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Absorbing state phase transition with Clifford circuits
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The role of quantum fluctuations in modifying the critical behavior of nonequilibrium phase transitions is
a fundamental but unsolved question. In this study, we examine the absorbing state phase transition of a 1D
chain of qubits undergoing a contact process that involves both coherent and classical dynamics. We adopt a
discrete-time quantum model with states that can be described in the stabilizer formalism, and therefore allows
for an efficient simulation of large system sizes. The extracted critical exponents indicate that the absorbing state
phase transition of this Clifford circuit model belongs to the directed percolation universality class. This suggests
that the inclusion of quantum fluctuations does not necessarily alter the critical behavior of nonequilibrium phase
transitions of purely classical systems. Finally, we extend our analysis to a non-Clifford circuit model, where a
tentative scaling analysis in small systems reveals critical exponents that are also consistent with the directed
percolation universality class.
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I. INTRODUCTION

Nonequilibrium quantum phase transitions are interesting
because they can exhibit universal behavior that is distinct
from classical systems [1,2], but are in general much harder
to study. Recently, quantum contact models have been pro-
posed as promising systems to explore this possibility [3].
Classical contact models are among the conceptually sim-
plest to investigate nonequilibrium phase transitions. They are
characterized by the competition of a spreading mechanism
and a probabilistic decay, and are widely utilized in describ-
ing phenomena like the spread of diseases, forest fires, and
bacteria colonies [4–8]. For a low-spreading rate, the system
reaches a state with no infected units and remains struck in
this absorbing state. However, as the spreading rate increases
beyond a critical value, the system reaches an active state
where the density of infected units fluctuates around a fixed
finite value. The phase transition in classical contact processes
is well understood: it falls under the directed percolation (DP)
universality class, and all critical exponents are known to
high precision [9]. Quantum analogs of contact processes,
on the other hand, remain less well understood. Since the
computational capacities of classical computers limit the ex-
act simulation of generic many-body quantum systems to
small sizes, many questions concerning their quantum criti-
cal behavior remain unanswered. Here, we study the critical
properties of an absorbing state phase transition in a random
quantum circuit model based on Clifford operations, which
can be efficiently studied numerically.
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The study of quantum contact processes has been
motivated by a potential experimental realization with
Rydberg atoms [10]. Such neutral atoms, excited to Rydberg
states and individually trapped by optical tweezers or in
the frozen regime, have emerged as a highly promising
platform for the quantum simulation of equilibrium and
nonequilibrium quantum many-body systems [11–20]. The
interplay of coherent driving, strong interactions between
the Rydberg states, and spontaneous decay also opens the
possibility to explore models closely related to quantum
contact processes [21]. Convenient observables, such as
population loss and excitation density, display power-law
scaling with the driving strength, and the inferred exponents
provide insight into the critical behavior of such systems
[22]. First theoretical studies using a mean-field approach
suggest a first-order transition for the pure quantum contact
model, and including classical contributions leads to the
existence of a bicritical point, for which the universal
behavior deviates from the classical continuous DP transition
[3,10]. A renormalization group analysis concludes that
strong temporal and spatial fluctuations in the active phase
smooths out the first-order transition predicted by mean-field
approximations [23]. Numerical simulations of a 50-site chain
using a tensor network (iTEBD) algorithm report a continuous
absorbing state phase transition and provide first estimates for
the critical exponents of a new quantum contact universality
class [24–26]. A machine learning approach, employed to
pinpoint the critical region, followed by a tensor network and
quantum-jump Monte Carlo analysis also provide estimates
for the critical exponents [27]; they find that only one (decay)
exponent differs from the DP value, and only in the case where
the system is initialized in a homogeneous, all active state. In
general, numerical methods are strongly limited by the size
of the system they allow to simulate [28]. The finite-bond
dimension of tensor networks limits this method to systems
with low entanglement, another obstacle that makes accurate
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studies of critical quantum behavior challenging. However,
there are alternative numerical methods based on stabilizer
states, which allow for the exploration of quantum systems
with extensive entanglement. Such Clifford quantum circuits
can simulate unitary as well as dissipative operations, and can
be efficiently implemented on classical computers [29]. This
approach has recently been successfully applied to investigate
entanglement transitions [30–33], and, in particular, systems
where an absorbing state transition occurs as well [34,35].

