
PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

Quantum Monte Carlo algorithm for arbitrary spin-1/2 Hamiltonians

Lev Barash ,1,* Arman Babakhani ,1,2 and Itay Hen 1,2

1Information Sciences Institute, University of Southern California, Marina del Rey, California 90292, USA
2Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

(Received 29 August 2023; accepted 14 February 2024; published 14 March 2024)

We present a universal parameter-free quantum Monte Carlo (QMC) algorithm designed to simulate arbitrary
spin-1/2 Hamiltonians. To ensure the convergence of the Markov chain to equilibrium for every conceivable
case, we devise a clear and simple automated protocol that produces QMC updates that are provably ergodic and
satisfy detailed balance. We demonstrate the applicability and versatility of our method by considering several
illustrative examples, including the simulation of the XY model on a triangular lattice, the toric code, and random
k-local Hamiltonians.

DOI: 10.1103/PhysRevResearch.6.013281

I. INTRODUCTION

Quantum Monte Carlo (QMC) algorithms [1–3] are an
indispensable tool in the study of the equilibrium proper-
ties of large quantum many-body systems, with applications
ranging from superconductivity and novel quantum materials
[4–6] through the physics of neutron stars [7] and quantum
chromodynamics [8,9]. The algorithmic development of QMC
remains an active area of research, with continual efforts
being made to extend the scope of QMC applicability and
to improve convergence rates of existing algorithms with the
goal of expanding our understanding of quantum systems
and facilitating the discovery of novel quantum phenomena
[10–14].

While QMC algorithms have been adapted to the simula-
tion of a wide variety of physical systems, different physical
models typically require the development of distinct model-
specific update rules and measurement schemes, making the
simulation of many large-scale quantum many-body systems
prohibitively time consuming.

In this paper, we introduce a universal parameter-free QMC
algorithm designed to reliably simulate arbitrary spin-1/2
Hamiltonians. To achieve such capabilities, we devise a clear
and simple automated protocol for generating the necessary
set of updates to ensure the ergodic Markov chain Monte
Carlo sampling of any conceivable input system. The gen-
erated QMC updates are shown to be ergodic as well as
satisfying detailed balance, thereby guaranteeing the proper
convergence of the QMC Markov chain. We demonstrate the
validity and flexibility of our code by studying in detail a num-
ber of models, including the XY model on a triangular lattice,

*lbarash@usc.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the toric code, random k-local Hamiltonians, and more. We
have also made our program code freely accessible on GitHub
[15].

The technique we propose here builds on the recently
introduced permutation matrix representation (PMR) QMC
[16]—an abstract Trotter-error-free technique wherein the
quantum dimension consists of products of elements of per-
mutation groups and which as a result allows for the general
treatment of entire classes of Hamiltonians. In PMR QMC,
the partition function is expanded in a power series in the
off-diagonal strength of the Hamiltonian about the partition
function of the classical (diagonal) component of the Hamil-
tonian [17,18].

The paper is organized as follows. In Sec. II, we provide a
brief overview of the off-diagonal series expansion for quan-
tum partition functions, on which our approach is founded. In
Sec. III, we analyze spin-1/2 Hamiltonians in the context of
PMR QMC. In the following section, Sec. IV, we discuss our
method to generate all the necessary QMC updates, proving
that these ensure both ergodicity and detailed balance. Sec-
tion V is devoted to the implementation of comprehensive
measurement schemes. In Sec. VI we showcase the power
of our technique by detailing the simulation results of the
physical models mentioned above. We conclude in Sec. VII
with an additional discussion of future directions of research.

II. THE OFF-DIAGONAL PARTITION
FUNCTION EXPANSION

The PMR protocol [16] begins by first casting the to-be-
simulated Hamiltonian in PMR form, i.e., as a sum:

H =
M∑

j=0

P̃j =
M∑

j=0

DjPj = D0 +
M∑

j=1

DjPj, (1)

where {P̃j} is a set of M + 1 distinct generalized permutation
matrices [19], i.e., matrices with at most one nonzero element
in each row and each column. Each operator P̃j can be writ-
ten, without loss of generality, as P̃j = DjPj , where Dj is a

2643-1564/2024/6(1)/013281(15) 013281-1 Published by the American Physical Society

https://orcid.org/0000-0002-2298-785X
https://orcid.org/0000-0001-5680-3476
https://orcid.org/0000-0002-7009-7739
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013281&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevResearch.6.013281
https://creativecommons.org/licenses/by/4.0/

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

diagonal matrix and Pj is a permutation matrix with no fixed
points (equivalently, no nonzero diagonal elements) except for
the identity matrix P0 = 1. We will refer to the basis in which
the operators {Dj} are diagonal as the computational basis and
denote its states by {|z〉}. We will call the diagonal matrix D0

the “classical Hamiltonian.” The permutation matrices appear-
ing in H will be treated as a subset of a permutation group,
wherein P0 is the identity element.

The {DjPj} off-diagonal operators (in the computational
basis) give the system its “quantum dimension.” For j > 0,
each term DjPj obeys DjPj |z〉 = d j (z′)|z′〉, where d j (z′) is a
possibly complex-valued coefficient and |z′〉 �= |z〉 is a basis
state.

Upon casting the Hamiltonian in PMR form, one can show
[16] that the partition function Z = Tr [e−βH] can be written
as

Z =
∑

z

∞∑
q=0

∑
Siq

D(z,Siq)e
−β[Ez0 ,...,Ezq]〈z|Siq |z〉. (2)

The sum above is a double sum: over the set of all basis states z
and over all products of q off-diagonal permutation operators
Siq = Piq · · · Pi2 Pi1 with q running from zero to infinity. The
multi-index iq = (i1, . . . , iq) covers all products of permuta-
tion operators, where each index i j runs from 1 to M.

In the above sum, each summand is a product of three
terms. The first is D(z,Siq) ≡ ∏q

j=1 d
(i j)
z j consisting of a product

of the matrix elements:

d
(i j)
z j = 〈z j |Dij |z j〉. (3)

The various {|z j〉}q
j=0 states are the states obtained from the

action of the ordered Pij operators in the product Siq on |z0〉,
then on |z1〉, and so forth. For Siq = Piq · · · Pi2 Pi1 , we have
|z0〉 = |z〉, Pij |z j−1〉 = |z j〉 for j = 1, 2, . . . , q. The proper in-
dexing of the states |z j〉 is |z(i1,i2,...,i j)〉 to indicate that the state
at the jth step depends on all Pi1 · · · Pij . We will, however,
use the shorthand |z j〉 to simplify the notation. The sequence
of basis states {|z j〉} may be viewed as a “walk” [20] on
the Hamiltonian graph where every matrix element Hi j cor-
responds to an edge between the two basis states, or nodes, i
and j.

The second term in each summand, e−β[Ez0 ,...,Ezq], is called
the divided differences of the function f (·) = e−β(·) with
respect to the inputs [Ez0 , . . . , Ezq], where Ezi = 〈zi|H |zi〉 =
〈zi|D0|zi〉. The divided differences [21,22] of the function f
are defined as1

f
[
Ez0 , . . . , Ezq

] ≡
q∑

j=0

f (Ezj)∏
k �= j

(
Ezj − Ezk

) . (4)

A useful property is that the divided differences are invariant
under rearrangements of the input values.

Now, the term 〈z|Siq |z〉 in Eq. (2) evaluates either to 1 or to
zero. Moreover, since the permutation matrices with the ex-
ception of P0 have no fixed points, the condition 〈z|Siq |z〉 = 1

1The expression, Eq. (4), is ill defined if two (or more) of the inputs
are repeated, in which case f [Ez0 , . . . , Ezq] can be properly evaluated
using limits.

implies Siq = 1; i.e., Siq must evaluate to the identity element
P0 (note that the identity element does not appear in the
sequences Siq). The expansion in Eq. (2) can thus be more
succinctly rewritten as

Z =
∑

z

∑
Siq =1

D(z,Siq)e
−β[Ez0 ,...,Ezq], (5)

i.e., as a sum over all basis states and permutation matrix
products that evaluate to the identity matrix.

Having derived the expansion in Eq. (5) for any Hamilto-
nian cast in the form of Eq. (1), we are now in a position to
interpret the partition function expansion as a sum of weights,
i.e., Z = ∑

C wC , where the set of configurations {C} consists
of all the distinct pairs {|z〉, Siq}. We refer to

wC = D(z,Siq)e
−β[Ez0 ,...,Ezq] (6)

as the configuration weight. We note that, as written, the
weights wC can in general be complex valued, despite the par-
tition function Z = ∑

C wC being real (and positive). Hence,
the imaginary portions of the complex-valued weights do not
contribute to the partition function and may be disregarded al-
together.2 We may therefore ignore the imaginary components
of the weights to obtain the strictly real-valued weights,

WC = Re
[
D(z,Siq)

]
e−β[Ez0 ,...,Ezq]. (7)

III. PERMUTATION MATRIX REPRESENTATION
OF SPIN-1/2 HAMILTONIANS

We next discuss the PMR formulation of general spin-1/2
Hamiltonians, which are the main focus of this work. Hamil-
tonians of spin-1/2 systems are often, and can always be,
represented using Pauli matrices (X , Y , and Z). In order to
represent this class of Hamiltonians in PMR form, Eq. (1),
we choose our group of permutations to be the set of all
tensor products of Pauli-X operators, GX , while the diagonal
matrices Dj will be expressed in terms of tensor products of
Pauli-Z matrices. As we will see, any permutation operator for
spin-1/2 systems belongs to GX .

