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Localized source above a time-modulated dielectric half-space: Green’s function theory
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In this paper, we explore the two-dimensional Green’s function problem above an instantaneous time-
modulated dielectric half-space. In particular, we focus on studying the excitation dynamic with modulation
that is carried out near the critical angle and the total internal reflection regime, where an impinging spectrum of
waves expects the so-called lateral wave excitation on the interface. We start by analyzing the reflection of a plane
wave, with detailed attention given to the difference between two cases: a slow quasistatic modulation versus a
relatively fast modulation that leads to substantial excitation of intermodulation frequencies. Next, we provide
a space-time spectral representation to the space-domain Green’s function, and later, we move to evaluate the
spectral integral both in a brute-force numerically exact manner and using integration along the steepest descent
path and the branch cuts, which unravel the distinction between different wave phenomena associated with the
excitation problem. Thus, we identify different wave species that can be associated with reflected rays and waves
that resemble the known head wave in the classical problem of stationary stratified media. We examine the
unique time-dependent behavior of each wave species that arises as a consequence of the interface between the
time-harmonics of the reflected space-time plane wave spectrum. Lastly, we demonstrate the broader validity
of our analytical predictions, also in the case of a dispersive and finite time-modulated medium. To that end,
we use a full-wave simulation of a source above a finite time-modulated thick layer that is implemented using a
time-varying wire medium. These full-wave results are compared with our current analytical model with effective
(homogenized) parameters of the time-modulated wire medium taken from Phys. Rev. Appl. 16, 054003 (2021).
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I. INTRODUCTION

The study of electromagnetic wave dynamics in time-
varying media goes back several decades [1,2]. The benefits
of removing the restriction caused by time invariance, and
adding another dimension for engineering-time, has opened
a whole new area of technological possibilities. Recently,
there has been a renewed interest in research in this direction,
especially in the context of new developments for the next
generation in the research of metamaterials, for applications
such as inverse prism functionality, frequency conversions,
temporal band gap, magnetless nonreciprocity, time reversal,
and effective permittivity realization by temporal switching
[3–36] including devices that outperform physical linear and
time-invariant (LTI) bounds [37–42]. One major analysis as-
pect of temporal metastructures, that so far has been only
marginally explored, is their excitation mechanism. Recently,
a study of the excitation mechanism for a spatiotemporal
metasurface has been presented [43]. The emphasis of this
study was the rigorous development of the spectral represen-
tation of the space-domain Green’s function and the physical
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interpretation of the singular and critical points in the complex
plane of the spectral variable.

In this paper, we expand the study of the excitation
mechanism to the canonical problem of time-modulated di-
electric half-space (see Fig. 1). To that end, we specifically
choose to focus on the excitation problem of a semi-infinite
time-modulated instantaneous (nondispersive) dielectric half-
space by a localized two-dimensional source. We study and
develop rigorously the spectral representation of the space-
domain Green’s function and the physical interpretation of
the singular and critical points in the complex plane of the
spectral variable. Using this study, we explore the unique
time-dependent behavior of each wave species that arises as
a consequence of the interface between the time-harmonics
of the reflected space-time plane wave spectrum. One of the
challenges when analyzing discontinuity between two materi-
als and seeking close analytical expressions is performing the
mode matching effectively. Thus, we limit ourselves in this
paper to weak modulation in time.

A time-varying medium can be achieved in various ap-
proaches. The first prominent one is using exotic materials
such as semiconductors whose permittivity can be tuned by
the field effect, or by nonlinear materials whose polarization
response can be biased by high-intensity optical pumping.
The second approach is to use time-variant artificial (com-
posite) media, as described in detail in [16], for the case of
a spatiotemporally modulated wire medium [44–60]. Here the
emphasis of the study is given to the behavior in the time do-
main of the reflected field, with a detailed examination of the

2643-1564/2024/6(1)/013277(17) 013277-1 Published by the American Physical Society

https://orcid.org/0009-0005-0357-4186
https://orcid.org/0000-0002-3404-8390
https://orcid.org/0000-0003-4682-9415
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013277&domain=pdf&date_stamp=2024-03-13
https://doi.org/10.1103/PhysRevApplied.16.054003
https://doi.org/10.1103/PhysRevResearch.6.013277
https://creativecommons.org/licenses/by/4.0/


KREICZER, STEINBERG, AND HADAD PHYSICAL REVIEW RESEARCH 6, 013277 (2024)

x

y iE

ik
iiH

r t

FIG. 1. The problem setup. The lower half-space consists of
a time-varying dielectric. The upper half-space is a vacuum. The
source is located in the vacuum.

effect of the critical points for both the nominal frequency and
the close harmonics in the complex spectral plane, and separa-
tion between a specular ray due to a saddle point contribution,
and a head-wave-like wave that corresponds to the branch
point singularities. To analyze the time-variant discontinuity
excitation dynamics, we take a bottom-up approach. We first
define the time-variant susceptibility and use Maxwell’s equa-
tion to calculate the eigenmodes of the time-varying medium.
To that end, we follow the approach described in [16]. Those
eigenmodes let us perform the mode-matching calculation
at the spatial boundary, and get a closed-form approximate
expression for the reflected field coefficients for an incident
plane wave. This result is consequently used to construct
the Green’s function of the problem as a space-time spectral
integral. Later, we study the singular and critical points in
the complex spectral plane and use them to identify different
waves and phenomena in the system both in the frequency
domain and the time domain. Lastly, we compare our analytic
results with full-wave simulations carried out for a time-
varying finite wire medium.

The paper is organized as follows. In Sec. II, we define
the physical time-variant configuration we study, and we cal-
culate the eigenmodes for both slow quasistatic modulation
and fast modulation. Then, in Sec. III we derive the reflection
coefficients for an incident plane wave. This is carried out
using analytical approximations and by a brute-force numer-
ical calculation. We emphasize the differences between slow
quasistatic modulation and relatively fast modulation. Based
on the derivations in the previous sections, in Sec. IV we
construct the Green’s function of a two-dimensional (2D) line
source above a time-modulated half-space as a spectral inte-
gral, and we explore the physical interpretation of the singular
and critical points in the complex spectral plane. Finally, in
Sec. V we implement a homogenization technique [16] for
the case of a time-modulated half-space wire medium, and we
compare our analysis with brute-force numerical simulations.

II. TEMPORALLY MODULATED DIELECTRIC MEDIUM

Our goal in this paper is to explore the 2D Green’s function
problem above a temporally modulated dielectric discontinu-

ity. As a basic building block, we begin with the scattering
problem due to a single monochromatic plane wave incidence.
Our analysis is based on the concept of harmonic balance,
which can be regarded as a quasifrequency domain (QFD)
technique. We start with the analysis of the eigenmodes of a
modulated dielectric medium. The relation between the elec-
tric field and the electric displacement in the time domain can
be written as

�D(t ) = ε0 �E (t ) + �P(t ), (1)

where �P(t ) is the polarization density vector. We assume that
the medium is linear, i.e., the fields are weak enough so that
the polarization and the field are connected through a linear
operation. In this case, the polarization relates to the electric
field via the impulse response of the medium f (t, τ ),

�P(t ) = ε0

∫ ∞

−∞
f (t, τ ) �E (τ )dτ . (2)

We limit our analysis to the case of an instantaneous re-
sponse of the medium. In this case, for an impulse input
of δ(t − τ ), the response will be a(τ )δ(t − τ ). Using this
impulse response, we can now write the polarization using
superposition,

�P(t ) = ε0

∫ ∞

−∞
a(τ )δ(t − τ ) �E (τ )dτ = ε0a(t ) �E (t ). (3)

Let us now assume a small harmonic perturbation of the
medium, in the form of a(t ) = χ0(1 + m cos �t ). χ0 is the
electric susceptibility of the unperturbed medium, which satis-
fied εr0 = χ0 + 1, with εr0 the permittivity of the unperturbed
medium. We get the following relation for the electric dis-
placement field:

�D(t ) = ε0[1 + (εr0 − 1)(1 + m cos �t )] �E (t ) (4)

with m � 1. For the sake of simplicity, we limit ourselves to
the 2D case and a ẑ polarized electric field, i.e., the TE mode.
With Ampere’s law,

�∇ × �H (t ) = ẑ
d

dt
{ε0[1 + (εr0 − 1)(1 + m cos �t )]E (t )},

(5)

we can use the Fourier transform, and get the relation between
the electric and magnetic fields in the frequency domain. We
can now get the expected recursive relation between the fields,
which allows us to use the harmonic balance technique, and
follow the method previously developed in [16],

�∇ × �H (ω) = jẑωε0

{
εr0E (ω)+
m
2 (εr0 − 1)[E (ω + �) + E (ω − �)]

}
.

