e(y2 ) · ∇. (A9)

We want to emphasize that, for general geometries, the deriva-
tives ∂(yi ) include Lamé coefficients [117] due to the possible
curvilinear nature of the coordinates, for instance in cylindri-
cal coordinates ∂(r) = ∂r , ∂(ϕ) = r−1∂ϕ . Employing then the
Laplacian identity

∇ × ∇ × A = ∇(∇ · A) − �A, (A10)

for an arbitrary vector A, we can write Eqs. (A7) as

uj,μ1 (r) = ∣∣km,μ1

∣∣−1

⎛⎜⎝ ∂(y2 )

−∂(y1 )

0

⎞⎟⎠ψ j,μ1 (r),

uj,μ2 (r) = ∣∣km,μ2

∣∣−1∣∣k j,μ2

∣∣−1

⎛⎜⎝∂(y1 )∂z

∂(y2 )∂z

k2
m,μ2

⎞⎟⎠ψ j,μ2 (r), (A11a)
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v j,μ2 (r) = ∣∣km,μ2

∣∣−1

⎛⎜⎝ ∂(y2 )

−∂(y1 )

0

⎞⎟⎠ψ j,μ2 (r),

v j,μ1 (r) = ∣∣km,μ1

∣∣−1∣∣k j,μ1

∣∣−1

⎛⎜⎝∂(y1 )∂z

∂(y2 )∂z

k2
m,μ1

⎞⎟⎠ψ j,μ1 (r), (A11b)

where we used the transversal Helmholtz equation (A3a).
Inserting the scalar modes defined in Eq. (A3b), with

klψ j,μ2 (r) = ∂zψ j,μ1 (r),

−klψ j,μ1 (r) = ∂zψ j,μ2 (r),
(A12)

Equations (A11a) and (A11b) can be cast as a product of
individual elements via Eq. (11a) for the electric-field modes
and via Eq. (11b) for the magnetic-field modes, respectively.
Therefore, we define the matrices of the transverse degrees of
freedom as a superposition of the two polarization contribu-
tions (so that they may serve as ancilla basis later on for the
dimensional reduction)

Sm(y) = Sm,μ1 (y) + Sm,μ2 (y)

= (√
2
∣∣km,μ1

∣∣)−1

⎛⎜⎝ ∂(y2 ) −∂(y2 ) 0

−∂(y1 ) ∂(y1 ) 0

0 0 0

⎞⎟⎠ψm,μ1 (y)

+ (√2
∣∣km,μ2

∣∣)−1

⎛⎜⎝∂(y1 ) ∂(y1 ) 0

∂(y2 ) ∂(y2 ) 0

0 0
√

2
∣∣km,μ2

∣∣
⎞⎟⎠ψm,μ2 (y),

(A13a)

T m(y) = T m,μ1 (y) + T m,μ2 (y)

= (√
2
∣∣km,μ1

∣∣)−1

⎛⎜⎝∂(y1 ) ∂(y1 ) 0

∂(y2 ) ∂(y2 ) 0

0 0
√

2
∣∣km,μ1

∣∣
⎞⎟⎠ψm,μ1 (y)

+ (√2
∣∣km,μ2

∣∣)−1

⎛⎜⎝ ∂(y2 ) −∂(y2 ) 0

−∂(y1 ) ∂(y1 ) 0

0 0 0

⎞⎟⎠ψm,μ2 (y),

(A13b)

for the electric and magnetic fields, respectively. Furthermore,
the polarization vectors read

ε j,μ1 =
⎛⎝ 1/

√
2

−1/
√

2
0

⎞⎠, ε j,μ2 = ∣∣k j,μ2

∣∣−1

⎛⎝−kl/
√

2
−kl/

√
2∣∣km,μ2

∣∣
⎞⎠,

κ j,μ1 = ∣∣k j,μ1

∣∣−1

⎛⎝kl/
√

2
kl/

√
2∣∣km,μ1

∣∣
⎞⎠, κ j,μ2 =

⎛⎝ 1/
√

2
−1/

√
2

0

⎞⎠, (A14)

and the matrices for the longitudinal degrees of freedom be-
come [utilizing Eq. (A4)]

U l (z) = diag
(
ψl,μ1 (z), ψl,μ1 (z), ψl,μ2 (z)

)
,

V l (z) = diag
(
ψl,μ2 (z), ψl,μ2 (z), ψl,μ1 (z)

)
. (A15)

Since the electromagnetic modes obey Eq. (7d), the com-
ponents of the magnetic-field decomposition, Eq. (11b), can
be realized via simple replacement in the electric-mode
components. In particular, the transverse-mode matrices T m

can be found by interchanging the polarization index, i.e.,
T m(y) = Sm(y)|μ1↔μ2 . The polarization vectors ε j,μ, how-
ever, depend not only on the transverse-mode numbers m,
but also on the longitudinal mode number l . Hence, the
component-wise orthogonality (19a) of the longitudinal ele-
ments U l (z) and V l (z) must also be taken into account. For
this reason one has to not only switch the polarization index of
the transverse wave vectors km,μ to arrive at the corresponding
polarizations κ j,μ but also the sign of the longitudinal wave
vector kl . Then one obtains κ j,μ1 from ε j,μ2 by the substitu-
tion {km,μ2 , kl} → {km,μ1 ,−kl} and vice versa. The explicit
electromagnetic modes can then be easily given in terms of
the scalar Helmholtz modes by particularizing to a specific
cavity geometry.

APPENDIX B: MAPPING OF THE ELECTROMAGNETIC
MODES AND ORTHONORMALITY

Here, we verify the orthonormality of Eqs. (14) of the
transversal matrices Sm(y) that serve as ancilla modes [the
results follow analogously for T m(y)] with which we arrive at
the dimensionally reduced 1D modes of Eqs. (13). We further
show the orthonormality conditions for these reduced modes.
The same will then be executed for the reduction to the 2D
modes.

1. Reduction to one-dimensional field modes

First, recall the decomposition of Sm(y) into the two po-
larization contributions in Eq. (A13). With help of the scalar
mode approach discussed in Appendix A and the use of the
boundary conditions of the transverse scalar modes as shown
subsequently in Appendix C 2 we obtain by means of Green’s
first identity:∫

�

d2y ∂(y2 )ψ̄m,μ(y)∂(y1 )ψm′,μ′ (y)

=
∮

∂�

dy n(y2 )
� ψ̄m,μ(y)∂(y1 )ψm′,μ′ (y)

−
∫

�

d2y ψ̄m,μ(y)∂(y1 )∂(y2 )ψm′,μ′ (y)

=
∮

∂�

dy n(y2 )
� ψ̄m,μ(y)∂(y1 )ψm′,μ′ (y)

−
∮

∂�

dy n(y1 )
� ψ̄m,μ(y)∂(y2 )ψm′,μ′ (y)

+
∫

�

d2y ∂(y1 )ψ̄m,μ(y)∂(y2 )ψm′,μ′ (y)

=
∫

�

d2y ∂(y1 )ψ̄m,μ(y)∂(y2 )ψm′,μ′ (y), (B1.1)

where we used for the infinitesimal surface vector dy = n�dy,
with the surface vector of the cavity cross section n� =
(n(y1 )

� , n(y2 )
� , 0). For identical polarizations it follows analo-

gously by applying integration by parts and the orthogonality
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and boundary conditions:∑
m′

∫
�

d2 y
[
∂(y1 )ψ̄m′,μ(y)∂(y1 )ψm,μ(y)

+ ∂(y2 )ψ̄m′,μ(y)∂(y2 )ψm,μ(y)
]− k2

m,μ = 0. (B1.2)

Then we can write∫
�

d2 yS†
m,μ1

(y)Sm′,μ1
(y) = δm,m′

2

⎛⎝ 1 −1 0
−1 1 0

0 0 0

⎞⎠,

∫
�

d2 yS†
m,μ2

(y)Sm′,μ2
(y) = δm,m′

2

⎛⎝1 1 0
1 1 0
0 0 2

⎞⎠. (B1.3a)

For distinct polarizations with μ 
= μ′, we find by means of
Eq. (B1.1) ∫

�

d2 yS†
m,μ(y)Sm′,μ′ (y) = 0. (B1.3b)

These results imply the orthonormality relations (14). Con-
sequently, the dimensionally reduced 1D modes defined in
Eq. (13) are achieved in a straightforward manner:

uj,μ1 (z) =
√

L
−1

⎛⎝ sin (klz)
− sin (klz)

0

⎞⎠,

uj,μ2 (z) = (√
L
∣∣k j,μ2

∣∣)−1

⎛⎝ −kl sin (klz)
−kl sin (klz)√

2
∣∣km,μ2

∣∣ cos (kl z)

⎞⎠, (B1.4a)

v j,μ2 (z) =
√

L
−1

⎛⎝ cos (klz)
− cos (klz)

0

⎞⎠,

v j,μ1 (z) = (√
L
∣∣k j,μ1

∣∣)−1

⎛⎝ kl cos (klz)
kl cos (klz)√

2
∣∣km,μ1

∣∣ sin (klz)

⎞⎠. (B1.4b)

Importantly, for this choice of the polarization basis or
equivalently of the pilot vector e, one of the sets of 1D electric
and magnetic modes still depends on the transverse-mode
numbers m and polarization μ after dimensional reduction.

