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Dissipation, quantum coherence, and asymmetry of finite-time cross-correlations
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Recent studies have revealed a deep connection between the asymmetry of cross-correlations and thermody-
namic quantities in the short-time limit. In this study, we address the finite-time domain of the asymmetry for both
open classical and quantum systems. Focusing on Markovian dynamics, we show that the asymmetry observed
in finite-time cross-correlations is upper bounded by dissipation. We prove that, for classical systems in a steady
state with arbitrary operational durations, the asymmetry exhibits, at most, linear growth over time, with the
growth speed determined by the rates of entropy production and dynamical activity. In the long-time regime, the
asymmetry exhibits exponential decay, with the decay rate determined by the spectral gap of the transition matrix.
Remarkably, for quantum cases, quantum coherence is equally important as dissipation in constraining the
asymmetry of correlations. We demonstrate an example where only quantum coherence bounds the asymmetry
while the entropy production rate vanishes. Furthermore, we generalize the short-time bounds on correlation
asymmetry, as reported by Shiraishi [Phys. Rev. E 108, L042103 (2023)] and Ohga et al. [Phys. Rev. Lett.
131, 077101 (2023)], to encompass finite-time scenarios. These findings offer insights into the thermodynamic
aspects of correlation asymmetry.
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I. INTRODUCTION

Asymmetry, which refers to the absence of symmetry, con-
stitutes a fundamental concept in physics. The presence of
asymmetry typically results in nontrivial and crucial conse-
quences for a given system and has thus drawn considerable
attention in various scientific disciplines. Nonequilibrium
thermodynamics is one such field where the concept of
asymmetry is crucial [1,2]. For instance, the violation of time-
reversal symmetry indicates the existence of nonequilibrium
conditions, and the degree of such a violation is closely re-
lated to entropy production, with asymmetry being reflected
by fluctuation theorems [3–8]. As manifested in the thermo-
dynamic uncertainty relation [9–13] and the entropic bound
[14], the asymmetry of arbitrary currents is constrained by
dissipation. Another intriguing phenomenon is the relaxation
asymmetry, which asserts that the heating process is faster
than the cooling one [15–17]. Furthermore, asymmetry can be
harnessed to enhance the performance of heat engines [18,19].

Cross-correlation is a fundamental quantity that embodies
both temporal and spatial information pertaining to physi-
cal systems. Fluctuation-dissipation theorems [20] establish
that the response of a nonequilibrium steady-state system
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to a small perturbation can be expressed in terms of cross-
correlation [21]. The investigation of correlation properties
has progressed in various directions, including linear response
theory [22,23], speed limits for autocorrelation [24–28], and
thermodynamic inference of entropy production using the cor-
relation between different observables [29], to name a few.
Recently, a deep connection between the asymmetry of cross-
correlations and thermodynamic quantities has been reported
for steady-state systems in the short-time limit [30,31], pro-
viding novel insights into the circulation of fluctuation [32]
and coherent oscillations [33]. From a dynamic standpoint,
correlation asymmetry can be related to physical quantities
in nonequilibrium systems such as odd viscosity in fluid dy-
namics [34], kinetic fluxes in reaction networks [35], and
the temporal ordering of cellular events in living cells [36].
Simultaneously, correlation asymmetry should also contain
information on the time-reversal symmetry breaking for the
whole time regime [37,38]. Thus, it is quite important to
unveil the in-depth relationship between the asymmetry and
the thermodynamic costs in the entire finite-time domain, as
well as to explore quantum effects on correlation.

In the present paper, we address these open problems
by considering classical and quantum Markov processes
of discrete-state systems whose initial state is a stationary
state. We prove that the asymmetry exhibited in finite-time
cross-correlations is always bounded from above by the ther-
modynamic costs for the whole time regime. Specifically, for
classical Markov jump processes, we show that the asymme-
try grows at most linear in time, with the velocity determined
by the rates of entropy production and dynamical activity; in
the long-time regime, it exponentially decays with the rate
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determined by the spectral gap of the transition matrix [cf.
Eq. (7)]. These provide a basic picture of the asymmetry
in generic Markov processes. Variants of this structure are
found in other cases with multi-time and multi-observables,
as well as in other dynamics such as discrete-time Markov
chains, continuous-state overdamped Langevin systems, and
open quantum systems. Remarkably, by considering the Lind-
blad master equations for open quantum systems, we find that
quantum coherence plays a crucial role in the asymmetry of
correlations [cf. Eq. (11)]. We demonstrate that degeneracy
in the spectrum of the steady-state density matrix can lead to
a nontrivial phenomenon wherein only quantum coherence is
responsible for a finite asymmetry with zero entropy produc-
tion. In addition, we provide finite-time generalizations for
the short-time bounds reported in Refs. [30,31] [cf. Eqs. (13)
and (14)]. These findings provide thermodynamic bounds on
physically relevant quantities in various dynamics and further
deepen our understanding of the asymmetry of correlations
from the thermodynamic perspective.

II. SETUP

We consider a Markov jump process described by the mas-
ter equation

| ṗt 〉 = W |pt 〉, (1)

where the dot · denotes the time derivative, |pt 〉 =
[p1(t ), . . . , pN (t )]� is the probability distribution at time t ,
and W = [wmn] ∈ RN×N denotes the time-independent transi-
tion matrix with wmn � 0 being the jump rate from state n
to m ( �= n) and wnn = −∑m( �=n) wmn. We assume the local
detailed balance ln(wmn/wnm) = �smn, i.e., the log of the
ratio of transition rates is related to the entropy change in
the environment �smn. Hereafter, we consider the case that
the system is in a nonequilibrium steady state |π〉. Let jmn :=
wmnπn − wnmπm be the steady-state probability current; then,
the master equation (1) implies

∑
m jnm = 0. Two quantities

of importance are the rates of entropy production and dynam-
ical activity, defined as

σ :=
∑
m>n

jmn ln
wmnπn

wnmπm
, (2)

γ :=
∑
m>n

(wmnπn + wnmπm). (3)

Qualitatively, σ quantifies the degree of thermodynamic ir-
reversibility, whereas γ reflects the timescale of the system
[39]. Another relevant quantity is dynamical state mobility
[40], which characterizes the response of probability currents
against thermodynamic forces and is defined as

κ :=
∑
m>n

jmn

ln(wmnπn/wnmπm)
. (4)

The relation κ � γ /2 holds in general.
Next, we introduce cross-correlation and some notations

to be used in this study. Let |a〉 = [a1, . . . , aN ]� and |b〉 =
[b1, . . . , bN ]� be arbitrary observables. The two-time cross-
correlation between these two observables can be defined as

Cτ
ba := 〈b(τ )a(0)〉, (5)

FIG. 1. Numerical illustration of thermodynamic bounds on the
asymmetry of cross-correlations in terms of (a) entropy production
[cf. Eq. (7)] and (b) thermodynamic affinity [cf. Eq. (14)] in a three-
state biochemical oscillation [33]. Observables a and b are randomly
sampled in the range [−1, 1], and the forward and backward transi-
tion rates are w+ = 2 and w− = 1, respectively.

where a(t ) [b(t )] takes the value of an [bn] if the system is
in state n at time t and the average 〈·〉 is over all stochastic
trajectories of time period τ . Defining � = diag(π1, . . . , πN ),
then the cross-correlation can be analytically expressed as
Cτ

ba = 〈b|eW τ�|a〉. We are interested in the asymmetry of
cross-correlations

δCτ
ba := Cτ

ba − Cτ
ab, (6)

which vanishes in equilibrium. However, it is not the case for
nonequilibrium situations. Qualitatively, δCτ

ba reflects symme-
try breaking in the causality of observations and can reveal
essential aspects of system dynamics, such as the extent to
which the system deviates from equilibrium. Several thermo-
dynamic bounds for this quantity have recently been derived
in the τ → 0 limit [30,31]. In this study, we focus on the entire
finite-time regime.

Let {λn} be the set of eigenvalues and {|vl
n〉, |vr

n〉} be the
left and right eigenvectors of W , respectively (i.e., 〈vl

n|W =
〈vl

n|λn and W |vr
n〉 = λn|vr

n〉). The largest eigenvalue λ1 = 0 is
associated with the eigenvector 〈vl

1| ∝ 〈1|, whereas all other
eigenvalues have a negative real part, 0 > Re{λ2} � · · · �
Re{λN }. Here, |1〉 denotes the all-one vector. The eigenvectors
are normalized, 〈vl

n|vl
n〉 = 1. Since {|vl

n〉} forms a basis of
CN , we can always find coefficients {z̃n} for any vector |z〉
such that |z〉 = ∑

n z̃n|vl
n〉. Hereafter, we define the �1 norm

‖z‖∗ := ∑
n�2 |z̃n|. An important quantity is the spectral gap

g := −Re{λ2} > 0, which corresponds to the slowest decay
mode and characterizes the relaxation speed of the system.

III. MAIN RESULTS

Given the above setup, we are now ready to explain our
results; a simple numerical illustration is presented in Fig. 1.

A. First main result and quantum generalization

Our first main result is a thermodynamic bound on the
asymmetry of finite-time cross-correlations,∣∣δCτ

ba

∣∣
‖a‖∗‖b‖∗

� τe−gτ σ�

(
σ

2γ

)−1

� 2τe−gτ√σκ, (7)
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where �(u) denotes the inverse function of u tanh(u) and
satisfies �(u) � max{u,

√
u} ∀u � 0. The proof is presented

in Appendix A 1. Bound (7) implies that the thermodynamic
costs govern the asymmetry over the whole time domain. In
the small-time regime, the asymmetry of cross-correlations
increases at most linear in time with speed constrained by the
entropy production and dynamical activity rates. On the other
hand, in the large-time regime, the asymmetry exponentially
decays with the rate of the spectral gap. The result can be
analogously generalized to other scenarios, such as discrete-
time Markov chains, continuous-state overdamped Langevin
systems, and multiple observables, as shown in Appendix B.