(6)

We can write the electric and magnetic fields in the following
way:

E (ω) =
∞∑

n=−∞
Enδ(ω − ωn), (7a)

H (ω) =
∞∑

n=−∞
Hnδ(ω − ωn), (7b)
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where ωn = ω0 + n�. We can now get the following rela-
tion between the time-harmonics of the electric field (see
Appendix A),

(
q2 − εr0k2

n

)
En = mk2

n

2
(εr0 − 1)(En−1 + En+1). (8)

The recursive relation in Eq. (8) can now be represented using
a tridiagonal matrix of an infinite rank,

AE = 0, (9)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0 0

. . . b−2 c−2 0 0

0 a−1 b−1 c−1 0 0

0 0 a0 b0 c0 0 0

0 0 a1 b1 c1 0

0 0 a2 b2
. . .

0 0 . . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10a)

and

E = [. . . , E−N , E−N+1, . . . , EN , . . . ]T . (10b)

The matrix entries an, bn, cn are

an = − 1
2 mk2

n (εr0 − 1), (11a)

bn = q2 − εr0k2
n , (11b)

cn = an. (11c)

The eigenmodes can be found by nullifying the determinant

|A| = 0. (12)

The matrix in Eq. (10a) can be truncated to a finite size when
an, cn are much smaller than the diagonal elements bn. We
mark the truncated matrix with A{N}—this matrix has 2N + 1
rows and columns. Since in our case m � 1, this approxima-
tion is valid when the eigenmodes are not too close to each
other. When solving the equation that arises from Eq. (12), for
a finite size 2N + 1 matrix, we get a 2(2N + 1) solution for
the eigenmodes q. Since we are interested only in plane waves
propagating away from the discontinuity, we need to take into
consideration only 2N + 1 eigenmodes with positive q—we
mark those eigenmodes with q(s), s = −N,−N + 1, . . . , N −
1, N . We separate our analysis into two different cases:

(i) Case I: Slow quasistatic modulation, i.e.,

O

(
�

ω

)
� O(m2). (13)

(ii) Case II: Fast modulation, i.e.,

O

(
�

ω

)
� O(m2). (14)

We elaborate on these two cases in the following sections.

A. Case I: Slow (quasistatic) modulation

We start with the analysis of case I—the slow modulation.
In this case, we assume a very slow modulation, which allows
us to completely neglect �

ω
(see Appendix B). The matrix

elements in Eq. (10a) can be approximated to be independent
of n, given specifically by

a = − 1
2 m(εr0 − 1)k2

0 , (15a)

b = q2 − εr0k2
0 . (15b)

The resulting tridiagonal matrix in Eq. (10a) becomes a
Toeplitz matrix [61]. Assuming that the infinite rank matrix
is truncated into a 2N + 1 square matrix for the 2N + 1
first harmonics of the field E−N , . . . , EN , then a closed form
expression for its eigenvalues exists: λ = b + 2a cos sπ

2(N+1) ,

with s = 1, . . . , 2N + 1. In our case, λ stands for q2. We get
the eigenmode expression (as mentioned before, we only use
the positive eigenvalues). In the result, we use the approxima-
tion for m � 1, and we write the expression in a symmetrical
form (s = 0 represents the regular mode),

q(s) ≈ √
εr0k0

[
1 − 1

2

|εr0 − 1|
εr0

m cos

(
(s + N + 1)π

2N + 2

)]
,

s = −N, . . . , N. (16)

This analytic solution for the eigenvalues reveals a very dom-
inant dependence on the actual matrix size, N . This could
already be observed by the fact that O(b) = O(a) = O(m),
which eliminates the possibility of truncating the matrix in
Eq. (10a) to a small size matrix, even for small m. The un-
avoidable conclusion from the analysis of the quasistatic slow
modulation is that one cannot easily construct the electromag-
netic field using a relatively small eigenvector dimension. It
seems that the spectrum of the slow-medium case is close to
continuous, and it is therefore significantly more challenging
to analyze using modal decomposition and a quasifrequency
domain approach. However, since the modulation in this case
is so slow compared with the impinging wave frequency, the
problem may be considered adiabatic for most practical cases.
Thus the time variable in the time-modulated susceptibility
can be treated as a parameter, as discussed in Sec. III C below.

B. Case II: Fast modulation

We can now move to the somewhat more interesting Case
II—the fast modulation. We emphasize that here the modula-
tion is slower compared with the impinging wave frequency,
however it is not extremely small as is required to satisfy the
slow modulation condition that is stated in Eq. (13) above.
Instead here we assume that Eq. (14) is satisfied. In this case,
we can follow the approach developed in [16], and truncate the
infinite matrix in Eq. (10a) to a 3×3 matrix to ease our calcu-
lating of the eigenmodes. This N = 1 matrix approximation is
given in Eq. (17),⎛

⎝b−1 c−1 0
a0 b0 c0

0 a1 b1

⎞
⎠
⎛
⎝E−1

E0

E1

⎞
⎠ = 0. (17)
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In this case, the determinant reduces to
a0c−1

b−1
+ a1c0

b1
≈ b0. (18)

By substituting the expressions for an, bn, cn in Eq. (11), we
get

m2(εr0 − 1)2k2
0k2

−1

4
(
q2 − εr0k2

−1

) + m2(εr0 − 1)2k2
0k2

1

4
(
q2 − εr0k2

1

) = q2 − εr0k2
0 .

(19)

For the case of a 3×3 matrix, we get three positive eigen-
wave-numbers q(s) with s = −1, 0, 1. The regular mode q(0)

represents the mode of the unperturbed medium, i.e., the
mode of the stationary case, and q(−1), q(1) represent the
irregular modes (i.e., waves that are excited due to the time-
modulation). We start with the regular mode q(0). Obviously
for m = 0 the regular mode satisfies q(m = 0) = √

εr0k0. We
can approximate the small bias from the unmodulated solution
(since m � 1) by substituting q(m = 0) on the left-hand side
(LHS) of Eq. (19). We get

q(0) ≈ √
εr0k0

[
1 + m̃2

8

(
k2
−1

k2
0 − k2

−1

+ k2
1

k2
0 − k2

1

)]
, (20)

where we define

m̃ = m
εr0 − 1

εr0
. (21)

For the irregular modes, we assume that since the two expres-
sions on the LHS of Eq. (19) increase rapidly for a different
q, and since both numerators are is small, we can approximate
the eigen-wave-numbers to be close to the values that nullify
the denominators. We also notice the numerators on the LHS
are of order O(m2), while the denominators are of order O( �

ω
),

which lead us to the demand for this fast modulation analysis
of O( �

ω
) � O(m2). Again, as we did in the calculation for q(0),

we substitute q(1)(m = 0) ≈ √
εr0k1 on the right-hand side

(RHS) of Eq. (19), and also in the left element of the LHS.
We note that the smaller the modulation amplitude m is, the
harder it is to excite the irregular modes. We do the same for
the s = −1 mode, by substituting q(−1)(m = 0) ≈ √

εr0k−1 on
the RHS of Eq. (19) and the right expression of the LHS. This
eventually leads to the following approximation:

q(s) ≈ √
εr0ks

[
1 + m̃2k2

0

8
(
k2

s − k2
0

)
]
, s = ±1. (22)

We note that unlike in [16], where we were satisfied with a
less accurate approximation for those modes, here we aim to
span the field, using the plane waves that correspond to these
eigen-wave-numbers, and therefore we require a more accu-
rate calculation to avoid artificial nonphysical singularities. To
be specific, note that using the less accurate approximation of
q(±1) ≈ q(±1)(m = 0) nullifies the matrix element b±1, which
makes it impossible to perform the following mode-matching
calculation at the interface between the two half-spaces [see
the discussion about Eqs. (42a) and (42b) below]. In Fig. 2 we
compare the analytical approximations in Eqs. (20) and (22)
to the numerical calculation via Eq. (12) both for N = 1 and
2 [the equation for N = 1 is also presented in Eq. (19)] for

FIG. 2. Dispersion relation for the slow modulation case, as ob-
tained by the expressions in Eqs. (20) and (22). The wave number q
of each one of the solutions is shown as a function of the normalized
frequency shift δω/ω0. Continuous lines represent the analytical
results, circles represent the numerical results for N = 1, and an x
mark represents the numerical results for N = 2. Here we see that
the calculation of the first three modes has almost no dependence
on N .