Consider a Hamiltonian H given as a linear combination of
Pauli strings S(i) = ⊗

j s(i)
j . Here, s(i)

j represents a Pauli matrix
s ∈ {X,Y, Z} in the ith Pauli string, which acts on the jth spin,
where j ∈ {1, . . . , n} with n being the number of spins in the
system (we assume that each Pauli string S(i) contains no more
than one Pauli matrix s(i)

j for each spin index j). Explicitly, the
Hamiltonian has the form

H =
∑

i

ciS
(i), (8)

where the ci’s are real-valued coefficients. To cast the Hamil-
tonian in PMR form, we first write each Pauli string as a
product of a diagonal operator and a permutation operator;
i.e., we will write S(i) as a string of Pauli Z’s multiplied by a

2In fact, it can be shown that for every configuration C =
{|z〉, Piq · · · Pi2 Pi1 } the configuration with reverse order of operators
C = {|z〉, P−1

i1
P−1

i2
· · · P−1

iq
} produces the conjugate weight wC = wC .

013281-2

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

string of Pauli X ’s using the fact that Y = −iZX , giving

H =
∑

i

c̃iZ
(i)X (i), (9)

where c̃i = (−i)n(i)
y ci with n(i)

y being the number of Y operators
appearing in the ith Pauli string. Here, X (i) represents the
ith string (or product) of Pauli-X operators. The notation Z (i)

similarly represents a string of Pauli-Z operators.
Noting that Pauli-X strings are permutation operators and

that Pauli-Z strings are diagonal in our chosen basis, we next
group together all terms that have the same Pauli-X compo-
nent, ending up with a Hamiltonian of the form

H =
∑

i

⎛⎝∑
j

c̃ jZ
(i)
j

⎞⎠X (i). (10)

The permutation operators X (i) ∈ GX in the above expression
are now distinct products of Pauli-X operators, and we iden-
tify Di = ∑

j c̃ jZ
(i)
j as the accompanying diagonal operators,

as desired.

IV. QMC UPDATES FOR ARBITRARY
SPIN-1/2 HAMILTONIANS

A. QMC configurations

As was discussed above, for any Hamiltonian cast in PMR
form, the partition function Z = Tr [e−βH] can be written
as a sum of configuration weights, where a configuration
C = {|z〉, Siq} is a pair of a “classical” basis state |z〉 (an
eigenstate of diagonal operators) and a product Siq of per-
mutation operators that must evaluate to the identity element
P0 = 1. The configuration C induces a list of states {|z0〉 =
|z〉, |z1〉, . . . , |zq〉 = |z〉}, which in turn generates a corre-
sponding multiset of energies EC = {Ez0 , Ez1 , . . . , Ezq} for the
configuration.

We can now consider a QMC algorithm, i.e., a Markov
chain Monte Carlo routine, that samples these configurations
with probabilities proportional to their weights WC [Eq. (7)].
The Markov process would start with some initial configura-
tion, and a set of (probabilistic) rules, or QMC updates, will
dictate transitions from one configuration to the next.

We will take the initial state of the chain to be C0 =
{|z〉, S0 = 1}, where |z〉 is a randomly generated initial clas-
sical state. The weight of this initial configuration is

WC0 = e−β[Ez] = e−βEz , (11)

i.e., the classical Boltzmann weight of the initial randomly
generated basis state |z〉.

The set of QMC updates will be discussed in the next
sections. Before doing so, we note that to make certain that
configurations are sampled properly, i.e., in proportion to their
weight, we will ensure that the Markov chain (i) is ergodic,
i.e., that the QMC updates are capable of generating all ba-
sis states |z〉 as well as all sequences Siq evaluating to the
identity, and (ii) satisfies detailed balance, a sufficient (but
not strictly necessary) condition dictating that the ratio of
transition probabilities from one configuration to another and
the transition in the opposite direction equals to the ratio of

their respective weights [23,24]. In what follows, we show
how both conditions are made to be satisfied.

B. Fundamental cycles

As noted above, for spin-1/2 Hamiltonians, the permu-
tation operators Pi are Pauli-X strings. As such, they obey
(i) [Pi, Pj] = 0 for every i, j, i.e., they all commute, and (ii)
P2

i = 1. Moreover, each Pauli-X string can be represented
as a bit string of the form [b1b2 · · · bn] where the ith bit
bi ∈ {0, 1} indicates whether Xi is in the string (bi = 1) or not
(bi = 0). (For example, [1 0 1 0 0 1] would correspond to the
string X1X3X6.) Denoting by pi the bit string corresponding to
the operator Pi, one can easily verify that the product of two
permutation operators Pi and Pj would likewise correspond
to the addition modulo 2 (the XOR operation) of the two
respective bit strings, pi ⊕ p j . Specifically, a sequence of op-
erators evaluating to the identity, Siq = Piq · · · Pi2 Pi1 = 1, can
be written as ⊕q

j=1 pi j = 0, where 0 is the zero bit string—the
bit string consisting of only zeros.

Moreover, the following observations may be made:
(i) Any given sequence of permutation operators Siq that

evaluates to the identity is a permutation of a multiset of
operators, the product of which evaluates to the identity.

(ii) A multiset of operators obtained from another by the
removal of a pair of identical operators will evaluate to the
identity if and only if the original multiset evaluates to the
identity (this follows from the commutativity of permutation
operators and the fact that P2

i = 1).
(iii) Upon removing all pairs of identical operators from a

multiset, one is left with a (proper) set of permutation oper-
ators, the product of which evaluates to the identity. This set
consists of the permutation operators that are contained an odd
number of times in the original sequence Siq .

We will call a set of permutation operators that multiply to
the identity a “cycle.” In terms of binary strings, cycles may
be represented by bit strings [a1a2 · · · aM] indicating which
of the permutation operators P1, . . . , PM belong to the set.
The length of a cycle would be the number of permutation
operators in it (equivalently, the number of 1’s in its binary
vector representation). As pointed out above, any sequence of
operators Siq has a “core” cycle from which Siq can be gener-
ated via insertions of operator pairs followed by reordering.

The question of how one can generate all possible se-
quences of operators (which evaluate to the identity) is thus
reduced to the question of how one can generate all pos-
sible cycles (as the former can be derived from the latter).
In terms of binary strings, the above question translates to
generating the bit strings [a1a2 · · · aM] (a j ∈ {0, 1}) that obey
the following system of linear equations over mod 2 addition:
⊕M

j=1a j p j = 0. This question can be answered by finding the
null space over mod 2 addition of the matrix whose columns
are the bit strings p j . Any bit string [a1a2 · · · aM] obeying the
condition ⊕M

j=1a j p j = 0 can be written as mod 2 addition of
bit strings from the null space basis.

Now, the null space basis can be found efficiently via
Gaussian elimination over mod 2 addition [25]. We refer to
cycles represented by the bit strings from the null space basis
as fundamental cycles. Any cycle is therefore a combination
of fundamental cycles.

013281-3

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

Generally, the null space basis states can be chosen in many
different ways, and so the choice of the set of fundamental
cycles is not unique. From a practical point of view, however,
we find that obtaining a “minimal cycle basis,” i.e., a basis
that minimizes the lengths of all basis cycles, is advantageous
from the QMC standpoint. This follows from the fact that the
probability of a QMC update to be accepted is a decreasing
function of the cycle length (see Sec. IV D). To reduce the
cycle lengths, we therefore find a basis using Gaussian elimi-
nation and then proceed to replace long-cycle basis states with
shorter basis states by performing mod 2 additions between
the bit strings of pairs of cycles, accepting the changes each
time a new cycle with a shorter length is found. The process
ends when a pass through all pairs of cycles does not result in
an improvement.

It is worth noting that minimizing cycle lengths of Hamil-
tonians with nontrivial topologies will not always lead to a
cycle basis whose fundamental cycle lengths are all of the
order O(1), i.e., do not grow with system size. In the pres-
ence of a nontrivial topology, e.g., where periodic boundary
conditions are imposed or for other nonzero genus models,
there may exist fundamental cycles becoming longer with the
system size such as the cycles “wrapping around the system,”
consisting of an extensive number of permutation operators.

C. Ergodicity

We are now in a position to utilize the insights from the
previous section to establish a set of updates to the sequence of
operators Siq that would allow for the possibility of generating
all possible operator sequences that evaluate to the identity.

As a preliminary step, prior to the simulation taking place,
we produce a list of fundamental cycles C1, . . . , CT , where
T is the dimension of the null space, for the to-be-simulated
Hamiltonian cast in PMR form.

We next prove that all possible sequences can be generated,
i.e., that the Markov chain is ergodic, via a combination of
insertion and removal of fundamental cycles, changing the or-
der of the permutation operators in the sequence (permutation
operator swapping), and the insertion and removal of pairs of
identical permutation operators.

Claim. Every permutation operator sequence evaluating to
the identity can be generated by (i) insertion and removal
of fundamental cycles, (ii) insertion and removal of pairs of
identical permutation operators, and (iii) swapping the order
of two adjacent permutation operators.

Proof. For each permutation operator sequence Siq evaluat-
ing to the identity, one can consider the cycle Ciq consisting of
permutation operators that appear an odd number of times in
Siq . In other words, by removal of pairs of identical operators,
the multiset of operators that are contained in Siq can be
reduced to the cycle Ciq consisting of permutation operators
that appear only once.