For m = m′, i.e., for modes corresponding to the same
subspace L2

m(S), and via the normalization of U l (z) and V l (z)
in Eqs. (19) the orthonormality of uj,μ(z) and v j,μ(z) follows
directly [cf. Eq. (17a)]. For the orthogonality between the
electric and magnetic modes we have∫

S
dz u†

j,μ(z) · v j,μ(z)

= (ε†
j.μ · κ j,μ)

∫
S

dz sin (klz) cos (klz) = 0, (B1.5)

whereby in the last step we used that the integral vanishes on
S, proving Eq. (18).

2. Reduction to two-dimensional field modes

The same can be done now for the dimensional reduction to
2D. Here the normalization of the longitudinal matrices (that
now serve as ancilla modes) U l (z) and V l (z) in Eqs. (19)

follows directly from their definition in Eqs. (12). Then, the
normalized modes solving the transverse Helmholtz Eq. (23)
on � can be constructed via Eq. (20a):

s j,μ1 (y) = ∣∣km,μ1

∣∣−1

⎛⎜⎝ ∂(y2 )

−∂(y1 )

0

⎞⎟⎠ψm,μ1 (y),

s j,μ2 (y) = ∣∣km,μ2

∣∣−1∣∣k j,μ2

∣∣−1

⎛⎜⎝−kl∂(y1 )

−kl∂(y2 )

k2
m,μ2

⎞⎟⎠ψm,μ2 (y). (B2.6a)

Likewise, we have for the 2D solutions of the magnetic
transverse Helmholtz equation, cf. Eq. (24), in terms of the
transverse scalar modes

t j,μ1 (y) = ∣∣km,μ1

∣∣−1∣∣k j,μ1

∣∣−1

⎛⎜⎝kl∂(y1 )

kl∂(y2 )

k2
m,μ1

⎞⎟⎠ψm,μ1 (y),

t j,μ2 (y) = ∣∣km,μ2

∣∣−1

⎛⎜⎝ ∂(y2 )

−∂(y1 )

0

⎞⎟⎠ψm,μ2 (y). (B2.6b)

The orthonormality of the electric-field modes s j,μ(y) [cf.
Eq. (21)] and thus also of the magnetic-field modes t j,μ(y)
follows directly from Eq. (14) and the orthogonality of the
polarization vectors, i.e., for l = l ′ which corresponds to the
same transversal mode space L2

l (�). Furthermore, the orthog-
onality of the 2D electric and magnetic modes, cf. Eq. (22),
follows directly from the identity (B1.1):∫

�

d2 y s†
j,μ · t j,μ

= ± kl

|km,μ|2|k j,μ|
∫

�

d2 y
[
∂(y2 )ψ̄m,μ(y)∂(y1 )ψm,μ(y)

− ∂(y1 )ψ̄m,μ(y)∂(y2 )ψm,μ(y)
] = 0. (B2.7)

APPENDIX C: BOUNDARY CONDITIONS OF THE
LOWER-DIMENSIONAL HELMHOLTZ EQUATIONS

In the following we derive the boundary conditions for the
lower-dimensional electromagnetic modes, i.e., the boundary
conditions stated in Eqs. (15), (16), (23), and (24), as well as
for the transverse scalar modes ψm,μ, which allow us to easily
find explicit expressions for the electromagnetic modes for a
given geometry. Therefore, we divide the boundary conditions
of the cavity into longitudinal boundary conditions on ∂S with
corresponding normal vector ±e(z), and transverse boundary
conditions on ∂� with normal vector n(�) (cf. Fig. 1). If both
boundary conditions (transversal and longitudinal boundary
conditions) are satisfied, the boundary conditions at the cavity
edges, i.e., the case y ∈ ∂� ∧ z ∈ ∂S, are trivially satisfied as
well.

1. Boundary conditions for the lower-dimensional
electromagnetic modes

a. Electric boundary conditions

Starting with the lower-dimensional electric modes, we
plug the mode decomposition (11a) into the boundary
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condition (7b). Then one obtains on the transversal boundary:

n� × uj,μ(r)|y∈∂� = n� × U l (z)s j,μ(y)|y∈∂� = 0. (C1.1)

Recall that in Appendix B 2 we found expressions for s j,μ(y)
and t j,μ(y) in terms of the scalar modes [cf. Eqs. (B2.6a)
and (B2.6b)]. Via a decomposition in the basis spanning the
cavity volume (9), one can write Eq. (C1.1) in terms of a
superposition of the two different longitudinal scalar solutions
ψl,μ1 (z) and ψl,μ2 (z) [see Eq. (A15)]:(

n(y2 )
� s(z)

j,μ(y),−n(y1 )
� s(z)

j,μ(y), 0
)T∣∣

y∈∂�
ψl,μ1 (z)

+ (0, 0, n(y1 )
� s(y2 )

j,μ (y) − n(y2 )
� s(y1 )

j,μ (y)
)T∣∣

y∈∂�
ψl,μ2 (z) = 0.

(C1.2)

Each of these terms decouples again into longitudinal and
transversal degrees of freedom. Since the two vectors depend-
ing on the transversal degrees of freedom are independent of
each other, one attains the first boundary condition of Eq. (23):

(
n(y2 )

� s(z)
j,μ(y), −n(y1 )

� s(z)
j,μ(y), n(y1 )

� s(y2 )
j,μ (y) − n(y2 )

� s(y1 )
j,μ (y)

)T∣∣
y∈∂�

= n� × s j,μ(y)|y∈∂� = 0. (C1.3)

To arrive at the longitudinal boundary conditions in Eq. (15),
we evaluate boundary condition (7b) on S and make use
of the matrix components U (y1,y1 )

l (z) = U (y2,y2 )
l (z) = ψl,μ1 (z)

such that

e(z) × U l (z)s j,μ(y)|z∈∂S

= (s(z)
j,μ(y), s(z)

j,μ(y), 0
)T

ψl,μ1 (z)
∣∣
z∈∂S

= 0. (C1.4)

It follows directly that this boundary condition acts solely on
the longitudinal scalar mode ψl,μ1 (z). Thus, multiplying the
diagonal matrix U l (z) by the appropriate polarization vector
(i.e., either ε j,μ1 for μ1 polarization or ε j,μ2 for μ2 polariza-
tion) yields the longitudinal boundary condition for the 1D
modes:(

u(y2 )
j,μ (z), −u(y1 )

j,μ (z), 0
)T∣∣

z∈∂S
= e(z) × uj,μ(z)|z∈∂S = 0.

(C1.5)

For the set of boundary conditions originating from Eq. (7c),
we decompose the nabla operator in the basis spanned by the
cavity (9) into its longitudinal and cross-sectional part via

∇ = ∇� + e(z)∂z. (C1.6)

Thus, we obtain on the transversal boundary

∇�U l (z)s j,μ(y)|y∈∂� = −e(z)∂zU l (z)s j,μ(y)|y∈∂�. (C1.7)

From boundary condition (C1.3) it follows that for y ∈ ∂� :
s j,μ · e(z) = 0. Thus, the right-hand side of Eq. (C1.7) van-
ishes. Using the identity U (y1,y1 )

l (z) = U (y2,y2 )
l (z) [cf. Eq. (12)],

one finds the second boundary condition of Eq. (23), i.e.,

∂(y1 )s
(y1 )
j,μ (y)

∣∣
y∈∂�

+ ∂(y2 )s
(y2 )
j,μ (y)

∣∣
y∈∂�

= ∇� · s j,μ(y)|y∈∂� = 0.

