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Optimization of nonequilibrium free energy harvesting illustrated on bacteriorhodopsin
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Harvesting free energy from the environment is essential for the operation of many biological and artificial
systems. We use techniques from stochastic thermodynamics to investigate the maximum rate of harvesting
achievable by optimizing a set of reactions in a Markovian system, possibly under various kinds of topological,
kinetic, and thermodynamic constraints. This question is relevant for the optimal design of new harvesting
devices as well as for quantifying the efficiency of existing systems. We first demonstrate that the maximum har-
vesting rate can be expressed as a constrained convex optimization problem. We illustrate it on bacteriorhodopsin,
a light-driven proton pump from Archaea, which we find is close to optimal under realistic conditions. In our
second result, we solve the optimization problem in closed-form in three physically meaningful limiting regimes.
These closed-form solutions are illustrated on two idealized models of unicyclic harvesting systems.
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I. INTRODUCTION

Many molecular systems, both biological and artificial,
harvest free energy from their environments. Biological or-
ganisms require free energy to grow and replicate [1,2],
and many species undergo selection for increased harvesting
[3–6]. Artificial harvesting systems have also been con-
structed and optimized in the field of synthetic biology [7–14].
The optimization of free energy harvesting is thus a central
problem both in biology and engineering.

As an example, consider a harvesting system such as a
biological metabolic network that converts glucose to adeno-
sine triphosphate (ATP) [15]. Suppose that the kinetic and
thermodynamic parameters of one or more reactions can be
optimized, either by natural selection or artificial design. What
is the maximum rate of free energy harvesting that the network
can achieve, and what are the kinetic and thermodynamic
parameters that achieve it? These questions are relevant both
for design of optimal harvesting devices and for quantifying
the efficiency of existing systems.

In this paper, we use techniques from stochastic thermo-
dynamics to derive bounds on maximum rate of free energy
harvesting. We consider a harvesting system in nonequilib-
rium steady state which is coupled to an external source of
free energy, an internal free energy reservoir, and a heat bath.
The setup is well-suited for studying the kinds of small-scale
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systems usually considered in stochastic thermodynamics
[16], where assumptions of local detailed balance and steady
state are justified. The steady-state assumption is reasonable
in many molecular systems, where there is a separation of time
scales between internal relaxation and environmental change.

We suppose that the system’s dynamics can be separated
into two kinds of processes, termed baseline and control. The
baseline processes, which are held fixed, mediate the coupling
to the external source of free energy. Control refers to all
other processes which can be optimized for increasing the
harvesting rate at which free energy flows into the internal
reservoir. The particular separation of baseline/control gen-
erally depends on domain knowledge about the system and
the scientific question at hand. For example, to study the
efficiency of a particular reaction in a metabolic network, that
reaction may be treated as control while the other reactions
are baseline. The baseline/control separation is similar to the
distinction in control theory between “plant” (a given system
with fixed dynamical laws) and “controller” (the part that
undergoes optimization) [17].

In our first set of results, we demonstrate that the opti-
mization of the harvesting rate can be expressed as a convex
optimization problem. The optimal solution of this problem
determines both the maximum harvesting rate and the specific
control processes that achieve that maximum. Importantly, the
optimization can also account for various types of constraints
on the possible network topology, kinetic timescales, and ther-
modynamic forces of the control processes.

We illustrate our results on bacteriorhodopsin (Fig. 1),
a proton-pumping membrane protein. Bacteriorhodopsin is
a photosynthetic system found in Archaea, with close
relatives in bacteria [20,21]. It is also used in many
artificial light-harvesting systems [7–9,11]. Using pub-
lished thermodynamic and kinetic data, we develop a
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FIG. 1. Left: Bacteriorhodopsin is a biomolecular free energy
harvesting machine [18], illustrated in its trimer configuration by
Goodsell (CC-BY-4.0) [19]. Right: during each turn of the bacteri-
orhodopsin photocycle, the molecule absorbs a photon and pumps a
proton against the cell’s membrane potential.

thermodynamically consistent stochastic model of bacte-
riorhodopsin. We demonstrate that, under normal operat-
ing conditions, the bacteriorhodopsin system is remarkably
efficient.

Our main result is formulated as a convex optimization
problem which must be solved numerically in the general
case. In the second part of this paper, we derive closed-form
solutions of this problem for three physically meaning-
ful regimes: the weakly driven linear response regime, the
irreversible deterministic regime, and the intermediate near-
deterministic regime. These solutions illustrate how optimal
harvesting reflects the “alignment” between free energy input
and relaxation dynamics. We illustrate these closed-form so-
lutions on two unicyclic systems, which may be interpreted as
idealized models of two types of nonequilibrium harvesting
devices.

