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Aharonov-Bohm effect for confined matter in lattice gauge theories
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Gauge theories arise in physical systems displaying space-time local symmetries. They provide a powerful
description of important realms of physics ranging from fundamental interactions to statistical mechanics,
condensed matter, and, more recently, quantum computation. As such, a remarkably deep understanding has
been achieved in the field. With the advent of quantum technology, lower energy analogs, capable of capturing
important features of the original quantum field theories through quantum simulation, have been intensively
studied. Here, we propose a specific scheme implementing an analogic quantum simulation of lattice gauge
theories constrained to mesoscopic spatial scales. To this end, we study the dynamics of mesons residing in a
ring-shaped lattice of mesoscopic size pierced by an effective magnetic field. In particular, we find a type of
Aharonov-Bohm effect that goes beyond the particlelike effect, reflecting the features of the confining gauge
potential. The coherence properties of the meson are quantified by the persistent current and by specific features
of the correlation functions. When the magnetic field is quenched, Aharonov-Bohm oscillations and correlations
start a specific matter-wave current dynamics.
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I. INTRODUCTION

One of the most striking features of quantum chromody-
namics (QCD) is the quarks’ confinement leading to hadrons
[1]. Even though important insights into the problem have
been achieved, confinement physics remains difficult to ex-
plore. The standard path that has been widely followed in the
literature is to restrict the ambient space of the theory [2,3]
and/or by coarse graining the space-time [4]. The resulting
theories are known as lattice gauge theories [5,6]. Besides
benchmarking and regularizing continuous gauge theories,
lattice gauge theories have defined another entire direction
of condensed matter [7–10] and quantum information and
computation [11–14].

In the era of quantum technologies, several schemes and
physical platforms simulating lattice gauge theories have been
proposed, ranging from superconducting circuits [15–18] and
ion traps [19] to cold atoms [20–29]. Indeed, insights in im-
portant and challenging aspects in the field have been explored
[30–33]. In this context, analogic quantum simulations that
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explore finite baryonic densities and real-time dynamics are
of particular relevance [34–36].

In this paper, we analyze the real-time dynamics of gauge
theories at mesoscopic spatial scales. Indeed, mesoscopic
physics has been providing an important avenue to highlight
fundamental notions in quantum mechanics such as macro-
scopic quantum superposition, persistent currents, coherent
quantum dynamics, etc. [37]. With a similar logic, here we
demonstrate how, through mesoscopic platforms, coherent
properties of the gauge theories can be disclosed. Specifically,
we consider a gauge theory with nontrivial confinement prop-
erties, and constrain its dynamics to a ring circuit pierced
by an effective magnetic field—see Fig. 1. Such configura-
tion is well within the experimental capabilities of quantum
technologies [38]. Here we provide a specific scheme im-
plementing the theory through driven networks of Rydberg
atoms. In such conditions, we will demonstrate that con-
fined matter experiences a Aharonov-Bohm effect with unique
features, disclosing fundamental features of the confinement
physics of the underlying lattice gauge theories [37,39–41].
For the quantitative analysis, we consider a Z2 gauge the-
ory whose confined matter can define the analog of QCD
mesons with a confining potential that linearly increases with
the quarks’ separation [42–45]. We refer to the minimal, but
interesting setting of the analog of mesons made of a single
quark pair [1]. As a remarkable aspect of such a system, we
note that confined quark pair’s relative coordinate and center
of mass result in being tightly coupled. Such a feature implies
a specific Aharonov-Bohm effect and dramatic effects in the
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FIG. 1. Lattice gauge theory on a ring of mesoscopic scale. Illus-
tration of meson dynamics on a ring pierced by a magnetic flux �.
The screen captures the Aharonov-Bohm oscillations produced by
clockwise and anticlockwise components of the wave function.

meson current dynamics. Such phenomena can characterize
the dynamics of the internal structure of the confined matter
at a length scale that would be very hard, if not impossible, to
explore with standard approaches in particle and accelerator
physics.