In this paper, we study a quantum circuit version of a
contact process based on Clifford operations. As universal
properties are independent of the microscopic realization,
we expect a critical behavior that can also be realized in
continuous-time quantum contact models. At each discrete
time step we apply with some probability a set of unitary
gates to represent coherent time dynamics, and some pro-
jective measurements to simulate dissipative decay. More
importantly, we restrict the gates to the Clifford group of
unitaries, which restricts the Hilbert space and thus allows for
the efficient simulation of the system near its thermodynamic
limit. Our results show that contact process transitions simu-
lated with Clifford circuits belong to the directed percolation
universality class. We observe that keeping the absorbing state
dynamically stable, while restricting the Hilbert space to sta-
bilizer states, leads to steady states with limited entanglement
at the phase transition as well as in the active phase. The
quantum effects included in this approach are insufficient to
change the universality class of the classical contact process.
To check if abandoning the Clifford restriction causes a dis-
tinctive change to the dynamics, we introduce a non-Clifford
quantum contact process and study its nonequilibrium prop-
erties on a small system of 20 qubits. The data suggests a
volume-law entanglement scaling in the active phase of this
non-Clifford quantum contact model. Because of the strong
finite-size effects, we cannot reliably extract critical exponents
from the exact simulation data. However, if we assume for the
critical exponents the values of DP, we find that the scaling
behavior for small systems is still consistent with this assump-
tion. These inconclusive results emphasize the importance
of realizing such models on emerging quantum simulation
platforms where larger systems can be analysed.

II. MODEL

We focus on a 1D lattice of length L with periodic bound-
aries. Each site is a two-level quantum system represented
by a qubit state. The basis states are labeled |1〉 and |0〉,
which we translate to contact process language as |active〉
and |inactive〉 states respectively. At each time step, a set
of dynamical rules apply, which define how activation can
spread and coagulate within a system. The simplest classical
contact process requires two dynamical rules. First, sites can
become active if and only if one of their nearest neighbors is
already in an active state, i.e., by contact. Second, active sites
can spontaneously decay and become inactive. Spontaneous
activation should be impossible, which makes the state where
all the sites are inactive invariant under the dynamical rules.
Therefore, once a system ends up in the fully inactive state, it
gets stuck in this state, which is therefore termed absorbing.
The other dynamically stable state of this system is when the

spreading and decay processes balance each other such the
density of active sites fluctuates around a finite, fixed value.
The system is then said to be in an active phase. The relative
strength of the spreading probability and decay probability
determine the steady state and changing it drives a phase
transition. The presence of an absorbing state violates detailed
balance, making this transition an out-of-equilibrium phase
transition. In a classical system, the sites can only exist in one
of the two basis states, either active or inactive. The classical
phase transition is well studied and classified into the directed
percolation (DP) universality class; for a detailed review on
the classical contact process we refer the reader to Ref. [9].

To investigate quantum analogs of this phase transition,
we map the problem to a discrete-time quantum circuit where
unitary gates and measurements are chosen to reproduce the
dynamical rules of a contact process applied now to a chain
of qubits. In this paper, we study two models that implement
the ideas of the contact process in a quantum system. The
first is a Clifford model where we restrict the gates to the set
of Clifford unitaries: Hadamard (H), controlled-Not (CNOT),
and phase (P) gates. Operations that can be written in terms of
the Clifford set are also included such as the Pauli matrices:
X, Y, and Z. In the second model, we relax this restriction.
Figure 1 shows the dynamical rules applied by the different
activation spreading operations in our two models. The decay
operation is the same for both models; it is achieved via a
projective single site measurement onto the Z basis followed
by a flip using the X gate if the measurement result was
an active site. This operation is applied on each site with a
constant probability γ .

In the Clifford model, activation is spread via layers of
CNOT gates, each applied with a probability ω, and via layers
of Cond

√
X operations, each applied with a probability κ .

The conditioned-
√

X operation is defined to first measure the
control qubit and only if the measurement yields the con-
trol qubit in the active state, apply a

√
X gate on the target

qubit. We start with the simplest Clifford contact model where
κ = 0. This model is referred to as the CNOT model. At a
fixed decay rate γ = 0.1, varying the spreading coupling ω

drives the system through an absorbing-state phase transition.
The analysis of the critical point is shown in Fig. 8 (see
below in Appendix A), where the scaling behavior is found to
fall into the directed percolation (DP) universality class. The
equivalence of the CNOT model to a classical contact model
can be easily seen if one considers initializing the system in a
product state of sites in the Z basis, i.e., a classical state. The
dynamical rules dictate that the system remains in such a clas-
sical state as entangled states can be created only if the control
site of the applied CNOT gate happens to be in a superposition
of the basis states. Therefore, to observe a finite-entanglement
entropy of a chosen subsystem with the rest, we should start
our simulations with a state were some sites are not in the
Z basis. However, the decay operation continuously removes
entanglement and we find that for any finite γ , the system
eventually converges to a classical product state where sites
are either active or inactive. A similar result is obtained if one
considers the Clifford model with ω = 0 and κ > 0, which we
refer to as the Cond