Some remarks on this finding are given in order. (i) First,
it is of fundamental importance as it relates two physically
important concepts (i.e., dissipation and correlation asymme-
try) for arbitrary times. While the bound may not be tight,
it essentially captures both the dynamic and thermodynamic
properties of correlation asymmetry. An improved saturable
bound, which implicitly exhibits the exponential decay, can
be found in Appendix A 2. (ii) Second, notice that δCτ

ba is
identical with the difference between cross-correlations in the
original dynamics and the dual dynamics [41] with transition
rates W̃ = �W †�−1 [42]. Therefore, the bound (7) can also
be interpreted as a thermodynamic bound for the discrepancy
between these dynamics in terms of observables. (iii) Third,
in other relevant contexts, δCτ

ba can be employed as a natural
measure to study interactions in complex systems [43], dy-
namic colocalization, diffusion, binding in living cells [44],
and information flow in biological systems [30,45]. Thus, the
inequality (7) not only provides information on the temporal
behavior of such a measure but also describes the constraints
imposed by the thermodynamic costs. Particularly, in the case
of active fluids, it has been shown that odd viscosity can be
expressed as the time integral of correlation asymmetry [46].
Our finding thus yields a thermodynamic bound on odd vis-
cosity, indicating that it is constrained by dissipation and the
reciprocal of the spectral gap. (iv) Last, an effective approach
to estimating the spectral gap g approximately, without know-
ing the details of the underlying dynamics, can be deduced
from our result. In practice, calculating the spectral gap g re-
quires knowledge of the transition matrix, which is generally
unavailable in experiments. The bound derived here suggests
that g can be estimated as the decay slope of the correlation
asymmetry, which is experimentally accessible.

Next, we extend the result (7) to quantum cases, which
include autonomous thermal engines [47,48] and quantum
measurement processes [49]. We consider a Markovian open
quantum system, which is weakly coupled to a single or
multiple reservoirs. The time evolution of the reduced den-
sity matrix is described by the Lindblad equation, ̇t = L(t )
[50,51], where

L() := −i[H, ] +
∑

k

(LkL†
k − {L†

k Lk, }/2) (8)

with H is the time-independent Hamiltonian and {Lk} denote
jump operators. In order to be thermodynamically consis-
tent, we assume the local detailed balance condition [52,53];
that is, the jump operators come in pairs (k, k′) such that
Lk = e�sk/2L†

k′ , where �sk denotes the entropy change in the
environment. Let π be the steady state and π = ∑

n πn|n〉〈n|

be its spectral decomposition. The rates of irreversible en-
tropy production and dynamical activity are given by σ =∑

k tr{LkπL†
k }�sk and γ = ∑

k tr{LkπL†
k }, respectively. The

system is measured by the eigenbasis {|n〉〈n|} at both the
initial and final times. Note that this two-point measurement
scheme does not alter the steady state of the system. De-
fine observables A := ∑

n an|n〉〈n| and B := ∑
n bn|n〉〈n|. As

will be shown later, quantum properties emerge even for this
measurement basis. In this case, the cross-correlation can be
analytically calculated as [54]

Cτ
ba = 〈b(τ )a(0)〉 = tr{BeLτ (Aπ )}. (9)

Let L̃ be an adjoint superoperator of L, defined as

L̃() := i[H, ] +
∑

k

(L†
kLk − {L†

k Lk, }/2). (10)

Note that both L̃ and L have the same eigenvalue spec-
trum, L̃(Vn) = λnVn, where 0 = λ1 > Re{λ2} � . . . and the
eigenvectors are normalized such that ‖Vn‖∞ = 1. For any
operator X , let Xt := eL̃t (X ) be the time-evolved operator in
the Heisenberg picture, and ‖X‖∗ := ∑

n�2 |zx
n| be the �1 norm

of X , where X = ∑
n zx

nVn. The definition of the spectral gap
is analogous to the classical case, g := −Re{λ2}.

With the above setup in place, we obtain a quantum exten-
sion of the classical result (7), indicating that the asymmetry
of cross-correlations is limited by both dissipation and quan-
tum coherence (see Appendix C 1 for the proof),

∣∣δCτ
ba

∣∣ � τe−gτ

[
C + ‖A‖∗‖B‖∗σ�

(
σ

2γ

)−1
]
. (11)

Here, C is a quantum coherence term that quantifies the
amount of quantum coherence generated in the time-evolved
observables in the Heisenberg picture, given by

C := �

∫ 1

0
ds[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )], (12)

where � := 4‖H‖∞ + 3
∑

k ‖Lk‖2
∞, ‖ · ‖∞ denotes the oper-

ator norm, and C�1 (Xt ) := egt
∑

m �=n |〈m|Xt |n〉| is the �1 norm
of quantum coherence in the eigenbasis [55]. Note that C�1 (Xt )
is always upper bounded by N (N − 1)‖X‖∗ for all t � 0.
Roughly speaking, a nonvanishing value of C signifies the
ability to generate quantum coherence in the original dynam-
ics. In the classical limit (e.g., H = 0 and Lk ∝ |m〉〈n|), C
vanishes. Bound (11) establishes a qualitative and quantitative
relationship between asymmetry, thermodynamic irreversibil-
ity, and quantum coherence. Remarkably, δCτ

ba can be nonzero
even when σ = 0, indicating that quantum coherence is in-
evitable in the bound (see Appendix C 2 for an analytical
analysis). While this bound may not be strict, it yields a
crucial implication that coherent manipulations can be ex-
ploited to break the symmetry of correlations even in the
absence of dissipation. Note that C�1 defined for operators
is different from the conventional quantum coherence in
quantum states; nonetheless, they share the same essence
of quantum coherence in quantum dynamics. Specifically,
the coherence term C�1 (At/Bt ) is exactly a weighted sum of
quantum coherence generated at time t with respect to initial
incoherent states {|n〉〈n|} in the Heisenberg picture [56]. Due
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FIG. 2. Numerical illustration of the inevitable role of quantum
coherence in restricting the asymmetry of cross-correlations in the
three-level maser. Observables are given by A = |1〉〈1| and B =
|3〉〈3|. Parameters are � = 0.01, � = 1, αh = 1, αc = 0.01, Nh =
Nc = 1, φ = π/2, and θ = π/4. Note that σ = 0. Nevertheless, a
finite asymmetry appears.

to the importance of the Heisenberg picture in both dynamic
and thermodynamic aspects, this kind of quantum coherence
is also physically relevant as the conventional one in the
Schrödinger picture.

We numerically illustrate this critical role of quantum
coherence in a three-level maser [57], which can oper-
ate as a heat engine or refrigerator. In a rotating frame
[58–60], the time evolution of the density matrix can be de-
scribed by the Hamiltonian H = −�σ22 + �(σ12 + σ21) and
the jump operators L1 = √

αh(Nh + 1)σ13, L1′ = √
αhNhσ31,

L2 = √
αc(Nc + 1)σ23, and L2′ = √

αcNcσ32, where σi j =
|εi〉〈ε j | (see Appendix C 2 for details). We exclusively
consider the Nh = Nc case, in which σ = 0. Due to degen-
eracy in the spectrum of π , the measurement basis can be
chosen as |1〉 = eiφ cos θ |ε1〉 + sin θ |ε2〉, |2〉 = − sin θ |ε1〉 +
e−iφ cos θ |ε2〉, and |3〉 = |ε3〉, where φ and θ are arbitrary
real numbers. As confirmed in Fig. 2, the asymmetry of
correlations does not vanish and is bounded solely by the
quantum coherence term C. It is worth noting that the origin
of this correlation asymmetry arises from external coherent
control, which induces degeneracy in the stationary state [61].
By exploiting this phenomenon through a suitable choice of
measurement basis, symmetry breaking of correlations can be
achieved.

B. Second and third main results

In the sequel, we revisit classical systems and focus on
some quantifications of the normalized asymmetry that have
been considered in the literature. Our second main result is a
thermodynamic bound for the normalized asymmetry only in
terms of entropy production (see Appendix D 1 for the proof),

|δCτ
ba|2

Dτ
a + Dτ

b

� τσ min

{
‖a2 + b2‖∞,

[
maxc �c

2N tan(π/N )

]2
}

,

(13)

where Dτ
a := C0

aa − Cτ
aa is the decay of autocorrelation [30],

‖a2 + b2‖∞ := maxn(a2
n + b2

n), the maximum is over all cy-
cles of a uniform cycle decomposition [62,63], and �c :=∑

i

√
(ani − ani+1 )2 + (bni − bni+1 )2 is the length of cycle c =

(n1, . . . , n|c|). Here, |c| denotes the size of c and |c| + 1 ≡ 1.

In the short-time limit, bound (13) can be reduced to the extant
result obtained by Shiraishi [31] [see Eqs. (6) and (8) therein].
Therefore, it can be regarded as a finite-time generalization
of Shiraishi’s bound. Since the normalized asymmetry is ex-
perimentally measurable, our bound can be used to estimate
entropy production based on trajectory data obtained from
experiments, similar to the tool provided by the thermody-
namic uncertainty relation [64–67]. It is noteworthy that this
bound is tight and saturable in the short-time limit [31], while
it may not be the case for finite times due to the fact that
the asymmetry of cross-correlations decays exponentially, as
shown in Eq. (7). This leads us to anticipate the existence of
exponentially decaying bounds. Investigating such bounds is
left as future work.