II. METHODS

The model under consideration is a one-dimensional Z2-
lattice gauge theory of spinless fermions, hopping in a ring-
shaped lattice and pierced by an effective magnetic flux �.
Such a theory shows the confinement of fermions into mesons
[42,44,46]. The Hamiltonian reads

H =
L∑

j=1

w (ei 2π
L �/�0 c†

j c j+1 + H.c.) σ x
j+ 1

2
+ τ

2
σ z

j+ 1
2
. (1)

The fermionic matter c j lives in the sites of the lattice.
Gauge fields, represented by spin-1/2 variables residing on
the bonds connecting nearest-neighbor sites, act as a Z2

propagator: when particles hop across neighbor sites, a spin
flip occurs in the corresponding bond. The string tension τ

assigns quantum dynamics to the gauge field. Such tension
is responsible for the confinement of fermions into mesons:
τ = 0 corresponds to a deconfined phase; for finite tension,
specific bound states can be formed with an energy that is in-
creasing with τ . The theory (1) is invariant under global U (1)
transformations of the fermionic operators c j → eiαc j and
under local gauge transformations generated by the operators
Gj = σ z

j− 1
2

(−1)n j σ z
j+ 1

2

. Since [H, Gj] = 0 ∀ j, the dynamics is

restricted to gauge sectors, singled out by the eigenvalues of
Gj : Gj |ψ〉 = ±|ψ〉 ∀ j (Gauss law).

Periodic boundary conditions constrain the fermion parity
to be even or odd, depending on the number of negative eigen-
values of Gj along the lattice, as P = ∏

j (−1)n j = ∏
j G j .

Here, we will work in the neutral gauge sector Gj = 1 ∀ j.
To address the current of the matter fields, we refer to

the current I = −∂〈H(�)〉/∂�, which is related to the U (1)
symmetry of the model (1); we note that [H, I] �= 0 only if
τ �= 0. As we shall see, the current can track relevant features
of the confinement-deconfinement transition.

A. Floquet implementation of the Z2-lattice gauge theory
on a ring pierced by a synthetic field

Here, we demonstrate how the the dynamics entailed by
the Hamiltonian (1) can effectively be obtained by Floquet
engineering. We first note that, by fixing the gauge as Gj =
1 ∀ j, we can eliminate matter degrees of freedom by n j =
1
2 (1 − σ z

j− 1
2

σ z
j+ 1

2

). By employing the mapping σ z
j+ 1

2

→ σ z
j and

(c†
j − c j )σ

x/y
j+ 1

2

(c†
j+1 + c j+1) → σ

x/y
j , the Hamiltonian (1) can

be identified as the Ising-type model:

Hspin =
L∑

j=1

w

[
cos

(
2π�

L�0

)(1 − σ z
j−1σ

z
j+1

)
2

σ x
j

+ sin

(
2π�

L�0

)(
σ z

j−1 − σ z
j+1

)
2

σ
y
j

]
+ τ

2
σ z

j . (2)

[43,44]. Indeed, the Hamiltonian (2) can be obtained as
the lowest order of the high-frequency Floquet driving of
H0 = ∑

j [ λ
2 σ x

j + τ
2 σ z

j + (−1) j J σ z
j σ

z
j+1] with Hdrive(t ) =∑

j
A
2 cos(
t − (−1) jϕ)σ z

j , in which J ∼ 
, ϕ = π�
2L�0

, w =
λ
2J4( A



), J4(x) being the fourth-order Bessel function of the

first kind; A/
 is chosen as a zero of J0(x)—see Appendix A
for the analytical details. Such considerations grant our theory
to be implemented through a ring-shaped network of Rydberg
atoms trapped in optical tweezers [25,47]; the Floquet proto-
col can be achieved by a suitable local driving of the atoms
detuning—see Appendix A.