(C1.8)

To derive the longitudinal boundary condition from
Eq. (7c), one uses U (y1,y1 )

l (z)|z∈∂S = U (y2,y2 )
l (z)|z∈∂S = 0

from Eq. (C1.5) such that

∂zu
(z)
j,μ(z)

∣∣
z∈∂S

= e(z)∂z · uj,μ(z)|z∈∂S = 0, (C1.9)

which corresponds to the first boundary condition of (15).

b. Magnetic boundary conditions

Analogously to the derivation of Eq. (C1.8), one can show
via the matrix components V (y1,y1 )

l (z) = V (y2,y2 )
l (z) of V l (z)

that the boundary condition (7e) splits into

n(y1 )
� t (y1 )

j,μ (y)
∣∣
y∈∂�

+ n(y2 )
� t (y2 )

j,μ (y)
∣∣
y∈∂�

= n� · t j,μ(y)
∣∣
y∈∂�

= 0,

(C1.10)

v
(z)
j,μ(z)

∣∣
z∈∂S = e(z) · v j,μ(z)|z∈∂S = 0, (C1.11)

corresponding to the first boundary condition in Eq. (24) and
the second boundary condition in Eq. (16), respectively. The
second boundary condition of the 3D magnetic modes (7f)
reads

n × (∇ × V l (z)t j,μ(y))|r∈∂V = 0. (C1.12)

Focusing first on the transverse boundary gives by means of
the vector identity [84]

A × (∇ × B) = ∇B(A · B) − (A · ∇)B, (C1.13)

with ∇B being the nabla operator acting only the vector B:

∇(n†
�V l (z)t j,μ(y))|y∈∂� − (n� · ∇)V l (z)t j,μ(y)|y∈∂� = 0.

(C1.14)

The gradient term on the left-hand side vanishes due to
boundary condition (C1.10). Equivalently to the calculation
performed in Eq. (C1.2), we find an expression purely in terms
of the transversal degrees of freedom:(

n(y2 )
�

[
∂(y1 )t

(y2 )
j,μ (y) − ∂(y2 )t

(y1 )
j,μ (y)

]
,

n(y1 )
�

[
∂(y1 )t

(y2 )
j,μ (y) − ∂(y2 )t

(y1 )
j,μ (y)

]
,[

n(y1 )
� ∂(y1 ) + n(y2 )

� ∂(y2 )
]
t (z)

j,μ(y)
)∣∣

y∈∂�
= 0. (C1.15)

Writing this equation in a more compact form, one obtains
with n� · ∇ = n� · ∇� the second boundary condition of
Eq. (24), reading

n� × [∇� × t j,μ(y)]|y∈∂� = 0. (C1.16)

Finally, for the longitudinal boundary we have

e(z) × [∇ × V l (z) t j,μ(y)]|z∈∂S = 0. (C1.17)

Applying identity (C1.13) yields

∇[e(z)†V l (z) t j,μ(y)]|z∈∂S − (e(z) · ∇)V l (z) t j,μ(y)|z∈∂S = 0.

(C1.18)

By use of boundary condition (C1.11) the gradient term
vanishes. Thus, when decomposing the nabla operator into
transverse and longitudinal components again [cf. Eq. (C1.6)]
and applying boundary condition (C1.11) one arrives at

− (∂zv
(y1 )
j,μ (z), ∂zv

(y2 )
j,μ (z), 0

)|z∈∂S

= e(z) × [e(z)∂z × v j,μ(z)]|z∈S = 0. (C1.19)
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Equivalently, the first boundary condition presented in (16) is
realized, reading

e(z)∂z × v j,μ(z)|z∈S = 0. (C1.20)

Thus, we found that both the boundary conditions for the
electric modes and the boundary conditions for the magnetic
modes separate on the underlying geometry into two groups of
boundary conditions. One group entails the transverse degrees
of freedom and one group entails the longitudinal degrees of
freedom, corresponding each to lower-dimensional dynamics
after dimensional reduction.

2. Boundary conditions for the scalar modes

Here we reexpress the boundary conditions we found in the
previous section for the lower-dimensional electromagnetic
modes in terms of the scalar solutions; enabling us to find the
explicit electromagnetic modes for a given geometry in terms
of the scalar modes. For a cavity of length L, i.e., ∂S ∈ {0, L},
we verify that the boundary conditions are in accordance with
our initial choice (A4). Indeed, by making use of boundary
condition (C1.5) [cf. Eq. (A15)] or analogously boundary
condition (C1.11) we find

ψl,μ1 (z)|z∈∂S = 0. (C2.1)

From boundary condition (C1.9) and boundary condition
(C1.20) we get similarly

∂zψl,μ2 (z)|z∈∂S = 0. (C2.2)

For the transverse scalar modes, we have for ψm,μ1 (y)
a Neumann boundary condition from boundary conditions
(C1.3):(

n(y1 )
� ∂(y2 ) + n(y2 )

� ∂(y1 )
)
ψm,μ1 (y)

∣∣
y∈∂�

= 0. (C2.3)

This condition can also be found from boundary condition
(C1.10) and (C1.16), whereas boundary condition (C1.8)
yields no additional information for the boundary condition
of the scalar modes ψm,μ1 (y) whatsoever. For the scalar modes
ψm,μ2

(y), the boundary conditions (C1.3), (C1.8), and (C1.10)
yield boundary conditions of Dirichlet kind:

ψm,μ2 (y)
∣∣
y∈∂�

= 0. (C2.4)

In summary, we find a duality in the boundary conditions of
the scalar modes: Dirichlet (ψl,μ1 (z), ψm,μ2 (y)) to Neumann
(ψl,μ2 (z), ψm,μ1 (y)) and vice versa by interchanging the polar-
ization index, with complementary behavior for longitudinal
and transverse components. Let us briefly connect this to the
electromagnetic theory. This duality is due to the construction
of the field modes from the scalar modes in Eq. (A11) and
Faraday’s law of Eq. (7d) connecting electric and magnetic
fields, which by construction need to have complementary
(either Dirichlet or Neumann) boundary conditions for normal
or transverse field components [see Eqs. (7b), (7c), (7e), and
(7f)]. Therefore, the curl operation can be seen as switching
the boundary conditions of the fields and the scalar modes,
explaining the complementary boundary conditions for scalar
components of distinct polarization indices. Furthermore, the
complementary boundary conditions between transverse and
longitudinal scalar components for fixed polarization index
arise due to the normal electric-field component vanishing at

the boundary and analogously for the perpendicular magnetic-
field component.

APPENDIX D: SELF-ADJOINTNESS OF THE
DIMENSIONALLY REDUCED HELMHOLTZ EQUATIONS

In the following we prove self-adjointness of the lower-
dimensional Helmholtz equations [cf. Eqs. (15), (16) for the
1D problem and Eqs. (23), (24) for the 2D problem] after
dimensional reduction, and thus the validity of the decompo-
sition in an orthonormal eigenmode basis spanning the Hilbert
space of the lower-dimensional problems. For a detailed dis-
cussion on self-adjoint problems in cavities and also for a
proof of the self-adjointness of the initial 3D problem see
Ref. [84].

1. One-dimensional Helmholtz equations

We first show self-adjointness of the 1D electric and mag-
netic Helmholtz equations (15) and (16) on their respective
longitudinal mode space L2

m(S) for arbitrary transverse-mode
numbers m. Performing twice integration by parts on the
respective inner product gives∫

S
dz u†

ml,μ(z) · ∂2
z uml ′,μ(z)

= u†
ml,μ(z) · ∂zuml ′,μ(z)|z∈∂S − [∂zu

†
ml,μ(z)] · uml ′,μ(z)|z∈∂S

+
∫

S
dz
[
∂2

z u†
ml,μ(z)

] · uml ′,μ(z). (D1.1)

The boundary terms can be written component-wise and van-
ish as

u†
ml,μ(z) · ∂zuml ′,μ(z)|z∈∂S − [∂zu

†
ml,μ(z)] · uml ′,μ(z)|z∈∂S

=
∑

i

[
ū(i)

ml,μ(z)∂zu
(i)
ml ′,μ(z) − u(i)

ml,μ(z)∂zū
(i)
ml ′,μ(z)

]∣∣
z∈∂S =0.

(D1.2)

Due to boundary condition (C1.5) we have that the com-
ponents u(y1 )

j,μ (z) and u(y2 )
j,μ (z) vanish at the boundary; the

remaining component with i = z vanishes due to boundary
condition (C1.9), which gives ∂zu

(z)
j,μ(z) = 0 for z ∈ ∂S. Thus,

we verified the self-adjointness of the Laplace operator ∂2
z

for the dimensionally reduced dynamics of the longitudinal
electric modes. Analogously for the longitudinal magnetic
modes, the self-adjointness of the boundary value problem
(16) can be seen since

v†
ml,μ(z) · ∂zvml ′,μ(z)|z∈∂S − [∂zv

†
ml,μ(z)] · vml ′,μ(z)|z∈∂S

=
∑

i

[
v̄

(i)
ml,μ(z)∂zv

(i)
ml ′,μ(z) − v

(i)
ml,μ(z)∂zv̄

(i)
ml ′,μ(z)

]∣∣
z∈∂S = 0,

(D1.3)

where we used boundary condition (C1.19), yielding
∂zv

(y1 )
j,μ (z) = ∂zv

(y2 )
j,μ (z) = 0 at the boundary. The remaining

terms associated with i = z likewise vanish at the bound-
ary via boundary condition (C1.11). Hence we have shown
that the dimensionally reduced longitudinal modes’ dynamics
associated with the electric and magnetic field, respec-
tively, correspond to a self-adjoint Laplace operator ∂2

z with
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appropriate boundary conditions. It is obvious that also the
terms of the Helmholtz equations (15) and (16) associated
with k2

l are self-adjoint; thereby guaranteeing that the reduced
modes, being an orthonormal basis for given transverse-mode
numbers, reconstruct their respective dimensionally reduced
longitudinal Hilbert space L2

m(S).

