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Energetic cost of microswimmer navigation: The role of body shape
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We study the energetic efficiency of navigating microswimmers by explicitly taking into account the geometry
of their body. We show that, whereas arguments based solely on propulsion efficiency lead one to conclude that
needle-like swimmers are most energetically efficient, disk-like swimmers rotated by flow gradients naturally
follow time-optimal trajectories. The coupling between body geometry and hydrodynamics thus leads to a
generic trade-off between the energetic costs associated with propulsion and navigation, which is accompanied
by the selection of a finite optimal aspect ratio. We derive from optimal control theory the steering policy ensuring
overall minimum energy dissipation, and characterize how navigation performances vary with the swimmer
shape. Our results highlight the important role of the swimmer geometry in realistic navigation scenarios.
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I. INTRODUCTION

Biological microswimmers explore their surroundings in
search of food, oxygen, light, mating partners, or to escape
predators [1] by means of a variety of swimming mecha-
nisms [2,3]. The energy for propulsion needs to be obtained
by exploiting locally available energy sources such as light
or nutrients, but their supply is often limited [4]. Bacterial
micron-size swimmers such as E. coli use their flagella to
manipulate the relative significance of translational and ro-
tational friction [5] in order to control their trajectory [6].
Although it has been argued that the metabolic cost of motion
is negligible for bacteria [7–9], larger or faster organisms
such as Paramecium devote a substantial part of their energy
turnover to this task [10,11]. In this context, optimizing re-
sources for navigation appears crucial for microswimmers,
while it may find application to the design of artificial
swimmers [12].

The swimming efficiency of microswimmers can be
optimized by designing strategies that minimize the dissi-
pated energy needed to displace the ambient fluid [13–18].
Such optimization problem has been the subject of re-
cent investigation, leading to the statement of minimum
dissipation theorems [19,20]. When the swimmer moves
in a nonuniform environment, a complementary approach
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consists in minimizing the energy dissipated along its
trajectory by exploiting the advection provided by the ex-
ternal flow field. Many microswimmers are indeed equipped
with receptors that allow them to measure environmental
cues such as flow velocity gradient [21], light [22], or
chemical concentrations [23], and use this information to
navigate [6,24].

As the total energy spent for motion generally grows with
the travel time, most theoretical studies on optimal navigation
focus on finding time-minimizing trajectories [25–32], with a
few exceptions [33,34]. A classical example is the Zermelo
problem [35] in which a point-like particle moves at constant
speed in a stationary flow field and navigates by adjusting its
self-propulsion direction. The corresponding optimal steering
policy typically depends on the local flow gradients [25,35].
Real swimmers, on the other hand, have a definite size and
shape, and are thus naturally rotated by flow field gradients.
Elongated bodies like that of E. coli, for instance, undergo
Jeffery rotations [36] in shear flows [37–39]. The coupling
between flow and swimmer shape is in fact relevant to model
encounter rates of microswimmers with moving food sources
[40], but its effect on the energy efficiency of navigation
remains so far unknown.

In this work, we revisit the problem of optimal navigation
taking into account the hydrodynamic implications of the
swimmer geometry. We show that, due to a hitherto unnoticed
formal relationship between Jeffery rotations and the time-
optimal Zermelo steering protocol (ZSP), non-navigating
disk-shaped swimmers always follow minimal time trajecto-
ries. Considering spheroidal swimmers moving at constant
speed, we derive from optimal control theory (OCT) [41]
the steering policy that allows them to navigate at minimum
energetic cost and discuss how constraints on travel time
and energy optimization select a nontrivial optimal swimmer
aspect ratio. To highlight the robustness of our findings, we
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FIG. 1. Smart swimming by “dumb” swimmers. (a) Flow stream-
lines created by (from left to right) disk-like, spherical, and
needle-like swimmers with optimal propulsion [19]. (b) Trajectories
of the nonsteering swimmers of the three types shown in panel (a),
all starting from r0 (green dot) and ending in rT (magenta dot).
The colored arrows indicate the instantaneous swimming orientation,
while the black ones sketch the linear shear flow. (c) The translational
and rotational dissipation coefficients obtained from the minimum
dissipation theorem [19] as functions of the spheroid aspect ratio λ.
(d) Arrival time t0

a at the target vs λ normalized by its optimal value
at λ → 0 for three different speeds v0. (e) Optimal aspect ratio λopt

as function of σ ; legend is the same as (d).

illustrate them in two distinct navigation problems, namely
trajectory planning in a linear shear flow and taxis-based nav-
igation in a random flow.