√
X model. Increasing κ at a fixed decay

rate also drives the system through an absorbing-state phase
transition within the DP universality class, as shown in Fig. 9
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FIG. 1. Quantum contact models. The basis states | 〉 = |active〉 and | 〉 = |inactive〉 are eigenstates of the Pauli operator Z . | 〉 represents
a site that is not in a Z eigenstate and | 〉 is a generic entangled state. (a) The dynamical rules: First, the decay operation is applied with
probability γ . It is a single-site process where a projective Z measurement is performed on the qubit followed by an X gate to flip the state
if the measurement outcome was |active〉. The CNOT gate is applied with a probability ω. The gate can activate an inactive site if the

control was active. An entangled state is created if the control is in a superposition. The controlled-
√

X (C
√

X ) gate is applied with a
probability �. A product state where the control is active leads to the creation of a local superposition on the target site. Another application of
the gate activates an initially inactive target. Entangled pair states can be created as well if the control is in a superposition. Finally, we define

a two-qubit operation: The conditioned-
√

X (Cond
√

X ) gate is applied with a probability κ . The condition is based on a measurement
outcome of the control site; if active, the target is acted upon with a

√
X gate. This process decoheres an entangled state, but creates a local

superposition after being applied to a product state in the Z basis. (b) The Clifford model is defined as a quantum circuit that combines layers
of CNOT gates and Cond

√
X operations, applied symmetrically in a checker board manner, with a layer of single-site decay operations. The

sketch above represents a single time step where each operation is applied with a given probability. For a fixed and finite decay probability
γ , there exists a critical ω and κ bellow which the system evolves into a dynamically stable absorbing phase defined as all sites are inactive.
(c) The C

√
X model is defined as a quantum circuit built from layers of C

√
X gates and decay operations. We expect to observe an absorbing

state phase transition as we increase the probability � at constant decay γ where the dynamics is dominated by quantum effects. However, this
is a non-Clifford circuit, which can be numerically simulated only for small system sizes.

(see below in Appendix A). The critical point occurs at twice
the value of the CNOT model, which is explained by the fact
that for classical states, two conditioned-

√
X operations are

equivalent to a CNOT gate. We expect that the character of the
phase transition can change in a quantum circuit where dy-
namical creation of entanglement entropy is possible, where
gates that rotate the local state and not just flip it are used
to spread activation. However, if we replace the CNOT with
a controlled-Hadamard (CH) or a controlled-

√
X (C

√
X ), the

resulting contact models are non-Clifford and thus cannot be
simulated efficiently on classical computers. In Sec. IV we
present an analysis of the absorbing state phase transition that
occurs in the C

√
X model, depicted in Fig. 1(c), for a small

chain of 20 qubits. In the following, we focus on the Clifford
model shown in Fig. 1(b). When both probabilities κ and ω

are finite, entangled states can be created dynamically but
require two steps. First, a Cond

√
X operation is needed to

create a local superposition and then subsequent CNOT gates
can spread the entanglement.

III. RESULTS

Here we present the results for the Clifford model simu-
lation. We initialize the system with half the sites activated,
chosen randomly for each realization. The initial state is then

evolved by applying the quantum circuit for ts time steps; this
is repeated for 103 realizations. The main observable is the
average density of active sites n(t ) as a function of time t ; this
quantity depends on the initial state on short timescales but
later acquires a behavior independent of the initial condition.
The number of applied time steps ts for each simulation should
be chosen sufficiently long for the system to reach the steady-
state regime. The density n of active sites in the steady state
is the order parameter of the absorbing-state phase transition.
It changes from zero in the absorbing phase to a finite value
in the active phase. It is important to note that in a finite-
size simulation, the steady state in the active phase is only
quasisteady; an initial state, which evolved into a quasisteady
state remains there for a relatively long time compared to
the time needed for equilibration, before eventually decaying
into the absorbing state. The lifetime of a quasisteady state
grows exponentially with the size of the considered system.
In our simulations, system sizes up to L = 400 sites and
ts = 104 time steps are considered. Figure 2(a) shows the
phase diagram obtained for the Clifford model at constant
decay rate γ = 0.1, size L = 200, and a steady-state time of
ts = 102 steps. The absorbing phase exists for small values of
the two spreading couplings ω and κ , representing the coher-
ent and incoherent dynamics respectively. The corresponding
steady-state entanglement entropy S(ρA), where ρA denotes
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FIG. 2. Phase diagram of the Clifford model. (a) For a fixed
decay constant (γ = 0.1) we observe an absorbing phase with zero
steady-state density in the region of small spreading parameters
ω � 0.41 and κ � 0.79. (b) Shows the corresponding steady-state
half-system entanglement entropy. In the absorbing phase and along
the axis ω = 0 and κ = 0, the steady state is a product state so
S(ρA) = 0. The entropy decreases with increasing rate of projective
measurements given by κ . We focus on the density transition in the
region of small but finite κ where we observe a finite entanglement
in the active phase.

the subsystem of size LA = L/2, is plotted in Fig. 2(b). It
vanishes in the absorbing phase where all sites are inactive,
also in regions where the dynamics ends up in a product state,
like on the κ = 0 and ω = 0 axes where states are classical by
construction of the model. S(ρA) continuously decreases with
increasing κ , as each Cond