We finish our paper with a brief Discussion. There we
relate our approach to previous work, including maximization
of power output in steady-state engines and flux balance anal-
ysis. We also propose directions for future research.

II. SETUP

We consider a system with n mesostates described by the
distribution p = (p1, . . . , pn) ∈ Rn

+. The distribution evolves
according to the master equation ṗi = ∑

j Ri j p j , where Rji

is the transition rate i → j (Rii = −∑
j R ji). Usually p rep-

resents a probability distribution of a stochastic system with
Markovian dynamics [22,23]. However, under an appropriate
choice of units, it may also represent chemical concentrations
in a deterministic chemical reaction network with pseudo-
first-order reactions, such as an enzymatic cycle [24,25].

The system is coupled to a heat bath at inverse temper-
ature β = 1/kBT , an internal free energy reservoir, and a
nonequilibrium environment that serves as an external source
of free energy. For example, in a metabolic network, one may
consider an internal reservoir of ATP and an external source
of glucose. The system has nonequilibrium free energy

F (p) =
∑

i

pi fi − β−1S(p) , (1)

where S(p) := −∑
i pi ln pi is the Shannon entropy and fi is

the internal free energy of mesostate i [26].
As mentioned in the Introduction, we suppose that the

dynamics of the system can be separated into baseline and
control processes. We make one important assumption in our

analysis: the control processes are only coupled to the heat
bath and internal free energy reservoir, but not directly to
the external source of free energy. This means that control
can only increase harvesting by interacting with the baseline,
rather than directly increasing the inflow of free energy from
the external source. For example, in a metabolic network, con-
trol processes cannot directly increase the import of glucose,
but they can affect the rate at which glucose is converted into
ATP by optimizing intermediate reactions and mechanisms.
Control processes may be driven by the internal reservoir
(e.g., coupled to ATP hydrolysis) or undriven (e.g., enzymes).

To formalize the baseline/control distinction, we write the
rate matrix as R = Rb + Rc, where Rb

ji and Rc
ji represent the

transition rate of i → j due to baseline and control. Given dis-
tribution p, the increase of system free energy due to baseline
processes is

Ḟb(p) =
∑
i, j

piR
b
ji( f j + β−1 ln p j ) . (2)

The increase due to control processes is defined analogously
but using rate matrix Rc,

Ḟ c(p) =
∑
i, j

piR
c
ji( f j + β−1 ln p j ) . (3)

The harvesting rate is the rate at which free energy flows
to the internal reservoir. The harvesting rate due to baseline
processes is

Ġb(p) =
∑
i, j

piR
b
jig

b
ji +

∑
i

piġ
b
i , (4)

where gb
ji is the free energy increase in the internal reservoir

due to a single baseline transition i → j and ġb
i is the rate

of free energy flow to the internal reservoir due to internal
transitions within i (assuming i is a coarse-grained mesostate).
Similarly, the harvesting rate due to control processes is

Ġc(p) =
∑
i, j

piR
c
jig

c
ji , (5)

where gc
ji is the free energy increase in the internal reservoir

due to control transition i → j. For simplicity, we assume that
control cannot exchange free energy with the internal reser-
voir due to internal transitions within i. Negative values of
gb

ji, ġb
i , gc

ji indicate driving done on the system by the internal
reservoir.

For a concrete example of how (Rb, Rc, f , gb, ġb, gc) are
defined for a real biomolecular system, see the bacteri-
orhodopsin example below and the Supplemental Material
SM-II [27].

As standard in stochastic thermodynamics, we assume that
control processes obey local detailed balance (LDB) [16,28],

ln(Rc
ji/Rc

i j ) = β
(

fi − f j − gc
ji

)
for Rc

ji > 0 . (6)

Equation (6) guarantees that the irreversibility of each con-
trol transition is determined by the amount of free energy
dissipated by that transition [29]. Observe that the right side
accounts for free energy changes of the system ( fi − f j) and
the internal reservoir (gc

ji), but not the external source. This
formalizes the assumption that control processes do not ex-
change free energy with the external source.
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We do not require that the baseline rate matrix obeys LDB,
although it will often do so for reasons of thermodynamic
consistency.