II. OPTIMAL NAVIGATION
WITH FINITE-SIZE SWIMMERS

We consider a swimmer moving at constant self-propulsion
speed v0 in the presence of a stationary flow f (r). We assume
this swimmer to be axisymmetric, such that its dynamics is
determined by that of its position r and heading direction û as

ṙ = v0û + f (r), ˙̂u = ω × û, (1)

where the angular velocity ω comprises contributions from ac-
tive torque and passive rotations. Namely, ω = ωa + ωf (r, û),
where ωa is the angular velocity self-generated by the
swimmer—hereafter referred to as the control—while for
axisymmetric bodies in low Reynolds fluids the passive con-
tribution takes the general form ωf (r, û) ≡ û × [(� + αS) ·
û] [36,42]. � is the flow rotation and S the strain-rate tensor.
The coefficient α, known as the Bretherton constant [42], is
set by the swimmer’s shape. Here, we focus on spheroidal
swimmers for which α = (λ2 − 1)/(λ2 + 1) [36], where the
aspect ratio λ ≡ b/a is defined such that b and a are the dimen-
sions of the spheroid along and transverse to û, respectively.
As illustrated in Fig. 1(a), λ < 1 (>1) thus corresponds to
disk-like (needle-like) swimmers, while λ = 1 for spherical
swimmers.

In the navigation problems studied below, the initial and
target swimmer positions are specified on a given subspace
(a point or a line), while its initial and final orientations are

unspecified and determined by the optimization. The effi-
ciency of navigation is measured by the cost,

C ≡
∫ ta

0
dτ [Pdiss + σ ], (2)

where ta is the total travel time. The first contribution to
Eq. (2) is the total energy dissipated by the swimmer dur-
ing navigation, while the parameter σ weights the relative
importance of travel time and energy minimization. σ is di-
mensionally equivalent to a power, and can thus be interpreted
as the acceptable power that can be delivered by the swim-
mer along its trajectory. In general, Pdiss can be decomposed
as the sum of a translational and a rotational component,
Pdiss ≡ μs[γt (λ)v2

0 + s2γr (λ)|ωa|2], where s is a characteristic
dimension of the swimmer—here defined as the radius of a
sphere with equal volume—and μ denotes the viscosity of
the medium. γt and γr are two dimensionless coefficients
that relate the dissipated power to the translational and an-
gular swimming velocities, and take the form of effective
drag coefficients. A lower bound on them, corresponding to
the data shown in Fig. 1(c) and achieved with theoretically
optimal propulsion, is given by the minimum dissipation the-
orem [19]. This lower bound is expressed in terms of two
drag coefficients of bodies with the same shape, one with a
no-slip boundary condition and one with a perfect-slip (i.e., no
tangential stress), on the surface as γi = (R−1

PS;i − R−1
NS;i )

−1 with
i ∈ {t, r}. For a spheroid with no-slip boundary both transla-
tional and rotational drag coefficients are known analytically
[43] while for those with perfect-slip boundary we use the
numerical results reported in [44]. Here, the aspect ratio λ is
varied keeping the swimmer’s volume constant, such that the
spheroid dimensions a = λ−1/3s and b = λ2/3s.

III. SMART SWIMMING BY “DUMB” SWIMMERS:
THE ROLE OF SHAPE

To investigate how the geometry of a microswimmer’s
body alone affects its navigation performance, we first ex-
amine the case of a “dumb” swimmer that has no control
over its orientation. For now, the active rotation ωa is there-
fore set to 0. We consider a two-dimensional linear shear
flow f (r) = (vfy/�) x̂, where r = (x, y) and vf , � > 0. The
point-to-point navigation problem consists in determining the
initial orientation û(0) allowing travel between r0 = 0 and
rT = �x̂. In what follows, we use dimensionless quantities
such that lengths, times, and energies are expressed in units
of �, �/vf , and μ�svf , respectively. In the absence of con-
trol, the dimensionless equations of motion (1) depend only
on the (dimensionless) swimmer speed v0 and the aspect
ratio λ, such that the arrival time t0

a is fully determined by
these two parameters. Hence, the cost function (2) reads C0 =
t0
a (v0, λ)[γt (λ)v2