As shown in Sec. IV B, the cycle Ciq can be expressed
through fundamental cycles, since any cycle can be expressed
in terms of the mod 2 null space of the matrix containing bit
strings of permutation operators Pi from Eq. (1). Specifically,
ciq = ⊕T

j=1α jμ j , where ciq is the bit-string representation of
the cycle Ciq , μ j is a bit-string representation of the funda-
mental cycle C j , and α j ∈ {0, 1}, j = 1, 2, . . . , T .

The latter observation implies that the cycle Ciq can be
obtained by inserting those fundamental cycles C j for which
the condition α j = 1 is satisfied, accompanied by any neces-
sary reordering of permutation operators and the removal of
pairs of identical permutation operators. In turn, the sequence
Siq can be obtained from Ciq via the addition of pairs of
permutation operators together with reordering of permutation
operators. This concludes the proof of our claim. �

The ability to generate all permutation operator sequences
that evaluate to the identity, Siq , implies ergodicity along
the quantum (or imaginary-time) dimension. In addition, the
generation of all possible classical basis states |z〉 can inde-
pendently be achieved by considering moves of the like of
single- or multispin flips of the basis states. Moves of this
nature guarantee ergodicity along the “classical” dimension.

In the next section we will use the above observations
to devise QMC updates that ensure ergodicity in the en-
tire configuration space, which is the direct product of the
classical and quantum configuration spaces, i.e., the pairs
C = {|z〉, Siq}.

D. QMC updates

We next describe the basic update moves for our QMC
algorithm. To ensure both performance and high accuracy
of evaluating the weight of any given configuration C =
{|z〉, Siq}, we employ a divided differences calculation by
means of addition and removal of items from the input mul-
tiset of classical energies [26]. We recall that the weight of
a configuration requires the calculation of the divided dif-
ferences e−β[Ez0 ,...,Ezq] with inputs [Ez0 , . . . , Ezq], where Ezi =
〈zi|H |zi〉 = 〈zi|D0|zi〉. For Siq = Piq · · · Pi2 Pi1 , we have |z0〉 =
|z〉, Pij |z j−1〉 = |z j〉 for j = 1, 2, . . . , q. As it was shown in
Ref. [26], upon adding an item to or removing an item from
the input list of an already evaluated divided differences
e−β[E0,...,Eq], the reevaluation can be done with only O(sq)
floating-point operations and O(sq) bytes of memory, where
[E0, . . . , Eq] are the inputs and s ∝ maxi, j |βEi − βEj |.

Following the analysis of the previous section, to ensure
the ergodicity of the Markov chain Monte Carlo, we find that
employing the following QMC updates suffices.

1. Simple (local) swap

Simple swap is an update that consists of selecting a ran-
dom integer m from {1, . . . , q − 1}, and then attempting to
swap the permutation operators Pim and Pim+1 in Siq , namely:

Pim Pim+1 → Pim+1 Pim . (12)

The updated sequence also evaluates to the identity. Since
the internal classical state |zm〉 may change, implementing the
swap involves adding a new energy Ez′

m
and removing the old

one Ezm from the energy multiset. The acceptance probability
for the update satisfying the detailed balance condition is

p = min

(
1,

WC′

WC

)
, (13)

where it follows from Eq. (7) that WC = Re[DC]e−β[EC],
WC′ = Re[DC′]e−β[EC′], and the energy multiset EC′ = EC +
{Ez′

m
} − {Ezm}. Here, e−β[EC] is a shorthand for e−β[Ez0 ,Ez1 ,...,Ezq]

for the configuration C and likewise for C ′.

013281-4

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

2. Pair insertion and deletion

Pair insertion is an update consisting of selecting random
integers m ∈ {1, . . . , q + 1} and j ∈ {1, . . . , M}, and then at-
tempting an insertion of the pair of permutation operators Pj

into the Siq sequence in such a way that the updated operators
Pim and Pim+1 are Pj . As a result, the length of the sequences
increases: q → q + 2.

The updated sequence also evaluates to the identity. The
input multiset of energies of the new configuration differs
from that of the current configuration by having two additional
energies Ez′

m
and Ez′

m+1
. The weight of the new configuration is

then WC′ = Re[DC′]e−β[EC′], where the energy multiset EC′ =
EC + {Ez′

m
} + {Ez′

m+1
}.

The reverse update of pair insertion is that of pair deletion.
This update can be implemented only for q � 2. It consists
of selecting a random integer m ∈ {1, . . . , q − 1} checking
the validity of the condition Pim = Pim+1 , and attempting the
removal of the pair of operators Pim and Pim+1 if this condition
is true. The updated sequence also evaluates to the identity.
The input multiset of energies of the new configuration differs
from that of the current configuration by having one fewer
Ezm value and one fewer Ezm+1 value. The weight of the new
configuration is then proportional to e−β[EC′], where EC′ =
EC − {Ezm} − {Ezm+1}. The acceptance probabilities p+ for
pair insertion and p− for pair deletion, satisfying the detailed
balance condition, are

p± = min

(
1, M±1 WC′

WC

)
. (14)

3. Block swap

Block swap is an update that involves a change of the
classical state z. Here, a random position k ∈ {1, . . . , q − 1} in
the product Siq is picked such that the product is split into two
(nonempty) subsequences, Siq = S2S1, with S1 = Pik · · · Pi1
and S2 = Piq · · · Pik+1 . The classical state |z′〉 at position k in
the product is given by

|z′〉 = S1|z〉 = Pik · · · Pi1 |z〉, (15)

where |z〉 is the classical state of the current configuration.
The state |z′〉 has energy Ez′ , and the state |z〉 has energy
Ez. The new block-swapped configuration is C ′ = {|z′〉, S1S2}.
The input multiset of energies of this configuration differs
from that of the current configuration by having one fewer
Ez value and one additional Ez′ value. The weight of the new
configuration is then proportional to e−β[EC′] where the energy
multiset EC′ = EC + {Ez′ } − {Ez}. The acceptance probability
is as in Eq. (13) with the aforementioned EC′ .

4. Classical updates

Classical moves are moves that involve a manipulation of
the classical state |z〉 while leaving Siq unchanged. In a single
bit-flip classical move, a spin from the classical bit-string
state |z〉 of C is picked at random and is subsequently flipped,
generating a state |z′〉 and hence a new configuration C ′. Cal-
culating the weight of C ′ requires the calculation of the new
energy multiset EC′ and recalculation of the divided differ-
ences, so it can become computationally intensive if q is large.
Classical moves should therefore be attempted with relatively

low probabilities if q is large. Simply enough, the acceptance
probability for a classical move satisfying the detailed balance
condition is Eq. (13).

In the absence of a quantum part of the Hamiltonian
(M = 0), not only are classical moves the only moves nec-
essary, but they are also the only moves that have nonzero
acceptance probabilities. Since the initial configuration of the
QMC algorithm is a random classical configuration |z〉 and
an empty operator sequence S0 = 1, for a purely classical
Hamiltonian, the algorithm automatically reduces to a classi-
cal thermal algorithm keeping the size of the imaginary-time
dimension at zero (q = 0) for the duration of the simulation.

5. Fundamental cycle completion

Fundamental cycle completion is an update that consists
of choosing a subsequence S from Siq , choosing a fundamen-
tal cycle containing all operators of the subsequence S, and
attempting to replace the subsequence S with the remaining
operators from the selected cycle.

As is discussed in Sec. IV C, for the ergodicity condi-
tion to be fulfilled, it is necessary to be able to perform the
insertion (or, equivalently, completion) of any of the funda-
mental cycles. For the probability of accepting an update to
be non-negligible it is preferable that the change in the value
of q will be minimal. The above implies that to complete
a fundamental cycle of length l it is most advantageous to
replace a subsequence of length r from Siq by the remaining
l − r permutation operators, where r ≈ l/2.

We find that in some cases, there are fundamental cycles
such that a simple cycle completion update, where the sub-
sequence S comprises consecutive elements of Siq , is always
rejected for these cycles due to the zero weight of the result-
ing configuration [see Eq. (7)]. Thus, the fundamental cycle
completion routine may never accept some of the fundamental
cycles during the Markov process if inserted “as is.” To re-
solve this issue, we have developed a subroutine that we refer
to as “cycle completion with gaps,” which does not require
the elements of the sequence S to be consecutive within Siq .
Specific details of this protocol can be found in Appendix A.

6. Composite update

The role of the composite update is to ensure that nonfun-
damental cycles have the chance of being incorporated into
the sequence of operators directly rather than via the con-
catenation of fundamental cycles which are inserted through
the cycle completion move. The composite update is required
for situations where fundamental cycle insertions may have
zero weight [due to the vanishing of one or more of the
matrix elements in the product D(z,Siq); see Eq. (7)], whereas
nonfundamental cycles may not.

The update consists of a combination of several basic up-
dates and is described as follows.

(i) Perform one of the basic QMC updates equally likely:
either a simple swap, a pair insertion, a pair deletion, or a
fundamental cycle completion.

(ii) If the resulting weight is zero, reject the entire update
with a probability of 1/2, and with the remaining probability,
return to step (i).