�/ω0 = 0.1, m = 0.2, εr0 = 0.7. We can see the dispersion
relations for the wave numbers for each mode, and we notice
that, unlike the slow modulation case, here the first three
modes have almost no dependence on the truncation size N
of the matrix, as demonstrated by the numerical calculation.

III. PLANE WAVE ILLUMINATION
OF INFINITE HALF-SPACE

A. General expression

We can now examine the problem of scattering an illumi-
nating plane wave by a time-modulated dielectric half-space.
Consider a ẑ polarized incident plane wave, as described in
Fig. 1,

�E inc = ẑẼ ie− j�ki ·�r . (23)

At the interface between the two half-spaces, the tangential
electric and magnetic fields are continuous. In our calcu-
lations, we use the positive eigenvalues from the previous
section, since we are interested in temporal modes that prop-
agate away from the discontinuity, in the positive y direction.
We start with a general expression for a given N . For every
temporal harmonic, the electric and magnetic fields that are
transmitted into the time-variant medium can be written as a
sum over the eigenmodes

Ẽ t
n =

N∑
s=−N

Ẽt,(s)
n , (24a)

H̃t
n =

N∑
s=−N

H̃t,(s)
n . (24b)
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The continuity demand for the electric field gives the fol-
lowing equations for every harmonic n:

Ẽ ie− jkxxδn0 + Ẽ r
n e− jkxx =

N∑
s=−N

Ẽt,(s)
n e− jq(s)

x x (25)

with kx = k0 sin θ i, and where the sum over the index s repre-
sents the summation over the modes of the transmitted field,
and δn0 is the Kronecker delta. Since the continuity needs to
be valid for every x, we can omit the exponents in Eq. (25),
and moreover write a generalized Snell’s law [62],

k0 sin θ i = q(s) sin θ t,(s), (26)

where θ t,(s) represents the angle of the transmitted field for
the temporal mode with index s. We can see that every eigen-
mode has a different transmission angle. We also see that the
reflecting angle equals the incident angle only for the nominal
frequency n = 0,

k0 sin θ i = kn sin θ r
n . (27)

The reduced expression for the electric fields gets the follow-
ing simplified form:

−Ẽ r
n +

N∑
s=−N

Ẽt,(s)
n = Ẽ iδn0. (28)

We can now move to the magnetic field. Here we need to
project the vector over the discontinuity surface. We get

cos θ r
n H̃ r

n +
N∑

s=−N

cos θ t,(s)H̃t,(s)
n = − cos θ iH̃ iδn0 (29)

We use the following relation between the transmitted mag-
netic and electric fields (see Appendix A):

q(s)H̃t,(s)
n = ẑ jε0εr0ωn

[
En + m̃

2
(En−1 + En+1)

]
. (30)

We can now rewrite Eq. (29) in terms of the relation between
the electric fields. To that end, for the transmitted field in the
time-variant medium, we use Eq. (30), and for the incident
and reflected fields we can simply use the free space relation
Er

n = ηHr
n , Ei

n = ηHi
n. We can now define new variables that

represent the effective wave velocity perpendicular to the in-
terface, in the vacuum, and in the time-variant medium for all
time harmonics,

ξ i
0 = c cos θ i, (31a)

ξ r
n = c cos θ r

n , (31b)

ξ t,(s)
n = cεr0

kn

q(s)
cos θ t,(s), (31c)

where c denotes the speed of light in vacuum. Thus we get the
following recursive equation the time harmonics:

ξ r
n Ẽ r

n +
N∑

s=−N

ξ t,(s)
n

[
Ẽ t,(s)

n + m̃

2

(
Ẽ t,(s)

n−1 + Ẽ t,(s)
n+1

)]

= ξ i
0Ẽ iδn0. (32)

The sets of equations in Eqs. (28) and (32) provide us with
2(2N + 1) equations. However, the total of unknowns in our
physical problem is 4N2 + 6N + 2. This number comes as
follows: 2N + 1 are Ẽ r

n for every n, and (2N + 1)2 are Ẽ t,(s)
n

for every n and s. To find additional 2N (2N + 1) equations,
we simply use the fact that every eigenmode of the trans-
mitted field satisfies the field relation between the harmonics
in Eq. (8). This gives us 2N (2N + 1) as required and not
(2N + 1)2 as one may argue since the demand is for the nul-
lification of the determinant in Eq. (12), which states that the
rows are linearly dependant. Let us define the matrix A(s). This
(2N )×(2N + 1) matrix represents the linearly independent
rows of the matrix Eq. (10a) for the eigenmode with index s.
To solve this set of linear equations, We define the following
matrices:

U = diag
[
ξ r
−N , . . . , ξ r

0 , . . . , ξ r
N

]
(33)

and

T (s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ
t,(s)
−N

m̃
2 ξ

t,(s)
−N 0

0 . . .
. . .

. . .
m̃
2 ξ

t,(s)
0 ξ

t,(s)
0

m̃
2 ξ

t,(s)
0

. . .
. . .

. . .
m̃
2 ξ

t,(s)
N ξ

t,(s)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

We also define the following vectors:

v = [0, 0, . . . , 0, 1, 0, 0, . . . , 0], (35a)

Ẽ
r = [

Ẽ r
−N , . . . , Ẽ r

−1, Ẽ r
0 , Ẽ r

1 , . . . , Ẽ r
N

]
, (35b)

Ẽ
t,(s) = [

Ẽ t,(s)
−N , . . . , Ẽ t,(s)

−1 , Ẽ t,(s)
0 , Ẽ t,(s)

1 , . . . , Ẽ t,(s)
N

]
, (35c)
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We now define the large matrix W , which is assembled from the previously defined matrices, and represents the group of all the
equations.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I I I · · · I I I
U T (1) T (2) · · · T (2N−1) T (2N ) T (2N+1)

0 A(1) 0
0 A(2) 0

. . . 0
0 A(2N+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

The unknown variables vector and the excitation vector are
expressed by concatenating the vectors defined in Eq. (35),

Ẽ = [Ẽ
r
, Ẽ

t,(−N )
, Ẽ

t,(−N+1)
, . . . , Ẽ

t,(N )
]T , (37a)

V = [
Ẽ iv, ξ i

0Ẽ iv, 0, . . . , 0
]T

. (37b)

The solution will be

Ẽ = W −1V . (38)

In the following sections, we examine a plane wave illumina-
tion at the critical angle of the nominal stationary medium. We
choose εr0 = 0.7, which leads to a critical angle of θ i

c = 0.99
radians.

B. Illumination of a slow quasistatic modulation medium

In the case of a slow quasi-statically modulated medium,
the frequencies of the temporal harmonics become very close
to each other. Therefore, it is reasonable to approximate the
discrete spectrum with a continuous one. Thus, we can simply
start with the standard Fresnel coefficient, and add the time
dependence in an adiabatic approach,

Er = cos θ i − √
εr (t ) cos θ t (t )

cos θ i + √
εr (t ) cos θ t (t )

, (39)

where εr (t ) = 1 + (εr0 − 1)(1 + m cos �t ) and θ t (t ) =
arcsin k0 sin θ i√

εr (t )
. In the time domain, we can write the

approximate slow modulation calculation,

Er (t ) =
∣∣∣∣cos θ i − √

εr (t ) cos θ t (t )

cos θ i + √
εr (t ) cos θ t (t )

∣∣∣∣
× cos

(
ω0t + ∠cos θ i − √

εr (t ) cos θ t (t )

cos θ i + √
εr (t ) cos θ t (t )

)
. (40)

For the case of slow modulation with �/ω0 = 0.01, in Fig. 3
we show the reflected field in the time domain (T = 2π/�)
for incidence at the critical angle of the nominal correspond-
ing stationary medium. As expected, we get total reflection
for half a cycle of the slow modulation, whereas, for the other
half, we get regular reflected and transmitted plane waves.