0 + σ ].
Fixing v0, Fig. 1(b) shows that needle-like swimmers

(λ > 1, orange triangle) essentially swim straight to the tar-
get and thus remain within weak flow regions. In contrast,
disk-like swimmers (λ < 1, green circle) are more strongly
rotated by the shear flow, such that they follow more curved
trajectories and benefit from an additional boost. As shown
in Fig. 1(d), swimmers with lower aspect ratio then naturally
reach the target faster and this effect is amplified when de-
creasing the swimmer speed.
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FIG. 2. Energy efficiency of navigating swimmers. (a) Cost associated with optimal trajectories as function of the travel time for several
values of the aspect ratio. ta is normalized by the optimal value achieved by ZSP. Symbols indicate the values t0

a and C0 obtained in absence
of active steering. (b) Relative cost variation as function of the relative travel time improvement with respect to the nonsteering case [see
text for definitions; same legend as in (a)]. Inset: �C as function of the swimmer aspect ratio for ta = topt. (c) Comparison between the
trajectory-averaged dissipated power resulting from the optimal control (orange triangles) and the compensating protocol ωc

a (blue circles) as
function of the aspect ratio for ta = topt.

In fact, Eq. (1) with ωa = 0 and λ → 0 (α = −1) cor-
responds to the minimum travel time policy for point-like
swimmers, i.e., ZSP [35]. Therefore, thanks to passive rota-
tions from the flow a thin disk-shaped particle self-propelling
along its axis of symmetry always follows time-optimal trajec-
tories without the need to actively steer. Although t0

a generally
increases with the aspect ratio, the required power to put the
swimmer into motion—here set by the coefficient γt (λ)—is
a decreasing function of λ [Fig. 1(c)]. These opposing trends
hence imply the existence of a finite optimal aspect ratio λopt

that minimizes the overall cost C0. Consistently, for the linear
shear flow considered here, λopt is a decreasing function of σ

(increasing function of v0), as reported in Fig. 1(e).

IV. NAVIGATION OF “SMART”
SWIMMERS: THE COST OF STEERING

So far, we have focused on swimmers that are passively
rotated by the flow and have shown that their geometry alone
introduces a trade-off between energy and travel time op-
timization. We now discuss how this trade-off impacts the
navigation performances of actively steering swimmers. The
optimal protocol for the control ωa that minimizes the cost
(2) is determined using OCT [41,45]. Defining p and pû as
the Lagrange multipliers enforcing Eq. (1), it follows from
Pontryagin’s minimization principle that the optimal value
of the control is obtained from ∇ωaH = 0 with the effective
Hamiltonian H ≡ Pdiss + σ + p · ṙ + pû · ˙̂u, leading to ωa =
(pû × û)/[2s2γr (λ)]. The dynamics of the momenta are in
turn given by

ṗ = −∇rH = −∇r[p · f (r) + pû · (ωf × û)], (3a)

ṗû = −∇ûH = −v0 p − ∇û[pû · (ωf × û)]. (3b)

The minimum dissipation steering protocol (MDSP) is then
obtained by integrating the dynamics of (r, û, p, pû) with
boundary conditions that depend on the navigation problem of
interest (details about OCT and numerical methods are given
in Appendix A). For the point-to-point navigation in a shear
flow with unspecified initial and final particle orientations
introduced in the previous section, the initial and final values
of p need to be determined, while r(0) = r0, r(ta ) = rT, and
pû(0) = pû(ta ) = 0.

In the presence of active steering, the optimization problem
additionally depends on the (dimensionless) swimmer size s.
Since actively steering swimmers can in principle reach the
target in a time ta �= t0

a (λ), we now set σ = 0 and directly use
ta as a control parameter. Additionally, we set s = 0.1 and
v0 = 1/8, thus focusing on the most relevant regime where
the swimmer size and self-propulsion strength are lower than
the characteristic velocity and length scale of the flow. We
checked that these choices do not qualitatively influence our
results. Below, we characterize the navigation performance of
the swimmer varying the remaining two parameters ta and λ.

Figure 2(a) displays the dimensionless cost C associated
with optimal trajectories as a function of the arrival time ta for
several values of λ. As they actively steer, navigating swim-
mers can now reach the target in a time lower than t0

a [indi-
cated by the symbols in Fig. 2(a)]. Remarkably, for all shapes
the accessible arrival times extend to the minimum value topt

achieved for λ → 0 in the absence of control. Although for
ta > t0

a the cost decreases monotonically with λ, the regime
ta < t0

a exhibits nontrivial crossovers with needle-shaped
swimmers becoming increasingly less energy efficient at
smaller times. Hence, the optimal shape of navigating swim-
mers generally depends on the prescribed trajectory time.