013281-5

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

(iii) Finalize the update C1 → C2 → · · · → Ck with the
following acceptance probability, which satisfies the detailed
balance condition:

Paccept (C1 → · · · → Ck)

= min

(
1,

WCk

WC1

R(C1, C2) · · · R(Ck−1, Ck)

)
. (16)

Here, R(C, C ′) = 1 when the update C → C ′ is a simple
swap, R(C, C ′) = M when it is a pair insertion, R(C, C ′) =
1/M when it is a pair deletion, and R(C, C ′) = (pr (q′) ·
nc · r′!)/(pr (q) · n′

c · r!) when it is a cycle completion
(see Appendix A).

To prove that the QMC updates ensure ergodicity in the en-
tire configuration space, consider two arbitrary configurations
C = {|z〉, Siq} and C ′ = {|z′〉, Si′q′ } such that WC �= 0 and WC′ �=
0. It follows from Sec. IV C that the above QMC updates
allow in particular the following sequence of transformations:
C → C0 → C ′

0 → C ′, where C0 = {|z〉, 1} and C ′
0 = {|z′〉, 1}.

Hence, the transformation from C to C ′ is possible, and the
ergodicity holds.

7. Worm update

An alternative to the composite update, also capable of
incorporating nonfundamental cycles, is a worm-type global
update for PMR QMC. This update involves introducing a
“disturbance” (or a “worm head”) into the sequence of op-
erators Siq by either appending Siq with a single operator or
removing one from it (we will refer to this addition or removal
of an operator as “single operator moves”). Insertion or re-
moval of a single permutation operator causes the sequence to
evaluate to a nonidentity permutation, thus resulting in a zero-
weight configuration. Consequently, the disturbed sequence
must be “healed” back to an identity-forming sequence. The
healing process involves introducing further moves, either by
employing the basic updates described above such as sim-
ple swap, fundamental cycle completion, pair insertion, and
pair deletion or by applying additional single-operator moves.
These single-operator moves have the power to heal the se-
quence. After each such move, the instantaneous sequence Siq
is checked to determine if it evaluates to the identity. If it does,
the worm update ends; if not, additional moves are required.

To make sure that detailed balance is conserved, and
that the acceptance rates of intermediate worm moves are
sufficiently high, we assign nonidentity intermediate config-
urations (sequences of operators that do not evaluate to the
identity) their “natural” weight WC as per Eq. (7). This allows
intermediate moves to be accepted or rejected with proba-
bilities obeying detailed balance. Additionally, to prevent the
worm from straying too far from being healed (in other words,
to ensure that the sequence of operators is not too far from
the identity), we introduce a small probability p f to reject the
entire worm update at each intermediate state.

The worm update is specified as follows:
(i) Start with a sequence of operators Siq that evaluates to

the identity, and store Siq .
(ii) Generate a modified sequence of operators by applying

one of the following updates with equal probabilities: either
a local swap, fundamental cycle completion, pair insertion or

deletion, or a single-operator move. Accept or reject the new
configuration with probabilities obeying detailed balance.

(iii) The worm update ends if the new Siq evaluates to the
identity. If it does not evaluate to the identity, revert to the
stored Siq and exit with probability p f ; with the remaining
probability, return to step (ii).

V. MEASUREMENTS

The PMR formulation allows one to measure a wide range
of static operators and additional dynamical quantities [27].
The key to being able to do so is to write for any given operator
A its thermal average as

〈A〉 = Tr [Ae−βH]

Tr [e−βH]
=

∑
C ACwC∑
C wC

. (17)

Although, generally, both wC and AC are complex valued, both
the sums

∑
C ACwC and

∑
C wC are real valued since both H

and A are Hermitian operators. Therefore, we have

〈A〉 =
∑

C Re[ACwC]/ Re[wC] · WC∑
C WC

, (18)

where WC = Re[wC]. The quantity Re[ACwC]/ Re[wC] is
therefore the instantaneous quantity associated with the
configuration C = {z, Siq} that will be gathered during the
simulation.

A. Measurements of standard observables

We next provide the instantaneous quantities to be col-
lected throughout the simulation for the following operators:
(i) the Hamiltonian H , (ii) the Hamiltonian squared, H2, (iii)
the diagonal component of the Hamiltonian, Hdiag = D0, (iv)
the diagonal component squared, H2

diag, (v) the off-diagonal

component of the Hamiltonian, Hoffdiag = ∑M
j=1 DjPj , and

(vi) the off-diagonal component of the Hamiltonian squared,
H2

offdiag.

We have −∂e−β[Ez0 ,...,Ezq]/∂β = h[Ez0 , . . . , Ezq], where
h(E) = Ee−βE . Using the Leibniz rule for divided differences
[21,22], we obtain

−∂wC
∂β

= HCwC, (19)

where

HC =
{

Ez0 for q = 0

Ez0 + e−β[Ez1 ,...,Ezq]

e−β[Ez0 ,...,Ezq] for q > 0.
(20)

Therefore,

〈H〉 = − 1

Z

∂Z

∂β
=

∑
C HCwC∑
C wC

, (21)

which coincides with Eq. (17) for A = H . Similarly, we have
〈H2〉 = 〈H〉2 − ∂〈H〉/∂β, where

∂

∂β
〈H〉 = 1

Z

∂

∂β

(∑
C

HCwC

)
+ 〈H〉2. (22)

013281-6

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

It follows that (H2)C = (HC)2 − ∂HC/∂β, and

(H2)C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E2

z0
for q = 0

E2
z0

+ (Ez0 +Ez1)e−βEz1

e−β[Ez0 ,Ez1] for q = 1

E2
z0

+ (
Ez0 + Ez1

)
e−β[Ez1 ,...,Ezq]

e−β[Ez0 ,...,Ezq] + e−β[Ez2 ,...,Ezq]

e−β[Ez0 ,...,Ezq] for q > 1.

(23)

It is straightforward to obtain the remaining expressions:

(Hdiag)C = Ez0 , (24)(
H2

diag

)
C = E2

z0
, (25)

(Hoffdiag)C = HC − Ez0 , (26)(
H2

offdiag

)
C = H2

C + Ez0

(
Ez0 − 2HC

)
. (27)

B. Measurements of custom static operators

We next consider the measurement of a general static
operator A. We proceed by casting it in PMR form, i.e.,
as A = ∑

i ÃiP̃i, where each Ãi is diagonal and the P̃i’s are
permutation operators. The operators P̃i belong to the group
GX containing all possible Pauli-X tensor products, whose
elements appear in the PMR representation of the Hamiltonian
(see Sec. III). We note that in the most general case, the P̃i

operators in the representation of A may not all appear in the
Hamiltonian’s PMR decomposition, Eq. (1). Nonetheless, we
can always write

〈A〉 = Tr [Ae−βH]

Tr [e−βH]
=

∑
i

Tr [ÃiP̃ie−βH]

Tr [e−βH]
, (28)

and we may focus on a single ÃP̃ term at a time. Carrying out
the off-diagonal expansion [27], we end up with

Tr [ÃP̃e−βH] =
∑

z

Ã(z)
∞∑

q=0

∑
Siq

D(z,Siq)

× e−β[Ez0 ,...,Ezq]〈z|P̃Siq |z〉, (29)

where D(z,Siq)e−β[Ez0 ,...,Ezq] is the weight of the configuration
(z, Siq).

We differentiate between two cases: (i) the operator P̃
appears in the Hamiltonian or can be written as a product
of permutation operators that appear in the Hamiltonian, and
(ii) the operator P̃ does not appear in the Hamiltonian and
cannot be written as a product of permutation operators that
do.

In the latter case, since every Siq sequence consists of
the permutation operators that appear in the Hamiltonian, we
always have 〈z|P̃Siq |z〉 = 0. Then, it follows from Eq. (29) that
〈ÃP̃〉 = 0.

In the former case, the operator to be measured has the
form A = ÃP̃, where Ã is diagonal and P̃ = Pi1 Pi2 · · · Pik . We
modify Eq. (29) so that (z, S̃iq) with S̃iq = P̃Siq is seen as a

configuration instead of (z, Siq). Thus, we arrive at

〈A〉 =
∑

(z,S̃iq) w(z,S̃iq)MÃP̃

(
z, S̃iq

)∑
(z,S̃iq) w(z,S̃iq)

, (30)

where

MÃP̃

(
z, S̃iq

) = δP̃Ã(z)
1

D(z,P̃)

e−β[Ez0 ,...,Ezq−k]

e−β[Ez0 ,...,Ezq] . (31)

In the above, δP̃ = 1 if the leftmost operators of S̃iq are
Pi1 Pi2 · · · Pik and is zero otherwise, and

D(z,P̃) =
D(z,S̃iq)

D(z,Siq)
=

k∏
m=1

〈zq−m+1|Dim |zq−m+1〉. (32)

The above formulation allows automatic measurements of
static operators as long as these are set up as linear combi-
nations of Pauli strings as in Eq. (8). For an arbitrary static
operator A given as a linear combination of Pauli strings, one
is required to cast the expression in the form

∑
i ÃiP̃i. As a

next step, the P̃i operators are expressed in terms of the permu-
tations Pi of the Hamiltonian. Here, the Gaussian elimination
over mod 2 addition can be used [25]. Finally, Eqs. (30) and
(31) are employed to compute the thermal average 〈A〉.