√
X operation includes a projective

measurement. Therefore, the interesting regime to study the
phase transition appears in the region of small κ where S(ρA)
is finite in the active phase. We consider the absorbing phase
transition along the highlighted line κ = γ = 0.1. Figure 3(a)
shows the change in the order parameter n as a function of
the CNOT rate ω. The phase transition is clearly continuous.
The scaling analysis, which estimates the critical exponents,
shows that all values agree with the known directed perco-
lation exponents that appear in the classical contact process,
Figs. 3(b)–3(d); see Appendix A for details on the scaling
analysis.

This result shows that the classical universality class can
persists in a quantum model with dynamically generated en-
tanglement. However, in our Clifford model, the entanglement
entropy in the active phase is small and remains in the area-
law scaling regime.

One can try to create more entanglement by increasing
the relative effect of creating local superpositions (versus
projective measurements) and applying more than one

√
X

gate per measurement. We refer to these multiqubit opera-
tions as Cond

√
XX and Cond

√
XXX . Such operations can

be interpreted in the context of the contact process as an
increase in the range of interaction. In Fig. 4 we compare

TABLE I. Critical exponents. The critical behavior of all contact
processes within the Clifford formalism is consistent with DP.

DP CNOT Clifford Cond
√

XXX

δ 0.1595 0.161(6) 0.161(9) 0.154(6)
β 0.2765 0.27(2) 0.27(2) 0.26(2)
ν‖ 1.7338 1.70(3) 1.70(3) 1.70(3)
ν⊥ 1.0969 1.06(4) 1.06(4) 1.06(4)

FIG. 3. Scaling analysis of the Clifford model. (a) At fixed
γ = κ = 0.1, the order parameter n(ts ), the steady-state density of
active sites, increases continuously from zero as a function of ω.
(b) The critical point of this second-order transition is estimated
around ωc = 0.390 where n(t ) decays as a power as a function of
simulation time. We then deduce the value of the decay exponent
δ = 0.161(9) from the slope of the fitted straight line in the double
logarithmic scale. (c) The best data collapse is obtained for the
temporal correlation exponent ν‖ = 1.70(3), such that β = δ · ν‖ =
0.27(2). (d) Also, near criticality, the data from different sizes col-
lapses into a universal scaling function for z = 1.60(3) = ν‖/ν⊥,
so the spacial correlation exponent is ν⊥ = 1.06(4). All derived
exponents are in good agreement with the DP universality class
(Table I).

FIG. 4. Increased range of contact. We replace the Cond
√

X
operation in our Clifford model first with Cond

√
XX and then

Cond
√

XXX . Simulating the dynamics at the same fixed values
for the probabilities γ = κ = 0.1, we observe an increase in the
values of entanglement entropy reached in the active phase. The
nature of the transition to the absorbing phase remains continuous
and within the DP universality class. Note that the entangle-
ment also grows continuously from zero and remains small at the
transition.
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FIG. 5. The C
√

X model. (a) For a small system of size L =
20 qubits, exact simulations indicate a continuous absorbing state
transition where both, the steady-state density and the entanglement
entropy increase continuously from zero with rate � at fixed decay
rate γ = 0.1. (b) For � = 0.6, where the system appears to be in
the active phase, the entanglement entropy scales with the volume of
the subsystem: Plotting S(ρA) vs the size LA of subsystem A shows a
linear growth when LA is small compared to the full system size. The
increase then saturates due to the finite size.

the absorbing-state transitions obtained in these models. We
observe that despite reaching considerably higher values for
the half-system entanglement entropy, the nature of the phase
transition remains clearly within the directed percolation uni-
versality class. The critical point occurs for lower values of the
coupling ωc, which is expected. The scaling analysis is given
in Fig. 11 (see below in Appendix B).

We note that in all these cases the entanglement entropy
grows from zero continuously when crossing the transition
into the active phase and seems that at the critical point, it
remains too low to affect the universal behavior.

IV. NON-CLIFFORD MODEL

Now we focus on the non-Clifford C
√

X model. The C
√

X
gate is unitary and results in a coherent spreading dynamics
and the dynamical creation of entangled states. For a relatively
weak rate � of applying C

√
X gates, a finite-decay rate drives

the system into a classical absorbing phase, the existence of
which is guaranteed by a finite threshold for anisotropic bond
percolation on the square lattice [36] [here, the space-time
lattice in Fig. 1(c)]. By increasing �, a transition from the
absorbing phase into an active phase is expected. Figure 5(a)
shows the variation in the normalized density of active sites n
as a function of � at constant γ = 0.1 and the corresponding
entanglement entropy S(ρA) obtained after t = 100 steps on a
small system of 20 qubits. Simulating for longer times would
result in a decay of n driven by finite-size effects, so the
steady-state regime is hard to capture in such small system
sizes. Nevertheless, we observe a key difference with respect
to the Clifford models. The entanglement entropy S(ρA) in the
active phase reaches much higher values. It seems to scale as
a volume law, indicated by the linear increase of S(ρA) as a
function of subsystem size LA especially for small LA relative
to L as shown in Fig. 5(b). On the other hand, and similar to
the behavior observed for the Clifford model transition, we
find that both n and S(ρA) increase continuously from zero
to finite values as we increase �, which is consistent with a
second-order phase transition.