C. Illumination of a fast modulated medium

As previously stated, the fast modulation case is the inter-
esting one, and therefore the one we focus on for the rest of
the paper. We aim to achieve a closed-form expression for the
reflected field. To do so, we limit ourselves to the approxima-

tion of N = 1. We start with the relation from Eq. (8), and we
obtain

Ẽ t,(s)
1 = ψ

(s)
1 Ẽ t,(s)

0 , (41a)

Ẽ t,(s)
−1 = ψ

(s)
−1Ẽ t,(s)

0 , (41b)

with

ψ
(s)
1 = m̃εr0k1k0

2
(
(q(s) )2 − εr0k2

1

) , (42a)

ψ
(s)
−1 = m̃εr0k−1k0

2
(
(q(s) )2 − εr0k2

−1

) . (42b)

When examining the denominator of Eqs. (42a) and (42b),
we notice the need to use the correction in the calculation of
the irregular modes in Eq. (22), to avoid artificial singularities.
We can use the expressions for the eigenmode wave numbers
q(s), and note that for εr0 which is not too small [as we see in
Eq. (21), when εr0 is too small, the value of m̃ can be high,
which leads to a reduction in the accuracy of this approxi-
mation], that ψ

(1)
1 , ψ

(−1)
−1 have larger absolute value than the

rest—ψ
(1)
1 , ψ

(−1)
−1 = O( 1

m̃ ), where ψ
(0)
±1 , ψ

(1)
−1 , ψ

(−1)
1 = O(m̃).

We also expect a much stronger response for the regular mode
than for the irregular modes, i.e., |Ẽ t,(0)

0 | � |Ẽ t,(1)
0 |, |Ẽ t,(−1)

0 |.
Therefore, to ease the algebra, we can also use the assump-
tion for a strong response for the regular mode, and neglect
elements with O(m̃E (s 	=0)

0 ). Under these considerations, with
N = 1 the linear system in Eq. (38) is 6×6 and can be solved

FIG. 3. Reflected fields for an incident plane wave at the critical
angle, for the slow quasistatic modulation case. As expected, we get
total reflection for half a cycle of the slow modulation, whereas for
the other half we get regular reflected and transmitted plane waves.
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FIG. 4. Reflected fields for the fast modulation case. Blue, cal-
culation with N = 1; red, calculation with N = 2; green, analytic
approximation. (a) θ i = θ i

c = 0.99 rad and �/ω0 = 0.1; (b) θ i =
0.73 rad and �/ω0 = 0.2.

analytically for the reflected and transmitted electric field
harmonics. Using this solution, we can write the expression
for the reflection coefficients for the different time harmonics,

�±1 = 2ξ i
0

(
ψ

(0)
±1 − ψ

(±1)
±1 C±1

)
/D, (43a)

�0 = ξ i
0 − ξ

t,(0)
0 − (

ξ i
0 − B+1

)
C+1 − (

ξ i
0 − B−1

)
C−1

D
,

(43b)

where �n = Ẽ r
n

Ẽ i on the interface, and

D = ξ i
0 + ξ

t,(0)
0 − (

ξ i
0 + B+1

)
C+1 − (

ξ i
0 + B−1

)
C−1 (44)

with

B±1 = ξ
t,(±1)
0 + ξ

t,(±1)
0

m̃

2
ψ

(±1)
±1 , (45a)

C±1 = ξ
t,(0)
±1 ψ

(0)
±1 + ξ

t,(0)
±1

m̃
2 + ξ r

±1ψ
(0)
±1

ξ
t,(±1)
±1 ψ

(±1)
±1 + ξ r

±1ψ
(±1)
±1

. (45b)

We can now write the field in the time domain. We use the
following relation:

Er (t ) =
N∑

n=−N

∣∣Ẽ r
n

∣∣ cos
(
ωnt + ϕr

n

)
, (46)

where ϕr
n = ∠Ẽ r

n is the phase of Er
n . In Fig. 4(a) we can see the

reflected field from the interface for the fast modulation case
with �/ω0 = 0.1, at the critical angle of the nominal station-
ary medium as a function of time. This angle is particularly
interesting, because of the relatively high change of amplitude
expected as a function of time. We notice that there is a clear
difference in the reflection behavior in this fast-modulation
case compared to the slow quasistatic modulation that is
shown in Fig. 3. Here, the transition from regular reflection
to total reflection seems a little blurry, with the reflection
coefficients that are closer to one even at the lowest picks and
can even momentary pass it at the higher ones. We see excel-
lent agreement between the analytical approximation to the
numerical calculation for N = 1 and 2. The same agreement
is shown in Fig. 4(b) for a different incidence angle, away
from the critical angle, and with faster modulation. This case
will be further discussed below.

FIG. 5. Harmonics absolute values. Continuous line, analytic
approximation; o-mark, numerical calculation with N = 1; x-mark,
numerical calculation with N = 2. Red, |Er

0 |; blue, |Er
−1|; green, |Er

1 |;
black, |Er

−2|; yellow, |Er
2 |.

The variance in the amplitude of the reflected field depends
on the amplitude of the harmonics. As we can see, in Fig. 5,
harmonics n = ±2 are much weaker than n = ±1. Let us
define the harmonic energy ratio HER with

HER =
∣∣Ẽ r

−1

∣∣2 + ∣∣Ẽ r
1

∣∣2∣∣Ẽ r
−1

∣∣2 + ∣∣Ẽ r
0

∣∣2 + ∣∣Ẽ r
1

∣∣2 . (47)

The harmonic energy ratio is a function of both the modu-
lation frequency � and the incident angle θi. In Fig. 6 we
can see this ratio, and notice an interesting dependence, that
indicates that the higher the modulation frequency, the lower
the incident angle that brings the maximum harmonic energy
ratio HER. We also note that for small modulation frequencies
(but one that is still considered “fast” by our definition), we get
the maximum value of HER near the critical angle. Away from
the critical angle, the required modulation frequency increases

FIG. 6. The harmonic energy ratio HER (dB) between the en-
ergy of the harmonics and the total reflected energy as a function
of the incident angle and modulation frequency, with modulation
depth m = 0.2. Near the critical angle (here at θi = 0.99) the ratio
decreases fast when increasing the modulation speed.
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FIG. 7. Analytical approximation of the reflected y component
of the momentary Poynting vector, normalized with the average
incident y component of the Poynting vector. (a) θ i = θ i

c = 0.99 rad
and �/ω0 = 0.1; (b) θ i = 0.73 and �/ω0 = 0.2.

[see Fig. 4(b), which shows the reflected field with maximal
HER at �/ω0 = 0.2 and θ i = 0.73 rad].