B. Current of mesons in the ground state

For τ = 0, fermions are deconfined. When subjected to an
external magnetic flux, free fermions are known to display
sawtooth oscillations in the current, with period of �0 [48].
In contrast, here we observe a sawtooth behavior with �0/2
(see also Appendix D). Such effect is due to the gauge field
degrees of freedom. For τ = 0, the Hamiltonian is indeed
block diagonal in the basis of the eigenfunctions of the Wil-
son loop operator W = ∏

j σ
x
j+ 1

2
, with eigenvalues ±1. The

fractionalization of the current is thus produced as an effect
of the level crossings between the ground states of the two
blocks—see Appendix D. In the confined regime τ �= 0, the
Hamiltonian is not block diagonal anymore. Nevertheless, the
ground state current is still found with a halved periodicity
because of the formation of confined bound states, in which
the participating two particles share a single flux-quantum. In
the limit of large τ/w, this analysis is supported by a second
order perturbative expansion—see Appendix D.

Remarkably, in the two-particle sector, we find that the
maximum of the ground state current Imax displays scaling
behavior as a function of the string tension and of the ring
size L—see Appendix D. For large enough τ , the scaling
function provides the particlelike behavior [37] Imax ∼ L−2,
from which it deviates substantially in the regime of small
τ . The interplay between τ and L also emerges in the cor-
relation function g(r) = 〈c†

j+r

∏ j+r−1
l= j σ x

l+ 1
2
c j〉 [42,46]. The

gauge-invariant correlator g(r) displays oscillations with r
which are reminiscent of a free particle behavior; these oscil-
lations are exponentially damped, with the law g(r) ∼ e−r/ξ ,
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in which ξ ∼ τ−γ (L), with γ displaying a weak dependence
on L, being γ ∼ 0.52 for large enough L—see Appendix E.

C. A single meson in a ring pierced by an effective magnetic field

The single meson on the ring is described by the
state |ψ〉 = ∑

j1, j2;σ ψσ ( j1, j2)c†
j1

c†
j2
|0, σ 〉 . We take σ as

the eigenvalue of −σ z
L+ 1

2

, distinguishing the two allowed

spin configurations corresponding to fixed particle positions
j1 < j2. We solve the first quantized spectral problem corre-
sponding to Eq. (1) exactly: Hσψσ ( j1, j2) = Eψσ ( j1, j2)

ψσ
K,l (s, r) = eiKsφσ

K,l (r) , K = 2πn

L

φ
↑
K,l (r) = N

⎧⎨
⎩
J EK,l

τ
−r

( 2 wK
τ

)
J EK,l

τ

( 2 wK
τ

) −
Y EK,l

τ
−r

( 2 wK
τ

)
Y EK,l

τ

( 2 wK
τ

)
⎫⎬
⎭, (3)

with ψ
↓
K,l (s, r) obtained as −ψ

↑
K,l (s + L/2, L − r). The vari-

ables s = ( j1 + j2)/2 and K are the center-of-mass coordinate
and momentum, respectively, while r = j2 − j1 is the relative
coordinate. For future reference, we define the string length
as R = r if σ =↑ or R = L − r if σ =↓: it represents the
length of the string of spin ups comprised between the two
fermions forming a meson. J and Y are Bessel functions of
the first and second kinds, respectively, whose order is fixed
by the energies’ and particles’ relative positions [49]; their
argument figures wK (�) = 2 w cos( K

2 + 2π�
L�0

), providing the
center-of-mass energies. The energy eigenvalues are obtained
by requiring that φK,l (L) = φK,l (0) = 0, corresponding to the
Pauli constraint on periodic boundary conditions; as such,
energies are labeled by an index l and depend, through wK ,
on K and �: E = EK,l (�). As Eqs. (3) show, r and s are
indeed coupled: the motion of the relative coordinate can be
obtained after the center-of-mass dynamics is specified in both
the eigenfunctions and energies. As a result, the magnetic field
couples to both meson center of mass and relative coordinates.
Such a remarkable effect is originated by the lattice, that in the
present case is a defining feature of the theory.

In this formalism, general features of the meson dynam-
ics can be grasped. Specifically, the Heisenberg equations of
motion can be integrated exactly. The string length is seen
to perform characteristic Bloch oscillations [50]. Due to the
coupling between s(t ) and R(t ), we find that the Bloch os-
cillations of the string length propagate to oscillations of the
center-of-mass position, with a velocity which is fixed by
I—see Appendix F.