FIG. 6. Comparison of the C
√

X and CNOT models. [(a),(b)]
Early time evolution of the order parameter n in the C

√
X and CNOT

models, respectively. [(c),(d)] Evolution of n at later times. From
larger systems, we know the critical point ωc = 0.39 of the CNOT
model; the fitted power law at this point has a 10% error with respect
to the expected DP value. We can identify a range for ωc where the
decay in n is linear in logarithmic scale up to t = 100, after which
finite-size effects dominate the dynamics. In the C

√
X model, at short

times we observe fluctuations in n for larger �. Another distinctive
feature of the C

√
X model is that n(t ) smooths out to a lower average

value compared to that of the CNOT transition at similar coupling
strength. Also finite-size effects (in the form of overall decay of n)
occur earlier than t = 100 steps. Despite the clear differences, we
cannot exclude the DP value for the decay exponent δ.

To investigate the finite-size effects on this transition, we
compare the scaling behavior to that of the CNOT model at an
equal size L = 20 but where the universal exponents are all
well known, see Fig. 6. The finite size limits the time range
for which data can be considered for the scaling analysis.
Extracting critical exponents from this data is impossible,
we can only check for its consistency with the known DP
exponents.

In the case of the CNOT model, the expected critical point
ωc and the decay exponent δ both fall within the possible crit-
ical range observed in the L = 20 simulation data of Fig. 6(d).
In Fig. 12 (see below in Appendix C) we show data collapse
plots for various choices of fitted exponents as well as for
the theoretical values of DP exponents while varying the
critical point within this range. The quality of this data col-
lapse into the universal scaling functions is consistently better
for parameters closer to the results expected from simulating
larger chains. Therefore, we can conclude that for the CNOT
model the L = 20 data fits well with the expected classical DP
critical behavior up to simulation times around t = 100 after
which finite-size effects become dominant.

A similar analysis for the C
√

X model reveals a few no-
table differences: First, at short times t < 10, the density
of active sites n fluctuates, an effect mainly observed for
simulations with relatively large � where the system is ex-
pected to end up in an active phase. Also finite-size effects
seem to be stronger, the overall decay in n starts at earlier
simulation time, as seen Fig. 6(c). The scaling of the data
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FIG. 7. Consistency with a DP transition. (a) At �c = 0.45 we
observe the best data collapse in the C

√
X model using the known

DP critical exponents. The universal DP scaling function is plotted in
gray as a reference. (b) We scale the data using nonuniversal factors
at and ap such that the scaling functions overlap. In (c) and (d) we
check whether at the chosen critical point the data scales as expected
with the estimated nonuniversal factors. For reference we plot the
scaled L = 20 data from the CNOT model using nonuniversal factors
derived from the thermodynamic L = 400 system as shown in Fig. 10
(Appendix A). For the L = 20 systems, the data from the CNOT
model fits nicely up to large t when finite size effects dominate.
However, the data from the C

√
X model doesn’t fit the expected

scaling behavior.

is analyzed within a range of �, which possibly includes
the critical value and is shown in Fig. 13 (see below in Ap-
pendix C). The collapse is of worse quality compared to the
plots obtained with the CNOT model for the same size. If we
assume the values of the exponents β and ν‖ to be the literature
DP values, we observe the best collapse for �c ≈ 0.45. In
Fig. 7(a) we plot the collapsed data from C

√
X model with the

universal collapse function in grey as a reference. Figure 7(b)
shows that there exists a choice for nonuniversal factors ap

and at that leads to data falling on the universal DP scaling
function. Nonuniversal factors are extracted from scaling data
at the critical point (see Fig. 10 in Appendix A), which we
cannot do in the C

√
X model. Figures 7(c) and 7(d) show

that the in the CNOT model the data agrees with the expected
scaling at the critical point despite the clear finite-size effects
at larger times, whereas in the C

√
X model the data scaling

reveals an inconsistency. As a result, we conclude that the
nature of the absorbing-state transition in the C

√
X model

remains inconclusive.