It is also interesting to examine the energy density balance
in this case. We focus on the perpendicular to the surface
component of the Poynting vector, i.e., the y component. The
average incident y component of the Poynting vector satisfies

Si
avg,y = 1

2η
|Ẽ i|2 cos θ i. (48)

The momentarily reflected y component of the Poynting vec-
tor reads

Sr
y (t ) = 1

η

[
N∑

n=−N

∣∣Ẽ r
n

∣∣ cos
(
ωnt + ϕr

n

)]

×
[

N∑
n=−N

cos θ r
n

∣∣Ẽ r
n

∣∣ cos
(
ωnt + ϕr

n

)]
. (49)

By averaging a sufficiently long interval of time, one ob-
tains

Sr
avg,y = 1

2η

N∑
n=−N

∣∣Ẽ r
n

∣∣2 cos θ r
n . (50)

In the case, θ i = θ c
i the reflected average y component of the

Poynting vector is a little bit smaller than the incident y com-
ponent of the Poynting vector, Sr

avg,y/Si
avg,y = 0.95. This value

is much higher than the slow quasistatic case, in which for an
incident angle that satisfies θ i = θ c

i , the ratio is Sr
avg,y/Si

avg,y =
0.63. (Here we average over a complete time cycle of the slow
quasistatic modulation.) In Fig. 7 we bring the y component of
the momentarily reflected Poynting vector normalized to the
average incident Poynting vector, for both pairs of θ i, �/ω0.
As expected, for the case when the incident angle equals the
static critical angle [Fig. 7(a)], we can see momentarily values
that surpass the value of twice the incident Poynting vector.
We notice that the y component of the momentarily Poynting
vector in Fig. 7(a) has an interesting asymmetrical envelope.
The explanation for this behavior relies on the cross elements
in Eq. (49). We also note that each harmonic has a different
reflection angle [Eq. (27)], and hence is projected differently
over the y component. Lastly, we note that momentarily, per-
pendicular to the interface, the reflected power exceeds the

x

y
,r x y,

R
0y

sw
t

FIG. 8. The polar coordinate system.

impinging power. This indicates some form of instantaneous
amplification due to time modulation. However, as we ob-
served numerically by calculating the expression in Eq. (50)
on average the reflected power is smaller than the impinging
power. This is a result of the relatively slow modulation fre-
quency, obviously for faster modulation frequencies close to
twice the impinging wave frequency strong parametric effects,
and power amplification are prone to occur.

IV. EXCITATION BY A LOCALIZED
SOURCE—THE 2D GREEN’S FUNCTION

In this section, our objective is to calculate the 2D Green’s
function above the time-variant dielectric half-space for the
case of fast modulation, and we derive a spectral integral
representation for it (see Fig. 8). To accomplish this, we first
decompose the line source field into a spectrum of plane
waves. Subsequently, each of these plane waves interacts with
the medium using the theory derived in previous sections. This
enables us to write the reflected field as a spectral integral in
space and summation in time. Lastly, we asymptotically eval-
uate the resulting spectral representation and extract insights
regarding the different wave constituents propagating in this
particular medium.

A. Spectral representation and the source field

We assume that a line source is located above the dielec-
tric surface at x = 0, y = y0. The current density of the line
source can be expressed formally by �J = ẑIsδ(x)δ(y − y0),
where δ denotes the Dirac’s delta function. We utilize the
theory of electromagnetic wave propagation in plane-stratified
media to analyze this excitation problem. This can be done
since the problem is shift-invariant to the plane normal to
the y coordinate. With a straightforward calculation (see [63],
Chap. 5), we get the spectral electric field due to the source
when located in free space,

Êz = ωμIse− jky|y−y0|

2
√

2πky

. (51)

This field consists of a superposition of weighted plane
waves, propagating and evanescent. Each of these interacts
with the time-modulated lower half-space, according to the
reflection formulation we derived in the former sections,
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thus composing the spectral representation for the reflected
Green’s function. This is done below.

B. Spectral representation of the reflected field

Equation (51) provides the spectral plane wave amplitudes
required to construct the line source field. Using the linear-
ity of the problem, we can cast the scattered field of the
time-modulated permittivity by applying the scattering theory
developed in the previous sections for each of the impinging
plane waves that construct the source field. Then, we will
integrate the spectral parameter to go back to the physical
space domain. By Eq. (51), the impinging wave amplitude on
y = 0, for a plane wave with spectral parameter k0, reads

Ê i
z = − ωμIs

2ky

√
2π

e− jkyy0 . (52)

Once the impinging plane wave is known, including its direc-
tion of arrival, which is encoded by the spectral parameter kx,
we can calculate the spectral reflected field with

Ẽ r
n (�r) = Ẽ i

z�ne− j(kxx+kn,yy). (53)

We can now directly apply the result from Eq. (53) in
Eqs. (45a) and (45b) to obtain the reflected field amplitude,
for the spectral parameter kx, for any frequency harmonic n.
This reads

Ê r
n (�r) = − k0ηIs

2ky

√
2π

�ne− jk0,yy0 e− j(kxx+kn,yy). (54)

We note that the demand for continuous electric and magnetic
fields over the surface leads to kn,x = kx. The sum over the
spectral components gives us the scattered field by the 2D
point source,

Er
n (�r) = −k0ηIs

4π

∫ ∞

−∞

�ne− jk0,yy0 e− j(kxx+kn,yy)

k0,y
dkx (55)

with

kn,y =
√

k2
n − k2

x . (56)

The expressions for �n(kx ) are given in Eqs. (45a) and (45b),
with the effective velocities ξ i

0, ξ r
n , and ξ t,(s)

n given in Eq. (31),
where cos θ i is replaced with k0,y/k0, cos θ r

n with kn,y/k0, and
cos θ t,(s) with

√
(q(s) )2 − k2

x /q(s).
We now compare two different calculations to examine

our analysis. We choose the following physical values values:
εr0 = 0.7, �/ω0 = 0.1, m = 0.2, y0 = λ0/3. We can see in
Fig. 9 good agreement between the calculations.

(i) Direct integration of Eq. (55), with the numerically
calculated scattered field, via the inverse of the matrix W for
N = 2. To avoid singularities in our integration on the real kx

axis, we deform slightly our integration contour, with kx →
kx + j 2ε

π
arctan kx, where ε � π

2 k0 (in our case, we have cho-
sen ε = 0.001π

2 k0).
(ii) Direct integration as in the previous paragraph, but with

the approximated scattered field from Eqs. (45a) and (45b).
The results obtained by the aforementioned two calculation

approaches are depicted in Fig. 9. A good agreement between
the calculations is seen. This establishes the accuracy of the
spectral representation, and in particular the approximations

FIG. 9. The real part of the reflected electric field, normalized
with the absolute value of the reflected stationary field for n = 0
at the origin. (a) Approximate scattered field n = −1, (b) accurate
scattered field n = −1, (c) approximate scattered field n = 0, (d) ac-
curate reflected field n = 0, (e) accurate scattered field n = 1, and (f)
approximate scattered field n = 1.

for the reflected fields as discussed in detail in the preceding
sections. At this point, we are ready to analyze asymptotically
the spectral integral. This is done in the following section.

C. The physical interpretation of the singular and critical points
in the complex spectral plane

After confirming numerically the sufficient accuracy of the
direct spectral integration over the approximate reflection co-
efficients in Eqs. (45a) and (45b), we can now turn to analyze
the contribution of each critical point in the complex spectral
plane to the different wave constituents that are excited and
propagated in our system. These critical points are branch
points and stationary points. There are no pole singularities in
this case since no guided modes are expected in this half-space
setting. We notice that there are two different types of branch
points:

(i) Branch points of kn,y(kx ) in Eq. (56)—those branch
points are located in the fast-oscillating exponent of the in-
tegrand in Eq. (55).

(ii) Branch points of ξ t,(s)
n (kx )—those branch points are

located at the slowly varying amplitude of the integrand in
Eq. (55).

This difference will be discussed in the next section. The
branch points for k0,y can be eliminated by introducing a
transformation to the complex w angle plane [63]. Specifi-
cally, we define kx(w) = k0 sin w. Then, k0,y = k0 cos w, and
it contains no branch point in the complex w plane. Under
this transformation, the integration path termed the Sommer-
feld Integration Path (SIP) takes the form shown in Fig. 10.
Let us now define the following polar coordinates transform:
x = R sin θ, y = R cos θ − y0, where θ is the angle of specular
reflection by a stationary uniform impedance surface, i.e., if
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FIG. 10. The complex angle plane w. The Sommerfeld Integra-
tion Path (SIP) is shown by the red line. The branch points, shown
by green circles (of kn,y) and blue circles (of ξ t,(s)

n ), are different in
their location. kn,y is in p(w), the phase of the integral in Eq. (57),
and ξ t,(s)

n is in f (w), the spectral reflection coefficient.

the angle of incidence is equal to the angle of reflection (see
the illustration in Fig. 8). We can now write the integral in
Eq. (55) as

Er
n (�r) = −k0ηIs

4π

∫
SIP

�n(w)e− j p(w)dw, (57)

where the phase term reads

p(w) = k0,y(w)y0 + kx(w)x + kn,y(w)y. (58)

In Eq. (57), the phase p(w) and the amplitude which is pro-
portional to �n(w) are assumed to be slowly varying functions
in the complex integration variable w. To explore the analytic
properties of the integral, we first have to identify the singular
points of the integrated, which in our case are branch points
only.