2. Two-dimensional Helmholtz equations

Next, we show explicitly the self-adjointness of the 2D,
i.e., transverse, Helmholtz equation after dimensional reduc-
tion. This is shown for the boundary-value problem of the
electric modes (23) and the magnetic modes (24) on their
respective transverse-mode space L2

l (�), separately. In both
cases, one can rewrite the transverse Laplacian acting on
the transverse modes via Eq. (A10) in terms of a Helmholtz
decomposition

��s j,μ = ∇�[∇� · s j,μ(y)] + ∇� × [∇� × s j,μ(y)]. (D2.1)

Making use of the (anti-)linearity of the L2 inner product [cf.
Eq. (21)], we start with the gradient operator contribution in
Eq. (D2.1). From the product rule we have

s†
ml,μ(y)∇�[∇� · sm′l,μ(y)]

= ∇� · (s†
ml,μ(y)[∇� · sm′l,μ(y)])

− [∇� · s†
ml,μ(y)][∇� · sm′l,μ(y)]. (D2.2)

Performing the integration over the transverse cavity domain
� and using the divergence theorem on the first term on the
right-hand side, we get for the inner product by defining the
infinitesimal surface vector dy� = n�dy ∈ ∂�:∫

�

d2 y s†
ml,μ(y) · ∇�[∇� · sm′l,μ(y)]

=
∮

∂�

dy� · s†
ml,μ(y)[∇� · sm′l,μ(y)]

−
∫

�

d2 y[∇� · s†
ml,μ(y)][∇� · sm′l,μ(y)]. (D2.3)

The contour integral on the boundary ∂� vanishes due to
boundary condition (C1.8). Using this boundary condition
again the remaining term gives by means of the divergence
theorem∫

�

d2 y s†
ml,μ(y) · ∇�[∇� · sm′l,μ(y)]

= −
∮

∂�

dy� · sm′l,μ(y)[∇�s†
ml,μ(y)]

+
∫

�

d2 y∇�[∇�s†
ml,μ(y)] · sm′l,μ(y). (D2.4)

Here, the contour integral does, similarly to the contour inte-
gral in Eq. (D2.3), vanish due to boundary condition (C1.8),
yielding the self-adjointness of the gradient term of the Lapla-
cian �� . For the rotation term in Eq. (D2.1) we obtain by
applying the vector analog of the second Greens theorem [cf.

Ref. [118], Eq. (5)]∫
�

d2 y s†
ml,μ(y) · {∇� × [∇� × sm′l,μ(y)]}

=
∫

�

d2 y {∇� × [∇� × s†
ml,μ(y)]} · sm′l,μ(y)

+
∮

∂�

dy� · {s†
ml,μ(y) × [∇� × sm′l,μ(y)]}

−
∮

∂�

dy� · {sm′l,μ(y) × [∇� × s†
ml,μ(y)]}. (D2.5)

With the vector identity A · (B × C) = (A × B) · C, the terms
involving the contour integral in Eq. (D2.5) vanish, i.e.,∮

∂�

dy� · {s†
ml,μ(y) × [∇� × sm′l,μ(y)]}

=
∮

∂�

dy [n� × s†
ml,μ(y)] · [∇� × sm′l,μ(y)] = 0, (D2.6)

where from the second to the third line we used boundary
condition (C1.3).

The calculation for the self-adjointness of the boundary-
value problem of the transverse magnetic-field modes, cf.
Eq. (24), is achieved fully analogously by substituting the
transverse electric-field modes s j,μ(y) by the transverse
magnetic-field modes t j,μ(y) in the calculations performed
in Eqs. (D2.1)–(D2.5). In this case, self-adjointness of the
gradient term, i.e., ∇� · [∇� · t j,μ(y)], is obtained by the use
of condition (C1.10) in Eqs. (D2.3) and (D2.4). Furthermore,
for the rotation term, i.e., ∇� × [∇� × t j,μ(y)], the boundary
terms in Eq. (D2.6) vanish by the following calculation:∮

∂�

dy� · {t†
ml,μ(y) × [∇� × tm′l,μ(y)]}

=
∮

∂�

dy t†
ml,μ(y) · [n(�) × ∇� × tm′l,μ(y)] = 0, (D2.7)

where from the second to the third step we used boundary
condition (C1.11). Finally, the terms of the Helmholtz equa-
tions (23) and (24) associated with k2

m,μ are self-adjoint as
well. To this end, we have verified self-adjointness of the
boundary-value problems for the transverse electric modes
defined in Eq. (23) and the transverse magnetic modes defined
in Eq. (24) on their respective transverse domain L2

l (�) after
dimensional reduction.

APPENDIX E: EXAMPLE: DIMENSIONAL REDUCTION
FOR A CYLINDRICAL CAVITY

In the following a working example for reducing the di-
mensions of a 3D cavity to 2D as well as 1D is provided.
Therefore, let us consider an ideal cylindrical cavity, of length
L in direction e(z) and radius R. Following Appendix A, both
the 2D and 1D modes can be constructed solely by the scalar
eigenmodes of the Helmholtz equation under the appropriate
boundary conditions derived in Appendix C 1. Since the lon-
gitudinal scalar solutions ψl (z) are independent of the cross
section [cf. Eq. (A4)], the dimensional reduction reduces to a
single task: The construction of the scalar solutions ψm,μ(y)
of the transverse Helmholtz equation.
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1. Construction of the transverse scalar modes

The transverse Helmholtz equation (A3a) in cylindrical
coordinates, i.e.,[

r−1∂r (r∂r ) + r−2∂2
ϕ + k2

m,μ

]
ψm,μ(r, ϕ) = 0, (E1)

with so far unspecified wave vectors km,μ can be solved by

ψm,μ(r, ϕ) = cm,μJm2 (|km,μ|r)eim2ϕ, (E2)

where cm,μ is a normalization constant and Jm2 the m2th Bessel
function of first kind. Recall that we use the shorthand no-
tation m = (m1, m2) and neglected unbounded solutions of
Eq. (E1). Applying the boundary conditions, cf. Eqs. (C2.3)
and (C2.4), yields

∂rψm,μ1 (r, ϕ)|r=R = 0, ψm,μ2 (r, ϕ)|r=R = 0. (E3)

Under these boundary conditions a unique |km,μ| can be de-
termined for each polarization, yielding |km,μ1 | = χm,μ1/R,
with χm,μ1 being the m1th zero of the derivative of the m2th
Bessel function, and |km,μ2 | = χm,μ2/R with χm,μ2 being the
m1th zero of the m2th Bessel function. We conclude from
normalization conditions (A5) and (A6)

cm,μ1 = {πR2
[
J2

m2

(
χm,μ1

)− J2
m2+1

(
χm,μ1

)]}−1/2
,

cm,μ2 = [πR2J2
m2+1

(
χm,μ2

)]−1/2
. (E4)

One can use these transverse scalar modes on the disk in
combination with the longitudinal scalar modes (A4) to re-
construct the 3D modes of the cylinder via Eq. (A11). With
the 3D modes and thus the 3D electric and magnetic fields of
the cylinder at hand one now can start to reduce the electric
and magnetic fields to lower dimensions by the approach
presented in Sec. II.

2. Dimensional reduction to a one-dimensional cavity:
“Thin-fiber limit”

Mapping from the 3D to the 1D problem for a cylindrical
cavity is achieved via the transverse ancilla basis (A13a) in
terms of the scalar modes defined in Eq. (E2):

Sm(y) = cm,μ1√
2
∣∣km,μ1

∣∣
⎛⎜⎝r−1∂ϕ −r−1∂ϕ 0

−∂r ∂r 0

0 0 0

⎞⎟⎠
× Jm2

(∣∣km,μ1

∣∣r)e−im2ϕ

+ cm,μ2√
2
∣∣km,μ2

∣∣
⎛⎜⎜⎝

∂r ∂r 0

r−1∂ϕ r−1∂ϕ 0

0 0
√

2
∣∣km,μ2

∣∣
⎞⎟⎟⎠

× Jm2

(∣∣km,μ2

∣∣r)e−im2ϕ. (E2.5)

The T m(y) for the magnetic field can be obtained from
Eq. (E2.5) by the substitutions discussed in Appendix A. By
means of Eqs. (13) the longitudinal 1D modes as already given
in Eqs. (B1.4) are obtained. Plugging these modes into the
expressions for the 1D fields, i.e., Eqs. (27) and (29), provides
the 1D electric and magnetic subfields, respectively.