V. SUMMARY AND OUTLOOK

We introduced two models of random quantum circuits,
comprised of unitary entangling gates and projective measure-
ments, to study the fate of absorbing-state phase transitions
of classical contact models in the presence of entanglement.
The common features of both models are the existence of
an absorbing state that is invariant under the time evolution,

and a spreading mechanism that allows for the proliferation of
excitations in the systems—both necessary ingredients for the
occurrence of an absorbing state phase transition. Most im-
portantly, both models feature mechanisms for the dynamical
generation of entanglement, which distinguishes them from
classical contact processes.

The first model—the Clifford model—makes use of Clif-
ford gates only and therefore allows for efficient numerical
simulations within the stabilizer formalism. With our exten-
sive simulations, we identified an out-of-equilibrium phase
transition between an absorbing phase and an active phase.
The latter featured low but finite levels of entanglement in
certain parameter regimes, which qualifies our model as a
quantum version of classical contact processes. A scaling
analysis revealed critical exponents that match the directed
percolation universality class perfectly. Since the latter also
describes the critical behavior of classical contact processes,
we can conclude that this universality class is robust against
certain types of quantum fluctuations.

Since Clifford unitaries only allow for the exploration of a
measure-zero subset of the full many-body Hilbert space, their
dynamics might be too restrictive to modify this universality
class. Our second model—the C

√
X model—makes use of the

controlled-
√

X gate to implement both a spreading mecha-
nism and dynamical entanglement generation. This gate is not
in the Clifford group, and we had to resort to exact evaluations
of the time evolution for small system sizes. The simulations
revealed signatures of an absorbing-state phase transition with
significantly stronger entanglement in the active phase. A
tentative scaling analysis revealed critical exponents consis-
tent with the directed percolation universality class. However,
because of the small system sizes and strong finite-size effects,
our results do not allow for a conclusive characterization of
the critical behavior of this process.

Quantum simulations of such non-Clifford models for large
systems might be an interesting application for near-term
quantum computing platforms. The study of universal features
is promising because these are expected to be independent
of microscopic details, and therefore might tolerate certain
types of noise and gate infidelities of NISQ devices. On the
theoretical side, it is an interesting question whether Clifford
circuits in general are too restrictive to describe nonclassical
critical behavior, and whether the numerical study of quantum
criticality in nonequilibrium settings is an inherently hard
problem.
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APPENDIX A: SCALING THEORY

Here we discuss the scaling analysis, based on Ref. [9],
which describes how we estimate the critical exponents.
Absorbing state phase transitions studied in this paper are
continuous, second-order transitions, which are often charac-
terized by universal scaling laws. Different physical systems
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that exhibit equal sets of critical exponents and coinciding
scaling functions belong to the same universality class. A
universality class is insensitive to microscopic details of its
systems, and usually depends only on properties like dimen-
sion, range of interactions, and symmetries. The same picture
exists in out-of-equilibrium processes. Most notably, the di-
rected percolation (DP) universality class is labeled by the
triplet (β, ν‖, ν⊥) of critical exponents; all other exponents can
be deduced from this set using scaling relations. Remark that,
in contrast to equilibrium critical phenomena, the dimension
of “time” has a different character than the “space” dimension,
and we distinguish these by using the indices ‖ for time and ⊥
for space. Contact processes produce an absorbing-state phase
transition, which belong to the DP universality class. The
order parameter n(ts) is the normalized steady-state density
of active sites

n(ts) =
〈

1

L

∑
i

ni(ts)

〉
,

where 〈...〉 is an ensemble average over many realizations,
L is the total number of sites in the system, and ni(t ) is the
local occupation at site i at time t . In the thermodynamic limit
and close to the transition, the steady-state density obeys the
scaling

n(ts) ∼ |p − pc|β,

where p is the driving parameter of the transition and pc is its
critical value. The exponent β is conventionally associated to
the scaling of the order parameter, which is the density of ac-
tive sites in contact process transitions. The spatial correlation
length ξ⊥ and the temporal correlation length ξ‖ also diverge
near criticality with the scaling laws

ξ⊥ ∼ |p − pc|−ν⊥ and ξ‖ ∼ |p − pc|−ν‖ ,

where the length scales are related through the dynamical
critical exponent z = ν‖/ν⊥, defined as ξ‖ ∼ ξ z

⊥. Those length
scales can be determined from their intuitive physical inter-
pretations. For example, ξ‖ represents the average decay time
of clusters that spread from an initial seed in the absorbing
phase, while ξ⊥ represents the average spatial width of such
clusters. Although the set (β, ν‖, ν⊥) can be already estimated
from the relations above by plotting the associated quantities
[n(ts), ξ⊥, ξ‖] in the double logarithmic scale as a function of
� = |p − pc| and extracting the slope of the resulting straight
lines, this estimate is known to be quite inaccurate since the
equilibration time to reach the stationary state grows rapidly
as the critical point is approached, an effect known as critical
slowing down. A more accurate approach to extract the critical
exponents is to plot the universal scaling functions instead.