Focusing on the regime ta � t0
a , we show in Fig. 2(b)

the relative cost variation �C ≡ (C − C0) associated with a
relative travel time improvement �t ≡ (ta − t0

a ). The initial
decrease of �C with −�t attests that, although the swimmer
has to actively steer in order to reach the target in a time
ta � t0

a , it does so while spending less energy. This feature,
which we expect to hold generally, can be understood from the
expression of the cost: C = ∫ ta

0 dτ [γt (λ)v2
0 + s2γr (λ)|ωa|2].

While it is reasonable to assume that for ta ≈ t0
a the control

amplitude |ωa| � |ta − t0
a |, such that the contribution to C of

the active steering � (ta − t0
a )2, the translational dissipation

decreases linearly with ta. Therefore, so long as the swimmer
travels over distances much larger than its size (s � 1), the
cost increase resulting from active steering remains subdom-
inant for ta � t0

a . As t0
a → topt for decreasing λ, spherical or

disk-shaped swimmers can then keep saving energy when
optimizing their travel time down to topt. For the navigation
setup considered here, we find that such scenario occurs for
λ � 2 [inset of Fig. 2(b)], while �C/C0 at ta = topt exhibits a
minimum at λ � 1.73.
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As MDSP is able to provide the minimum time trajectories
naturally followed by disk-like swimmers, it is instructive
to compare it with a naive implementation of ZSP. Namely,
we consider a control ωc

a(λ) ≡ ωf (λ = 0) − ωf (λ) that com-
pensates for the shape-dependent hydrodynamic rotations and
implements the steering protocol minimizing travel time for
a point-like swimmer. As shown in Fig. 2(c), for needle-
like swimmers following MDSP the average dissipated power
〈Pdiss〉 ≡ C/ta is about an order of magnitude lower than that
associated with the simpler compensating control ωc

a. Con-
versely, for disk-like swimmers which barely steer, 〈Pdiss〉 ≈
γtv

2
0 in both cases.

V. NAVIGATION IN A COMPLEX ENVIRONMENT

We now discuss how the above results extend beyond the
restricted setting of point-to-point navigation by generalizing
our approach to the case of a stationary two-dimensional
Gaussian random flow with characteristic intensity vf and
correlation length �. Namely, the random flow is defined from
a random stream function ψ (r) having zero mean and Gaus-
sian correlations [46]: 〈ψ (r)ψ (r′)〉 = 1

2�2v2
f e−|r−r′|2/(2�2 ). For

the simulation results shown below, a single instance of the
random flow in a periodic square domain of length L = 25
was generated (details in Appendix C).

Taking inspiration from tactic behaviors of some biological
and synthetic microswimmers, which are able to preferably
move against gravity or along gradients of, e.g., chemicals
or light intensity [21–24,47], we study here a more realistic
navigation problem requiring the swimmer to travel from an
initial position on a vertical line at x = 0 to a finish line
located at x = 4L [see Fig. 3(a)]. In order to account for this
new navigation task, we revised the cost function as CRF ≡
−κ[x(ta ) − x(0)] + ∫ ta

0 dτ Pdiss, where the ∝ κ boundary term
is intended to maximize the displacement along the direction
set by the tactic response. Using dimensionless units, we are
left with 4 parameters: λ, v0, s, and κ . From OCT, the revised
MDSP for a given initial position r0 is then obtained by inte-
grating Eqs. (1) and (3) with boundary conditions r(0) = r0,
p(ta ) = −κ x̂, and pû(0) = pû(ta ) = 0. However, in practice
solving such boundary value problem using, e.g., shooting
methods, in a complex flow turns out to be computationally
unfeasible due to the chaotic nature of the solutions [30,48].

Here, we have instead designed an alternative approach
that locally approximates MDSP and whose derivation is de-
tailed in Appendix B. Namely, we define a time horizon τ

[31] which we assume sufficiently small such that r and û
do not significantly vary over the interval [0; τ ]. Within this
assumption, Eqs. (3) reduce to a linear system of differential
equations which we can solve exactly. Given a swimmer with
specified position and orientation at time t , we thus solve the
optimization problem over the interval [t ; t + τ ] by determin-
ing the values of p(t ) and pû(t ) from the solution of (3) and the
conditions p(t + τ ) = −κ̃ x̂ and pû(t + τ ) = 0. This way, we
obtain an approximation of the optimal control ωa(t ) that min-
imizes the navigation cost at fixed τ . The limit τ → 0 amounts
to ignoring the presence of the flow field, such that it leads
to simple taxis toward the target line. Conversely, for large τ

the approximation of a locally uniform environment becomes
increasingly poor. In practice, the intermediate optimal value