3. Dimensional reduction to a two-dimensional cavity:
“Large-mirror limit”

The dimensional reduction to 2D is executed via the longi-
tudinal ancilla basis U l (z) and V l (z) as shown in Eqs. (20a)
and (20b), with the explicit forms given in Eqs. (12). By
means of the transverse scalar modes derived in Eqs. (E1) to
(E4) the dimensionally reduced 2D electric-field modes read
via Eq. (B2.6a)

s j,μ1 (y) = cm,μ1∣∣km,μ1

∣∣
⎛⎜⎜⎝

im2
r Jm2

(χm,μ1
R r

)
eim2ϕ

−|km,μ1 |
2

[
Jm2−1

(χm,μ1
R r

)− Jm2+1
(χm,μ1

R r
)]

eim2ϕ

0

⎞⎟⎟⎠,

s j,μ2 (y) = − cm,μ2∣∣km,μ2

∣∣∣∣k j,μ2

∣∣
⎛⎜⎜⎜⎝

kl |km,μ2 |
2

[
Jm2−1

(χm,μ2
R r

)− Jm2+1
(χm,μ2

R r
)]

eim2ϕ

kl
im2
r Jm2

(χm,μ2
R r

)
eim2ϕ

−∣∣km,μ2

∣∣2Jm2

(χm,μ2
R r

)
eim2ϕ

⎞⎟⎟⎟⎠. (E3.6)

The 2D magnetic modes likewise are obtained via Eq. (B2.6b):

t j,μ1 (y) = cm,μ1∣∣km,μ1

∣∣∣∣k j,μ1

∣∣
⎛⎜⎜⎝

kl |km,μ1 |
2

[
Jm2−1

(χm,μ1
R r

)− Jm2+1
(χm,μ1

R r
)]

eim2ϕ

kl
im2
r Jm2

(χm,μ1
R r

)
eim2ϕ∣∣km,μ1

∣∣2Jm2

(χm,μ1
R r

)
eim2ϕ

⎞⎟⎟⎠,

t j,μ2 (y) = cm,μ2∣∣km,μ2

∣∣
⎛⎜⎜⎝

im2
r Jm2

(χm,μ2
R r

)
eim2ϕ

−|km,μ2 |
2

[
Jm2−1

(χm,μ2
R r

)− Jm2+1
(χm,μ2

R r
)]

eim2ϕ

0

⎞⎟⎟⎠. (E3.7)
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These lower-dimensional modes still depend on the mode
number l associated with the integrated-out dimension which
is due to the polarization surviving the reduction. The 2D
quantum fields are then obtained in the same manner as the
1D fields of Eqs. (27) and (29) but now via Eqs. (20a) and
(20b) as

Ê(y, t ) =
∑
j,l ′

〈U l ′ (z), Ê (+)
j,μ(r, t )〉S + H.c. =

∑
l

Êl (y, t ),

B̂(y, t ) =
∑
j,l ′

〈V l ′ (z), B̂(+)
j,μ(r, t )〉S + H.c. =

∑
l

B̂l (y, t ),

(E3.8a)

where we define the subfields in the 2D case

Êl (y, t ) = i
∑
m,μ

√
h̄ω j,μ

2ε0
(â j,μe−iω j,μt s j,μ(y) − H.c.),

B̂l (y, t ) =
∑
m,μ

√
h̄ω j,μ

2ε0c2
(â j,μe−iω j,μt t j,μ(y) + H.c.), (E3.8b)

with each subfield describing the dynamics on its respective
subspace L2

l (�).

APPENDIX F: DIMENSIONALLY REDUCED DYNAMICS

1. Free-field Hamiltonian

In the following we derive the decomposition of the orig-
inal free electromagnetic Hamiltonian into an infinite sum of
1D subfield Hamiltonians (34). It is straightforward to show
that, for fixed l , i.e., after integrating out the z direction in the
Hamiltonian (33), all off-diagonal terms vanish since∫

�

dy2 [s j,μ(y) · sm′l,μ′ (y) − t j,μ(y) · tm′l,μ′ (y)] = 0. (F1.1)

On the other hand we obtain for the diagonal terms by means
of the identities (14) by splitting the 1D fields into positive-
and negative-frequency components [cf. Eq. (31)]

Ĥfield = ε0

2

∑
j, j′

∫
V

d3r
[
Ê (−)

j′ (z, t )S†
m′ (y) · Sm(y)Ê (+)

j (z, t )

+ c2B̂(−)
j′ (z, t )T †

m′ (y) · T m(y)B̂(+)
j (z, t ) + H.c.

]
= ε0

2

∑
m

∑
l,l ′

∫
S

dz
[
Ê (−)

ml (z, t ) · Ê (+)
ml ′ (z, t )

+ c2B̂(−)
ml (z, t ) · B̂(+)

ml ′ (z, t ) + H.c.
]
. (F1.2)

Since the polarization vectors satisfy for all modes
εml,μ · εml ′,μ′ − κml,μ · κml ′,μ′ = 0, the terms with l 
= l ′ van-
ish equally to the 3D case. Thus Eq. (F 1) recasts to Eq. (34):

Ĥfield = ε0

2

∑
m

∫
V

d3r
[|Em(z, t )|2 + c2|Bm(z, t )|2]

=
∑

m

ĥfield
m . (F1.3)

FIG. 8. The mode-number-dependent coupling γN versus mode
numbers m1 and m2.

2. Electric dipole Hamiltonian with quantized
atomic center of mass

Here we consider general hydrogen-like atoms with all
their degrees of freedom being quantized; in particular the
center of mass (COM) is no longer assumed to follow a
classical trajectory but can exhibit quantum delocalization
[86,119]. We show that the dimensional reduction can like-
wise be implemented for the electric dipole interaction with
quantized COM, and, following the procedure analogously,
the same is expected to hold for general multipole interactions
or interactions with the magnetic field. Note, this also in-
cludes diamagnetic or Röntgen terms where potentially more
involved components arise due to the cross product. In the
COM variables, the electric dipole Hamiltonian reads

Ĥ I
COM = −χ (t )e

∫
V

d3R |R〉〈R|r̂ · Ê(R, t ), (F2.1)

where R = (Y,Z ) denotes the atomic COM position and r
is the relative position. Considering the transition elements
with respect to L2-normalized COM position distributions
|s〉 = ∫ d3Rψs(R) |R〉, we have

〈s| Ĥ I
COM |s′〉 = −χ (t )e

∫
V

d3R F̂ss′ (R) · Ê(R, t ),

F̂ss′ (R) = r̂ψ∗
s (R)ψs′ (R), (F2.2)

where F̂ss′ (R) denotes, as in the semiclassical case, the
atomic smearing functions. Integrating out the transverse
COM degrees of freedom Y gives the collection of dimen-
sionally reduced transition matrix elements

〈s|Ĥ I
COM|s′〉 = −χ (t )e

∑
j

∫
S

dZ F̂m,ss′ (Z ) · Ê (+)
j (Z, t )+H.c.,

(F2.3)

013285-24



DIMENSIONAL REDUCTION IN QUANTUM OPTICS PHYSICAL REVIEW RESEARCH 6, 013285 (2024)

where the dimensionally reduced spatial smearing function, obtained by a mapping onto the transversal ancilla mode associated
with the mth subfield [as introduced in Eq. (38)], reads

F̂m,ss′ (Z ) =
∫

�

d2Y Sm(Y )F̂ss′ (R) =
∫

�

d2Y Sm(Y )r̂ψ∗
s (R)ψs′ (R). (F2.4)

APPENDIX G: DETERMINATION OF THE TRANSITION PROBABILITIES FOR THE SUBFIELD TRUNCATION

1. Gaussian wave packet in a cylindrical cavity

Recall that the transition probabilities (41) for a two-level system decompose into the transition amplitudes

|cm,(±)|2 =
∑
l,μ

ω j,μe2

2ε0 h̄

∣∣∣∣ ∫
R

dt χ (t )ei(ω j,μ±�A )t
∫

S
dz uj,μ(z) · Fm,ss′ (ze(z))

∣∣∣∣2. (G1.1)

Performing the time integration yields [using the detuning � j,μ,(±) = (ω j,μ ± �A)/2]

f j,μ,(±)(T ) =
∫
R

dt χ (t )ei(ω j,μ±�A )t =
{

T sinc(� j,μ,(±)T ) if χ (t ) = χTS(t )√
2πT e−(� j,μ,(±)T )2

if χ (t ) = χGS(t ).
(G1.2)

For clarity, we separately consider the terms (corresponding to the basis vectors of C) of the inner product for the spatial
integration. While the azimuth integration in Fm,ss′ (ze(z)) fixes the azimuth quantum number m2 to zero, the radial integration of
the radial component in (G1.1) gives by the use of integration by parts (cf. Appendixes A and E 1 to obtain an explicit expression
for the field modes):∫ L