However, for the thermal average of a custom observable
to be computed correctly, it is necessary to account for the
following restrictions on its structure. We find that employing
Eqs. (30) and (31) leads to obtaining the correct value of
the thermal average 〈A〉 under the condition that Ã(z) = 0
for all basis states |z〉 for which D(z,P̃) = 0. Otherwise, it is
possible that the following conditions hold for some of the
configurations: D(z,P̃) = 0 and D(z,S̃iq) = 0 while D(z,Siq) �= 0

and Ã(z) �= 0, where S̃iq = P̃Siq . Such configurations (z, Siq)
have a nonzero contribution in Eq. (29), but the Markov chain
does not generate the corresponding configurations (z, S̃iq)
because they have zero weights: W(z,S̃iq) = 0.

In particular, it is possible to obtain the thermal average
of any observable of the form A = ∑

i AiDiPi, where each Ai

is an arbitrary diagonal matrix and each DiPi is a general-
ized permutation matrix appearing in Eq. (1). Any operator
A satisfying 〈z|A|z′〉 = 0 for all basis states |z〉 and |z′〉 such
that 〈z|H |z′〉 = 0 can be written in such a form and hence its
thermal average (30) will be computed correctly.

In addition to the above measurement protocol, there is also
a way to correctly obtain a thermal average of a static operator
A which can be written in the form A = ∑

i P̃(i), where each
P̃(i) is a matrix of the general form

P̃(i) = A(i)
k Djk Pjk · · · A(i)

2 Dj2 Pj2 · A(i)
1 Dj1 Pj1 · A(i)

0 , (33)

013281-7

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

where A(i)
0 , . . . , A(i)

k are arbitrary diagonal matrices and
Dj1 Pj1 , . . . , Djk Pjk are the generalized permutation matrices
appearing in Eq. (1).

Focusing on a single such term, we calculate the expecta-
tion value for an observable of the form

P̄ = AkDjk Pjk · · · A2Dj2 Pj2 A1Dj1 Pj1 A0, (34)

where each of the Djk Pjk appear in the PMR decomposition
of the Hamiltonian and the Ak matrices are arbitrary diag-
onal operators. Carrying out the off-diagonal expansion for
Tr [P̄e−βH], we first obtain

Tr [P̄e−βH] =
∑

z

MP̄(z, Siq)
∞∑

q=0

∑
Siq

D(z,Siq)

× e−β[Ez0 ,...,Ezq]〈z|P̃Siq |z〉, (35)

where

MP̄

(
z, Siq

) = Ak (zq+k)d (jk)
zq+k

· · · A1(zq+1)d (j1)
zq+1

A0(zq), (36)

with Ai(z j) ≡ 〈z j |Ai|z j〉. Note that there is a one-to-one
correspondence between nonvanishing terms 〈z|P̃Siq |z〉 =
〈z|Pjk · · · Pj2 Pj1 Siq |z〉 and nonvanishing terms 〈z|Siq |z〉 which
appear in the partition function expansion. We can therefore
rewrite the above as

Tr [P̄e−βH]

=
∑

z

⎛⎝ k∏
j=0

Aj (zq+ j)

⎞⎠ ∞∑
q=0

∑
Siq

D(z,Sĩ)

× e−β[Ez0 ,...,Ezq] D(z,Si)e
−β[Ez0 ,...,Ezq+k]

D(z,Sĩ)e
−β[Ez0 ,...,Ezq+k] 〈z|Sĩ|z〉, (37)

where D(z,Sĩ)e
−β[Ez0 ,...,Ezq+k] is the weight of configuration

(z, Sĩ) with Sĩ = Pjk · · · Pj2 Pj1 Siq . This gives

Tr [P̄e−βH] =
∑

z

∞∑
q=0

∑
Siq

D(z,Siq)e
−β[Ez0 ,...,Ezq]

× MP̄

(
z, Siq

)〈z|Siq |z〉, (38)

where MP̄(z, Siq) is redefined as

MP̄

(
z, Siq

) = δP̄

⎛⎝ k∏
j=0

Aj (zq−k+ j)

⎞⎠e−β[Ez0 ,...,Ezq−k]

e−β[Ez,...,Ezq] . (39)

In the above expression, δP̄ = 1 if the leftmost operators of Siq
are Pj1 Pj2 · · · Pjk and is zero otherwise.

Denoting Ã(z, Siq) = ∑q
i=0 MP̄i

(z, Siq), we can thus write
〈A〉 as

〈A〉 =
〈∑

i

P̄(i)

〉
=

∑
(z,Siq) w(z,Siq)Ã

(
z, Siq

)∑
(z,Siq) w(z,Siq)

. (40)

C. Monitoring the average sign

A necessary condition for the proper importance sampling
of partition function weights is that all weights are non-
negative. Whenever the partition function expansion produces
negative weights [see Eq. (7)], the system is said to possess a

sign problem [28]. In the presence of a sign problem, configu-
ration weights cannot be treated as unnormalized probabilities
as they should in Markov chain Monte Carlo simulations. In
such cases, a common workaround is to take the configuration
weights to be the absolute values of the original ones, |WC|
[28–30]. By doing so, a thermal average of an observable A is
rewritten as

〈A〉 = 〈A · sgn(W)〉|W |
〈sgn(W)〉|W |

, (41)

where the average sign

〈sgn〉 = 〈sgn(W)〉|W | =
∑

C WC∑
C |WC| (42)

is monitored throughout the simulation. The average sign
is usually considered a figure of merit of how adverse the
sign problem is. For models that do not have a sign prob-
lem, all weights are positive, 〈sgn〉 = 1, and the expression
for 〈A〉 naturally reduces to its original form, Eq. (18). For
sign-problematic systems, 〈sgn〉 ≈ 0, and one would expect to
obtain extremely large error bars for 〈A〉 that would as a result
require an exponentially long simulation time for an accurate
computation of observables.

As we demonstrate in the next section, in some cases accu-
rate calculations are achievable even when 〈sgn〉 is relatively
small. In Appendix B we provide an improved approximation
of 〈A〉 in the presence of a sign problem and an approximation
for the statistical error σ (A), which can be determined during
the simulation.

VI. RESULTS AND DISCUSSION

In this section, we demonstrate the success of our method
in simulating a variety of large-scale quantum many-body
systems, taking as test cases models that would help highlight
the extensive scope of the algorithm.

Wherever exact calculations were possible, we have veri-
fied the correctness and accuracy of our technique by ensuring
that the calculated values agree with exact values.

A. The XY model on a triangular lattice

We consider the prototypical quantum anisotropic XY
(XZ) model [31–33] on a triangular lattice with open bound-
ary conditions (see Fig. 1). This model and variants thereof
have been used extensively as simplified models for a variety
of physical systems such as liquid helium, high-Tc supercon-
ductors, anisotropic magnets, and more. The Hamiltonian we
study is

H = J
∑
〈 jk〉

ZjZk + �
∑
〈 jk〉

XjXk, (43)

where 〈 jk〉 denotes neighbors on a triangular lattice with
n = L2 spins containing L sites on each side. The above XY
model gives rise to a severe sign problem, preventing a true
quantitative understanding of the phase diagram of the model
if J > 0 and � > 0, which will be our region of interest.
Specifically, we will consider a system with L = 8 and J = 1
and allow the parameter �, which serves as the strength of the
quantum component of the Hamiltonian, to vary.

013281-8

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

FIG. 1. A triangular lattice with open boundary conditions. Here
the side length is L = 3.

The PMR form of the Hamiltonian, Eq. (43), is

H = D0 + �
∑
〈 jk〉

Vjk . (44)

Here, D0 = J
∑

〈 jk〉 ZjZk is the “classical” component of the
Hamiltonian that is diagonal in the computational basis. The
set {Vjk = XjXk} consists of off-diagonal permutation opera-
tors that give the system its “quantum dimension” and obey
Vi j |z〉 = |z′〉 for every basis state |z〉, where |z′〉 �= |z〉 is also
a basis state differing from |z〉 by two spin flips. There are
M = 3L2 − 4L + 1 off-diagonal operators Vjk , one for each
edge of the lattice (see Fig. 1).

Since Vi jVjkVki = 1 for every triplet of spins with indices i,
j, and k that form a basic triangle of the lattice (or a triangular
plaquette), we conclude that the model admits 2(L − 1)2 fun-
damental cycles, one for each basic triangle (see Sec. IV B).

Figure 2 shows the computed mean energy, its error bar,
and 〈sgn〉 as a function of β and �. Here, we have used 2×109

Monte Carlo (MC) updates. As is shown in Fig. 2, the observ-
ables can be accurately calculated using our method even in
cases where the values of 〈sgn〉 are as small as 10−3. However,
as expected, the values of 〈sgn〉 decrease exponentially with
both β and �.

Table I shows the increase in complexity of the calcula-
tion with the severity of the sign problem in more detail. In
particular, one can see that the wall-clock time is roughly
proportional to 〈q〉 for 〈q〉 > 1 (in agreement with prior results
pertaining to divided-differences calculations [26]). This is

TABLE I. Dependence of the expansion order and average sign
on the off-diagonal strength � for the antiferromagnetic XY model
on a triangular lattice. Calculations are shown for L = 8, J = 1, and
β = 1.