FIG. 3. Optimal navigation in a Gaussian random flow. (a) Three
exemplary trajectories with travel time ta ≈ topt starting from the
same point (green dot) and obtained from the local approximations of
ZSP (dashed red curve) and MDSP (solid curves). The displayed do-
main size is 2L × L/2 and the black arrows show the local direction
of the flow. (b) Probability of not reaching the finish line as function
of τ for four different aspect ratios λ. (c) Mean travel time ta as
function of τ . The shaded intervals show the first and third quartiles
while the dotted line indicates the reference value topt. (d) Mean cost
of navigation as function of the arrival time. Error bars correspond
to the first and third quartiles, while the shaded area indicates the
interval of confidence on topt. Legends for (c) and (d) are the same
as (b). (e) Comparison between the average dissipated power of the
approximated MDSP and ZSP at arrival time ta ≈ topt as function of
the swimmer aspect ratio.

of τ is determined empirically. Similar optimization protocols
have been implemented in Refs. [31,49]. The particularity of
the approach we propose is that it is generalizable to any op-
timal control problem sharing a similar Hamiltonian structure
as discussed in Appendix A. In fact, applying it to the Zermelo
problem we recover the protocol derived in [31]. Importantly,
the resulting navigation strategy can be implemented solely
from local measurements of the environment such as the pre-
ferred direction of taxis and flow gradients, which correspond
to information available to certain microswimmers [21,50,51].
Consequently, contrary to trajectory planning [29], this policy
is also robust to the presence of fluctuations, as further demon-
strated in the next section.

As they do not strongly influence the results, we set v0 = 1,
s = 0.1, and κτv0 = 102. Figure 3(a) shows representative
trajectories obtained from the local approximations of MDSP
and ZSP. In both cases, they end up on an attractor after cross-
ing typically one or two system sizes L along the x direction.
The number of reachable attractors depends on the policy
employed. To account for all of them, all data were collected
by averaging over the initial swimmer position r0 = (0, y0)
with y0 uniformly distributed in [0; L].

Since for some parameters swimmers might get trapped
in strong flow regions, we define πfail as the probability that
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a swimmer does not reach the finish line in a finite simu-
lation time. As shown in Fig. 3(b), for MDSP πfail exhibits
a minimum in the range 0.5 � τ � 2 for all values of λ.
Measuring the average arrival time of trajectories that suc-
cessfully reach the target line, we find that it is generally
minimal within a similar range of τ values [Fig. 3(c)]. A
similar trend is observed for ZSP, and we use the correspond-
ing minimum arrival time topt ≈ 0.7 × (4L/v0) as a reference
value. In agreement with results obtained in the simple shear
flow, for most aspect ratios there exists a value τ ≈ 1 for
which ta obtained from MDSP is comparable to topt [Fig. 3(c)].
Comparing Figs. 3(d) and 3(e) with Figs. 2(a) and 2(c) fur-
ther confirms the similarities between the two sets of results.
Namely, we observe the selection of finite optimal aspect ratio
set by the arrival time. Moreover, for ta ≈ topt MDSP system-
atically performs better than ZSP while the two converge as
λ → 0 where they satisfy 〈Pdiss〉 ≈ γt (λ)v2

0 .

VI. THE EFFECT OF ROTATIONAL DIFFUSION

As the motion of swimmers at microscopic scales is af-
fected by the presence of fluctuations coming from diffusion
or tumbles in the direction of motion, we also checked the
robustness and generality of the results presented in the pre-
vious section by including this ingredient in the simulations.
Namely, we integrate the locally approximated MDSP and
ZSP with the same parameters as those used to analyze the
navigation in random flow, while also including orientational
diffusion of the swimmer’s orientation with a (dimension-
less) rotational diffusivity Dr = 1 (details about the numerical
methods are given in Appendix C).

Our simulation results are summarized in Fig. 4. To ease
the comparison with the deterministic case, the quantities
reported in the four panels therein correspond to the ones in
Figs. 3(b)–3(e). First, it is clear that the presence of noise
in the swimmer orientational dynamics does not qualitatively
affect the conclusions presented above. Figure 4(a) indeed
demonstrates the existence of a range 0.5 � τ � 2 for which
the probability πfail that the swimmer does not reach the
target line remains small regardless of the swimmer shape.
In fact, for some values of τ the probability πfail may even
be smaller than in the absence of noise. This suggests that
rotational diffusion may help the swimmers to exit traps in-
duced by the flow structure [30], thus resulting in a higher
success rate.