D. Quench dynamics

Here we study the effects of the aforementioned coupling
between the center of mass and relative coordinates’ degrees
of freedom—see Eqs. (3)—that emerge in the dynamics of a
single meson. To this end, we apply a dynamical protocol in
which a single meson, whose center-of-mass is localized at
s = s0, is put in motion by quenching the effective magnetic
field:

ψσ
�(t ) = e−iH (�)tψσ

0 (t = 0). (4)

(a) (c)

(b) (d)

FIG. 2. A single meson whose center of mass has been localized
within a Gaussian distribution of width �, as in Eq. (5), is quenched
by applying the Hamiltonian (1) as in Eq. (4). To this end, the flux is
quenched to the value �/�0 = 0.8. The average current (represent-
ing the center-of-mass velocity) and the probability to find the meson
with string length R (labeling the length of a string of spin ups con-
necting the two bound particles), I(t ) and P(R) = ∑

s |〈s, R|ψ (t )〉|2,
are displayed in (a), (b) and (c), (d), respectively. The upper panels
refer to � = 2, τ = 1; the lower panels refer to � = 10−6, τ = 1. In
all cases, we consider L = 21 sites.

The protocol is initialized with ψ0(t = 0), describing a
meson with center of mass s localized within a Gaussian
distribution:

ψσ
0 (t = 0) = e−(s+L/2 δσ,↓−s0 )2/(2 �) ψσ

K=0,l=1(s, r). (5)

Such a state excites center-of-mass momenta within val-
ues that depend on the Gaussian variance �. This way, the
dynamics can effectively explore different portions of the
meson spectrum. As figures of merit, we consider the average
value of the current 〈ψ (t )|I|ψ (t )〉 and the string dynamics,
which we address by calculating P(R, t ) = ∑

s |〈s, R|ψ (t )〉|2.
In the deconfined regime τ = 0, the current is a constant
of the motion. For τ �= 0, a distinctive oscillatory dynam-
ics arises, depending on the width of the initial Gaussian
localization. For finite values of �, the dynamics starts as
soon as the quench is applied and the current reflects a di-
rectional center-of-mass motion—see Fig. 2(a). In the limit
of a sharply localized (delta-like) center of mass, we observe
that I remains nearly vanishing for a characteristic time T (τ )
increasing algebraically with τ , reaching the linear depen-
dence for large confinement—see Fig. 2(b). For t > T (τ ), the
current starts oscillating around zero, at a faster pace with
increasing τ . The observed oscillatory behavior reflects inter-
ference effects between energy levels with different quantum
numbers l and reflects the oscillations of the string length—
see Appendix F. By increasing the string tension, fewer and
fewer levels are involved in the dynamics, giving rise to clear
beating modes.

The string is seen to perform periodic oscillations whose
amplitude and period depend on the Gaussian width � and
on the value of the string tension τ—see Figs. 2(c) and
2(d). We find that � and τ have similar effects: to smaller
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(a)

(c)

(b)

(d)

FIG. 3. Analysis of the meson Aharonov-Bohm oscillations. A
single meson wave function, whose center of mass is initialized in
the site s0, as specified in Eq. (5), evolves along the ring and is
monitored at s = s0 + L/2. Here L = 20. The upper and the lower
panels are, respectively, for τ = 0.1 and τ = 10. (a), (c) Pmid(t ) =∑

r |〈s0 + L/2, r|ψ (t )〉|2. (b), (d) Fourier transform of (Pmid(t ) −
Pmid) = P̃mid(w) at �/�0 = 0, where Pmid is the time average of
Pm(t ). The figure in (c) is plot for t up to 1000: indeed, for large
τ , the relevant timescale is set by t/τ—see also text.

values of �, τ correspond to slower and broader oscillations.
Indeed, in the limit of a deltalike center-of-mass localization,
all center-of-mass momenta are equally populated, thus excit-
ing larger portions of the meson spectrum. Similarly, for small
τ , an increasing number of energy levels are involved in the
dynamics, as the particles are more free to move.