So far, we have demonstrated that entropy production
serves as a limit for the asymmetry of cross-correlations in fi-
nite time. Our third primary finding is an additional constraint
expressed in terms of thermodynamic affinity, given by∣∣δCτ

ba

∣∣
2
√

Dτ
aDτ

b

� max
c

tanh
(
F τ

c /2|c|)
tan(π/|c|) � max

c

F τ
c

2π
, (14)

where F τ
c is the thermodynamic affinity associated with a

cycle c = (n1, . . . , n|c|) in temporal coarse-grained dynamics
with timescale τ ,

F τ
c := ln

wτ
n2n1

wτ
n3n2

. . . wτ
n1n|c|

wτ
n1n2

wτ
n2n3

. . . wτ
n|c|n1

. (15)

Here, wτ
mn := [eW τ ]mn is the conditional transition probability

from state n to m within time τ . The proof is presented in
Appendix D 2. As shown in Fig. 1(b), this bound is tight and
can be saturated. For example, in the three-state biochemical
oscillation with homogeneous transition rates, the equality can
be attained for an arbitrary time τ with observables |a〉 =
[sin(2πn/3)]�n and |b〉 = [cos(2πn/3)]�n (see Appendix D 2
for details). In this case, |δCτ

ba| quantifies coarse-grained os-
cillation asymmetry by considering only the initial and final
times. In the short- and long-time limits, we can show that
limτ→0 F τ

c = Fc and limτ→∞ F τ
c = 0, where Fc denotes the

thermodynamic affinity defined for the transition rate matrix
[68]. Therefore, bound (14) can be considered a finite-time
generalization of the extant bound reported by Ohga and
coworkers [30]. Additionally, it provides an estimation of the
maximum thermodynamic affinity in temporal coarse-grained
dynamics. This is highly relevant from an experimental point
of view due to the limited measurement resolution and may
provide insights into determining dissipative timescales in
terms of thermodynamic affinity [69].

IV. SUMMARY AND DISCUSSION

We derived finite-time thermodynamic bounds for the
asymmetry of cross-correlations in terms of entropy produc-
tion and thermodynamic affinity. The results universally apply
to various dynamics, from discrete to continuous time and
space domains. At the fundamental level, our findings indicate
that dissipation limits the asymmetry of cross-correlations
across the entire time regime. This not only generalizes the
principle of microscopic reversibility to nonequilibrium situ-
ations but also yields thermodynamic constraints on physical
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functions, such as viscosity in active fluids and signal trans-
duction in biological systems. In the context of quantum
systems, we have elucidated the pivotal role of quantum co-
herence in breaking the symmetry of correlations, offering
fresh insights into the relationship between asymmetry, dissi-
pation, and quantum coherence. From a practical standpoint,
our results can be applied to infer the spectral gap and dissipa-
tive quantities, such as entropy production and coarse-grained
thermodynamic affinity.

It is also worthwhile to explore applications of our results
in biochemical systems, where the concepts of correlation
and symmetry breaking play crucial roles in the performance
of systems [33,70–74]. Furthermore, it would be intriguing
to develop our bounds in other quantum scenarios, such as
when the system is measured in a basis different from the
eigenbasis of the steady state. Quantum measurements have
a unique impact that can influence the asymmetry of correla-
tions, causing them to persist even when the system is initially
in equilibriums. Such investigations could provide valuable
insights into the behavior of quantum systems and potentially
lead to advancements in harnessing the merits of quantum
measurements.
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APPENDIX A: PROOF OF EQ. (7)
AND AN IMPROVED BOUND

1. Proof of Eq. (7)

For convenience, we define J := [ jmn], which is the matrix
of probability currents. By simple algebraic calculations, we
can transform the asymmetry of cross-correlations as follows:

δCτ
ba = 〈b|eW τ�|a〉 − 〈a|eW τ�|b〉

= 〈b|eW τ�|a〉 − 〈b|�eW †τ |a〉
= 〈b|(eW τ� − �eW †τ )|a〉. (A1)

Here, we use the fact z = z† for any z ∈ R in the second line.
Note that for any matrices X and Y , the following equality
always holds:

eX � − �eY =
∫ 1

0
dsesX (X� − �Y )e(1−s)Y . (A2)

Applying X = W τ and Y = W †τ and noting that J = W � −
�W †, we can proceed Eq. (A1) further as follows:

δCτ
ba = τ

∫ 1

0
ds〈b|esW τ Je(1−s)W †τ |a〉

= τ

∫ 1

0
dstr{Je(1−s)W †τ |a〉〈b|esW τ }. (A3)

Noting that |a〉 = ∑
n ãn|vl

n〉, |b〉 = ∑
n b̃n|vl

n〉, and∫ 1
0 dse(1−s)x+sy = (ex − ey)/(x − y), we can simplify the

terms in Eq. (A3) as

δCτ
ba = τ

∫ 1

0
ds
∑
m,n

tr
{
Jãmb̃∗

ne(1−s)λ∗
mτ+sλnτ

∣∣vl
m

〉〈
vl

n

∣∣}
= τ tr

{
J
∑

m,n�2

ãmb̃∗
n

eλ∗
mτ − eλnτ

(λ∗
m − λn)τ

∣∣vl
m

〉〈
vl

n

∣∣}, (A4)

where we use the facts that 〈vl
1|J = 〈0| and J|vl

1〉 = |0〉 to
obtain the last line. Here, |0〉 denotes the all-zero vector.
Before proceeding further, we note some useful inequal-
ities (see Appendix E for the proof). For any matrices
X and Y and orthogonal basis {|n〉}, we have |tr{XY }| �
‖Y ‖∞

∑
m,n |〈m|X |n〉|, where ‖Y ‖∞ denotes the operator

norm of Y . In addition, for any complex numbers z1 and z2

with a negative real part (i.e., Re{z1} � 0 and Re{z2} � 0), we
always have |ez1 − ez2 |/|z1 − z2| � 1. Using the expression
(A4) and applying the above inequalities, we can evaluate as
follows:

∣∣δCτ
ba

∣∣ � τ
∑
m,n

| jmn|
∥∥∥∥∥∥
∑

m,n�2

ãmb̃∗
n

eλ∗
mτ − eλnτ

(λ∗
m − λn)τ

∣∣vl
m

〉〈
vl

n

∣∣∥∥∥∥∥∥
∞

� τ
∑
m,n

| jmn|
∑

m,n�2

|ãmb̃∗
n|
∣∣∣∣ eλ∗

mτ − eλnτ

(λ∗
m − λn)τ

∣∣∣∣. (A5)

Next, we evaluate the last term in Eq. (A5). For m � n � 2,
since Re{λ∗

m − λn} � 0 and Re{λn} � −g, we thus have∣∣∣∣ eλ∗
mτ − eλnτ

(λ∗
m − λn)τ

∣∣∣∣ = |eλnτ |
∣∣∣∣e(λ∗

m−λn )τ − 1

(λ∗
m − λn)τ

∣∣∣∣ � e−gτ . (A6)

Likewise, for n � m � 2, since Re{λn − λ∗
m} � 0 and

Re{λ∗
m} � −g, we also obtain the same argument. Applying

these inequalities to Eq. (A5), we readily obtain∣∣δCτ
ba

∣∣ � τe−gτ‖a‖∗‖b‖∗
∑
m,n

| jmn|. (A7)

Furthermore, we can prove that the sum of absolute proba-
bility currents is bounded from above by the rates of entropy
production, dynamical activity, and dynamical state mobility

FIG. 3. Numerical illustration of the improved bound (A13) in a
three-state biochemical oscillation. The forward and backward tran-
sition rates are w+ = 2 and w− = 1, respectively. (a) Observables are
fixed as |a〉 = [sin(2πn/3)]�n and |b〉 = [cos(2πn/3)]�n while time τ

is varied. (b) Observables a and b are randomly sampled in the range
[−1, 1] for each random time τ ∈ [0, 2].
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as [40]

∑
m,n

| jmn| � σ�

(
σ

2γ

)−1

� 2
√

σκ. (A8)

Combining Eqs. (A7) and (A8) yields the desired result (7) in
the main text.

2. A quantitative improvement of bound (7)
and numerical demonstration

Here we demonstrate that the bound (7) can be quantita-
tively improved; however, this improvement comes at the cost
of implicitly exhibiting the exponential decay. To this end,
we define |x(t )〉 := (eW †t − |1〉〈π |)|x〉 for x ∈ {a, b}. Using
this notation and Eq. (A3), the correlation asymmetry can be
calculated as

δCτ
ba = τ

∫ 1

0
ds〈b(sτ )|J|a((1 − s)τ )〉

= τ
∑
m �=n

∫ 1

0
ds jmnan((1 − s)τ )bm(sτ )

= τ
∑
m>n

∫ 1

0
ds jmn[an((1 − s)τ )bm(sτ ) − am((1 − s)τ )bn(sτ )]. (A9)

Defining γmn := wmnπn + wnmπm and applying the Cauchy-Schwarz inequality, we can evaluate the asymmetry from above as∣∣δCτ
ba

∣∣ � τ

∫ 1

0
ds

√∑
m>n

j2
mn

γmn

∑
m>n

[an((1 − s)τ )bm(sτ ) − am((1 − s)τ )bn(sτ )]2γmn

= τ

√∑
m>n

j2
mn

γmn

∫ 1

0
ds

√∑
m>n

[an((1 − s)τ )bm(sτ ) − am((1 − s)τ )bn(sτ )]2γmn. (A10)

Note that the first term in Eq. (A10) is the pseudo entropy production rate and can be upper bounded as [75]∑
m>n

j2
mn

γmn
� σ 2

4γ
�

(
σ

2γ

)−2

. (A11)

Defining

Dτ
ba :=

∫ 1

0
ds

√∑
m>n

[an((1 − s)τ )bm(sτ ) − am((1 − s)τ )bn(sτ )]2γmn, (A12)

we immediately obtain an improvement for Eq. (7) as

∣∣δCτ
ba

∣∣ � τDτ
ba

σ

2
√

γ
�

(
σ

2γ

)−1

, (A13)

where Dτ
ba exponentially decays over time. Notably, this im-

proved bound is tight and can be saturated, for example, in a
three-state biochemical oscillation (see Fig. 3 for the numeri-
cal demonstration). We can also prove that

Dτ
ba � 2e−gτ‖a‖∗‖b‖∗

√
γ . (A14)

Using this relation, the bound (7) in the main text can be
recovered.