� 〈sgn〉 〈q〉 max(q) Time per MC update (s)

0.05 0.994 0.2 9 2.0×10−6

0.1 0.95 0.84 13 2.7×10−6

0.2 0.64 4 30 5.4×10−6

0.3 0.19 11 46 1.2×10−5

0.35 0.06 17 59 1.8×10−5

0.4 0.01 27 75 3.5×10−5

0.45 0.001 41 93 5.7×10−5

FIG. 2. Top: Dependence of mean energy and 〈sgn〉 on β for
L = 8 and � = 0.3. Bottom: 〈sgn〉 and relative error of the mean
energy as a function of � for L = 8 and β = 1.

because most of the computing time is spent on the calculation
and reevaluation of the divided differences.

B. The XY model on a square lattice:
Dependence of convergence time on temperature

We next investigate the dependence of simulation runtimes
on the inverse-temperature β, using as a test case the XY
model on a square lattice with periodic boundary conditions
imposed. Similar to the XY model on the triangular lattice
discussed in the previous section, the permutations of the XY
model on the square lattice are two-body XX interactions. The
fundamental cycles are therefore length-four products of per-
mutations corresponding to edges surrounding each plaquette.
On top of these, the periodic boundary conditions induce
additional cycles that wrap around the lattice. For an 8×8
square lattice, the null space consists of 65 cycles, of which
56 are of length four and 9 of length eight wrapping around
the lattice either horizontally or vertically.

Figure 3 shows the wall-clock time of 107 QMC updates
as a function of β, fitted by the dashed curve with the optimal
fit of 3.14×β2.23. The inset shows the estimated error σ (〈E〉)
of 107 QMC updates versus β. The statistical error turns out
to be of the same order of magnitude across the entire tested
temperature range.

We thus find that the convergence time of the algorithm
grows relatively slowly with β, obeying a modest power law,
indicating that low-temperature simulations are readily attain-
able.

013281-9

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

FIG. 3. Calculations of the XY model on a square lattice with
periodic boundary conditions: wall-clock time in seconds of 107

QMC updates as a function of β. Parameters: L = 8, J = 1, and
� = −0.25. The dashed line is 3.14×β2.23. Inset: Estimated statis-
tical error of 107 QMC updates as a function of β.

C. Topological models

As mentioned above, in the presence of a nontrivial topol-
ogy, e.g., where periodic boundary conditions are imposed or
for other nonzero genus models, there may exist fundamental
cycles that grow with the system size such as the cycles “wrap-
ping around the system,” consisting of an extensive number of
permutation operators (as was the case in the XY model on
a square lattice with periodic boundary conditions discussed
above). For such models, some fundamental cycle lengths will
be of the order O(N), i.e., grow with system size [as opposed
to being O(1)]. For that reason, these models are usually
exceptionally difficult to study as they require so-called global
rather than local moves.

To demonstrate that our proposed method can successfully
solve these models as well, we next present some results per-
taining to the well-known toric code model. The toric code is
defined on a periodic two-dimensional lattice (a torus), usually
chosen to be the square lattice, with a spin-1/2 particle located
on each edge. The Hamiltonian of the toric code is given by
[34,35]

Htoric = J

⎛⎝∑
v

Av +
∑

p

Bp

⎞⎠, (45)

where J > 0 and Av = ∏
i∈v Xi and Bp = ∏

i∈p Zi with i ∈ v

denoting the edges touching the vertex v, and i ∈ p denoting
the edges surrounding the plaquette p. In PMR, the Hamilto-
nian is rewritten as

Htoric = D0 +
∑

v

DvPv, (46)

where D0 = ∑
p Bp, Pv = Av , and Dv = J · 1. The only fun-

damental cycle is equal to the product of all plaquette terms
P ≡ ∏

v Pv .
The local moves of insertion and deletion of pairs of per-

mutation operators are, however, not ergodic on their own.
This can be seen by noticing that the annihilation and creation
local updates imply that plaquette terms Pv appear in even
numbers. On the other hand, the product of all plaquette terms

FIG. 4. Toric code: The fraction of time in the odd sector as a
function of β for L = 4, L = 6, and L = 8.

P ≡ ∏
v Pv also evaluates to the identity and so sequences

where all plaquette terms are odd numbered should also be
accounted for. There are thus two topological sectors: an even
one and an odd one. For the simulation to sample config-
urations in both, there must be a global move that jumps
between the two and which changes the parity of all plaquette
operators. As follows from Sec. IV C, the fundamental cycle
completion accomplishes this move.

Figure 4 shows Nodd/N versus β, where Nodd is the number
of visited odd-sector configurations, and N is the total number
of visited configurations. As can be seen, the Markov chain
switches easily between the even sector and the odd one
for sufficiently low temperatures, indicating that the Markov
chain is ergodic and the algorithm works properly. The above
results also agree with the expected behavior of toric code,
where transitions between ground states are generated by pairs
of excitations at sufficiently low temperatures [36].

D. Random spin-1/2 Hamiltonians

To illustrate the versatility of our algorithm, we next
present simulation results for randomly generated spin-1/2
Hamiltonians. We produce random n-spin m-term k-local
spin-1/2 Hamiltonians by adding together m randomly gen-
erated Pauli strings. To create a k-local Pauli string, we first
sample k spin indices i1, . . . , ik from the set of spin indices
{1, . . . , n}. For each chosen index, we pick at random an
operator from the set {X,Y, Z}, thereby creating a Pauli string
with locality k. Our final random Hamiltonian attains the form∑

i c(i)S(i), where each randomly generated Pauli string S(i)

is multiplied by a real-valued coefficient c(i) randomly drawn
from the interval [−1, 1].

To demonstrate the ease with which our approach allows
the simulation of such systems, we have generated random
40-spin m-term Hamiltonians with m varying from m = 1
to m = 50, simulating 200 randomly generated instances per
each value of m at β = 1 for three choices of locality k = 3,
k = 5, and k = 8. Figure 5 (top) shows the average of the
energy 〈E〉 over the 200 instances as a function of m. The
error bars indicate magnitude of fluctuations of the averaged
energy. The bottom panel of Fig. 5 depicts the average sign
〈sgn〉, averaged over the 200 instances per each choice of m

013281-10

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

FIG. 5. Top: Average energy 〈E〉 over 200 randomly generated
Hamiltonian instances as a function of m for random k-local 40-spin
Hamiltonians for k = 3, k = 5, and k = 8. Bottom: A similar plot for
〈sgn〉, averaged over the 200 Hamiltonian instances. Here, β = 1.

and k. Similarly, Fig. 6 depicts 〈E〉 and 〈sgn〉 as a function of
m for β = 5.

E. Classically frustrated spin models

It is important to note that while our approach guarantees
a correct equilibrium distribution of the Markov chain for any
input spin-1/2 Hamiltonian, a universal rapid mixing of the
Markov chain cannot be ensured in general.

One class of many-body systems that is known to consid-
erably hinder the convergence of Monte Carlo algorithms—
classical or quantum—is that of strongly frustrated spin
models. For these, there exist competing terms in the Hamil-
tonians; the minimization of one directly conflicts with
the minimization of others, creating “frustration.” For such
Hamiltonians, employing a Markov chain whose classical
updates are based on single spin-flip Metropolis moves will
result in slow mixing. This is because single spin-flip moves
may cause the simulation to get trapped in metastable regions
of configuration space (i.e., local minima).

In many cases, the slowdown caused by frustration can be
significantly mitigated (but not fully cured in general due to
the NP-hardness of the underlying problem) by replacing the
classical Metropolis updates with suitable cluster updates if
such exist [37–41]. Replacing classical Metropolis updates
(see Sec. IV D 4) with relevant cluster updates often results

FIG. 6. Top: Average energy 〈E〉 over 200 randomly generated
Hamiltonian instances as a function of m for random k-local 40-spin
Hamiltonians for k = 3, k = 5, and k = 8. Bottom: A similar plot for
〈sgn〉, averaged over the 200 Hamiltonian instances. Here, β = 5.

in a much faster converging algorithm.3 Another efficient
approach to some frustrated systems is to combine the QMC
algorithm with parallel tempering [42,43] or population an-
nealing [44–46].

A simple way to detect whether geometric frustration leads
to a computational inefficiency in a Monte Carlo calcula-
tion is to compare the statistical error obtained from binning
analysis (see Appendix B) with the statistical error estimated
from multiple completely independent, and hence uncorre-
lated, runs of the algorithm. If the system is thermalized
throughout the course of the simulation, these two estimates
should roughly agree. For a highly frustrated system at a low
temperature, for which the autocorrelation time is longer than
the timescale of the simulation, the error obtained from the
binning analysis is significantly underestimated due to the
measurements being not fully decorrelated.

Figure 7 shows the computed mean energy as a function
of β for a slightly frustrated model where only a small frac-
tion of the edges are antiferromagnetic. The inset shows the
error estimates from binning analysis and from independent

3These classical cluster moves can be generalized to quantum clus-
ter moves for which the configuration weights are different from
Boltzmann weights. However, such a generalization is beyond the
scope of the present paper.

013281-11

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

FIG. 7. Dependence of mean energy on β for the slightly frus-
trated XY model on a triangular lattice. Inset: Error estimation.
Parameters: L = 8, � = −0.25, J = 1 for a few randomly selected
edges, and J = −1 for the remaining edges.

runs. This example suggests that it is possible to compute
the observables with high accuracy at low temperatures if the
fraction of frustrated plaquettes is sufficiently low.