III. MAXIMUM HARVESTING RATE

Suppose that the combined rate matrix R = Rb + Rc has
the steady-state distribution π, which satisfies Rbπ + Rcπ =
0. The total steady-state harvesting rate due to baseline and
control is

Ġ tot = Ġb(π) + Ġc(π). (7)

We seek to maximize this harvesting rate by varying the pa-
rameters of the control processes (Rc, gc) while holding the
baseline parameters ( f , Rb, gb, ġb) fixed. Finding this maxi-
mum would allow us to determine fundamental bounds on
harvesting and to evaluate the efficiency of existing harvesting
systems.

However, Ġ tot is not a concave function of the parameters
(Rc, gc), therefore maximization of Eq. (7) is not a convex
optimization problem and is not generally intractable. In the
following, we reformulate this maximization as a convex opti-
mization with a physically interpretable objective. This allows
us to solve the optimization numerically and, at least for some
special cases, also in closed form.

To begin, we rewrite (7) as

Ġ tot = Ḟb(π) + Ġb(π) − �̇(Jc)/β, (8)

where we introduced the Schnackenberg formula for the en-
tropy production rate (EPR) [22],

�̇(Jc) =
∑
i �= j

Jc
ji ln

(
Jc

ji/Jc
i j

)
� 0 , (9)

where Jc
ji = πiRc

ji � 0 is the one-way probability flux due to
control transition i → j.

Equation (8) has an intuitive physical interpretation: the
total steady-state harvesting rate is the rate of free energy
increase in the system and internal reservoir due to base-
line, minus the rate of dissipation (EPR) due to the control
fluxes. The derivation of this result proceeds in two steps
(see SM-I A [27] for details). The first step is to show that
�̇(Jc) = −β[Ḟ c(π) + βĠc(π)], which follows by combining
(9) with (3) and (6). This states that the EPR due to control is
proportional to the free energy loss in the system and internal
reservoir due to control. The second step is to show that
Ḟb(π) + Ḟ c(π) = 0, which follows because the left side is
the overall derivative of the nonequilibrium free energy F ,
as defined in (1), therefore it must vanish in steady state.
The result (8) then follows by combining with Eq. (7) and
rearranging.

Importantly, when expressed in the form (8), the harvesting
rate is a concave function of the steady-state distribution π

and the control fluxes Jc (see SM-I B [27]). To find the
maximum harvesting rate, we optimize (8) with respect to π

and Jc. Note that varying π and Jc is equivalent to varying
the control rate matrix via Rc

ji = Jc
ji/πi and control driving gc

ji
via Eq. (6). However, when performing this optimization, we
must also ensure that π is the steady-state distribution induced
by the fluxes Jc. This condition can be expressed as a linear
constraint on π and Jc via Rbπ + BJc = 0. Here Jc is treated

as a vector in Rn2
and B ∈ Rn×n2

is the incidence matrix with
entries Bk,i j = δki − δk j , which guarantees Rcπ = BJc.

Combining, we arrive at the bound Ġ tot � G , where

G = sup
(p,J)∈�:Rb p+BJ=0

Ḟb(p) + Ġb(p) − �̇(J)/β. (10)

In this expression, � is the feasible set of distributions p and
control fluxes J. At a minimum, � ensures the validity of
the distribution p and the fluxes J via the linear constraints∑

pi = 1, pi � 0, and Jji � 0. We write sup instead of max
because the set of allowed fluxes is potentially unbounded.
Equation (10) implies a tradeoff between the total gain of free
energy in the system and internal reservoir due to baseline
(which depends only on p) and the dissipation due to control
fluxes (which depends only on J).

Importantly, the feasible set � can include additional con-
vex constraints, which may introduce topological, kinetic,
thermodynamic, etc. restrictions on the control processes.
Topological constraints restrict which transitions can be
controlled; e.g., Jji = 0 ensures that control does not use
transition i → j. Kinetic constraints restrict time scales
of control processes, as might reflect underlying physical
processes like diffusion; e.g., an upper bound on control
transition rate Rc

ji = Jji/pi � κ can be enforced via Jji �
piκ . Thermodynamic constraints bound the affinity [22] of
control transitions; e.g., Jjie−A � Ji j � JjieA ensures that
| ln(Ji j/Jji )| � A. The above examples all involve linear
constraints. An example of a nonlinear, but still convex, con-
straint is an upper bound on the EPR incurred by control,
�̇(J) � �̇c

max.
Equation (10) is our first main result. Importantly, G is

defined purely in terms of the thermodynamic and kinetic
properties of the baseline process, along with desired con-
straints encoded in �. Thus, G is the maximum steady-state
harvesting rate that can be achieved by any allowed control
processes, given a fixed baseline. In addition, Eq. (10) in-
volves the maximization of a concave objective given convex
constraints. This is equivalent to the minimization of a convex
objective, thus Eq. (10) is a convex optimization problem that
can be efficiently solved using standard numerical techniques
[30]. The optimization also identifies an optimal steady-state
distribution p∗ and control fluxes J∗ that achieve the maxi-
mum harvesting rate G (or come arbitrarily close to achieving
it). These fix the optimal control rate matrix via Rc∗

ji = J∗
i j/p∗

i .
Thus, our optimization specifies an upper bound on harvest-
ing as well as the optimal control strategy that achieves this
bound.