Meanwhile, swimmers of any shape following MDSP are
still able to reach, on average, the finish line in a time com-
parable to the one achieved with ZSP in the same setup
[Fig. 4(b); note that topt here is around 10% larger than the
minimum arrival time in the absence of noise]. While the
variations of the navigation cost with arrival time and aspect
ratio are similar with and without rotational diffusion, its
presence leads to a systematic increase of dissipation [com-
pare Figs. 4(c) and 3(d)]. Here too, the optimal aspect ratio
minimizing energetic dissipation is therefore finite. Further-
more, a comparison of Figs. 4(d) and 3(e) reveals that the
presence of rotational diffusion has a much more dramatic
impact on the performances of ZSP than that of MDSP for all
simulated aspect ratios. These results thus suggest that taking
into account the coupling of the swimmer’s body geometry

FIG. 4. Performance of swimmers navigating in a Gaussian ran-
dom flow while following ZSP and MDSP in the presence of
rotational diffusion (parameters are the same as in Fig. 3). (a) Proba-
bility of not reaching the target line as function of τ for three different
aspect ratios λ. (b) Mean travel time ta vs τ . The shaded intervals
show the first and third quartiles, while the dotted line indicates
the mean time taken by a swimmer following ZSP. (c) Mean cost
of navigation as function of the arrival time. Error bars show the
first and third quartiles, while the shaded area indicates the interval
of confidence on topt. Legends for (b) and (c) are the same as (a).
(d) Comparison between the average dissipated power of the approx-
imated MDSP and ZSP at arrival time ta ≈ topt as function of the
swimmer aspect ratio λ.

with hydrodynamics may help for the design of policies more
robust to fluctuations.

VII. DISCUSSION

We have studied how the body geometry of microswim-
mers influences their navigation performances. Our analysis
reveals that while disk-shaped swimmers navigate efficiently
without needing to actively steer, they also dissipate more
energy for propulsion. This general feature leads to the se-
lection of a finite optimal aspect ratio minimizing the overall
cost of navigation, and offers microswimmers having limited
control over their swimming direction an alternative strategy
to optimize travel time and energy dissipation.

We have moreover shown that the MDSP policy ensuring
minimum dissipation provides time-optimal trajectories asso-
ciated with a systematically lower energy cost than achieved
with a naive generalization of ZSP, while it is also more robust
to fluctuations. Overall, as these conclusions were found to be
insensitive to the details of the navigation setting, we expect
them to be relevant to practical situations including planktonic
navigation in turbulent flows [50–52] or the maximization of
encounter rates of microswimmers with food sources [40,53],
while they may also find application to the design of smart
artificial swimmers [12].
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APPENDIX A: DETAILS ON OCT AND NUMERICAL
SOLUTIONS OF THE OPTIMIZATION PROBLEMS

Let us consider a generic navigation problem where
the swimmer state is parametrized by the vector q(t ) =
(q1(t ), . . . , qn(t )) whose deterministic evolution follows q̇ =
L[q(t ), c(t ), t], where c denotes the control that can be used
for navigation. In this work, for instance, q = (r, û) and L is
defined by Eq. (1). The navigation task consists in finding the
trajectory minimizing the cost function,

C = φ(q(ta ), ta ) +
∫ ta

0
L[q(t ), c(t ), t] dt, (A1)

with boundary conditions qi(0) = qi,0 and q j (ta ) = q j,T,
where the indices 1 � i � k and m � j � l such that for
k, l < n or m > 1 certain degrees of freedom can be un-
specified at the two ends of the trajectory. φ and L in (A1)
are respectively known as the end point and running costs.
OCT recasts this optimization problem into a boundary value
problem for the dynamical system [54],

q̇ = ∇pH, ṗ = −∇qH, (A2)

where the Hamiltonian H ≡ L[q(t ), c(t ), t] + p(t ) ·
L[q(t ), c(t ), t] and with the boundary conditions

qi(0) = qi,0, 1 � i � k (specified),

pi(0) = 0, k < i � n (unspecified),

q j (ta ) = q j,T, m � j � l (specified),

p j (ta ) = ∂q j φ, 1 � j < m ∧ l < j � n (unspecified).

In addition, the navigation policy for the control is obtained
by minimizing the Hamiltonian, ∇cH = 0, while an unspec-
ified arrival time ta leads to the additional condition on the
Hamiltonian, H(ta ) = −∂tφ|ta . For the navigation problems
considered in the main text, this second condition always
reduces to H = 0, where H is a constant of motion. For
convenience, throughout this work we numerically solve the
optimization at fixed ta by relaxing the constraint on H. Vary-
ing ta as a parameter, its value for which the total cost (2) is
minimized then also corresponds to H = 0 [54].