E. Meson Aharonov-Bohm oscillations

Here we study the Aharonov-Bohm effect experienced by
a meson as a function of its confinement, within the same
quench protocol that is described in the previous paragraph.
After the quench, the wave function evolves along the ring
with clockwise and anticlockwise probability waves that can
eventually produce interference—see Fig. 1. We will see how
the interplay between confinement and the imparted phase �

establishes a peculiar dynamics of the meson, with character-
istic Aharonov-Bohm oscillations. For a quantitative analysis,
we monitor the probability density at s = s0 + L/2—see
Fig. 1. The interference fringes display a marked dependence
on the string tension whose increase progressively localizes
the meson—see Fig. 3. As a first feature, we note that the
interference fringes are generically blurred by decreasing τ .
Such a feature points to a reduction of the number of distinct
modes characterizing the wave functions as the string tension
is increased (from k = 2π/L for strongly confined meson
to a nearly double k number for loosely paired particles).
Because of the aforementioned coupling between s and R, the
response of the meson to the magnetic field is highly nontriv-
ial: while, for strong confinement, the meson is characterized
by a single-particle Aharonov-Bohm effect, for weaker con-
finements Aharonov-Bohm and relative coordinate dynamics
combine together to produce distinctive Aharonov-Bohm

oscillations. This feature is reflected in the time dynamics
of the probability density, which is quantitatively analyzed
via Fourier transform. The number of involved frequencies is
strongly reduced at large values of τ , reflecting a suppression
of the relative degrees of freedom, in favor of an emerging
one-particle picture (see Appendix H for the single-particle
behavior). The distribution of such frequencies around zero is
significantly broader for smaller values of τ . In this regime,
the dynamics excites energy levels EK,l ranging over several
values of l . On the other hand, larger values of τ correspond
to larger gaps among energy levels with different l , effectively
constraining the dynamics only within the lowest relative
levels. We note that larger values of τ correspond to slower
dynamics, whose timescale is fixed by t/τ for τ 
 1—see
Appendix H for analytical details. This analysis is sensitive to
the value of the applied external flux, manifesting flux-driven
interference effects. For �/�0 = 1/4, a completely destruc-
tive interference at s = s0 + L/2 results. This interference
reflects the meson nature as the two-particle bound state. As
we discuss below, such a feature emerges also in the meson
current.

III. CONCLUSIONS

In this paper, we studied the mesoscopic coherence in-
herent in lattice gauge theories. To this end, we made the
theory live on a ring-shaped lattice and analyzed its response
to the magnetic field. As paradigmatic case, we considered
a Z2 lattice gauge theory providing meson confinement. The
magnetic field couples both to the confined matter center of
mass and internal structure. We demonstrate how such theo-
ries can be analogically implemented through Floquet-driven
networks of Rydberg atoms (see also Appendix A).

We find a dynamics and interference process that are be-
yond the particlelike phenomena and reflecting the meson
confinement. In particular, a peculiar kind of Aharonov-Bohm
effect occurs that reveals key features of the confinement phe-
nomenon on its own: while a tightly confined meson displays
pointlike particle Aharonov-Bohm effect (with oscillations
resulting to be dependent only on �), for weaker confine-
ments Aharonov-Bohm oscillations display a clear signature
of an entangled combination of the meson internal (oscil-
latory) dynamics and the meson’s motion as a whole—see
Fig. 3 and Appendix H. Relevant insights into the coherence
of meson dynamics is obtained by studying the mesoscopic
current. In the ground state, the current periodicity with the
effective magnetic field reflects the feature of meson bound
states and singles out the contribution of the gauge field
[48]—see Appendix D. The scaling of the meson current that
we found, involving a suitable combination of τ and L, ad-
dresses the mesoscopic coherence of the meson in the ground
state quantitatively—see Appendix D. Aharonov-Bohm os-
cillations and mesoscopic coherence combine together in the
current quench dynamics—see Fig. 2. On one hand, the slow
and fast frequency current dynamics reflects the interplay
between the meson center of mass and the relative coordinate
motion. On the other hand, the current assumes nonvanishing
values after a characteristic time depending on the confine-
ment and the meson localization. In this time, clockwise
and anticlockwise moving components of the meson wave
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function accumulate a topological phase that, depending on
the value of �, can start the matter wave current.