Consider the density scaling relation for a finite size system
with N = Ld sites where d is the spatial dimension,

n(t ) ∼ t−δ f (� · t1/ν‖ , t d/z/N ).

f has the same functional form for all phase transitions
in the DP universality class and can depend only on scale-
invariant ratios. Note that a scaling transformation x → �x
of lengths x is accompanied by rescaling of t → �zt , � →
�−1/ν⊥�, and n → �−β/ν⊥n. In the thermodynamic limit
N → ∞, the universal function f tends to a constant. There-

FIG. 8. The CNOT model. (a) Continuous change in the steady-
state density n as a function of ω and fixed decay rate γ = 0.1 for
different system sizes. (b) Power-law decay of the order parameter n
as a function of the simulation time. The critical point is estimated
at ωc = 0.4070(5), the slope of the fitted line is 0.16087, which
gives the estimate for the critical exponent δ = 0.161(6) (consistent
with the best known estimate δDP = 0.159 [9]). The other critical
exponents are deduced from the collapse plots (c) and (d). All values
are compatible with the literature values of the DP transitions.

fore, the exponent δ describes the power-law decay of the
order parameter near criticality � → 0. At large arguments
ζ , f (ζ ) → ζ δ·ν‖ . Therefore in the steady state, as t → ∞ we
find the scaling relation

β = δ · ν‖.

Now we apply this analysis to the data obtained from
the simulations of the CNOT model. We first plot the order
parameter n(ts) as a function of the rate ω for increasing
system sizes and illustrate the continuous nature of the phase
transition in Fig. 8(a). Then we identify the critical point using
the expected asymptotic power-law decay of the order pa-
rameter n(t ) ∼ t−δ for a sufficiently large system of L = 400
sites and long simulation times ts = 104. Plotting the data in
the double logarithmic scale results in a positive (negative)
curvature at large t for coupling ω corresponding to the active
(absorbing) phase as shown in Fig. 8(b). The critical exponent
δ is then the slope of the best data fit to a straight line. Our
estimate for the critical point is ωc = 0.407, where fitting the
data into the straightest line gives a slope 0.161. Taking the
interval ω ∈ [0.4065, 0.4075], the data fits to slopes 0.1724
and 0.1601 respectively, which gives an error estimate to δ =
0.161(6). An interval for ωc with range ±10−3 overestimates
the error on the exponent as ω ∈ [0.406, 0.4078] results in
δ = 0.161 ± 0.01. In all the following estimates of the critical
exponents we report the overestimated error from data within
range ±10−3 of the driving parameter.

Next, we plot n(t ) · t δ at different values of ω as a function
of t�ν‖ and varying ν‖ to obtain the best collapse of the data
into one universal scaling function. ν‖ = 1.7 is the value that
gives the best data collapse plot shown in Fig. 8(c), whereas
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FIG. 9. The Cond
√

X model. We observe that the scaling behav-
ior is consistent with the expected classical DP universality class. The
data shown is for the system size L = 400 and κc = 0.7940(5) is the
estimated critical point. The critical exponents are then δ = 0.159(3),
ν‖ = 1.70(3), and β = 0.27(1) (cf. Table I).

increments of 0.05 to ν‖ give clearly worse collapse plots
and thus the error on ν and z is estimated as 0.03. Using
ν‖ = 1.70(3) and δ = 0.161(6), we estimate the critical expo-
nent β = δ · ν‖ = 0.27(2). Finally we plot n(t ) · t δ at different
system sizes L and ω = ωc as a function of t/Lz (here d = 1
and N = L). The exponent z is varied to optimize the collapse.
We find z = 1.6(3) and deduce the last exponent of the triplet
ν⊥ = ν‖/z = 1.06(4). All the critical exponents agree with the
known DP value, see Table I.

A similar analysis is shown in Fig. 9 for the incoherent
Cond

√
X model, which also falls within the DP universality

class, as well as for the Clifford model discussed in the main
text (Fig. 3). We conclude that all these contact models share
the same critical exponents, despite having different activation
spreading processes defined by the dynamical rules illustrated
in Fig. 1. To prove that they indeed belong to the same uni-
versality class, we should also show that the scaling functions
f coincide. Plotting n(t )t δ as a function of t�ν‖ for the three

FIG. 10. Nonuniversal scaling factors. (a) Collapse plots of the
considered models with different spreading gates, where p ∈ {ω, κ}
is the driving parameter of the phase transition. [(b),(c)] Scaling of
the simulation data from different models with appropriate factors ap

and at , which encode nonuniversal microscopic differences specific
for each model. (d) Scaled collapse plots, which now all fall on top
the universal scaling function of the DP class.