Proof of Eq. (A14). Note that

eW †t = |1〉〈π | +
∑
n�2

eλ∗
nt
∣∣vl

n

〉〈
vr

n

∣∣. (A15)

We begin by upper bounding the term inside the integral in
Eq. (A12) as follows:∑

m>n

[an((1 − s)τ )bm(sτ ) − am((1 − s)τ )bn(sτ )]2γmn

� 4‖a((1 − s)τ )‖2
∞‖b(sτ )‖2

∞
∑
m>n

γmn (A16)

= 4γ ‖
∑
n�2

eλ∗
n (1−s)τ

∣∣vl
n

〉〈
vr

n

∣∣a〉‖2
∞‖

∑
n�2

eλ∗
nsτ
∣∣vl

n

〉〈
vr

n

∣∣b〉‖2
∞

= 4γ ‖
∑
n�2

eλ∗
n (1−s)τ ãn

∣∣vl
n

〉‖2
∞‖

∑
n�2

eλ∗
nsτ b̃n

∣∣vl
n

〉‖2
∞

� 4γ e−2gτ

⎛⎝∑
n�2

‖e(λ∗
n+g)(1−s)τ ãn

∣∣vl
n

〉‖∞

⎞⎠2

×
⎛⎝∑

n�2

‖e(λ∗
n+g)sτ b̃n

∣∣vl
n

〉‖∞

⎞⎠2

� 4γ e−2gτ‖a‖2
∗‖b‖2

∗. (A17)
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Consequently, Dτ
ba is upper bounded as

Dτ
ba �

∫ 1

0
ds2e−gτ‖a‖∗‖b‖∗

√
γ = 2e−gτ‖a‖∗‖b‖∗

√
γ .

(A18)

APPENDIX B: GENERALIZATIONS
OF EQ. (7) TO OTHER CASES

1. Generalization to discrete-time Markov chains

Here we provide a generalization of Eq. (7) for discrete-
time Markov chains. We consider a time-homogeneous
irreducible Markov chain whose dynamics is governed by the
master equation,

|pti〉 = R|pti−1〉. (B1)

Here, R = [Rmn] is the stochastic matrix with Rmn � 0 the
transition probability from state n to m. The normalization
condition

∑
m Rmn = 1 is satisfied for all n. We consider a fi-

nite duration τ of K steps (i.e., t0 = 0 and tK = τ ). The system
is in a nonequilibrium steady state |π〉 (i.e., |π〉 = R|π〉). The
steady-state entropy production and dynamical activity at each
time step are given by

σ :=
∑
m �=n

Rmnπn ln
Rmnπn

Rnmπm
, (B2)

γ :=
∑
m �=n

Rmnπn. (B3)

The cross-correlation between the observables can be ex-
pressed as

Cτ
ba := 〈b(τ )a(0)〉 = 〈b|RK�|a〉. (B4)

Let {λn} be the set of eigenvalues of R and {|vl
n〉, |vr

n〉} be
the left and right eigenvectors, respectively (i.e., 〈vl

n|R =
〈vl

n|λn and R|vr
n〉 = λn|vr

n〉). Note that 1 = λ1 > |λ2| � . . .

and |vl
1〉 ∝ |1〉. The spectral gap can thus be defined as g :=

− ln |λ2| > 0. Evidently, |λn| � e−g for any n � 2.
Now, we can calculate the asymmetry of cross-correlations

as follows:

δCτ
ba = 〈b|RK�|a〉 − 〈a|RK�|b〉

= 〈b|RK� − �(R†)K |a〉. (B5)

Note that for any matrices X and Y , the following relation
holds:

X K� − �Y K =
K−1∑
k=0

X k (X� − �Y )Y K−1−k . (B6)

Applying this relation for X = R and Y = R† and noting that
J = R� − �R†, we can proceed further as

δCτ
ba = 〈b|RK� − �(R†)K |a〉

=
K−1∑
k=0

〈b|Rk (R� − �R†)(R†)K−1−k|a〉

=
K−1∑
k=0

tr{J (R†)K−1−k|a〉〈b|Rk}

=
K−1∑
k=0

∑
m,n

tr
{
Jamb∗

n(λ∗
m)K−1−kλk

n

∣∣vl
m

〉〈
vl

n

∣∣}. (B7)

Note that J|1〉 = |0〉 and 〈1|J = 〈0|. Consequently, the asym-
metry of cross-correlations can be upper bounded as

∣∣δCτ
ba

∣∣ =
∣∣∣∣∣

K−1∑
k=0

∑
m,n�2

tr
{
Jamb∗

n(λ∗
m)K−1−kλk

n

∣∣vl
m

〉〈
vl

n

∣∣}∣∣∣∣∣
�
∑
m,n

| jmn|
∥∥∥∥∥∥

K−1∑
k=0

∑
m,n�2

amb∗
n(λ∗

m)K−1−kλk
n

∣∣vl
m

〉〈
vl

n

∣∣∥∥∥∥∥∥
∞

� Ke−(K−1)g
∑
m,n

| jmn|
∑

m,n�2

|amb∗
n|

� Ke−(K−1)g‖a‖∗‖b‖∗σ�

(
σ

2γ

)−1

, (B8)

which yields the desired generalization for discrete-time sys-
tems, ∣∣δCτ

ba

∣∣
‖a‖∗‖b‖∗

� Ke−(K−1)gσ�

(
σ

2γ

)−1

. (B9)

2. Generalization to overdamped Langevin dynamics

We consider a d-dimensional overdamped Langevin sys-
tem. Let pt (x) denote the probability density function of
finding the system in state x at time t . The time evolution of
pt (x) is described by the Fokker-Planck equation,

ṗt (x) = L[pt (x)] = −∇ · jt (x), (B10)

where L[p(x)] := −∇ · [ f (x)p(x) − D∇p(x)] is the Fokker-
Planck operator, f (x) is the force vector, and D =
diag(D1, . . . , Dd ) is the matrix of diffusion coefficients. Con-
sider the adjoint operator L̃, which is defined as

L̃[p(x)] := f (x) · ∇p(x) + ∇ · D∇p(x). (B11)

The operator L̃ is also known as the generator of the backward
Fokker-Planck equation. Define the inner product

〈u(x), v(x)〉 :=
∫

dxu(x)v(x). (B12)

For any functions u(x) and v(x) such that u(x) f (x)v(x),
u(x)D∇v(x), and v(x)D∇u(x) vanish at infinity, we prove
that

〈u(x),L[v(x)]〉 = 〈v(x), L̃[u(x)]〉. (B13)

Indeed, by exploiting the boundary conditions, we can
show as

〈u(x),L[v(x)]〉 = −
∫

dxu(x)∇ · [ f (x)v(x) − D∇v(x)]

=
∫

dx[ f (x)v(x) − D∇v(x)] · ∇u(x)

=
∫

dx[v(x) f (x) · ∇u(x) + v(x)∇ · D∇u(x)]

=
∫

dxv(x)[ f (x) · ∇u(x) + ∇ · D∇u(x)]

= 〈v(x), L̃[u(x)]〉. (B14)

Using this relation, we can immediately derive that

〈u(x), eLτ [v(x)]〉 = 〈v(x), eL̃τ [u(x)]〉. (B15)
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We consider the case where the system is in a nonequilibrium steady state π (x) (i.e., L[π (x)] = −∇ · j(x) = 0). The entropy
production rate can be calculated as

σ =
∫

dx
j(x) · D−1 j(x)

π (x)
. (B16)

The cross-correlation between observables a(x) and b(x) can be expressed as

Cτ
ba := 〈b(xτ )a(x0)〉 =

∫
dxb(x)eLτ [a(x)π (x)]. (B17)

Using the equality (B15), the asymmetry of cross-correlations can thus be calculated as

δCτ
ba =

∫
dxb(x)eLτ [a(x)π (x)] −

∫
dxa(x)eLτ [b(x)π (x)]

=
∫

dxb(x){eLτ [a(x)π (x)] − π (x)eL̃τ [a(x)]}

=
∫

dxb(x)
∫ 1

0
ds

d

ds
esLτ {e(1−s)L̃τ [a(x)]π (x)}

= τ

∫
dxb(x)

∫ 1

0
dsesLτ {L[π (x)◦] − π (x)L̃[◦]}[e(1−s)L̃τ a(x)]. (B18)

From the stationarity, we also obtain that

L[π (x)q(x)] − π (x)L̃[q(x)]

= −∇ · { f (x)π (x)q(x) − D∇[π (x)q(x)]} − π (x)[ f (x) · ∇q(x) + ∇ · D∇q(x)]

= −2 f (x)π (x) · ∇q(x) − q(x)∇ · [ f (x)π (x)] + ∇ · D∇[π (x)q(x)] − π (x)∇ · D∇q(x)

= −2 f (x)π (x) · ∇q(x) − q(x)∇ · [ f (x)π (x)] + ∇π (x) · D∇q(x) + ∇q(x) · D∇π (x) + q(x)∇ · D∇π (x)

= −2∇q(x) · [ f (x)π (x) − D∇π (x)] − q(x)∇ · [ f (x)π (x) − D∇π (x)]

= −2∇q(x) · j(x). (B19)

Let {λn} be the discrete spectrum of operator L̃ and {ϕn(x)} be the set of corresponding eigenfunctions:

L̃ϕn(x) = λnϕn(x). (B20)

Assume that a(x) and b(x) can be expanded in terms of the eigenfunctions as

a(x) =
∑

n

anϕn(x), (B21)

b(x) =
∑

n

bnϕn(x). (B22)