F. Code parallelization

Markov chain Monte Carlo algorithms are naturally well
suited for massively parallel simulations, where indepen-
dently run Markov chains contribute equally to the collection
of statistics. As shown in Fig. 8, the algorithm, indeed, demon-
strates a near-perfect strong scaling speedup, with the only
restriction being that each of the parallel processes is ex-
pected to employ a sufficient number of initial thermalization
(warmup) steps prior to measurement collection.

In addition to sequential execution of the C + + program
code, our software package includes capabilities for exe-
cuting the code in a parallel fashion on high-performance

FIG. 8. Strong scaling speedup. Here, T (p) is the time required
to complete the same amount of work using the parallel setup with
p processing threads. The total numbers of initial thermalization
QMC updates and main QMC updates are equal to 2.5×107 and
2.5×108, respectively, for each of the parallel setups. Calculations
were performed for the XY model on a square lattice with periodic
boundary conditions with L = 8, J = 1, and � = −0.25.

compute clusters using message passing interface (MPI) pro-
tocols [47], allowing for extensive parallelization of the
algorithm [15].

VII. SUMMARY AND OUTLOOK

We presented a universal, parameter-free, Trotter-error-
free quantum Monte Carlo scheme capable of simulating,
for the first time, arbitrary spin-1/2 Hamiltonians. We have
demonstrated that the permutation matrix representation of
Hamiltonians allows one to automatically produce QMC up-
dates that are provably ergodic and satisfy detailed balance,
thereby ensuring the convergence of the Markov chain to the
proper thermal equilibrium. We have in addition illustrated
how a wide range of observables may be calculated through-
out the simulation.

Our algorithm therefore allows one to study the equi-
librium properties of essentially any conceivable spin-1/2
system with a single piece of code that accepts as input a de-
scription of a Hamiltonian. This is in stark contrast to existing
techniques, which generally require specially tailored model-
specific QMC updates for each to-be-simulated system, and
are thus limited to simulating models of very specified struc-
tures and geometries.

We believe that the generality and versatility of our ap-
proach make our proposed technique a very useful tool for
condensed matter physicists studying spin systems, allowing
the community to explore, with ease, an extremely wide range
of physical models, many of which have so far been inacces-
sible, cumbersome to code, or too large to implement with
existing techniques. To that aim, we have made our program
code freely accessible on GitHub [15].

We note though that while our approach guarantees a
correct equilibrium distribution of the Markov chain, the pro-
posed algorithm does not guarantee a universal rapid mixing
of the Markov chain, nor does it resolve or aim to resolve the
sign problem.

The generality of the technique covered in this study makes
it easily extendable to other types of systems, e.g., fermionic,
bosonic, or higher spin systems. We intend to explore these in
future work.

ACKNOWLEDGMENTS

This project was supported in part by NSF Grant No.
2210374. In addition, this material is based upon work sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001122C0063. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessar-
ily reflect the views of DARPA.

APPENDIX A: CYCLE COMPLETION WITH GAPS

As was mentioned in the main text, a simple cycle com-
pletion protocol, in which consecutive elements of Siq form a
subsequence S, may lead to a violation of the ergodicity condi-
tion and therefore also an incorrect calculation. The reason for
this is the possibility of the resultant configuration having zero
weight [as per Eq. (7)]. As a consequence, the fundamental

013281-12

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

cycle completion routine may never be applied for some of
the fundamental cycles during the Markov process, which can
in turn lead to the ergodicity violation.

To resolve this issue, we have developed a protocol that we
call “cycle completion with gaps.” This protocol does not re-
quire the elements of the sequence S to form a consecutive unit
within Siq . A detailed description of this subroutine follows.

The parameters are rmin, rmax, lmin(r), and lmax(r).
We usually choose rmin = (fmin − 1)/2, rmax = (fmax + 1)/2,
lmin(r) = 2r − 1, and lmax(r) = 2r + 1, where fmin and fmax

are minimal and maximal fundamental cycle lengths, respec-
tively. The other option (“exhaustive search”) is to choose
rmin = 0, rmax = fmax, lmin(r) = r, and lmax(r) = fmax.

The sequence of operations is as follows:
(1) Pick a random integer u according to a geometric dis-

tribution pu. As we will see, u is the total number of operators
in the “gaps.”

(2) If q < u + rmin, then the update is rejected.
(3) Pick a random integer r such that rmin � r �

min(rmax, q − u). We note that the probability pr (q) =
(min(rmax, q − u) − rmin + 1)−1 depends on q.

(4) Randomly pick a subsequence S̃ of length r + u con-
taining consecutive operators from the sequence Siq .

(5) Randomly choose a subsequence S of length r from S̃.
The remaining u operators in S̃ we will call gaps.

(6) If S contains repeated operators, the update is rejected.
(7) Find all fundamental cycles of length l such that

lmin(r) � l � lmax(r), each containing all operators of the sub-
sequence S. Denote by nc the number of found cycles.

(8) If nc = 0, the update is rejected. Otherwise, we ran-
domly choose one of the found fundamental cycles.

(9) Attempt to replace the subsequence S̃ of length
r + u by the sequence S̃′ of length r′ + u which contains
all the remaining r′ operators from the selected cycle, as
well as all the gaps. We shuffle the sequence S̃′ so that
its operators are contained in random order. We accept
the update with the probability Paccept, which is considered
below.

Let us now find the acceptance probability Paccept such that
the detailed balance holds for the above protocol. Suppose that
the u gaps contain ui of operators Pi, where i = 1, 2, . . . , M,
so that

∑
i ui = u. Let us denote the old and new configura-

tions as A and B, probability to select B from A as Pselect (A →
B), and probability to select A from B as Pselect (B → A). Then,
we have

Pselect (A → B)

= pu pr (q)(q − (r + u) + 1)−1

× 1

nc

(
r + u

u

)−1(r′ + u

u

)−1 1

r′!
u1! · · · uM!

u!
, (A1)

Pselect (B → A)

= pu pr (q′)(q′ − (r′ + u) + 1)−1

× 1

n′
c

(
r′ + u

u

)−1(r + u

u

)−1 1

r!

u1! · · · uM!

u!
. (A2)

Here, n′
c is the number of fundamental cycles of length l such

that lmin(r′) � l � lmax(r′), each containing all r′ operators of

the subsequence S′. Since q′ = q + r′ − r, we have q − (r +
u) + 1 = q′ − (r′ + u) + 1. Therefore,

Paccept (A → B) = min

(
1,

WB

WA

Pselect (B → A)

Pselect (A → B)

)
= min

(
1,

WB

WA

pr (q′)
pr (q)

nc

n′
c

r′!
r!

)
. (A3)

Here, WA and WB are the weights of the old and
the new operator sequences. Because P(A → B) =
Pselect (A → B)Paccept (A → B) and P(B → A) = Pselect (B →
A)Paccept (B → A), Eq. (A3) satisfies the detailed balance
condition.

APPENDIX B: ESTIMATION OF THE
STATISTICAL ERRORS

It is known that statistical errors in a Monte Carlo calcula-
tion can be estimated by employing binning analysis [48,49].
By grouping N measurements of an observable O into nB

nonoverlapping blocks of length B = N/nB, one first obtains
a single data point for each of the nB bins as follows:

O(B)
i = 1

B

iB∑
j=(i−1)B+1

O j, i = 1, . . . , nB. (B1)

If the bins are large enough, the averages O(B)
i will be effec-

tively uncorrelated, and one could then use the simple (uncor-
related) variance estimator to find the variance of the mean,

σ 2(〈O〉) = 1

nB(nB − 1)

nB∑
i=1

(
O(B)

i − 〈O〉)2
, (B2)

where 〈O〉 = 〈O(B)〉 = ∑nB
j=1 O

(B)
j /nB. Similarly, the

covariance estimator of the mean values of two observables
O and Q is

cov(〈O〉, 〈Q〉)

= 1

nB(nB − 1)

nB∑
i=1

(
O(B)

i − 〈O〉)(Q(B)
i − 〈Q〉). (B3)

Since 〈A〉 is the ratio [Eq. (41)] of two random variables, the
improved approximation for 〈A〉 and the approximation for
σ 2(A) are as follows [50]:

〈A〉 = 〈A · sgn〉
〈sgn〉

(
1 + σ 2(〈sgn〉)

〈sgn〉2

)
− cov(〈sgn〉, 〈A · sgn〉)

〈sgn〉2
,

(B4)

and

σ 2(A) = 〈A · sgn〉2

〈sgn〉2

(
σ 2(〈A · sgn〉)

〈A · sgn〉2
+ σ 2(〈sgn〉)

〈sgn〉2

−2
cov(〈sgn〉, 〈A · sgn〉)

〈sgn〉〈A · sgn〉
)

. (B5)

Here, the values of σ 2(〈sgn〉), σ 2(〈A · sgn〉), and
cov(〈sgn〉, 〈A · sgn〉) should be obtained via Eqs. (B2)
and (B3).

013281-13

LEV BARASH, ARMAN BABAKHANI, AND ITAY HEN PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

[1] J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte
Carlo Methods: Algorithms for Lattice Models (Cambridge Uni-
versity Press, Cambridge, UK, 2016).

[2] D. Landau and K. Binder, A Guide to Monte Carlo Simulations
in Statistical Physics, 5th ed. (Cambridge University Press,
Cambridge, UK, 2021).

[3] A. Lüchow, Quantum Monte Carlo methods, WIREs Comput.
Mol. Sci. 1, 388 (2011).

[4] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon,
Simulated quantum computation of molecular energies, Science
309, 1704 (2005).