There is an important special case in which our optimiza-
tion problem is simplified. Suppose that � does not enforce
additional constraints on p and J (more generally, we permit
topological constraints if the graph of allowed transitions is
connected and contains all n states). Then, the objective is
maximized in limit of fast control, J → ∞ and �̇(J) → 0.
We can then write Eq. (10) as an optimization over steady-
state distributions:

G := max
p:

∑
pi=1,pi�0

Ḟb(p) + Ġb(p) . (11)

The optimal p∗ is unique as long as the baseline rate ma-
trix is irreducible. The optimal control rate matrix is very
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FIG. 2. (a) Comparison of the actual harvesting rate Ġ tot at dif-
ferent electrical potentials �ψ , versus maximum rate G achieved by
optimizing five intermediate transitions (color scheme from Fig. 1,
right). (b) Efficiency Ġ tot/G computed while separately optimizing
each transition, with colors as in (a). (c) The actual steady state
π versus the optimal distribution p∗ when optimizing the N ↔ O
transition (at �ψ = 120 mV).

fast (Rc∗ → ∞) and obeys detailed balance for p∗, Rc∗
ji p∗

i =
Rc∗

i j p∗
j . For details, see the SM-I C and SM-I D [27].

IV. BACTERIORHODOPSIN

We illustrate our results using bacteriorhodopsin, a light-
driven proton pump from Archaea [18].

We define a thermodynamically consistent model of the
bacteriorhodopsin cycle using published thermodynamic [31]
and kinetic [32] data (see SM-II [27]). The system operates in
a cyclical manner, absorbing a photon and pumping a proton
during each turn of the cycle (Fig. 1, right). Specifically, the
transition M1 → M2 pumps a proton out of the cell. This
stores free energy in the internal reservoir (the membrane
electrochemical potential),

gM2M1 = −gM1M2 = e�ψ − (ln 10)β−1�pH , (12)

where e is the elementary charge constant, �ψ is the mem-
brane electrical potential, and �pH is the membrane pH
difference. The other transitions in the cycle do not affect the
free energy of the internal reservoir (gi j = 0 and ġi = 0).

During the transition bR → K , the system leaves the
ground state by absorbing a photon at 580 nm, thereby har-
vesting free energy from the external source and dissipating
some heat to the environment at T = 293◦ K. This transition
is much faster (picoseconds) than the other transitions in the
photocycle (micro- to milliseconds). As commonly done in
photochemistry [33], we coarse-grain transitions O → bR and
bR → K into a single effective transition O → K .

To explore the performance of bacteriorhodopsin under
different conditions, we vary the membrane electrical poten-
tial �ψ between −75 and 350 mV, while using a realistic
fixed �pH = −0.6 [34]. We show the actual harvesting rate
(Ġ tot in units of kBT/sec) at different potentials as a black
line in Fig. 2(a). At a plausible in vivo �ψ = 120 mV [34],
the model exhibits a steady-state current of 11.5 protons/sec,
each proton carrying 6.1 kBT of free energy, corresponding to
Ġ tot ≈ 70 kBT/sec. The largest output is achieved near the in
vivo potential: at lower potentials, the cycle current saturates
while the free energy per proton drops, and at higher potentials
the pump stalls.

Next, we quantify the maximum harvesting rate that can
be achieved by optimizing the parameters of individual tran-
sitions. This analysis is relevant for understanding limits
on increasing bacteriorhodopsin output, whether via natu-
ral selection or biosynthetic methods [35–38]. Interestingly,
such transition-level optimization may be feasible in bacteri-
orhodopsin, as the properties of several transitions are known
to be individually controlled by particular amino acid residues
in the bacteriorhodopsin protein [35,39–41].

For each reversible transition in the cycle, for instance
N ↔ O, we define the baseline as the rest of the cycle without
that transition. We then optimize control under the topological
constraint that only the relevant transition (e.g., N ↔ O) is
allowed. The analysis is repeated for all transitions, except
for the (coarse-grained) photon-absorbing transition O ↔ K ,
which is in accordance with our assumption that control can-
not directly exchange free energy directly with the external
source.