The eigenvalue λ1 = 0 corresponds to the eigenfunction ϕ1(x) = 1. Other eigenvalues have a negative real part, 0 > Re{λ2} �
Re{λ3} � . . . ; thus, the spectral gap can be defined as g := −Re{λ2} > 0. Using Eqs. (B18) and (B19), we can evaluate the
asymmetry of cross-correlations as

δCτ
ba = −τ

∫ 1

0
ds
∫

dxb(x)esLτ [{2∇e(1−s)L̃τ a(x)} · j(x)]

= −τ

∫ 1

0
ds
∫

dx[{2∇e(1−s)L̃τ a(x)} · j(x)]esL̃τ [b(x)]

= −τ

∫ 1

0
ds
∫

dx

[{∑
n

2∇e(1−s)τλn anϕn(x)

}
· j(x)

]∑
m

esτλm bmϕm(x)

= −τ

∫
dx
∫ 1

0
ds
∑
m,n

esτλm+(1−s)τλn bman[2ϕm(x)∇ϕn(x)] · j(x)

= −τ

∫
dx
∑
m,n

eλmτ − eλnτ

(λm − λn)τ
bman[2ϕm(x)∇ϕn(x)] · j(x)
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= −τ

∫
dx

∑
m,n�2

eλmτ − eλnτ

(λm − λn)τ
bman[2ϕm(x)∇ϕn(x)] · j(x)

= τ

∫
dx

∑
m,n�2

eλmτ − eλnτ

(λm − λn)τ
bman[ϕn(x)∇ϕm(x) − ϕm(x)∇ϕn(x)] · j(x)

= τe−gτ
∫

dxϕτ (x) · j(x), (B23)

where we use the fact
∫

dx[ϕ1(x)∇ϕn(x)] · j(x) = ∫
dx[ϕm(x)∇ϕ1(x)] · j(x) = 0 and define

ϕτ (x) :=
∑

m,n�2

e(λm+g)τ − e(λn+g)τ

(λm − λn)τ
bman[ϕn(x)∇ϕm(x) − ϕm(x)∇ϕn(x)]. (B24)

Applying the Cauchy-Schwarz inequality, we obtain

∣∣δCτ
ba

∣∣ � τe−gτ

[∫
dx

j(x) · D−1 j(x)

π (x)

]1/2[∫
dxπ (x)ϕτ (x) · Dϕτ (x)

]1/2

= τe−gτ√σ

[∫
dxπ (x)ϕτ (x) · Dϕτ (x)

]1/2

. (B25)

For any vector z = [z1, . . . , zd ]�, define |z| := [|z1|, . . . ,
|zd |]�. Since∣∣∣∣e(λm+g)τ − e(λn+g)τ

(λm − λn)τ

∣∣∣∣ � 1 ∀m, n � 2, (B26)

we can upper bound the last term in Eq. (B25) as∫
dxπ (x)ϕτ (x) · Dϕτ (x) �

∫
dxπ (x)φ(x) · Dφ(x),

(B27)

where we define

φ(x) :=
∑

m,n�2

|bm||an||ϕn(x)∇ϕm(x) − ϕm(x)∇ϕn(x)|.

(B28)
Defining χba := [

∫
dxπ (x)φ(x) · Dφ(x)]1/2, we obtain the

following thermodynamic bound on the asymmetry of cross-
correlations: ∣∣δCτ

ba

∣∣
χba

� τe−gτ√σ . (B29)

3. Generalization to multiple observables

The result (7) can be generalized to the case of
multi-time and multi-observables, where the observables
(|o1〉, . . . , |oM〉) =: o are respectively measured at times
(t1, . . . , tM ) =: τ. Here, M � 2 is an arbitrary integer number
and 0 = t1 < t2 < · · · < tM = τ . In this case, the cross-

correlation can be defined as

Cτ
o := 〈o1(t1) . . . oM (tM )〉, (B30)

where om(t ) takes the value of om
n if the system is in state

n at time t . Define the reversed observation times τ̃ := (τ −
t1, . . . , τ − tM ). Then, the following asymmetry of cross-
correlations is a quantity of interest:

δCτ
o := Cτ

o − C τ̃
o . (B31)

We find that this asymmetry is consistently limited by dissi-
pation and decreases exponentially at the rate of the spectral
gap,∣∣δCτ

o

∣∣
χo

� σ�

(
σ

2γ

)−1 M∑
k=2

(tk − tk−1)e−g(tk−tk−1 ). (B32)

Here, χo := ‖o1 ‖∗‖oM ‖∗
∏M−1

m=2 ‖om ‖∞ (
∑N

n=1 ‖vr
n ‖2)M−2,

‖z‖2 := √〈z|z〉 denotes �2 norm, and ‖z‖∞ = maxn |zn| for
any vector |z〉. Interestingly, bound (B32) indicates that the
degree of decay also depends on the time interval between
consecutive measurements.

In what follows, we present the proof of Eq. (B32). For
convenience, we define Om := diag(om

1 , . . . , om
N ). Then, Cτ

o
can be explicitly expressed as

Cτ
o = 〈oM |

1∏
k=M−1

eW (tk+1−tk )Ok|π〉

= 〈oM |eW (tM−tM−1 )OM−1 . . . O2eW (t2−t1 )�|o1〉. (B33)

Consequently, the asymmetry can be calculated as follows:

δCτ
o = 〈oM |eW (tM−tM−1 )OM−1 . . . O2eW (t2−t1 )�|o1〉 − 〈o1|eW (t2−t1 )O2 . . . OM−1eW (tM−tM−1 )�|oM〉

= 〈oM |eW (tM−tM−1 )OM−1 . . . O2eW (t2−t1 )�|o1〉 − 〈oM |�eW †(tM−tM−1 )OM−1 . . . O2eW †(t2−t1 )|o1〉
= 〈oM |eW (tM−tM−1 )OM−1 . . . O2eW (t2−t1 )� − �eW †(tM−tM−1 )OM−1 . . . O2eW †(t2−t1 )|o1〉. (B34)
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For simplicity, we define �m := tm − tm−1 > 0. Noticing that [Ok,�] = 0 for all k and eW t = ∑
i eλit |vr

i 〉〈vl
i |, we can further

transform δCτ
o as

δCτ
o = 〈oM |

M∑
k=2

eW �M OM−1 . . . eW �k+1 Ok[eW �k � − �eW †�k ]Ok−1eW †�k−1 . . . O2eW †�2 |o1〉

=
M∑

k=2

�k

∫ 1

0
ds〈oM |

k∏
m=M−1

eW �m+1 Om[esW �k Je(1−s)W †�k ]
2∏

m=k−1

OmeW †�m |o1〉

=
M∑

k=2

�k

∑
i, j

eλi�k − eλ∗
j �k

(λi − λ∗
j )�k

〈oM |
k∏

m=M−1

eW �m+1 Om

∣∣vr
i

〉〈
vl

i

∣∣J∣∣vl
j

〉〈
vr

j

∣∣ 2∏
m=k−1

OmeW †�m |o1〉

=
M∑

k=2

�k

∑
i, j�2

eλi�k − eλ∗
j �k

(λi − λ∗
j )�k

〈oM |
k∏

m=M−1

eW �m+1 Om

∣∣vr
i

〉〈
vl

i

∣∣J∣∣vl
j

〉〈
vr

j

∣∣ 2∏
m=k−1

OmeW †�m |o1〉. (B35)

Next, we upper bound the terms in Eq. (B35). Note that for any i, j � 2, the following inequality holds:∣∣∣∣eλi�k − eλ∗
j �k

(λi − λ∗
j )�k

∣∣∣∣ � e−g�k . (B36)

In addition, since Re{λn} � 0, we can evaluate as follows:∣∣∣∣∣∣〈oM |
k∏

m=M−1

eW �m+1 Om

∣∣vr
i

〉∣∣∣∣∣∣ =
∣∣∣∣∣ ∑

1�iM−1,...,ik�N

e
∑k

m=M−1 λim �m+1
〈
oM
∣∣vr

iM−1

〉 k∏
m=M−1

〈
vl

im

∣∣Om

∣∣vr
im−1

〉∣∣∣∣∣
�

∑
1�iM−1,...,ik�N

∣∣∣∣〈oM
∣∣vr

im−1

〉 k∏
m=M−1

〈
vl

im

∣∣Om

∣∣vr
im−1

〉∣∣∣∣
�

∑
1�iM−1,...,ik�N

∣∣〈oM
∣∣vr

im−1

〉∣∣ k∏
m=M−1

‖Om‖∞
∥∥vl

im

∥∥
2

∥∥vr
im−1

∥∥
2

=
k∏

m=M−1

‖Om‖∞

⎛⎝ ∑
1�iM−1,...,ik�N

∣∣õM
iM−1

∣∣ k∏
m=M−1

∥∥vr
im−1

∥∥
2

⎞⎠
� ‖oM‖∗

(
N∑

n=1

∥∥vr
n

∥∥
2

)M−1−k∥∥vr
i

∥∥
2

k∏
m=M−1

‖Om‖∞. (B37)

where ik−1 ≡ i. Likewise, we can also obtain∣∣∣∣∣∣〈vr
j

∣∣ 2∏
m=k−1

OmeW †�m |o1〉
∣∣∣∣∣∣ � ‖o1‖∗

(
N∑

n=1

∥∥vr
n

∥∥
2

)k−3∥∥vr
j

∥∥
2

2∏
m=k−1

‖Om‖∞. (B38)

By combining Eqs. (B37) and (B38), we arrive at the following inequality:

∑
i, j�2

∣∣∣∣∣〈oM |
k∏

m=M−1

eW �m+1 Om

∣∣vr
i

〉〈
vr

j

∣∣ 2∏
m=k−1

OmeW †�m |o1〉
∣∣∣∣∣ � ‖o1‖∗‖oM‖∗

M−1∏
m=2

‖Om‖∞

(
N∑

n=1

∥∥vr
n

∥∥
2

)M−2

. (B39)