[5] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-
Guzik, Polynomial-time quantum algorithm for the simulation
of chemical dynamics, Proc. Natl. Acad. Sci. USA 105, 18681
(2008).

[6] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin,
M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J.
Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, To-
wards quantum chemistry on a quantum computer, Nat. Chem.
2, 106 (2010).

[7] D. Lonardoni, F. Pederiva, and S. Gandolfi, From hypernuclei to
the inner core of neutron stars: A quantum Monte Carlo study,
J. Phys.: Conf. Ser. 529, 012012 (2014).

[8] S. Chandrasekharan and U.-J. Wiese, Meron-cluster solution of
fermion sign problems, Phys. Rev. Lett. 83, 3116 (1999).

[9] T. D. Kieu and C. J. Griffin, Monte Carlo simulations with
indefinite and complex-valued measures, Phys. Rev. E 49, 3855
(1994).

[10] A. W. Sandvik, A generalization of Handscomb’s quantum
Monte Carlo scheme—application to the 1-D Hubbard model,
J. Phys. A: Math. Gen. 25, 3667 (1992).

[11] A. W. Sandvik, Stochastic series expansion method with
operator-loop update, Phys. Rev. B 59, R14157 (1999).

[12] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Ex-
act, complete, and universal continuous-time worldline Monte
Carlo approach to the statistics of discrete quantum systems,
J. Exp. Theor. Phys. 87, 310 (1998).

[13] M. Iazzi and M. Troyer, Efficient continuous-time quantum
Monte Carlo algorithm for fermionic lattice models, Phys. Rev.
B 91, 241118(R) (2015).

[14] Z.-X. Li, Y.-F. Jiang, and H. Yao, Solving the fermion sign
problem in quantum Monte Carlo simulations by Majorana
representation, Phys. Rev. B 91, 241117(R) (2015).

[15] Permutation matrix representation quantum Monte Carlo for
arbitrary spin-1/2 Hamiltonians: program code in C++, https://
github.com/LevBarash/PMRQMC

[16] L. Gupta, T. Albash, and I. Hen, Permutation matrix rep-
resentation quantum Monte Carlo, J. Stat. Mech. (2020)
073105.

[17] T. Albash, G. Wagenbreth, and I. Hen, Off-diagonal expansion
quantum Monte Carlo, Phys. Rev. E 96, 063309 (2017).

[18] I. Hen, Off-diagonal series expansion for quantum partition
functions, J. Stat. Mech. (2018) 053102.

[19] D. Joyner, Adventures in Group Theory: Rubik’s Cube, Merlin’s
Machine, and Other Mathematical Toys (Johns Hopkins Univer-
sity Press, Baltimore, 2008).

[20] J. A. Bondy and U. S. R. Murty, Graph Theory with Applica-
tions (North Holland, Amsterdam, 1976).

[21] E. T. Whittaker and G. Robinson, in The Calculus of Observa-
tions: A Treatise on Numerical Mathematics (Blackie and Son,
London, 1924).

[22] C. de Boor, Divided differences, Surv. Approximation Theory
1, 46 (2005).

[23] M. Newman and G. Barkema, Monte Carlo Methods in Statisti-
cal Physics (Clarendon Press, Oxford, UK, 1999).

[24] G. Grimmett and D. Stirzaker, Probability and Random Pro-
cesses, 4th ed. (Oxford University Press, Oxford, UK, 2020).

[25] Çetin K. Koç and S. N. Arachchige, A fast algorithm for
gaussian elimination over GF(2) and its implementation on the
GAPP, J. Parallel Distrib. Comput. 13, 118 (1991).

[26] L. Gupta, L. Barash, and I. Hen, Calculating the divided differ-
ences of the exponential function by addition and removal of
inputs, Comput. Phys. Commun. 254, 107385 (2020).

[27] E. Akaturk, L. Gupta, and I. Hen, Permutation matrix rep-
resentation quantum Monte Carlo: Advanced measurement
techniques (unpublished).

[28] I. Hen, Determining quantum Monte Carlo simulability with
geometric phases, Phys. Rev. Res. 3, 023080 (2021).

[29] M. Troyer and U.-J. Wiese, Computational complexity and
fundamental limitations to fermionic quantum Monte Carlo
simulations, Phys. Rev. Lett. 94, 170201 (2005).

[30] L. Gupta and I. Hen, Elucidating the interplay between non-
stoquasticity and the sign problem, Adv. Quantum Technol. 3,
1900108 (2020).

[31] Y.Q. Ma and W. Figueiredo, Phase diagram of the anisotropic
XY model, Phys. Rev. B 55, 5604 (1997).

[32] A. Pires, Phase diagram for the two-dimensional quantum
anisotropic XY model, J. Magn. Magn. Mater. 260, 397 (2003).

[33] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[34] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[35] B. Field and T. Simula, Introduction to topological quantum
computation with non-Abelian anyons, Quantum Sci. Technol.
3, 045004 (2018).

[36] C. D. Freeman, C. M. Herdman, D. J. Gorman, and K. B.
Whaley, Relaxation dynamics of the toric code in contact with
a thermal reservoir: Finite-size scaling in a low-temperature
regime, Phys. Rev. B 90, 134302 (2014).

[37] D. Kandel, R. Ben-Av, and E. Domany, Cluster dynamics for
fully frustrated systems, Phys. Rev. Lett. 65, 941 (1990).

[38] G. M. Zhang and C. Z. Yang, Cluster Monte Carlo dynamics
for the antiferromagnetic Ising model on a triangular lattice,
Phys. Rev. B 50, 12546 (1994).

[39] P. D. Coddington and L. Han, Generalized cluster algorithms
for frustrated spin models, Phys. Rev. B 50, 3058 (1994).

[40] J. Houdayer, A cluster Monte Carlo algorithm for 2-
dimensional spin glasses, Eur. Phys. J. B 22, 479 (2001).

[41] G. Rakala and K. Damle, Cluster algorithms for frustrated
two-dimensional Ising antiferromagnets via dual worm con-
structions, Phys. Rev. E 96, 023304 (2017).

[42] R. H. Swendsen and J.-S. Wang, Replica Monte Carlo simula-
tion of spin-glasses, Phys. Rev. Lett. 57, 2607 (1986).

[43] K. Hukushima and K. Nemoto, Exchange Monte Carlo method
and application to spin glass simulations, J. Phys. Soc. Jpn. 65,
1604 (1996).

013281-14

https://doi.org/10.1002/wcms.40
https://doi.org/10.1126/science.1113479
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1038/nchem.483
https://doi.org/10.1088/1742-6596/529/1/012012
https://doi.org/10.1103/PhysRevLett.83.3116
https://doi.org/10.1103/PhysRevE.49.3855
https://doi.org/10.1088/0305-4470/25/13/017
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.1134/1.558661
https://doi.org/10.1103/PhysRevB.91.241118
https://doi.org/10.1103/PhysRevB.91.241117
https://github.com/LevBarash/PMRQMC
https://doi.org/10.1088/1742-5468/ab9e64
https://doi.org/10.1103/PhysRevE.96.063309
https://doi.org/10.1088/1742-5468/aabbe4
https://doi.org/10.1016/0743-7315(91)90115-P
https://doi.org/10.1016/j.cpc.2020.107385
https://doi.org/10.1103/PhysRevResearch.3.023080
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1002/qute.201900108
https://doi.org/10.1103/PhysRevB.55.5604
https://doi.org/10.1016/S0304-8853(02)01378-1
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1088/2058-9565/aacad2
https://doi.org/10.1103/PhysRevB.90.134302
https://doi.org/10.1103/PhysRevLett.65.941
https://doi.org/10.1103/PhysRevB.50.12546
https://doi.org/10.1103/PhysRevB.50.3058
https://doi.org/10.1007/PL00011151
https://doi.org/10.1103/PhysRevE.96.023304
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1143/JPSJ.65.1604

QUANTUM MONTE CARLO ALGORITHM FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 6, 013281 (2024)

[44] J. Machta, Population annealing with weighted averages:
A Monte Carlo method for rough free-energy landscapes,
Phys. Rev. E 82, 026704 (2010).

[45] L. Y. Barash, M. Weigel, M. Borovský, W. Janke, and
L. N. Shchur, GPU accelerated population annealing algorithm,
Comput. Phys. Commun. 220, 341 (2017).

[46] L. Barash, J. Marshall, M. Weigel, and I. Hen, Estimating the
density of states of frustrated spin systems, New J. Phys. 21,
073065 (2019).

[47] F. Nielsen, Introduction to MPI: The message passing
interface, in Introduction to HPC with MPI for Data

Science (Springer International Publishing, Cham, 2016),
pp. 21–62.

[48] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap
(Chapman and Hall, Boca Raton, FL, 1994).

[49] W. Janke, Monte Carlo methods in classical statistical
physics, in Computational Many-Particle Physics, edited by H.
Fehske, R. Schneider, and A. Weiße (Springer, Berlin, 2008),
pp. 79–140.

[50] A. Stuart and K. Ord, Kendall’s Advanced Theory of Statistics,
Volume 1, Distribution Theory, 6th ed. (John Wiley & Sons,
New York, 1998).

013281-15

https://doi.org/10.1103/PhysRevE.82.026704
https://doi.org/10.1016/j.cpc.2017.06.020
https://doi.org/10.1088/1367-2630/ab2e39