We start by identifying the branch points. As mentioned
earlier, we are facing two types of branch points, which need
different treatments:

(i) Branch points in �n(w). Those branch points can
be found with the demand for nullifying ξ t,(s)

n (w). The

branch points are w = arcsin q(s)

k0
, w = π − arcsin q(s)

k0
,w =

− arcsin q(s)

k0
, w = −π + arcsin q(s)

k0
. With the specific param-

eters we consider in this section, the branch points are
±0.85, ±2.29 for s = −1, ±0.99, ±2.15 for s = 0, and
±1.18, ±1.96 for s = 1.

(ii) Branch point in p(w). These branch points can be
found with the demand for nullifying kn,y(w), and force us to
define the branch cuts such that the SDP is continuous. The
branch points are w = arcsin kn

k0
, w = π − arcsin kn

k0
,w =

− arcsin kn
k0

, w = −π + arcsin kn
k0

. With the parameters con-
sidered here, the branch points are ±1.12, 2.02 for n = −1,
±π

2 for n = 0 (this is an intuitive result, since for n = 0 we
have sin wb = 1), and ±π

2 ± 0.44 for n = 1.
We now aim to find the saddle point ws of the integrand

in Eq. (57). At the saddle point, the phase derivative to the
spectral variable nullifies, i.e., we demand p′(ws) = 0, where

p′ = −k0y0 sin w + k0x cos w − k2
0y sin w cos w√
k2

n − k2
0sin2w

. (59)

The form of the phase term p(w) is essentially similar to
that typically obtained in Green’s function representation in
stationary layered media problems, and thus it involves a
single and real saddle (stationary point) point that nullifies
p′ in Eq. (59). This can be shown, for example, by applying
simply the intermediate value theorem in the kx range where
the phase is real.

For the case in which we are far from the saddle
point value that nullifies the square root of Eq. (59),
we can approximate the saddle point using the assump-
tion of small bias δw from the specular angle θ . To
that end, we first assume a small correction over the
specular reflection angle, i.e., ws = θ + δws. Next we use
the following Taylor approximations: sin(θ + δw) ≈ sin θ +
δw cos θ, cos(θ + δw) ≈ cos θ − δw sin θ . Clearly, for n =
0, δws = 0. We follow the method from [43] and write the
spectral wave-vector components, with second-order Taylor
expansion, to easily calculate the stationary point. We get the
small bias from the specular angle for the resonance harmonic,

δws,n =
[
y0 sin θ − 1

2 R sin 2θ + k0 sin 2θ

2
√

k2
n−k2

0 sin2θ
(R cos θ − y0)

]
{−y0 cos θ − R sin2θ − [ k0 cos 2θ√

k2
n−k2

0 sin2θ
+ k3

0 sin 2θ

2(k2
n−k2

0 sin2θ )
3
2

]
(R cos θ − y0)

} . (60)

Clearly, for the nominal frequency, there is no bias as evi-
denced by the fact that the numerator nullifies for n = 0. We
further note that the expression for δws in Eq. (60) is valid
only for specular angles θ that are not grazing the surface,
with a notable difference between the different harmonics, as
we can see in Fig. 11. In the case of n = 1, larger θ leads to
somewhat less accurate results, while in the case of n = −1,
those angles lead to complex δws, which has no physical
meaning since it is an artifact of the approximated equation (as
stated previously, there exists a real value stationary point).

We note that since in our setup there is no spatial modulation,
δws,n needs to be an odd function for every n (we measure the
incident angle relative to the y axis).

In the following numerical calculations for the Green’s
function, despite having the approximation for the saddle
point location in Eq. (60), we solve numerically the equation
p′(ws) = 0 to avoid unnecessary approximations. Neverthe-
less, the approximation in Eq. (60) is of importance since it
highlights quantitatively important physical observations. In
asymptotic terms, the saddle point provides the angle of the
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FIG. 11. δws for every x, y. We can see the difference in be-
havior for the positive and negative harmonics. (a) Re{δws,−1},
(b) Im{δws,−1}, (c) Re{δws,+1}. The angle bias for the positive har-
monic is purely real for all the observation angles. Both negative and
positive harmonics allow us to use the approximation of small bias
from the specular angle far from the grazing angles of observation but
with a difference between them. While the positive harmonic leads
to somewhat inaccurate results for the grazing angles, the negative
harmonic leads to nonphysical complex angle bias results for those
angles.

ray that leaves the source, impinges the reflecting layer, and
approaches the observer. Once the saddle point is known, we
seek next to find the steepest descent path (SDP), along which
the integrand is not oscillatory; instead, it is monotonically
increasing up to a maximal value at the saddle point and
then monotonically decreasing to zero, passing between two
valleys in the complex w plane. This will be useful in the nu-
merical calculation of the deflected ray field that travels from
the sources, hits the discontinuity surface, and is reflected to
the observer. To find the SDP, we follow the standard recipe
that is described, for example, in [63] for a phase term with
a single isolated saddle point. On the SDP, by the definition,
p(w) = p(ws) − js2, with s ∈ (−∞,∞) denoting a real vari-
able along the path. As s goes from −∞ to ∞, the integrand

in Eq. (57) exhibits essentially Gaussian behavior, with a fast
decaying integrand away from the saddle (stationary) point.

The different SDP trajectories for each harmonic give rise
to interesting phenomena in the complex plane, since for a
large range of values of specular angles θ , each SDP encircles
different branch points. To demonstrate that, we shall now
explore three different observation point locations in space.
We note that unlike in [43], here the effect is symmetric since
there is no spatial modulation, and therefore no synthetic mo-
tion. These observation points in Cartesian coordinates (see
Fig. 8) are normalized with respect to the wavelength λ0, i.e.,
(x, y)/λ0:

[a] = (3, 4.5)λ0,

[b] = (3, 1.5)λ0,

[c] = (6, 0.25)λ0.

For each observation point, we calculate the total spectral
integral, as well as the isolated integration components by
which it is composed, i.e., an integration along the SDP, and
integration around the branch cuts. In Fig. 12 we bring the
map of the integration path and the singular points.

The phase term for the reflected wave may contain branch-
point singularities in the complex plane of the angle w.
Nevertheless, the SDP should remain continuous. Otherwise,
Cauchy’s principle that is used to connect the SDP integration
and the branch cut integrations with the original SIP integral
will not be applicable. To address this issue, we uniquely de-
fine the branch cut of kn,y(w) such that the square root results
in either a positive or negative real part in the upper Riemann
sheet, in a manner that the SDP will not cross the branch cut
trajectories for those branch cuts. Since the branch cuts for
ξ t,(s)

n (w) do not affect the phase of the integral (and therefore
do not affect the SDP trajectory), those branch cuts can be
crossed by the SDP. We use this property to ease our analysis
and define the branch cuts of ξ t,(s)

n the same way for every
observation angle. This is demonstrated in Fig. 12, where the
SDP trajectories are shown with the singular points on the
complex w plane. We first note in Fig. 12(a) that no branch cut
crossing is required by the SDP deformation, which implies
that the SDP integral strictly equals the SIP integral (see

FIG. 12. The complex plane, including the SDP, and branch points, in the complex plane for three observation points listed by [a]–[c] in
the text. Blue circles and the dotted blue line represent branch points and cuts of ξ t,(s)

n (w), and green circles and dashed lines represent branch
points and cuts of kn,y(w). The SDP trajectories of the harmonics are as follows: black, n = −1; red, n = 0; and magenta, n = 1. In the inset
of [b] we show the zoom-in of the SDP trajectories, of each harmonic, and we point out that each of them encircles different branch points.
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TABLE I. Comparison of the exact integral calculation to the sum of the SDP and branch cuts contributions.