Noting that |〈vl
i |J|vl

j〉| �
∑

m,n | jmn| � σ�(σ/2γ )−1 and using Eqs. (B36) and (B39), we obtain

∣∣δCτ
o

∣∣ � ‖o1‖∗‖oM‖∗
M−1∏
m=2

‖Om‖∞

(
N∑

n=1

∥∥vr
n

∥∥
2

)M−2 M∑
k=2

(tk − tk−1)e−g(tk−tk−1 )σ�(σ/2γ )−1. (B40)

Defining χo := ‖o1‖∗‖oM‖∗
∏M−1

m=2 ‖Om‖∞(
∑N

n=1 ‖vr
n‖2)M−2, the generalization of Eq. (7) can be attained as∣∣δCτ

o

∣∣
χo

� σ�

(
σ

2γ

)−1 M∑
k=2

(tk − tk−1)e−g(tk−tk−1 ). (B41)
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APPENDIX C: PROOF OF EQ. (11) AND AN ANALYTICAL
DEMONSTRATION

1. Proof of Eq. (11)

For convenience, we define wk
mn := |〈m|Lk|n〉|2 and jk

mn :=
wk

mnπn − wk′
nmπm. Using these terms, the rates of entropy pro-

duction and dynamical activity can be expressed as [40]

σ = 1

2

∑
k

∑
n,m

jk
mn ln

wk
mnπn

wk′
nmπm

, (C1)

γ = 1

2

∑
k

∑
n,m

(
wk

mnπn + wk′
nmπm

)
. (C2)

Furthermore, it was proved that [40]∑
k

∑
n,m

∣∣ jk
mn

∣∣ � σ�

(
σ

2γ

)−1

, (C3)

which will be used later. By simple algebraic calculations, it
can be shown that the relation 〈X,L(Y )〉 = 〈L̃(X ),Y 〉 holds
for any operators X and Y , where 〈X,Y 〉 := tr{X †Y }. As a
consequence, we can prove that

〈X, eLt (Y )〉 = 〈eL̃t (X ),Y 〉 (C4)

for any t � 0. Noting that A and B are self-adjoint operators,
we can calculate the asymmetry as follows:

δCτ
ba = 〈B, eLτ (Aπ )〉 − 〈A, eLτ (Bπ )〉

= 〈B, eLτ (Aπ )〉 − 〈eL̃τ (A), Bπ〉
= 〈B, eLτ (Aπ )〉 − 〈B, πeL̃τ (A)〉
= 〈B, eLτ (Aπ ) − πeL̃τ (A)〉. (C5)

Since [A, π ] = 0, the following equality holds:

eLτ (Aπ ) − πeL̃τ (A) =
∫ 1

0
ds

d

ds
[esLτ (πe(1−s)L̃τ (A))]

= τ

∫ 1

0
dsesLτ [L(πe(1−s)L̃τ (A)) − πL̃(e(1−s)L̃τ (A))]. (C6)

Using this equality, we can proceed further as

δCτ
ba = τ

∫ 1

0
ds〈B, esLτ [L(πe(1−s)L̃τ (A)) − πL̃(e(1−s)L̃τ (A))]〉

= τ

∫ 1

0
ds〈esL̃τ (B),L(πe(1−s)L̃τ (A)) − πL̃(e(1−s)L̃τ (A))〉

= τ

∫ 1

0
ds〈Bsτ ,L(πA(1−s)τ ) − πL̃(A(1−s)τ )〉. (C7)

For any operator X , we can express X in terms of {Vn} as X = ∑
n zx

nVn, where {zx
n} are complex coefficients. Note that V1 = 1

and Xt = ∑
n zx

neλntVn. Define X̄t := Xt − zx
11 = ∑

n�2 zx
neλntVn. Since 〈1,L(πAt ) − πL̃(At )〉 = 〈Bt ,L(π1) − πL̃(1)〉 = 0, the

asymmetry of cross-correlations can be written as

δCτ
ba = τ

∫ 1

0
ds〈B̄sτ ,L(π Ā(1−s)τ ) − πL̃(Ā(1−s)τ )〉. (C8)

The term inside the integral can be expressed as

〈B̄sτ ,L(π Ā(1−s)τ ) − πL̃(Ā(1−s)τ )〉 = 〈B̄sτ ,−i[H, π Ā(1−s)τ ] − iπ [H, Ā(1−s)τ ]〉 +
∑

k

〈B̄sτ , Lkπ Ā(1−s)τ L†
k − πL†

k Ā(1−s)τ Lk

+ (πL†
k LkĀ(1−s)τ − L†

k Lkπ Ā(1−s)τ )/2〉. (C9)

We individually evaluate the terms in Eq. (C9). The first term can be upper bounded as follows:

|〈B̄sτ ,−i[H, π Ā(1−s)τ ] − iπ [H, Ā(1−s)τ ]〉| � |〈B̄sτ , [H, π Ā(1−s)τ ]〉| + |〈B̄sτ , π [H, Ā(1−s)τ ]〉|

=
∣∣∣∣∣∑

n

πn〈n|Ā(1−s)τ (B̄sτ H − HB̄sτ )|n〉
∣∣∣∣∣+

∣∣∣∣∣∑
n

πn〈n|(HĀ(1−s)τ − Ā(1−s)τ H )B̄sτ |n〉
∣∣∣∣∣.

(C10)
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Moreover, the first term in Eq. (C10) can be bounded as follows:∣∣∣∣∣∑
n

πn〈n|Ā(1−s)τ (B̄sτ H − HB̄sτ )|n〉
∣∣∣∣∣

�
∣∣∣∣∣ ∑

n,m( �=n)

πn〈n|Ā(1−s)τ |m〉〈m|B̄sτ H − HB̄sτ |n〉
∣∣∣∣∣+

∣∣∣∣∣∑
n

πn〈n|Ā(1−s)τ |n〉〈n|B̄sτ H − HB̄sτ |n〉
∣∣∣∣∣

� ‖B̄sτ H − HB̄sτ‖∞
∑

n,m( �=n)

πn|〈n|Ā(1−s)τ |m〉| +
∣∣∣∣∣ ∑

n,m( �=n)

πn〈n|Ā(1−s)τ |n〉(〈n|B̄sτ |m〉〈m|H |n〉 − 〈n|H |m〉〈m|B̄sτ |n〉)

∣∣∣∣∣
� 2‖B̄sτ‖∞‖H‖∞

∑
n �=m

|〈n|Ā(1−s)τ |m〉| + 2‖Ā(1−s)τ‖∞‖H‖∞
∑
n �=m

|〈n|B̄sτ |m〉|

� 2e−gτ‖H‖∞
[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )

]
. (C11)

Here, we use the facts that ∑
n �=m

|〈n|X̄t |m〉| =
∑
n �=m

∣∣〈n|Xt − zx
11|m〉∣∣ =

∑
n �=m

|〈n|Xt |m〉| = e−gtC�1 (Xt ), (C12)

‖X̄t‖∞ =
∥∥∥∥∥∥
∑
n�2

zx
neλntVn

∥∥∥∥∥∥
∞

�
∑
n�2

∣∣zx
n

∣∣|eλnt |‖Vn‖∞ � e−gt
∑
n�2

∣∣zx
n

∣∣ = e−gt‖X‖∗. (C13)

It is worth noting that C�1 (Xt ) is upper bounded by a constant for all times,

C�1 (Xt ) =
∑
n �=m

∣∣∣∣∣∣〈n|
∑
k�2

zx
ke(λk+g)tVk|m〉

∣∣∣∣∣∣ �
∑
n �=m

∑
k�2

∣∣zx
k

∣∣‖Vk‖∞ = N (N − 1)‖X‖∗. (C14)

Therefore, the last quantity in Eq. (C11) always decays exponentially at the rate of the spectral gap g. Likewise, we also obtain
the following bound for the second term in Eq. (C10):∣∣∣∣∣∑

n

πn〈n|(HĀ(1−s)τ − Ā(1−s)τ H )B̄sτ |n〉
∣∣∣∣∣ � 2e−gτ‖H‖∞

[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )
]
. (C15)

Consequently, by combining Eqs. (C10), (C11), and (C15), we arrive at the following upper bound of the first term in Eq. (C9):

|〈B̄sτ ,−i[H, π Ā(1−s)τ ] − iπ [H, Ā(1−s)τ ]〉| � 4e−gτ‖H‖∞
[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )

]
. (C16)

Now, it remains to evaluate the second term in Eq. (C9), which can be calculated as follows:∑
k

〈B̄sτ , Lkπ Ā(1−s)τ L†
k − πL†

k Ā(1−s)τ Lk + (πL†
k LkĀ(1−s)τ − L†

k Lkπ Ā(1−s)τ )/2〉

=
∑

k

∑
n

πn〈n|Ā(1−s)τ L†
k B̄sτ Lk − L†

k Ā(1−s)τ LkB̄sτ + (L†
k LkĀ(1−s)τ B̄sτ − Ā(1−s)τ B̄sτ L†

k Lk )/2|n〉

=
∑

k

∑
n,m,n′,m′

πn(〈n|Ā(1−s)τ |n′〉〈n′|L†
k |m′〉〈m′|B̄sτ |m〉〈m|Lk|n〉 − 〈n|L†

k |m〉〈m|Ā(1−s)τ |m′〉〈m′|Lk|n′〉〈n′|B̄sτ |n〉)

+
∑

k

∑
n,m,n′

πn(〈n|L†
k |m〉〈m|Lk|n′〉〈n′|Ā(1−s)τ B̄sτ |n〉 − 〈n|Ā(1−s)τ B̄sτ |n′〉〈n′|L†

k |m〉〈m|Lk|n〉)/2. (C17)