0
dz u(r)

j,μ2
(z)F (r)

m (z − L/2)

= − 2cm,μ2 kl

σ 4
∣∣k j,μ2

∣∣∣∣km,μ2

∣∣√π3L

∫ L

0

∫ R

0

∫ 2π

0
dzdrdϕ r2e−r2/σ 2

∂rJm2

(∣∣km,μ2

∣∣r)eim2ϕe− (z−L/2)2

σ2 (z − L/2) sin (klz)

≈ − 4c(m1,0),μ2 kl

σ 2
∣∣k(m1,0),l,μ2

∣∣∣∣k(m1,0),μ2

∣∣√πL

∫ L

0

∫ ∞

0
dzdv

(
v3

2
− v

)
e−v2/2J0

(∣∣k(m1,0),μ2

∣∣σ√
2

v

)
e− (z−L/2)2

σ2 (z − L/2) sin (klz), (G1.3)

where we used in the last step the substitution v = √
2r/σ . Note that the wave functions are real-valued for the transitions

considered here with Fm,(+)(z) = Fm,(−)(z) such that we dropped the transition-process indices. Since the dominating Gaussian
decays sufficiently fast for v >

√
2R/σ , we expanded the upper limit of the r integration in Eq. (G1.3) to infinity. The

integral over [0,∞) here is solved analytically by Hankel transformations [[120], Sec. 8.2, Eq. (21)] which results in a sum
of hypergeometric functions 1F1, reading∫ L

0
dz u(r)

j,μ2
(z)F (r)

m (z − L/2) = − 4c(m1,0),μ2 kl

σ 2
∣∣k(m1,0),l,μ2

∣∣∣∣k(m1,0),μ2

∣∣√πL

⎧⎨⎩1F1

⎡⎣2; 1; −
(∣∣k(m1,0),μ2

∣∣σ
2

)2
⎤⎦

− 1F1

⎡⎣1; 1; −
(∣∣k(m1,0),μ2

∣∣σ
2

)2
⎤⎦⎫⎬⎭

∫ L

0
dz e−

(
z−L/2

)2

σ2 (z − L/2) sin (klz)

= kl

∣∣k(m1,0),μ2

∣∣∣∣J1(χn0)k(m1,0),l,μ2

∣∣πR
√

L
e
−
( |k(m1 ,0),μ2

|σ
2

)2 ∫ L

0
dz e−

(
z−L/2

)2

σ2 (z − L/2) sin(klz). (G1.4)

For the z integration we also use integration by parts and expand the limits of the integral to infinity∫ L

0
dz u(r)

j,μ2
(z)F (r)

m (z − L/2) ≈ σ 2
∣∣k(m1,0),μ2

∣∣k2
l

2
∣∣J1(χn0)k(m1,0),l,μ2

∣∣πR
√

L
e−
( |k(m1 ,0),μ2

|σ
2

)2 ∫ ∞

−∞
dz e−(z−L/2)2/σ 2

cos (klz). (G1.5)

For odd l , the argument in the integral becomes an odd function and vanishes. For even l , the longitudinal component gives [cf.
[120], Sec. 1.3, Eq. (11)]∫ L

0
dz u(r)

j,μ2
(z)F (r)

m (z − L/2) ≈ σ 3
∣∣k(m1,0),μ2

∣∣k2
l

2
∣∣J1(χn0)k(m1,0),l,μ2

∣∣R√
πL

e− iπ l
2 e

−
( |k(m1 ,0),μ2

|σ
2

)2

e−
(

kl σ
2

)2

. (G1.6)
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Since the atom is located in the center of the cylinder, the component in the Hamiltonian (39) emerging from the e(ϕ) component
of the scalar product of the reduced smearing function and the longitudinal mode vector vanishes due to the rotational invariance.
Finally for the z component, we get by performing the azimuthal integration—which again fixes the azimuthal mode number m2

to zero—and extending the upper limit of the radial integration to infinite∫ L

0
dz u(z)

j,μ2
(z)F (z)

m (z − L/2) ≈ 4c(m1,0),μ2

∣∣k(m1,0),μ2

∣∣
σ 4
∣∣k(m1,0),l,μ2

∣∣√πL

∫ L

0

∫ ∞

0
dzdr re−r2/σ 2

J0
(∣∣k(m1,0),μ2

∣∣r)e− (z−L/2)2

σ2 (z − L/2)2 cos (kl z).

(G1.7)

The radial integration can also be solved by Hankel transformations [cf. [121] Sec. 8.6, Eq. (10)]:∫ L

0
dz u(z)

j,μ2
(z)F (z)

m (z − L/2) ≈ 2
∣∣k(m1,0),μ2

∣∣
σ 2
∣∣J1(χn0)k(m1,0),l,μ2

∣∣πR
√

L
e
−
( |k(m1 ,0),μ2

|σ
2

)2 ∫ L

0
dz e−

(
z−L/2

)2

σ2 (z − L/2)2 cos (kl z). (G1.8)

For the cosine term we thus have cos(klz + π l/2). Then, the integral is nonzero only for even l (odd l results in an odd function)∫ L

0
dz u(z)

j,μ2
(z)F (z)

m (z − L/2) ≈
∣∣k(m1,0),μ2

∣∣σ
2
∣∣J1(χn0)k(m1,0),l,μ2

∣∣R√
πL

(
1 − k2

l σ
2

2

)
e− iπ l

2 e
−
( |k(m1 ,0),μ2

|σ
2

)2

e−
(

kl σ
2

)2

, (G1.9)

where we used in the last step Eq. (14) in Sec. 1.4 of Ref. [121]. Combining Eq. (G1.6) and Eq. (G1.9) yields for the total overlap
between longitudinal modes and smearing functions∫ L

0
dz uj,μ2 (z) · Fm(z − L/2) ≈

∣∣k(m1,0),μ2

∣∣σ∣∣J1(χn0)k(m1,0),l,μ2

∣∣R√
πL

e− iπ l
2 e

−
( |k(m1 ,0),μ2

|σ
2

)2

e−
(

kl σ
2

)2

. (G1.10)

Combining this with Eq. (G1.2) yields the transition probabilities in Eq. (47).

2. Determining the maximum subfield probability

To find the transverse-mode number mmax
1 for the example of Sec. IV A which corresponds to the subfield with maximum

transition probability |cmmax
1 ,0,(±)|2 of Eq. (43), we consider

fm1,(±) =
∣∣c(m1,0)+(1,0),(±)

∣∣2 − ∣∣c(m1,0),(±)

∣∣2
χm1+1 − χm1

→ 0. (G2.1)

Since Eq. (G2.1) contains an infinite sum over the longitudinal mode numbers l , it is useful to employ the Euler-Maclaurin
formula [cf. Ref. [122], Eq. (23.1.30)] which yields in the case of Gaussian switching

∣∣c(m1,0),(±)

∣∣2 =
∫
R+

dl
χ2

m1
exp

[− χ2
m1

σ 2

2R2 − 2π2l2σ 2

L2 − 2(�(m1,0),2l,(±)T )2
]

ω(m1,0),2l J2
1

(
χm1

)
+ χm1 exp

(− χ2
m1

σ 2

2R2 − (χm1 ±�A )2

2 T 2
)

2J2
1

(
χm1

) + O

(
R2

L2

)
, (G2.2)

where we neglect higher-order terms due to R/L � 1. The integral allows for an analytical solution in the range of T ≈ �−1
A

for spontaneous emission (for vacuum excitation a larger range of interaction times is allowed) in terms of the modified Bessel
function of the second kind in zeroth order K0 reading∣∣c(m1,0),(±)

∣∣2 ∝∼
χ2

m1

2J2
1

(
χm1

)( L

πR
K0
(
qχ2

m1

)+ exp
(−qχ2

m1

)
χm1

)
exp

(
−qχ2

m1
± τ 2

�̃A
χm1 − τ 2

2

)
, (G2.3)

with the dimensionless parameters

q =
( σ

2R

)2
+
(

τ

2�̃A

)2

=
( σ

2R

)2
+
(

cT

2R

)2

, τ = �AT, �̃A =
√

χ2
mres

1
+
(

2π l resR

L

)2

. (G2.4)

Equation (G2.1) becomes then

fm1,(±) ∝∼

χm1+1

J2
1 (χm1+1 )

exp
(− qχ2

m1+1 ± τ 2

�̃A
χm1+1 − τ 2

2

)− χm1

J2
1 (χm1 )

exp
(− qχ2

m1
± τ 2

�̃A
χm1 − τ 2

2

)
χm1+1 − χm1

→ 0, (G2.5)

where we approximated the Bessel function to first order as K0 ≈ [π/(2qχm1 )2]1/2 exp(−qχ2
m1

) for qχ2
m1

> π [cf. Ref. [122],
Eq. (9.7.2)], corresponding to the parameter regime of Fig. (4). In this regime, the zeros of the zeroth-order Bessel function can
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be approximated by χm1 ≈ π (m1 − 1/4) and therefore J2
1 (χm1 ) ≈ 2/[π (m1 − 1/4)] [cf. Ref. [122], Eqs. (9.5.12) and (9.2.1),

respectively]. Finally, solving for m1 and approximating the logarithm for large arguments to first order yields a quadratic
equation which is solved by

mmax
1,(±) ≈ 4

2π2q ± πτ 2

�̃A
+
√

32π2q + (2π2q ± πτ 2

�̃A

)2 . (G2.6)

For large ratios R/σ (optical-resonator limit) in the case of spontaneous emission we have q ≈ [τ/(2�̃A)]2. Additionally, for the
resonance frequencies considered in Fig. 4, we can use q � πτ 2�̃A, and therefore for spontaneous emission

mmax
1,(−) ≈ 2�̃A

πτ 2
, (G2.7)

corresponding to Eq. (49) for the ratios lresR/L considered in the plots.