Observ. point and harmonic Direct SDP Branch cut Relative error

[a], n = −1 −3.4 − 0.9j −3.4 − 0.9j 0
[a], n = 0 34.7+2j 34.7+2j 0
[a], n = 1 −4.5 + 0.2j −4.5 + 0.2j 0
[b], n = −1 −13.7 − 3j −6.1 − 0.97j −7.3 − 1.7j 0.03
[b], n = 0 26.1+114.3j 26.5+91j 0.6+22.1j 0.01
[b], n = 1 16.4 − 0.5j −7.6 + 3.8j 23.7 − 4.4j 0.02
[c], n = −1 −25 − 20.2j 3.1+0.5j −28 − 20.5j 0
[c], n = 0 305.5+20.4j 107.1+135.6j 192.8 − 120.1j 0.02
[c], n = 1 25.7+8.6j 4.1 − j 21.7+9.7j 0

Table I). T1We also note that although it seems that the SDP
trajectory of the n = −1 harmonic crosses the branch cut of
p for observation point [b] [see the black line in Fig. 12(b)],
this branch cut represents k1,y(w), which influences only the
SDP trajectory of the n = 1 harmonic. It is important to note
that either way we choose to define the Riemann sheet, it does
not affect our need to take its contribution into account, but
only the integration path needed. For the observation point [b],
we notice an interesting phenomenon, where each of the SDP
trajectories encircles different branch points. In Figs. 13–16
we show the phase of the kn,y(w) for the observation points
in cases [b] and [c], and the numerical path of the branch
cut integration. In the insets of Figs. 13 and 14 we show
the zoom-in of the SDP trajectories and the branch cuts for
case [b]. We can see that the SDP trajectory is never passing
through the discontinuity of the phase of the corresponding
kn,y(w).

In Table I we present a numerical comparison between the
direct numerical solution of the integral in Eq. (57), where
the reflected field is calculated by Eqs. (45a) and (45b), and
the sum of the isolated components: SDP integral and branch
cut integral. We can see a very good agreement between the
two calculations, as is evident by the error obtained when

FIG. 13. Phase of k−1,y(w) and integration path of the branch cut
numerical integration, angle [b]. Green circles represent the branch
points of kn,y(w) and blue circles represent the branch points of
ξ t,(s)

n (w).

summing up the two contributions—SDP and branch cuts—to
the direct spectral integration.

D. Time domain behavior

In this section, we examine the scattered field in the
time domain, with an emphasis on the critical points in the
complex plane. As we previously noticed in Table I, for
observation points [b] and [c] the branch cut contribution
is significant, and therefore it is interesting to separate the
time domain scattered field into the two contributions. For
each component, the time domain field can be calculated
with

Er (t ) =
1∑

n=−1

|Er
n | cos

(
ωnt + ∠Er

n

)
. (61)

The time domain scattered field is given in Fig. 17 for ob-
servation points [b] and [c]. To further analyze the behavior of
the different wave components, we introduce an additional ob-
servation point [d] that is located at a larger distance from the
source: [d] = (20, 0.5)λ0 . As expected, when the observation
angle grows further from the angle where the specular angle
meets the total reflection angle [b] to the observation angle [c],
the more dominant the branch cut contribution is compared to

FIG. 14. Phase of k1,y(w) and integration path of the branch cut
numerical integration - angle [b]. Green circles represent the branch
points of kn,y(w) and blue circles represent the branch points of
ξ t,(s)

n (w).
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FIG. 15. Phase of k−1,y(w) and integration path of the branch cut
numerical integration, angle [c]. Green circles represent the branch
points of kn,y(w) and blue circles represent the branch points of
ξ t,(s)

n (w).

the SDP contribution [see Figs. 17(a) and 17(b)]. This behav-
ior continues until the distance becomes significantly larger
(observation angle [d]), when the shading energy upward of
the lateral waves leads to a faster attenuation and therefore a
smaller contribution of the branch cut compared to the SDP
contribution [see Fig. 17(c)]. We note an interesting behavior
for observation point [b], where each harmonic crosses the
branch cut differently [see Fig. 12(b)]. In particular, since the
SDP trajectory of n = 1 crosses the branch cut further from
the branch point compared to the SDP trajectory of n = 0,
it has the same order of branch cut contribution despite the
small perturbation (m � 1), as we can see in Table I. This
phenomenon leads to a large variance in the envelope of the
lateral wave behavior in the time domain, as we can see in
Fig. 17(a). This can be interpreted as a turn “on” and “off”
behavior of the lateral waves, depending on the instantaneous

FIG. 16. Phase of k1,y(w) and integration path of the branch cut
numerical integration, angle [c]. Green circles represent the branch
points of kn,y(w) and blue circles represent the branch points of
ξ t,(s)

n (w).

FIG. 17. The time domain scattered field. Blue, SDP contribu-
tion; red, branch cut contribution; green, total field. (a) Observation
point [b], (b) observation point [c], and (c) observation point [d].

value of the refractive index, as expected in the adiabatic
picture of the process.

E. Asymptotic evaluation

In this section, we asymptotically evaluate the spec-
tral representations from the previous section and discuss
their limitations. We focus on the SDP integral only since
the branch-cut contributions have cumbersome expressions,
which are not very useful for gaining physical insight into the
scattered field dynamic. We follow the method from [43], and
use the asymptotic evaluation of integrals along the steepest
descent paths (SDPs) [63]. For the integral Eq. (57) in the
complex plane with |qψ | � 1, the SDP contribution can be
approximated with

Er
n,SDP ≈ −kηIs

4π
e− j π

4

√
2π

ψq′′(ws,n)
�n(ws,n)e− jψq(ws,n ), (62)

where ws,n = θ + δws,n is the saddle point. We note that this
approximation assumes that �n is slowly varying near the
saddle point, which is true only far from the singularities in
the complex plane. Therefore, this approximation is only valid
for large enough θ . Then, it can be shown that the second-
order derivative of p′′(ws,n) can be replaced by p′′(θ ) with no
significant loss in accuracy.

When comparing the results from Table I for observation
point [a] for n = −1, which represents high θ , we get a
relative error of 0.11. Although this relative accuracy seems
somewhat moderate, it can be explained by the asymptotic
behavior of Eq. (62). When increasing the distance for the
observer R (R → 4R), but staying at the same observation
angle θ , the relative error reduces to 0.03.
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FIG. 18. Time variant modulated half-space wire medium. The
wire media consist of a finite array of 301 (in width) over 151 (in
height) loaded infinite wires. The actual realization of such an infinite
wire can be obtained by placing a single period between the two
plates of a parallel plates waveguide. Then, an array of “wires” can
be built accordingly (see, e.g., [60], Sec. 5.5.4).

V. APPROXIMATE HOMOGENIZATION OF
TEMPORALLY MODULATED WIRE MEDIUM

In this section, we implement the theory from the previ-
ous sections and suggest a realization of the time-modulated
half-space that is based on the homogenization of a tem-
porally modulated wire medium (see Fig. 18). We follow
the homogenization approach from [16], with two notable
differences—here we are not necessarily at the close envi-
ronment of the plasma frequency, and there is no spatial
modulation. Assume that the loading capacitance on each of
the wires is modulated as

C(t ) = C0(1 + mc cos �t ), mc � 1. (63)

To be able to calculate the effective properties of the medium,
and implement the homogenization, we need to demand a
dense grid, i.e., ka, kb � 1, which eliminates the propagation
of high-order Floquet modes. We choose the following physi-
cal parameters: a = 0.1λ0, b = 0.1λ0, r0 = 0.0001λ0. In this
case, the recursive matrix elements read

an = cn = mc

2ωnC̃
, (64a)

bn = ωnL̃ − 1

ωnC̃
− ηkn

ab
(
k2

n − q2
) , (64b)

where C̃ = C0� and L̃ = L̃w + L̃0, L̃0 = L0/�, with

L̃w = η

2c

(
1

π
ln

b

2πr0
+

∞∑
l=1

coth (πal/b) − 1

π l
+ a

6b

)
,

(65)

where L0 is an inductance that may be connected in series
with the loading capacitor C(t ). Effectively it simply increases
the intrinsic wire inductance. The relation between the static
permittivity and the physical characteristics of the medium is

εr0 = 1 − η

abk0
(
ω0L̃ − 1

ω0C̃

) . (66)

To estimate the relation between the perturbation m of the
effective medium and the perturbation of the capacitance mc,
we can plug C̃ = �C(t ) in Eq. (66) and make a first-order

FIG. 19. The real part of the scattered electric field, normalized
with the absolute value of the scattered stationary field for n = 0
at the origin. (a) Wire medium scattered field n = −1, (b) effective
medium scattered field n = −1, (c) wire medium scattered field n =
0, (d) effective medium scattered field n = 0, (e) effective medium
scattered field n = 1, and (f) wire medium scattered field n = 1.

approximation,

εr0(t ) ≈ 1 − η

abk0
(
ω0L̃ − 1

ω0C̃

) + ηmc cos �t

abk0ω0C̃
(
ω0L̃ − 1

ω0C̃

)2 .