Collecting the terms that contain only the diagonal elements of Ā(1−s)τ , B̄sτ , and Ā(1−s)τ B̄sτ , we can upper bound them as∣∣∣∣∣∣
∑

k

∑
n,m

πn
(〈n|Ā(1−s)τ |n〉〈n|L†

k |m〉〈m|B̄sτ |m〉〈m|Lk|n〉 − 〈n|L†
k |m〉〈m|Ā(1−s)τ |m〉〈m|Lk|n〉〈n|B̄sτ |n〉)

+
∑

k

∑
n,m

πn
(〈n|L†

k |m〉〈m|Lk|n〉〈n|Ā(1−s)τ B̄sτ |n〉 − 〈n|Ā(1−s)τ B̄sτ |n〉〈n|L†
k |m〉〈m|Lk|n〉)/2

∣∣∣∣∣∣
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=
∣∣∣∣∣∣
∑

k

∑
n,m

πn
(〈n|Ā(1−s)τ |n〉〈m|B̄sτ |m〉wk

mn − 〈m|Ā(1−s)τ |m〉〈n|B̄sτ |n〉wk
mn

)∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑

k

∑
n,m

〈n|Ā(1−s)τ |n〉〈m|B̄sτ |m〉(wk
mnπn − wk′

nmπm
)∣∣∣∣∣∣

� max
m,n

|〈n|Ā(1−s)τ |n〉〈m|B̄sτ |m〉|
∑

k

∑
n,m

∣∣wk
mnπn − wk′

nmπm

∣∣
� ‖Ā(1−s)τ‖∞‖B̄sτ‖∞

∑
k

∑
m,n

∣∣ jk
mn

∣∣
� e−gτ‖A‖∗‖B‖∗σ�(σ/2γ )−1. (C18)

For the terms that involve the nondiagonal elements of Ā(1−s)τ , B̄sτ , and Ā(1−s)τ B̄sτ , we can evaluate them as follows:∣∣∣∣∣∣
∑

k,n,m( �=n)

πn〈n|Ā(1−s)τ |m〉〈m|L†
k B̄sτ Lk|n〉

∣∣∣∣∣∣ � ‖B̄sτ‖∞
∑

k

‖Lk‖2
∞
∑
n �=m

πn|〈n|Ā(1−s)τ |m〉|

� e−gτ‖B‖∗
∑

k

‖Lk‖2
∞C�1 (A(1−s)τ ), (C19)∣∣∣∣∣∣

∑
k,n,m,m′ ( �=m)

πn〈n|Ā(1−s)τ |n〉〈n|L†
k |m〉〈m|B̄sτ |m′〉〈m′|Lk|n〉

∣∣∣∣∣∣ � ‖Ā(1−s)τ‖∞
∑

k

‖Lk‖2
∞
∑
n �=m

|〈n|B̄sτ |m〉|

� e−gτ‖A‖∗
∑

k

‖Lk‖2
∞C�1 (Bsτ ), (C20)∣∣∣∣∣∣

∑
k,n,m( �=n)

πn〈n|L†
k Ā(1−s)τ Lk|m〉〈m|B̄sτ |n〉

∣∣∣∣∣∣ � ‖Ā(1−s)τ‖∞
∑

k

‖Lk‖2
∞
∑
n �=m

πn|〈n|B̄sτ |m〉|

� e−gτ‖A‖∗
∑

k

‖Lk‖2
∞C�1 (Bsτ ), (C21)∣∣∣∣∣∣

∑
k,n,m,m′ ( �=m)

πn〈n|L†
k |m′〉〈m′|Ā(1−s)τ |m〉〈m|Lk|n〉〈n|B̄sτ |n〉

∣∣∣∣∣∣ � ‖B̄sτ‖∞
∑

k

‖Lk‖2
∞
∑
n �=m

|〈n|Ā(1−s)τ |m〉|

� e−gτ‖B‖∗
∑

k

‖Lk‖2
∞C�1 (A(1−s)τ ), (C22)

and∣∣∣∣∣∣
∑

k,n,m( �=n)

πn〈n|Ā(1−s)τ B̄sτ |m〉〈m|L†
k Lk|n〉

∣∣∣∣∣∣ �
∑

k

‖Lk‖2
∞
∑
n �=m

πn|〈n|Ā(1−s)τ B̄sτ |m〉|

�
∑

k

‖Lk‖2
∞
∑
n �=m

⎡⎣πn|〈n|Ā(1−s)τ |m〉〈m|B̄sτ |m〉| +
∑

m′( �=m)

πn|〈n|Ā(1−s)τ |m′〉〈m′|B̄sτ |m〉|
⎤⎦

� e−gτ
∑

k

‖Lk‖2
∞
[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )

]
. (C23)

By combining all these inequalities, the following upper bound for the second term in Eq. (C9) is immediately derived,∣∣∣∣∣∑
k

〈B̄sτ , Lkπ Ā(1−s)τ L†
k − πL†

k Ā(1−s)τ Lk + (πL†
k LkĀ(1−s)τ − L†

k Lkπ Ā(1−s)τ )/2〉
∣∣∣∣∣

� 3e−gτ
∑

k

‖Lk‖2
∞
[‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )

]+ e−gτ‖A‖∗‖B‖∗σ�(σ/2γ )−1. (C24)
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Finally, by inserting Eqs. (C16) and (C24) to Eq. (C8),
we obtain the following bound on the asymmetry of cross-
correlations:∣∣δCτ

ba

∣∣ � τe−gτ

[
C + ‖A‖∗‖B‖∗σ�

(
σ

2γ

)−1
]
, (C25)

where C is the quantum coherence term given by

C :=
(

4‖H‖∞ + 3
∑

k

‖Lk‖2
∞

)∫ 1

0
ds

× [‖B‖∗C�1 (A(1−s)τ ) + ‖A‖∗C�1 (Bsτ )
]
. (C26)

2. Analytical demonstration of the critical
role of quantum coherence

Here we show that quantum coherence plays a pivotal
role in constraining the asymmetry of cross-correlations.
Specifically, we present a case wherein the asymmetry of
cross-correlations can persist even when irreversible entropy
production is zero. This implies that the quantum coherence
term C is inevitable in the derived bound (11).

We consider a three-level maser—the prototype for quan-
tum heat engines that rely on quantum coherence to perform
work [57,59,60]. The engine is simultaneously coupled to
a hot and a cold heat bath and interacts with a classical
electric field. The Markovian dynamics is governed by the
local master equation with the Hamiltonian Ht = H0 + Vt and
jump operators L1 = √

αh(Nh + 1)σ13, L1′ = √
αhNhσ31, L2 =√

αc(Nc + 1)σ23, and L2′ = √
αcNcσ32. Here, H0 = ω1σ11 +

ω2σ22 + ω3σ33 is the bare Hamiltonian, Vt = �(eiω0tσ12 +
e−iω0tσ21) is the external classical field, σi j = |εi〉〈ε j |, and αx

and Nx are the decay rate and the thermal occupation number
for x ∈ {h, c}, respectively. To remove the time dependence
of the full Hamiltonian, it is convenient to rewrite operators
in the rotating frame X → U †

t XUt , where Ut = e−iH̄t and
H̄ = ω1σ11 + (ω1 + ω0)σ22 + ω3σ33. In this rotating frame,
the master equation reads

̇t = −i[H, t ] +
2∑

k=1

(D[Lk]t + D[Lk′ ]t ), (C27)

where H = −�σ22 + �(σ12 + σ21) and � = ω0 + ω1 − ω2.
It was shown that the master equation (C27) is valid when the
driving field is weak [76].

After some algebraic calculations, we can show that the
steady-state density matrix reads

π = π11|ε1〉〈ε1| + π22|ε2〉〈ε2| + π12|ε1〉〈ε2|
+ π∗

12|ε2〉〈ε1| + (1 − π11 − π22)|ε3〉〈ε3|, (C28)

where

π11 =F−1{αcαhNc(Nh + 1)[4�2 + (αcNc + αhNh)2]

+ 4�2(αcNc + αhNh)(αc + αh + αcNc + αhNh)},
(C29)

π22 =F−1{αcαhNh(Nc + 1)[4�2 + (αcNc + αhNh)2]

+ 4�2(αcNc + αhNh)(αc + αh + αcNc + αhNh)},
(C30)

π12 = F−1{2iαcαh�(Nc − Nh)(−2i� + αcNc + αhNh)},
(C31)

F = αcαh(3NcNh + Nc + Nh)[4�2 + (αcNc + αhNh)2]

+ 4�2(αcNc + αhNh)[αc(3Nc + 2) + αh(3Nh + 2)].
(C32)

Likewise, the irreversible entropy production rate is given by

σ = 4(Nc − Nh)αcαh(αcNc + αhNh)�2 ln

(
NcNh + Nc

NcNh + Nh

)
.

(C33)

Now we consider the simple case of Nh = Nc. In this case, we
have σ = 0, π11 = π22, and π12 = 0, which yield

π = π11(|ε1〉〈ε1| + |ε2〉〈ε2|) + (1 − 2π11)|ε3〉〈ε3|. (C34)

For any real numbers θ and φ, the density matrix π can also
be written as

π = π11(|1〉〈1| + |2〉〈2|) + (1 − 2π11)|3〉〈3|, (C35)

where |1〉 = eiφ cos(θ )|ε1〉 + sin(θ )|ε2〉, |2〉 = − sin(θ )|ε1〉 +
e−iφ cos(θ )|ε2〉, and |3〉 = |ε3〉. We consider observables A =
|1〉〈1| and B = |3〉〈3|. We need only show that the asymmetry
of cross-correlations is nonzero for this measurement basis.
It is thus sufficient to prove for the short-time regime τ � 1.
In this region of operational time τ , the asymmetry of cross-
correlations can be analytically expanded in terms of τ as

δCτ
ba = tr{B[1 + τL + τ 2L2/2](Aπ )

− Bπ [1 + τ L̃ + τ 2L̃2/2](A)} + O(τ 3)

= tr{B[L(Aπ ) − πL̃(A)]}τ

+ tr{B[L2(Aπ ) − πL̃2(A)]}τ
2

2
+ O(τ 3)

= Nh(Nh + 1)�(αc − αh) sin(2θ ) sin(φ)

3Nh + 2
τ 2 + O(τ 3).