Figure 2(a) shows G , the maximum Ġ tot achievable by
optimizing each reversible transition. In Fig. 2(b), we also
show the efficiency Ġ tot/G � 1 for each transition, that is the
ratio of the actual and maximum harvesting rate.

Several transitions, such as K ↔ L, L ↔ M1, M1 ↔ M2,
are remarkably efficient (� 85%) near in vivo membrane po-
tentials. The reprotonation step N ↔ O is the least efficient
(∼40%) and also has the slowest kinetics of the five transitions
studied in Fig. 2. This suggests that N ↔ O is a bottleneck
whose optimization can have a big impact on the harvesting
rate, while optimization of other nonbottleneck transitions has
a more limited effect.

Observe that G for M1 ↔ M2 does not depend on �ψ .
This is because G is a function of baseline properties, which
do not depend on the membrane potential when M1 ↔ M2 is
treated as control. Conversely, M1 ↔ M2 as control transition
can be optimized by varying the membrane potential and/or
scaling up the forward/backward rates. Our results show that
this transition is very close to optimal at in vivo membrane
potentials and kinetic time scales.

Optimal distributions p∗ are also obtained, with a typical
one shown in Fig. 2(c). We find a consistent shift toward state
O, which accelerates the reset of the cycle and increases the
flux across the photon-absorbing transition O → K .

In the SM-II [27], we illustrate how the efficiency of bacte-
riorhodopsin transitions can be evaluated under other types of
constraints, including constraints on thermodynamic affinity,
dynamical activity, and kinetics.

As a final analysis, instead of optimizing individual exist-
ing transitions in the bacteriorhodopsin cycle, we ask to what
extent the harvesting rate can be increased by any additional
control processes. For example, this could involve an addi-
tional enzyme that shifts the cycle’s steady state by permitting
a new transition between distant states (e.g., L ↔ N), possibly
yielding an increase of the proton pumping rate.

In this case, we treat the entire bacteriorhodopsin system
as the baseline, and we do not introduce any additional con-
straints on the steady-state distribution or the control fluxes.
Then, as shown in the SM-I D [27], the objective in Eq. (10) is
achieved in the limit of fast control, and the maximum harvest-
ing rate can be found by solving the simplified optimization
problem (11).
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FIG. 3. (a) Comparison of the actual harvesting rate Ġ tot at dif-
ferent electrical potentials �ψ , versus maximum rate G achieved
by fixing the bacteriorhodopsin cycle as baseline and allowing any
additional transitions as control. (b) Efficiency of the actual bacteri-
orhodopsin cycle with respect to the optimized cycle. (c) The actual
steady state π and optimal distribution p∗ (at �ψ = 120 mV).

For this setup, Fig. 3(a) shows the baseline (actual) harvest-
ing rate Ġ tot and the maximum harvesting rate G at varying
�ψ . Interestingly, both peak at around the in vivo values of
the membrane potential. In Fig. 3(b), we show that the actual
bacteriorhodopsin cycle harvests approximately 50% of the
fundamental bound given by G (at in vivo values of �ψ).
This suggests that bacteriorhodopsin is remarkably close to
optimal, relative to improvements that could be achieved by
introducing any additional control processes.

We also show the actual steady-state distribution and the
optimal distribution p∗ in Fig. 3(c). The optimal distribution
increases the probability of state O, similar to the optimal
distribution found by optimizing the N ↔ O transition, shown
in Fig. 2(c). However, unlike Fig. 2(c), where most of the extra
probability is taken from state N , in Fig. 3(c) the probability
is drawn more uniformly from other states in the cycle, indi-
cating the presence of distributed control.

V. LIMITING REGIMES

Our results are stated via an optimization problem that
generally does not have a closed-form solution. In our second
set of results, we identify closed-form expressions in three
physically meaningful regimes. For simplicity, here we focus
on the simplified objective (11). See the SM-III [27] for de-
tailed derivations, including analysis of the conditions under
which each of these three approximation are valid.