The correspondence between the general optimization
problem and the two navigation protocols addressed in the
text is summarized in Table I. For the study of navigation
in linear shear flow, we solved the boundary value problem
via standard shooting methods. Namely, given a trajectory
time ta and a guess for the n unknown initial conditions
({qi(0)}i∈[k+1;n]; {pi(0)}i∈[1;k]), the coupled systems of ordi-
nary differential equations of (A2) are integrated via the
4th-order Runge-Kutta method with time step dt = 10−5.

TABLE I. Correspondence between the general formulation of
optimal navigation and the two policies studied in the main text.

ZSP MDSP
Problem (minimum time) (minimum dissipation)

State variables (q) r r, û
Conjugate variables p ↔ r p ↔ r, pû ↔ û
Optimal control (c) û = −p/|p| ωa ∝ (pû × û)
Running cost (L) σ Pdiss + σ

The initial conditions are then iterated using the routine
GSL_MULTIROOT_FSOLVER_HYBRIDS provided by the GSL li-
brary [55] to determine the roots of the system ({q j (ta ) −
q j,T } j∈[m;l]; {p j (ta ) − ∂q j φ} j∈[1;m−1]∪[l+1;n]). This process is
then iterated until reaching convergence, which we define
as when the sum of absolute errors falls under a specified
threshold (here set to 10−6).

APPENDIX B: THE APPROXIMATE
NAVIGATION POLICIES

Here, we give additional details about the derivation of
the approximate navigation policies described in the text. To
keep the presentation simple, we restrict the problem to two
dimensions for which the equations of motion simplify as

ṙ = v0û(θ ) + f (r), (B1a)

θ̇ = ωa + ωf (r, θ ), (B1b)

ṗ = −∇r[p · f (r) + pθωf (r, θ )], (B1c)

ṗθ = −v0 p · û⊥(θ ) − ∂θ [pθωf (r, θ )], (B1d)

where û⊥(θ ) ≡ dû(θ )/dθ and, in dimensionless units, ωa =
−pθ /(2s2γr ).

Given a swimmer with position r and orientation θ at
time t , we wish to determine the control ωa(t ) that min-
imizes the cost CRF = −κ[x(ta ) − x(t )] + ∫ ta

t dτ Pdiss. From
OCT, the optimal control is obtained solving the bound-
ary value problem for the system (B1) with the end-point
conditions p(ta ) = −κ x̂ and pθ (ta ) = 0. Since the solutions
of (B1) are generally chaotic in the presence of strong or
complex flows [30], shooting methods do not necessarily con-
verge. Hence, reinforcement leaning-based approaches have
become increasingly popular to address similar scenarios
[26,32,48,52,56–58]. Here, instead, we opt for a more sys-
tematic approach by deriving an approximation for ωa(t )
that relies only on the information locally available to the
swimmer.

Denoting P ≡ (p, pθ ), the dynamics of the conjugate vari-
ables can be written as Ṗ = −M · P where the time-dependent
coefficient matrix reads

M ≡
⎛
⎝ F11 F12 ϒ1

F21 F22 ϒ2

−v0 sin θ v0 cos θ ϒ3

⎞
⎠,

with

F ≡
(

∂x fx ∂x fy

∂y fx ∂y fy

)
, ϒ ≡

⎛
⎜⎝

∂xωf

∂yωf

∂θωf

⎞
⎟⎠.
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We now assume that the variations of r and θ are suffi-
ciently smooth such that there exists a timescale τ over which
the coefficients of the matrix M are nearly constant. Under
this assumption, the solution for P is readily obtained for
t ′ ∈ [t ; t + τ ] as

P(t ′) � e−(t ′−t )M · P(t ), (B2)

where the coefficients of the matrix M are evaluated at time t .
Optimizing the cost CRF over this time window then im-
poses that Pi(t + τ ) = −κδi,1 which, together with Eq. (B2),
leads to the initial value Pj (t ) � −κδk,1eτMjk (summation
over repeated indices is implied). Now using the relationship
between ωa and pθ we finally get

ωa(t ) = − pθ (t )

2s2γr
� κ

2s2γr
eτM31 . (B3)

Integrating Eqs. (B1a) and (B1b) with Eq. (B3), we thus
obtain an approximation of MDSP based on the local infor-
mation about the environment stored in the coefficients of the
matrix M.

Expanding the matrix exponential up to leading order terms
in τ , the policy (B3) reduces to

ωa = − κv0τ

2s2γr
sin θ + O(τ 2). (B4)

For small values of τ , the policy amounts to assuming a
uniform environment such that the swimmer points straight
toward the finish line. On the other hand, the higher-order
contributions to (B4) depend on the flow structure and thus
allow for smart navigation.