(C36)

As can be observed, although the first-order term is zero, the
second-order term does not vanish and δCτ

ba is thus nonzero
(i.e., |δCτ

ba| > 0). Since σ = 0, the quantum coherence term C
is the only term that bounds δCτ

ba in this case,∣∣δCτ
ba

∣∣ � τe−gτC. (C37)

APPENDIX D: PROOFS OF EQS. (13) AND (14)

1. Proof of Eq. (13)

Define T := eW τ� − �, which satisfies T |1〉 = |0〉
and T †|1〉 = |0〉. In other words, Tnn = −∑m( �=n) Tmn =
−∑m( �=n) Tnm = −∑m( �=n)(Tmn + Tnm)/2. For m �= n, we
have Tmn = [eW τ ]mnπn � 0, which is nothing but the joint
probability of observing the initial and final states. First, we
prove that

τσ � D(T ||T †) =
∑
m,n

Tmn ln
Tmn

Tnm
. (D1)

To this end, let � be a stochastic trajectory of system states and
p(�) be the path probability of finding �. Utilizing the phase-
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space representation of the total entropy production and the
monotonicity of the Kullback-Leibler divergence under coarse
graining, Eq. (D1) can be proved as

τσ = D(p(�)||p(�̃)) � D(�[p(�)]||�[p(�̃)])

= D(T ||T †), (D2)

where � is a coarse-grained map that reduces the
path probability to the probability of observing only
the initial and final states. For convenience, we define
�mn :=

√
(am − an)2 + (bm − bn)2, �mn := (anbm − ambn)/2,

and Jmn := Tmn − Tnm. Note that Jmn differs from jmn. Using
these quantities, we can express the asymmetry of cross-
correlations as

δCτ
ba = 〈b|T − T †|a〉 =

∑
m>n

(Tmn − Tnm)(anbm − ambn)

= 2
∑
m>n

Jmn�mn. (D3)

Likewise, we can calculate the decay of autocorrelation as

Dτ
a = −〈a|T |a〉 =

∑
m �=n

(
Tmn + Tnm

2
a2

n − Tmnaman

)

= 1

2

∑
m>n

(Tmn + Tnm)(am − an)2, (D4)

which leads to

Dτ
a + Dτ

b = 1

2

∑
m>n

(Tmn + Tnm)�2
mn. (D5)

Using Eqs. (D3) and (D5), we can prove the first argument of
Eq. (13) as follows:∣∣δCτ

ba

∣∣2
Dτ

a + Dτ
b

= 8
(∑

m>n Jmn�mn
)2∑

m>n(Tmn + Tnm)�2
mn

� 2‖a2 + b2‖∞
(∑

m>n |Jmn|�mn
)2∑

m>n(Tmn + Tnm)�2
mn

� 2‖a2 + b2‖∞
∑
m>n

(Tmn − Tnm)2

Tmn + Tnm

� ‖a2 + b2‖∞
∑
m>n

(Tmn − Tnm) ln
Tmn

Tnm

= ‖a2 + b2‖∞D(T ||T †)

� ‖a2 + b2‖∞τσ. (D6)

Here, we use the triangle inequality and |�mn| � �mn‖a2 +
b2‖1/2

∞ /2 [31] in the second line, the Cauchy-Schwarz in-
equality in the third line, inequality 2(x − y)2/(x + y) � (x −
y) ln(x/y) in the fourth line, and Eq. (D1) in the last line.

The second argument of Eq. (13) can be proved by a similar
strategy as in Ref. [31]. For any directed edge e = (m ←
n), we define xe := xmn for an arbitrary variable x, its re-
versed edge ẽ := (n ← m), and E := {e | Je > 0}. The discrete
isoperimetric inequality [30,77] implies that

4|c| tan
π

|c| |�c| � �2
c, (D7)

where we define Xc := ∑
e∈c Xe for variable X and cycle

c ∈ C. Since
∑

m Jmn = 0, we can always find a uniform de-
composition of cycles C with appropriate orientations and
associated positive currents {Jc}c∈C such that Je = ∑

c JcSc
e

for any e ∈ E , where Sc
e = 1 if e ∈ c and zero otherwise [63].

Using this decomposition, equality
∑

c∈C JcXc = ∑
e∈E JeXe

can be derived; thus, δCτ
ba = 2

∑
e∈E Je�e = 2

∑
c∈C Jc�c.

By utilizing this equality, inequality (D7), and the mono-
tonicity of function x tan(π/x) over [3,∞), the asymmetry
of cross-correlations can be upper bounded as∣∣δCτ

ba

∣∣ � ∑
c∈C

Jc�2
c

(
2|c| tan

π

|c|
)−1

(D8)

�
(

2N tan
π

N

)−1

max
c

�c

∑
m>n

|Jmn|�mn. (D9)

Subsequently, following the same procedure as in Eq. (D6)
leads to the desired result.

2. Proof of Eq. (14)

We follow the approach in Ref. [30]. Note that observables
a and b can be arbitrarily rescaled without altering the ratio
|δCτ

ba|/
√

Dτ
aDτ

b . Therefore, we can assume Dτ
a = Dτ

b without
loss of generality. Noticing that F τ

c = ∑
e∈c ln(Te/Tẽ) and ap-

plying Jensen’s inequality, we can lower bound F τ
c as

F τ
c =

∑
e∈c

ln
(Te + Tẽ) + Je

(Te + Tẽ) − Je

= 2|c|
∑
e∈c

1

|c|artanh

(
Je

Te + Tẽ

)

� 2|c|artanh

(
1

|c|
∑
e∈c

Je

Te + Tẽ

)
, (D10)

which yields

1

|c|
∑
e∈c

Je

Te + Tẽ
� tanh

( F τ
c

2|c|
)

. (D11)

Consequently, by applying the Cauchy-Schwarz inequality,
we obtain∑

e∈c

(Te + Tẽ)

Je
�2

e �
(∑

e∈c �e
)2∑

e∈c Je/(Te + Tẽ)
� �2

c

|c| tanh
(
F τ

c /2|c|) .
(D12)

Using this inequality, we can lower bound the denominator as

2
√

Dτ
aDτ

b = Dτ
a + Dτ

b � 1

2

∑
e∈E

(Te + Tẽ)�2
e

= 1

2

∑
c∈C

Jc
∑
e∈c

(Te + Tẽ)

Je
�2

e

� 1

2

∑
c∈C

Jc�2
c

[|c| tanh
(
F τ

c /2|c|)]−1
. (D13)

By combining Eqs. (D8) and (D13) and noticing that
(
∑

c xc)/(
∑

c yc) � maxc(xc/yc) for positive numbers {xc}
and {yc}, Eq. (14) is immediately derived.
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a. Analytical demonstration of the bound’s attainability

Here we analytically demonstrate that the equality of the bound (14) can be attained for arbitrary times in the three-state
biochemical oscillation with homogeneous transition rates. Without loss of generality, we can assume that w+ = ω > 1 and
w− = 1. Note that the observables are given by |a〉 = [sin(2πn/3)]�n and |b〉 = [cos(2πn/3)]�n . For this unicyclic system, by
performing simple algebraic calculations, we can derive that∣∣δCτ

ba

∣∣
2
√

Dτ
aDτ

b

= | sin[
√

3(ω − 1)τ/2]|
e3(ω+1)τ/2 − cos[

√
3(ω − 1)τ/2]

, (D14)

max
c

tanh
(
F τ

c /2|c|)
tan(π/|c|) = 1√

3
tanh

(
1

2

∣∣∣∣∣log
e3(ω+1)τ/2 − cos[

√
3(ω − 1)τ/2] + √

3 sin[
√

3(ω − 1)τ/2]

e3(ω+1)τ/2 − cos[
√

3(ω − 1)τ/2] − √
3 sin[

√
3(ω − 1)τ/2]

∣∣∣∣∣
)

. (D15)

By separately considering two cases, sin[
√

3(ω − 1)τ/2] � 0
and sin[

√
3(ω − 1)τ/2] < 0, one can easily verify the equal-

ity of the bound,∣∣δCτ
ba

∣∣
2
√

Dτ
aDτ

b

= max
c

tanh(F τ
c /2|c|)

tan(π/|c|) . (D16)

APPENDIX E: USEFUL INEQUALITIES

Proposition 1. For any matrices X and Y and orthogonal
basis {|n〉}, we have

|tr{XY }| � ‖Y ‖∞
∑
m,n

|〈m|X |n〉|, (E1)

where ‖Y ‖∞ denotes the operator norm of Y .
Proof. By applying the inequalities tr{XY } � ‖Y ‖∞‖X‖1

and ‖X‖1 �∑
m,n |〈m|X |n〉|, one can immediately complete

the proof. �

Proposition 2. For any complex numbers z1 and z2 with a
negative real part, the following inequality holds,∣∣∣∣ez1 − ez2

z1 − z2

∣∣∣∣ � 1. (E2)

Proof. Since Re{z1} � 0 and Re{z2} � 0, we have
|esz1+(1−s)z2 | � 1 for any 0 � s � 1. Consequently, we
can prove Eq. (E2) as follows:∣∣∣∣ez1 − ez2

z1 − z2

∣∣∣∣ =
∣∣∣∣ ∫ 1

0
dsesz1+(1−s)z2

∣∣∣∣
�
∫ 1

0
ds|esz1+(1−s)z2 |

�
∫ 1

0
ds

= 1. (E3)

�
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