For convenience, we first rewrite (11) as

G = max
p

−Ṡb(p)/β +
∑

i

piφi , (13)

where Ṡb(p) = −∑
i, j Rb

i j p j ln pi is the increase of the Shan-
non entropy of p under Rb and for convenience we defined
φi := ġb

i + ∑
j Rb

ji( f j − fi + gb
ji ). The objective (13) contains

a nonlinear term −Ṡb(p)/β quantifying the decrease of
information-theoretic entropy and a linear term

∑
i piφi quan-

tifying the flow of thermodynamic free energy.
Next, we consider three regimes.
Linear response (LR) applies when the optimal distribution

p∗ is close to the steady-state distribution of the baseline rate
matrix Rb. Suppose that Rb is irreducible and has a unique

steady state πb with full support. We introduce the “additive
reversibilization” of Rb,

Ai j = (
Rb

i j + Rb
jiπ

b
i

/
πb

j

)/
2. (14)

The rate matrix A obeys detailed balance (DB) for the steady-
state distribution πb and has the same dynamical activity [42]
on all edges as Rb. A may be considered as a DB version of
Rb, and it is equal to Rb when the latter obeys DB [43,44].
Let uα indicate the αth right eigenvector of A normalized as∑

i(u
α
i )2/πb

i = 1, and λα the corresponding real-valued eigen-
value (λ1 = 0). The LR solution for the maximum harvesting
rate and the optimal distribution is

G ≈ Ġb(πb) + β
∑
α>1

|
α|2
−λα

, p∗ ≈ πb + β
∑
α>1


α

−λα

uα,

(15)

where 
α = (φ + β−1RbT
ln πb)T uα/2 quantifies the harvest-

ing “amplitude” for mode α.
Equation (15) has a simple interpretation. In addition to

the baseline harvesting rate Ġb(πb), G contains contributions
from the relaxation modes of A, with each mode weighed by
its squared amplitude and relaxation time scale −1/λα . All
else being equal, G is large when slow modes have large har-
vesting amplitudes. The optimal p∗ shifts the baseline steady
state πb toward mode α in proportion to that mode’s har-
vesting amplitude and relaxation timescale, thereby optimally
balancing the tradeoff between harvesting and dissipation.

The Deterministic (D) regime applies when the nonlinear
information-theoretic term in Eq. (13) is much smaller than
the linear thermodynamic term. We can then ignore the for-
mer, turning Eq. (13) into a simple linear optimization. This
gives the approximate solution

G ≈ φi∗ p∗
i ≈ δi∗i, (16)

where i∗ = arg maxi φi is the optimal mesostate. This solution
concentrates probability on a single mesostate, effectively ig-
noring the cost of maintaining this low-entropy distribution.

The Near-Deterministic (ND) regime lies between Linear
Response and Deterministic ones. By perturbing p∗ around
δi∗i, we can decouple the values of pi in the objective function
(11). The maximal harvesting rate and optimal distribution in
this regime are then given by

G ≈ φi∗ + β−1
∑
i �=i∗

Rb
ii∗ (ln p∗

i − 1),

p∗
i ≈

{
Rb

ii∗
/[

β(φi∗ − φi ) + Rb
i∗i∗

]
i �= i∗

1 − ∑
i:i �=i∗ p∗

i i = i∗
. (17)

The ND solution also has a simple interpretation. It per-
turbs the D solution by shifting probability towards states with
high transition rates away from the optimal state (large Rb

ii∗ )
and small decreases in harvesting (φi∗ − φi). This balances the
benefit of harvesting against the cost of pumping probability
against Rb

ii∗ .

VI. EXAMPLE: UNICYCLIC SYSTEMS

We illustrate our closed-form solutions using two simple
models, both based on a unicyclic system with n states. The
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FIG. 4. (a) Unicyclic system where free energy � is harvested by
a single transition. (b) Unicyclic system where free energy per unit
time θ is harvested when the system is in a particular mesostate.

baseline dynamics involve diffusion across a one-dimensional
ring, with left and right jump rates set to 1. The baseline
steady state is a uniform distribution, πb

i = 1/n, with no cyclic
current. We assume a uniform free energy function, fi = 0 for
all i.

We consider two different scenarios. In the first scenario,
shown schematically in Fig. 4(a), � of free energy is harvested
each time the system carries out the transition 1 → 2, so

gb
21 = −gb

12 = �,

and gb
i j = ġb

i = 0 otherwise. This scenario may be interpreted
as an idealized model of a biomolecular harvesting cycle, such
as a transporter. In the second scenario, shown schematically
in Fig. 4(b), free energy is harvested at a rate of θ per unit time
when the system is located in one particular mesostate i∗ = 1,
so

ġb
1 = θ , (18)

and gb
i j = ġb

i = 0 otherwise. This scenario may be interpreted
as an idealized model of error correction or self-assembly,
where free energy can only be harvested when the system is
in some particular functional mesostate.