A local approximation of ZSP can be obtained similarly
to the above derivation for MDSP. As described in Table I,
since in this case the swimmer is assumed point-like the
state variable is the particle position r while the control
is the steering direction û. Applying OCT to this prob-
lem with the cost CZSP = −κ[x(ta ) − x(t )] + σ (ta − t ), we
obtain

ṗ = −F · p, û = − p
|p| , (B5)

with the boundary condition p(ta ) = −κ x̂. Following the same
procedure that led from Eqs. (B1) to Eq. (B3), we assume the
matrix F to be constant over the time interval [t ; t + τ ], such
that after solving for P we get

û(t ) = eτF · x̂
|eτF · x̂| , (B6)

where F is evaluated at time t . As previously, the lead-
ing order contribution to Eq. (B6) leads to u(t ) = x̂ +
O(τ ), i.e., pointing straight at the finish line, while
contributions from the flow show up at higher order.
We note that (B6) was derived via a different method
in Ref. [31].

Equation (B6) describes instantaneous reorientations of the
swimmer directions. Hence, to compare the performances of
ZSP and MDSP in Fig. 3 we implemented an underdamped
version of (B6) obtained by simulating Eqs. (B1a) and (B1b)

with the control

ωa,ZSP = − v0κτ

2s2γr
sin(θ − θZSP), (B7)

where θZSP denotes the orientation set by (B6).

APPENDIX C: NUMERICAL METHODS

1. Navigation in a Gaussian random flow

The Gaussian random flow described in the main text and
sketched in Fig. 3(a) was obtained via the power spectrum
generation method [59]. We first built an N × N matrix of
uncorrelated zero mean and unit variance Gaussian white
noise, and then evaluated its Fourier transform. We multiplied
the outcome by the square root of the desired power spectrum
of the stream function ψ (r)—the Fourier transform of its
correlation function—and Fourier transform the result back.
Finally, the flow field is obtained using finite difference
via f (r) = 2−1/2∇ × [ẑψ (r)] where ẑ is the out-of-plane
unit vector. The flow generated this way is by construction
periodic across the domain boundaries. We used N = 2500
and a physical system size L = 25 (in units of �), leading
to a spatial resolution of dx = 10−2. For simulations in the
random flow, the equations of motion of the swimmer (1)
were numerically integrated together with the equation for the
control [i.e., Eq. (B3) for MDSP and Eq. (B7) for ZSP] with
a 4th-order Runge-Kutta method and a time step dt = 10−4.
The matrix exponentials in (B3) and (B7) were computed
with the GSL_LINALG_EXPONENTIAL_SS routine from the GSL
library [55].

The results presented in the main text have been obtained
from simulations of Nic = 103 trajectories with initial posi-
tions r0 = y0ŷ and y0 uniformly distributed in ∈ [0, L]. For
convenience and because its specific value does not affect the
convergence of the trajectories to the attractors mentioned in
the main text [see also Fig. 3(a)], the initial heading direction
of the swimmer is set to θ0 = 0. The probability πfail that a
swimmer does not reach the finish line located at x = 4L is
defined as the fraction of trajectories not crossing it within a
time tmax = 5 × 4L/v0. The mean and quartiles of both arrival
time (ta) and dissipated energy (C) were computed considering
only the trajectories that successfully reach the finish line,
while the data points shown in Figs. 3(c) and 3(d) in the main
text all satisfy πfail � 0.05.

2. Langevin simulations

As a minimal extension of the deterministic equation of
motion (1), we considered the following two-dimensional
Langevin equations including rotational diffusion with corre-
sponding strength Dr (here expressed in units of vf/�), which
we moreover set to 1:

ṙ = v0û(θ ) + f (r),

θ̇ = ωa + ωf (r, θ ) +
√

2Drξθ , (C1)

where ξθ is a delta-correlated Gaussian white noise with unit
variance, while the angular velocity ωf induced by hydrody-
namic torques is defined in the main text. The active control
ωa depends on the policy considered. Here, we used the ex-
pressions derived in Appendix B, namely Eq. (B3) for the
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minimum dissipation steering policy (MDSP) and Eq. (B7) for
the Zermelo steering policy (ZSP, corresponding to minimal
time). These equations together with Eq. (C1) were integrated

by means of an Euler-Mayurama scheme with a time step
dt = 10−4, while convergence with respect to time discretiza-
tion was checked.
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