FIG. 11. Critical exponents for the Cond
√

XX and the
Cond

√
XXX models. (a) We find the exponent δ = 0.161(4) at

the critical point ωc = 0.2960(5) for the Cond
√

XX model. (c) From
the data collapse, we estimate β = 0.27(1). [(b),(d)] A similar
analysis for the Cond

√
XXX model estimates the exponents

δ = 0.154(6) at ωc = 0.1150(5) and β = 0.26(2). In both models,
the transition remains clearly within the DP universality class,
only the transition point shift towards lower spreading rate, which
is expected as further sites can be activated by these three and
four-qubit operations.

models at the same decay rate γ and system size L does not
show this result [Fig. 10(a)]. However, after scaling the sim-
ulation data with appropriate nonuniversal factors that encode
the microscopic properties specific for each model, the scaling
functions from the different models indeed collapse to the
same universal function, as shown in Fig. 10(d). Figures 10(b)
and 10(c) show the results obtained for the nonuniversal fac-
tors ap and at respectively. We can estimate these factors
by plotting the scaling relations n(ts) = |ap(p − pc)|β and
n(t ) = at t−δ (which are valid near the critical point) in the
double logarithmic scales and extract the different slopes cor-
responding to the data from different models.

APPENDIX B: LONGER INTERACTION RANGE

Here we discuss the effect of replacing the two-qubit
Cond

√
X operation in the Clifford model with a three-qubit

Cond
√

XX operation or a four-qubit Cond
√

XXX operation
on the nature of the observed absorbing state phase transition.
The universality class can depend on the range of interactions.
Models where activation spreads over longer distances have
been investigated, an example is models with Lévy flight dis-
tributions [37]. The universal properties of such processes are
known to diverge from that of DP continuously with the con-
trol parameter σ , which defines the shape of the probability
distribution P(r) ∼ 1/rd+σ where r is the distance over which
a random interaction can occur; for σ = ∞ one gets back
the DP case. Contact processes with short-range interaction
belong to the DP universality class. In the Clifford models
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FIG. 12. Collapse plots for the CNOT model at L = 20. The large system data is plotted in gray as a background for reference. [(a)–(c)]
In the upper plots ωc is varied in the range shown in Fig. 6 and δ is the fitted exponent. We observe that the data from the L = 20 simulation
agrees with the thermodynamic results, but at a lower critical value ωc ≈ 0.39, which is less than ωc = 0.407 obtained for L = 400. [(d)–(f)]
For the lower collapse plots we fix the literature values for the DP exponents, δ = 0.159 and ν‖ = 1.73, and vary the critical point ωc. We
observe good data collapses within a parameter range 0.39 < ωc < 0.45. The best fit occurs around ωc = 0.42, which slightly higher than the
thermodynamic value ωc = 0.407.

FIG. 13. Collapse plots for C
√

X model at L = 20. We use the data between 10 < t < 100 time steps. Plots in (a)–(c) use fitted δ

exponents while collapse plots in (d)–(f) use the DP exponents. Based on this data we cannot exclude a contact process transition within
the DP universality class in the C

√
X model where the critical point occurs for coupling 0.4 < �c < 0.45.
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we define, the range of interaction is still short relative to the
system size, in particular, it is bounded, so that the nature of
the phase transition remains unchanged. This is discussed in
Fig. 11 where the obtained critical exponents are still suffi-
ciently close to DP.

APPENDIX C: SMALL SYSTEM SIZES

In this Appendix we investigate how susceptible the data
collapse is to variations of the critical exponents for small sys-
tem sizes. We start with the results of the CNOT model where
the critical behavior is known from larger system simulations.
For small sizes, the transition point is hard to identify (Fig. 6).
Since finite-size effects dominate the long-time regime, we
end up with a wide range of spreading rates and corresponding
slopes in the logarithmic scale where the decay appears linear.
In the L = 20 CNOT model, as shown in Fig. 6, the range
appears to be roughly 0.4 < ωc < 0.5 and 0.08 < δ < 0.17.
Figure 12(a) shows the data collapsed with parameters within

this range. The error is of the order of the exponent, which is
expected for such small sizes where extracting exponents from
the data is impossible. However, we notice that the L = 20
data collapses nicely on top of the L = 300 data (plotted in
gray) when the exponents are close to the expected DP values.
This makes us conclude that it is possible, in the case of the
CNOT model, to verify the nature of the transition by scaling
the simulation data using the known literature values of the
DP exponents. By varying the spreading coupling ω, we find
an ωc = 0.42 where the data shows a good collapse, as seen in
Fig. 12(b). We remark that a range of values ω ∈ [0.39, 0.45]
gives relatively good collapse plots, the expected ωc = 0.407
is within this interval.

A similar analysis is done on the C
√

X model with L = 20.
For this model, the critical behavior is unknown. The collapse
plots are shown in Fig. 13; they appear significantly worse
than the ones obtained for the CNOT model. However, we
cannot exclude a DP transition in the range 0.4 < �c < 0.45
as the upper leftmost plot and the lower middle plot have a rel-
atively decent collapse quality considering the size limitation.
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