For both scenarios, we evaluate the maximum harvesting
rate G and the optimal distributions achievable by adding any
possible control to the system, without constraints. We report
exact values found by numerical optimization of Eq. (13), as
well as the LR, ND, and D approximations described above.
To calculate the LR values, we exploit the fact that the base-
line unicyclic rate matrix is a circulant matrix with a simple
eigendecomposition [45]. Full details of the derivations for the
two scenarios are provided in the SM-IV [27].

We first report results for the first scenario from Fig. 4(a),
where free energy is harvested during the transition 2 → 1.
Observe that baseline harvesting rate vanishes, Ġb(πb) = 0,
since harvesting free energy requires a cyclic current. In
Fig. 5(a), we plot the maximum harvesting rate G and its
approximations as a function of the supplied free energy �.
For small �, LR applies and the maximum harvesting rate is

G ≈ β�2(n − 1)/4n2. (19)

The optimal distribution in the LR regime, shown in Fig. 5(c),
builds up in equal increments starting from i = i∗ + 1 until
the optimal state i∗ = 1, after which it drops sharply. For
large �, the D regime is relevant and the optimal distribution
concentrates on the optimal state i∗ = 1, so

G ≈ � . (20)

FIG. 5. (a) Maximum harvesting rate G for the unicyclic sys-
tem from Fig. 4(a), as a function of supplied free energy �. Exact
value is found numerically, LR, D, and ND are calculated using
approximations described in the text. Exact and approximate optimal
distributions p∗ in ND (b) and LR (c) regimes are shown, with the
optimal state i∗ = 1 located in the middle of the histograms. (d) G
and its LR approximation for different � and system sizes n.

At intermediate �, the ND regime applies, which gives

G ≈ � − β−1{2 + ln[2(β� − 1)(β� − 2)]}. (21)

The optimal distribution in the ND regime, shown in Fig. 5(b),
allocates p∗

i∗−1 = 1/(β� − 2), p∗
i∗+1 = 1/(2β� − 2) and the

rest to the optimal state p∗
i∗ .

Next, we consider the second scenario from Fig. 4(b),
where free energy is harvested when the system is in the
optimal mesostate i∗ = 1. Observe that the uniform baseline
steady state assigns 1/n probability to the optimal state, thus
in this scenario the baseline harvesting rate is Ġb(πb) = θ/n.
To facilitate comparison with the first scenario, we focus
on the increase of the maximum harvesting rate relative to
baseline,

�G := G − Ġb(πb) = G − θ/n. (22)

In Fig. 6(a), we show �G and its approximations as a function
of the free energy supply rate θ . For small θ , LR applies and
the maximum harvesting rate is

�G ≈ βθ2/48 . (23)

The optimal distribution in the LR regime, shown in Fig. 6(c),
is symmetric about the optimal state i∗ = 1. For large θ , the

FIG. 6. (a) Maximum harvesting rate G for the unicyclic system
from Fig. 4(b), as a function of supplied free energy rate θ . Exact
value is found numerically, LR, D, and ND are calculated using
approximations described in the text. Exact and approximate optimal
distributions p∗ in ND (b) and LR (c) regimes are shown, with the
optimal state i∗ = 1 located in the middle of the histograms. (d) G
and its LR approximation for different θ and system sizes n.
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D regime is relevant and the optimal distribution concentrates
on the optimal state i∗ = 1, so

�G ≈ θ − θ/n . (24)

At intermediate θ , the ND regime applies, giving

�G ≈ θ − θ/n − 2β−1[1 + ln(βθ − 2)]. (25)

The optimal distribution in the ND regime, shown in Fig. 6(b),
allocates p∗

i∗−1 = p∗
i∗+1 = 1/(βθ − 2) and the rest to p∗

i∗ .
There are some similarities among the two harvesting sce-

narios. For both scenarios, in the LR regime, the increase of
the harvesting rate scales quadratically in the supplied free
energy (� or θ ) and linearly in inverse temperature β. This
scaling reflects the fact that the optimal strategy has to balance
harvesting (� or θ contributions) with the thermodynamic
cost of maintaining a low entropy p∗ (β contributions). In
the ND and D regimes, G scales linearly in the supplied free
energy and loses its linear dependence on β. Thus, outside
of LR, the thermodynamic cost of maintaining a low entropy
distribution has a minor effect on the optimal strategy.

There are also important differences between the two sce-
narios. For the first scenario, the optimal strategy maintains
an asymmetric p∗, thereby generating a net flux across the
transition 2 → 1. In the LR regime, the cost of maintaining
this asymmetric distribution grows with the system size n,
therefore the maximum harvesting rate in Eq. (19) scales as
∼O(n−1). This is shown in Fig. 5(d), where we plot G and
its LR approximation at various � and n. For the second sce-
nario, the optimal strategy maintains a peaked but symmetric
p∗. Remarkably, the cost of maintaining this distribution does
not depend on system size n. This is shown in Fig. 6(d), where
we plot �G at various θ and n.