3. Gaussian wave packet in a laser beam

For fields polarized in εx, we have only a nonvanishing overlap with the x component of the smearing function. Therefore, we
obtain [for the Gaussian states defined in (45)]

F (x)
m (z) =

√
2

π7σ 82m1+m2 m1!m2!w2
0

∫∫
R2

dxdyxzHm1

(√
2x

w0

)
Hm2

(√
2y

w0

)
e
− x2+y2

w2
0 e

− x2+y2+z2

σ2
. (G3.1)

To perform the integration we define the constant a = w−2
0 + σ−2. For the integration of (G3.1) in x one has an odd function and

thus a vanishing integration for even m1. For odd m1, the integral can be solved in terms of the probabilist’s Hermite polynomials,
Hem1 (x) = 2−m1/2Hm1 (x/

√
2), as∫

R
dx xH2m1+1

(√
2x

w0

)
e−ax2 = 2(2m1+3)/2

∫
R+

dx xHe2m1+1

(
2x

w0

)
e−ax2 = w2

0

4

√
π

2

(2m1 + 1)!

m1!

(
1
2 − w2

0a
4

)m1(w2
0a
4

)m1+3/2
. (G3.2)

For solving the integral we used an integral transformation [[121], p. 172, Eq. (12)]. For the integration in y one has a vanishing
integral for odd m2. Using the same approach as above one obtains∫

R
dy H2m2

(√
2y

w0

)
e−ay2 = 2m2+1

∫
R+

dy He2m2

(
2y

w0

)
e−ay2 = w0

2

√
π

(2m2)!

m2!

(
1
2 − w2

0a
4

)m2(w2
0a
4

)m2+1/2
. (G3.3)

With these results we find for the reduced smearing function (G3.1)

F (x)
m (z) =

√
(2m1 + 1)!(2m2)!

π54m1+m2−1(m1!m2!)2

w2
0

σ 4

(
σ 2

w2
0 + σ 2

)2(
σ 2 − w2

0

σ 2 + w2
0

)m1+m2

ze
− z2

σ2
.

≈(−1)m1+m2

√
(2m1 + 1)!(2m2)!

π54m1+m2−1(m1!m2!)2

z

w2
0

e
− z2

σ2
, (G3.4)

where we used Eq. (58) to approximate σ 2 + w2
0 ≈ w2

0. One can now calculate the longitudinal overlap of the lower-dimensional
smearing function with the 1D modes for a beam polarized in εx:∫

R
dz Fm(z) · {u∗

μ(z), uμ(z)}
∣∣∣∣
μ=εx

≈ (−1)m1+m2

√
(2m1 + 1)!(2m2)!

w4
0π

54m1+m2−1(m1!m2!)2

∫
R

dz ze
− z2

σ2 {e−ikz, eikz}. (G3.5)

Completing the square we obtain for the integral∫
R

dz ze
− z2

σ2 e±ikz = −σ 2

2
e− k2σ2

4

[∫
R

dz ∂ze
−σ−2(z∓ikσ 2/2)2 ∓ ik

∫
R

dz e−σ−2(z∓ikσ 2/2)2

]
= ±i

kσ 3√π

2
e− k2σ2

4 , (G3.6)

where we used in the last step that the derivative of a Gaussian gives a odd function in the integral and thus vanishes when
integrated over R. To find the transition amplitudes defined in Eq. (66) we have to consider two different possible final states:
|κν(k)〉 = |α(k)〉ν ⊗ |�〉¬ν, with |�〉¬ν being the vacuum for the complement modes, and |θm,μ(k)〉 = |α(k)〉ν ⊗ |1(k)〉m,μ ⊗
|�(k)〉¬ν¬(m,μ) for (m, μ) 
= ν. To find the transition amplitudes we need to evaluate the following matrix elements for the
annihilation and creation operators:

〈κν(k′)|âm,μ(k)|κν(k′)〉 = δ(m,μ),νδ(k − k′)α(k′), 〈κν(k′)|â†
m,μ(k)|κν(k′)〉 = δ(m,μ),νδ(k − k′)ᾱ(k′), (G3.7a)
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whereas for the other final state |θm,μ(k)〉,
〈θm,μ(k′)|âm,μ(k)|κν(k′)〉 = 0, 〈θm,μ(k′)|â†

m,μ(k)|κν(k′)〉 = (1 − δ(m,μ),ν )δ(k − k′). (G3.7b)

Thus, we have for the pumped mode in the case of stimulated emission

|cν,g→e(t )|2 ≈ ce2

h̄ε0

∣∣∣∣〈κν(k); e|
∫
R

dt
∫
R

dk′
∫
R

dz
√

k′χ (t )
∑
m,μ

[âm,μ(k′)e−ick′t uμ(k′, z) − â†
m,μ(k′)eick′t u†

μ(k′, z)]

× Fm,g→e(z)(|e〉〈g|ei�At + |g〉〈e|e−i�At )|κν(k); g〉
∣∣∣∣2

≈ 3ce2σ 6

4h̄ε0π4w4
0

∣∣∣∣∫
R

dt
∫
R

dk′
√

k′3e− k′2
2σ2 χ (t )(αν(k′)e−ick′t + ᾱν(k′)eick′t )ei�Atδ(k′ − k)

∣∣∣∣2
=3ce2k3σ 6

h̄ε0π4w4
0

e− k2σ2

2

∣∣∣∣∫
R

dt χ (t )Re[αν(k)e−iωt ]ei�At

∣∣∣∣2. (G3.8)

For the nonpumped modes, i.e., for (m, μ) 
= ν, it yields

|cm,μ,g→e(t )|2 ≈ ce2

2h̄ε0

∣∣∣∣〈θν(k); e|
∫
R

dt
∫
R

dk′
∫
R

dz
√

k′χ (t )
∑
m,μ

(âm,μ(k′)e−ick′t uμ(k′, z) − â†
m,μ(k′)eick′t u†

μ(k′, z))

× Fm,g→e(z)(|e〉〈g|ei�At + |g〉〈e|e−i�At )|κν(k); g〉
∣∣∣∣2

≈ ce2k3σ 6

8h̄ε0π4w4
0

e− k2σ2

2
(2m1 + 1)!(2m2)!

4m1+m2−1(m1!m2!)2

∣∣∣∣∫
R

dt χ (t )e−i(ω+�A )t

∣∣∣∣2, (G3.9)

where we used the operator identities defined in Eq. (G3.7a) and the overlap from reduced smearing function and longitudinal
modes [Eqs. (G3.5) and (G3.6)]. Recall that the transition probabilities (66) are in the paraxial wave approximation to zeroth
order, and by restriction of the number of vacuum modes to N. Thus, by adding the vacuum transition amplitudes (G3.9) to the
laser transition amplitude (G3.8), two couplings can be identified. One mode-number-independent coupling g, coupling laser and
vacuum modes to the two-level system equally, and a mode-number-dependent coupling γN , yielding an additional modulation
of the coupling to the set of vacuum modes:

g = 3ce2k3σ 6

h̄ε0π4w4
0

e− k2σ2

2 ,

γN = 1

3

N∑
m 
=(1,0)

(2m1 + 1)!(2m2)!