(67)

We can now compare the elements from Eq. (67) with the
expression from Eq. (4), and get the relation

m = ηmc

abk0ω0C̃(εr0 − 1)
(
ω0L̃ − 1

ω0C̃

)2 . (68)

As explained in detail in [16], the processes of homogeniza-
tion and temporal modulation are not entirely interchangeable.
Indeed, when calculating the irregular eigenmodes of the tem-
poral wire medium, we get a slight bias from the irregular
modes of the homogenized medium (see Appendix C). The
regular modes of both media are close to equal since we
demand a matching effective permittivity. In our case (εr0 =
0.7, m = 0.2), the equivalent physical parameters are L0 =
0.5 µH, C0 = 0.12 pF, � = 0.1λ0. The capacitance perturba-
tion is mc = −0.3. In Fig. 19 we present a comparison
between the numerical quasifrequency domain simulation of
the scattered field from a finite-size wire medium (301 wires
over the x axis and 151 wires over the y axis). The boundary
of the wire medium contains a small amount of gradual loss to
reduce the effect of scattering and diffraction from the edges
and corners of the medium and the calculation of the effective
temporally modulated dielectric (this calculation is the same
one as in Fig. 9, from the approximate integration). As ex-
pected, we get a good (but not exact) agreement between the
numerical simulation and the calculation of the homogenized
medium. The major difference between the wire medium and
the homogenized medium is the fact that the wire medium is
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highly dispersive, while the dielectric model assumed in this
paper is instantaneous—and hence nondispersive. In addition,
we note that the processes of homogenization and temporal
modulation are not entirely interchangeable [16], and there-
fore the two problems lead to some differences in the irregular
modes. These differences need to be added to the fact that
higher Floquet modes are not completely negligible, hence the
moderate differences between the analytical homogenization
calculation to the numerical simulation of the wire medium.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have developed a rigorous excita-
tion theory for time-modulated dielectric infinite half-space.
The theory enables the derivation of the separated wave
components that comprise the Green’s function. From a math-
ematical standpoint, these are related to different singularities
and unique points in the complex spectral plane. Although
here for the sake of concreteness we considered the Green’s
function due to a source above a discontinuity, the theory
can be applied to various excitation scenarios, such as the
excitation of a multilayered modulated media. The advantage
of having a Green’s function is twofold: from the physical
perspective, it provides a deeper understanding of the wave
problem, while from the numerical perspective it may be use-
ful in numerical schemes based on integral equations for the
excitation and propagation in time-modulated media. Lastly,
we implement the suggested technique on a homogenized
temporally modulated wire medium and identify the strengths
and limitations of this technique.
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APPENDIX A: THE RELATION BETWEEN THE
TIME-HARMONICS OF THE ELECTRIC FIELD

We aim to formulate the relation between the frequency
harmonics in the time-variant medium. For the nth harmonic,
we can write

�∇ × �Hn = ẑ jε0ωn

[
εr0En + m

2
(εr0 − 1)(En−1 + En+1)

]
.

(A1)

Since the eigenmodes are plane waves, their spatial depen-
dence is expressed as e− j �q·�r . Then Eq. (6) can be written as

− 1

ε0
j �qn × �Hn = ẑ jωn

[
εr0En + m

2
(εr0 − 1)(En−1 + En+1)

]
.

(A2)

Then from Faraday’s law,

ẑq2
nEz = − jωnμε0

(− j �qn)

ε0
× �H . (A3)

The last two equations yield the following relation between
the time-harmonics of the electric field:(

q2
n − εr0k2

n

)
En = mk2

n

2
(εr0 − 1)(En−1 + En+1), (A4)

FIG. 20. Slow modulation relative error �q(s)
(T ) = |q(s) − q(s)

(T )|/
|q(s)

(T )| between the direct calculation of the wave-number modes for
N = 20 to the approximate Toeplitz calculation from Eq. (16). “x”
marks represent �

ω0 = 0.001, and “o” marks represent �

ω0 = 0.01.

q(s)
T represent the approximate Toeplitz modes, and q(s) represent the

direct calculation modes.

where kn = ωn/c. Equation (A4) holds for every observation
point �r in the medium. Since the eigenfields are plane waves,
we can write the following relation: En = Ẽne− j �qn·�r , where
Ẽn is the field amplitude. Combining both these statements
gives us the following momentum conservation relation: q =
qn = qn+1. Therefore, Eq. (A4) can be now written without
the index n for q,

(
q2 − εr0k2

n

)
En = mk2

n

2
(εr0 − 1)(En−1 + En+1). (A5)

APPENDIX B: SLOW QUASISTATIC
MODULATION EIGENVALUES

When analyzing the effect of the frequency modulating, we
need to take into account the case of a very slow modulation,
i.e., O( �

ω
) � O(m2). In this case, the matrix in Eq. (10a) can-

not be truncated. In Eqs. (15a) and (15b), we show the matrix
elements with the approximation of neglecting completely the
frequency modulation, i.e., �

ω
≈ 0, to be able to approximate

the matrix to a Toeplitz matrix, which has a closed form for
its eigenvalues. Let us examine the quality of this approxi-
mation. In Fig. 20, we can see an example for the parameters
m = 0.2, εr0 = 0.7 for the relative error of this approximation
for two slow modulation frequencies �

ω
= 0.01, �

ω
= 0.001,

and as expected, the slower the modulation, the lower the
error of this approximation. Since we have noticed that the
Toeplitz approximation is valid for small enough modulation
frequency, we can now use the straight formula for the eigen-
modes in Eq. (16) to choose N , with the tolerable error of the
calculated modes.

APPENDIX C: WIRE MEDIUM EIGENMODES

To calculate the eigenmodes of the temporally modulated
wire medium, we follow the method of [16] and write the
approximate determinant of the truncated matrix with N = 1.
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We get the following equation:

(mc)2

4C̃2

[
1

X−1(ω, q)
+ 1

X1(ω, q)

]
= X0(ω, q) (C1)

with

Xn(ω, q) = ωn

[
ωnL̃ − 1

ωnC̃
− ηkn

ab
(
k2

n − q2
)
]
. (C2)

We can now calculate the irregular modes, in the same way
that we did for the temporally modulated permittivity. In the

case of zero perturbation,

q(±1)(mc = 0) =
√

k2
±1 − ηk±1

ab
(
ω±1L̃ − 1

ω±1C̃

) . (C3)

Again, we plug in the expression for the eigenmode for the
case of zero perturbation in Eq. (C1), and we get the more
accurate expression for the eigenmodes. Due to the required
equality for the unperturbed regular eigenmodes (to calculate
the effective stationary permittivity of the medium), we expect
that the bias of the irregular modes will be greater than the
regular ones. The corrected expressions get the form

q(±1) =
√√√√√k2

±1 − ηk±1

ab
{
ω±1L̃ − 1

ω±1C̃
− 1

ω0[
X0(ω,q(±1) (mc=0))

(mc )2

4C̃2

− 1
X∓1(ω,q(±1) (mc=0))

]

} , (C4a)

q(0) =
√√√√k2

0 − ηk0

ab
{
ω0L̃ − 1

ω0C̃
− (mc )2

4ω0C̃2

[
1

X−1(ω,q(0) (mc=0)) + 1
X1(ω,q(0) (mc=0))

]} . (C4b)

For the wire medium, we get the eigenmodes q(−1) = 13.9, q(0) = 17.5, q(1) = 20.3, and for the effective homogenized
temporally modulated medium, we get the eigenmodes q(−1) = 15.6, q(0) = 17.5, q(1) = 19.6.
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