VII. DISCUSSION

In this paper, we consider the problem of optimizing free
energy harvesting in a nonequilibrium steady-state system.
We demonstrate that this problem can be formulated as a
constrained convex optimization problem, and we use this
formulation to study optimal harvesting and efficiency in
the bacteriorhodopsin proton pump. We also solve the con-
vex optimization problem in closed-form for three limiting
regimes, as illustrated on two unicyclic models discussed
above.

A key step in our analysis is to separate the dynamics
of the system into separate contributions from fixed baseline
processes and optimizable control processes. We note that,
in stochastic thermodynamics, the baseline/control separation
has been previously used to study autonomous Maxwellian
demons [46,47], counterdiabatic driving [48], and the cost of
maintaining a nonequilibrium steady state [49,50].

We derive a simplified bound on the maximum har-
vesting rate in Eq. (13), which is achieved in the limit
of fast dissipation-less control. Interestingly, this expression
involves a tradeoff between two terms, one information-
theoretic and one thermodynamic. At first glance, this
resembles information/free-energy tradeoffs characteristic
of Maxwellian demons and other “information engines”
[51–58]. However, there are important differences. In a typical
information engine, there is no external source of driving

and information serves as fuel, which can be converted into
β−1 ln 2 of thermodynamic free energy per bit. In our case,
there is an external source of free energy that in some cases
can be harvested more effectively by reducing the system’s
statistical entropy, e.g., by concentrating it on favorable states.
Here, a bit of information can increase the harvesting rate
by a very large amount (much larger than β−1 ln 2/bit), and
information acts more like a catalyst than a fuel [59,60].
Loosely speaking, this is similar to how information encoded
in the sequence of a metabolic enzyme is not itself fuel, but
rather allows metabolism to harvest a large amount of fuel
from elsewhere.

We finish by mentioning some connections to previous
work and future directions. First, our approach may be related
to prior work on optimizing power output and free energy
transduction in steady-state molecular machines [29,61–66].
Here we consider the general problem of optimizing a set of
control processes, given a fixed baseline and possible addi-
tional constraints on kinetics, topology, and thermodynamics.
Previous work does not make the baseline/control distinction;
instead, it is mostly concerned with the problem of optimizing
system performance with respect to a small set of specific
parameters or observables of interest, such as the location of
free energy barriers [62,63,65,66], efficiency [66], and the size
of fluctuations [61,64].

There is also an interesting relation between our work and
flux balance analysis (FBA) [67–69]. The goal of FBA is to
identify deterministic fluxes in biological metabolic systems
that optimize biomass production, or other similar metrics
of performance. This can be formulated as a linear program,
which may include linear constraints that enforce thermody-
namically favored reaction directions [69] (interestingly, in
Ref. [70], the authors propose a version of FBA that also
accounts for the entropy production rate). Our setting and
optimization are different from FBA and its variants. We seek
to optimize free energy harvesting at the stochastic level, and
our objective involves nonlinear information-theoretic contri-
butions to free energy. In addition, our optimization involves
both the steady-state distribution p and fluxes J, which allows
us to optimize harvesting due to to internal transitions within
coarse-grained mesostates, as in Fig. 4(b). Nonetheless, inves-
tigating the relationship between our approach and FBA is an
interesting direction for future work.

Another interesting direction for future work is to consider
stochastic fluctuations of free energy harvesting. In partic-
ular, the thermodynamic uncertainty relation may be used
to study tradeoffs between the entropy production rate, the
average harvesting rate (the quantity Ġ tot considered here), the
fluctuations in the amount of harvested free energy [64,71].
For biomolecular systems, large fluctuations in harvesting can
lead to starvation, suggesting that minimizing fluctuations
may be of significant biological importance.

Finally, an interesting direction for future work is to con-
sider free energy harvesting in a system embedded in a fluctu-
ating environment. For example, one may imagine a harvest-
ing system in an environment with fluctuating sugar sources,
or with a fluctuating amount of available light. In this setting,
it is natural to optimize the harvesting rate under the topo-
logical constraint that control fluxes cannot directly change
the state of the environment, for instance using bipartite
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models of Markovian dynamics [72]. It would be interesting
to investigate how, under the optimal harvesting strategy, the
information flow from the environment to the system varies
with the abundance of free energy and complexity of the
environment.
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