4m1+m2+1/2(m1!m2!)2 = 1

3

(
4�
(

5
2 + N1

)
�
(

3
2 + N2

)
3π�(1 + N1)�(1 + N2)

− 3

4
θ1(N1 − 1)

)
,

(G3.10)

where we assume here that the Heaviside function obeys (nonconventionally) θ1(0) = 1. By means of Eq. (67), one can write the
transition probabilities as Eq. (66). In particular, the time-integral contribution [Eq. (G3.8)] of the laser mode to the transition
probabilities reads∣∣∣∣∫

R
dt [ f(−)(t ) + f̄(+)(t )]

∣∣∣∣2
=
{

sinc2(�(+)T ) + sinc2(�(−)T ) + sinc(�(+)T )sinc(�(−)T )
[
2 cos2

(
ω
2 T
)+ 1

]
, χ (t ) = χTH(t )

8πT 2 exp
(− ω2+�2

A
2 T 2

)
cosh2

(
ω�A

2 T 2
)
, χ (t ) = χGS(t ).

(G3.11)

The measure ζN,(±) quantifies the ratio of the contributions from the vacuum (G3.9) versus the laser mode (G3.8):

ζN,(±) =
N∑
m

|cm,εx,(±)|2
|cν,(±)|2 = γN

|α(k)|2
{

sinc2(�(±)T )
sinc2(�(+)T )+sinc2(�(−)T )+sinc(�(+)T )sinc(�(−)T )[2 cos2( ω

2 T )+1]
, χ (t ) = χTH(t )

1
4 exp(±ω�AT 2)sech2

(
ω�A

2 T 2
)
, χ (t ) = χGS(t ).

(G3.12)

Since all parameters of ζN,(±) except the interaction time are assumed fixed, maximizing the right-hand side of this equation in
interaction time T gives the following upper bound:

ζN,(±) � γN

|α(k)|2 , (G3.13)
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which only depends on the mean photon number of the laser
|α(k)|2 and the range N of vacuum modes considered. In

Fig. 8 we plot γN , showing that for strong laser intensities the
vacuum modes’ contribution is highly suppressed.
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[18] O. Painter, J. Vučković, and A. Scherer, Defect modes of a
two-dimensional photonic crystal in an optically thin dielectric
slab, J. Opt. Soc. Am. B 16, 275 (1999).

[19] W. Zhou, Z. Qiang, and L. Chen, Photonic crystal defect mode
cavity modelling: A phenomenological dimensional reduction
approach, J. Phys. D: Appl. Phys. 40, 2615 (2007).

[20] N. F. Johnson, Quantum dots: Few-body, low-dimensional sys-
tems, J. Phys.: Condens. Matter 7, 965 (1995).

[21] S. M. Reimann and M. Manninen, Electronic structure of
quantum dots, Rev. Mod. Phys. 74, 1283 (2002).

[22] G. Shpatakovskaya, Semiclassical model of a one-dimensional
quantum dot, J. Exp. Theor. Phys. 102, 466 (2006).

[23] D. Ullmo, T. Nagano, S. Tomsovic, and H. U. Baranger,
Semiclassical density functional theory: Strutinsky energy cor-
rections in quantum dots, Phys. Rev. B 63, 125339 (2001).

[24] I. Białynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and
W. P. Schleich, In- and outbound spreading of a free-particle
s-wave, Phys. Rev. Lett. 89, 060404 (2002).

[25] K. Vogel, V. M. Akulin, and W. P. Schleich, Quantum state
engineering of the radiation field, Phys. Rev. Lett. 71, 1816
(1993).

[26] H. Ooguri, Spectrum of Hawking radiation and the Huygens
principle, Phys. Rev. D: Part. Fields 33, 3573 (1986).

[27] J. Arrechea, C. Barceló, L. J. Garay, and G. García-Moreno,
Inversion of statistics and thermalization in the Unruh effect,
Phys. Rev. D 104, 065004 (2021).

[28] R. H. Jonsson, E. Martín-Martínez, and A. Kempf, Informa-
tion transmission without energy exchange, Phys. Rev. Lett.
114, 110505 (2015).

[29] A. Blasco, L. J. Garay, M. Martín-Benito, and E. Martín-
Martínez, Violation of the strong Huygen’s principle and
timelike signals from the early universe, Phys. Rev. Lett. 114,
141103 (2015).

[30] P. Boegel, M. Meister, J.-N. Siemß, N. Gaaloul, M. A.
Efremov, and W. P. Schleich, Diffractive focusing of a uniform
Bose–Einstein condensate, J. Phys. B: At., Mol. Opt. Phys. 54,
185301 (2021).

[31] D. Boozer, Raman transitions in cavity QED, Ph.D. the-
sis, California Institute of Technology, 2005, https://resolver.
caltech.edu/CaltechETD:etd-05272005-160246.

[32] D. J. Heinzen and M. S. Feld, Vacuum radiative level shift
and spontaneous-emission linewidth of an atom in an optical
resonator, Phys. Rev. Lett. 59, 2623 (1987).

[33] D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, En-
hanced and inhibited visible spontaneous emission by atoms
in a confocal resonator, Phys. Rev. Lett. 58, 1320 (1987).

[34] E. J. Bochove and S. A. Shakir, Analysis of a spatial-filtering
passive fiber laser beam combining system, IEEE J. Sel. Top.
Quantum Electron. 15, 320 (2009).

[35] K. F. Renk, Basics of Laser Physics (Springer, Heidelberg,
2012).

[36] O. Svelto, D. C. Hanna et al., Principles of Lasers (Springer,
Heidelberg, 2010), Vol. 1.

013285-29

https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1103/PhysRevA.105.013719
https://doi.org/10.1103/PhysRevA.42.4291
https://doi.org/10.1103/PhysRevD.100.065021
https://doi.org/10.1088/1361-6382/aae750
https://doi.org/10.1103/PhysRevA.96.052325
https://doi.org/10.1088/1751-8113/43/40/405304
https://doi.org/10.1103/PhysRevA.74.065801
https://doi.org/10.1103/PhysRevA.89.033820
https://doi.org/10.1103/PhysRevLett.131.103603
https://doi.org/10.1103/PhysRevA.65.043614
https://doi.org/10.1103/PhysRevLett.87.130402
https://doi.org/10.1103/PhysRevResearch.2.043318
https://doi.org/10.1088/1367-2630/aa5a6b
https://doi.org/10.1103/PhysRevLett.119.050403
https://doi.org/10.1038/s42254-023-00591-2
https://doi.org/10.1364/JOSAB.16.000275
https://doi.org/10.1088/0022-3727/40/9/S01
https://doi.org/10.1088/0953-8984/7/6/005
https://doi.org/10.1103/RevModPhys.74.1283
https://doi.org/10.1134/S1063776106030095
https://doi.org/10.1103/PhysRevB.63.125339
https://doi.org/10.1103/PhysRevLett.89.060404
https://doi.org/10.1103/PhysRevLett.71.1816
https://doi.org/10.1103/PhysRevD.33.3573
https://doi.org/10.1103/PhysRevD.104.065004
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1088/1361-6455/ac2ab6
https://resolver.caltech.edu/CaltechETD:etd-05272005-160246
https://doi.org/10.1103/PhysRevLett.59.2623
https://doi.org/10.1103/PhysRevLett.58.1320
https://doi.org/10.1109/JSTQE.2008.2011999


JANNIK STRÖHLE AND RICHARD LOPP PHYSICAL REVIEW RESEARCH 6, 013285 (2024)

[37] H. Kogelnik and T. Li, Laser beams and resonators, Appl. Opt.
5, 1550 (1966).

[38] M. O. Scully and W. E. Lamb, Quantum theory of an optical
maser. I. General theory, Phys. Rev. 159, 208 (1967).

[39] P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey,
and H. Müller, Atom interferometry in an optical cavity, Phys.
Rev. Lett. 114, 100405 (2015).

[40] S. L. Kristensen, M. Jaffe, V. Xu, C. D. Panda, and H. Müller,
Raman transitions driven by phase-modulated light in a cavity
atom interferometer, Phys. Rev. A 103, 023715 (2021).

[41] C. D. Panda, M. Tao, J. Egelhoff, M. Ceja, V. Xu, and H.
Müller, Quantum metrology by one-minute interrogation of a
coherent atomic spatial superposition, arXiv:2210.07289.

[42] G. P. Greve, C. Luo, B. Wu, and J. K. Thompson,
Entanglement-enhanced matter-wave interferometry in a high-
finesse cavity, Nature (London) 610, 472 (2022).

[43] B. Fischer and R. Weill, When does single-mode lasing be-
come a condensation phenomenon? Opt. Express 20, 26704
(2012).

[44] P. Kirton and J. Keeling, Thermalization and breakdown
of thermalization in photon condensates, Phys. Rev. A 91,
033826 (2015).

[45] L. Childress, A. S. Sørensen, and M. D. Lukin, Mesoscopic
cavity quantum electrodynamics with quantum dots, Phys.
Rev. A 69, 042302 (2004).

[46] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D.
Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck
et al., A gated quantum dot strongly coupled to an optical
microcavity, Nature (London) 575, 622 (2019).

[47] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre,
S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, Quantum na-
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