Exploiting state-of-the-art of quantum technology, our pre-
dictions can be tested through the Rydberg atoms system
we detailed in the present paper (see also Appendix A), and
possibly also in cold atoms platforms [21–27,38] or through
driven superconducting circuits [15–18]. This way, studying
the real time out-of-equilibrium coherence dynamics of lat-
tice gauge theories can define a unique framework for the
cross fertilization between high-energy physics and quantum
technology.

One interesting avenue for future research would be to
extend the present analysis to larger gauge groups, such as
ZN [51]. Confinement can be further analyzed by exploiting
alkali-earth SU(N ) fermions [52–54].
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APPENDIX A: FLOQUET IMPLEMENTATION
OF THE Z2-LATTICE GAUGE THEORY ON A RING

PIERCED BY A SYNTHETIC FIELD

Here we show how we can implement the Hamiltonian,

H =
∑

j

[
w
(
e

2iπ�
L�0 c†

j σ x
j+ 1

2
c j+1 + H.c.

)+ τ

2
σ z

j+ 1
2

]
, (A1)

when explicitly restricted to the neutral gauge sector and in
the presence of a synthetic flux �.

In the neutral gauge sector, the explicit resolution of the
gauge constraints Gj = σ z

j− 1
2

(−1)n j σ z
j+ 1

2

= 1 ∀ j, allows for

the elimination of the fermionic degrees of freedom, since nj

can be rewritten as

n j = 1
2

(
1 − σ z

j− 1
2
σ z

j+ 1
2

)
. (A2)

By exploiting Eq. (A2) and the mapping σ z
j+ 1

2

→ σ z
j ,

(c†
j − c j )σ

x/y
j+ 1

2

(c†
j+1 + c j+1) → σ

x/y
j [43,44], the system can

be identified with the following Ising-type model:

Hspin =
L∑

j=1

w

[
cos

(
2π�

L�0

)(1 − σ z
j−1σ

z
j+1

)
2

σ x
j

+ sin

(
2π�

L�0

)(
σ z

j−1 − σ z
j+1

)
2

σ
y
j

]
+ τ

2
σ z

j . (A3)

In this picture, fermions are mapped into domain walls
separating domains of reversed magnetization in a spin chain,
as is explicit from Eq. (A2). The hopping of fermions is then
mapped into hopping of domain walls. Indeed, the square-
bracketed terms in Eq. (A3) produce a spin flip at site j,
under the condition that the σ z variables at the neighboring
sites j ± 1 have opposite directions, as enforced by the con-

straints
(1−σ z

j−1σ
z
j+1 )

2 and
(σ z

j−1−σ z
j+1 )

2 . This produces a hopping
of the domain wall that separates the spins at either positions

j − 1 and j, or j and j + 1. The term
(σ z

j−1−σ z
j+1 )

2 σ
y
j provides

(a) (b)

FIG. 4. Two-particle states. Here the admissible two particle con-
figurations are shown. The positive direction along the ring is taken
to be clockwise. Outgoing and ingoing arrows represent up and
down spins, respectively. Blue arrows highlight the spins between
the ordered fermion positions. (a) | j1, j2〉↑. (b) | j1, j2〉↓.

directionality, as it distinguishes leftward from rightward
hopping processes.

We propose an implementation of Eq. (A3), emerging as
the effective description of a periodically driven hamiltonian
H(t ) = H0 + Hdrive(t ) with driving frequency 
, at the low-
est order in the large 
 limit. In particular, H0 is taken as
an Ising model in the presence of longitudinal and transverse
fields

H0 =
∑

j

[
λ

2
σ x

j + τ

2
σ z

j + (−1) j J σ z
j σ

z
j+1

]
, (A4)

where periodic boundary conditions are assumed. We choose
to drive the longitudinal field according to

Hdrive(t ) =
∑

j

A

2
cos(
t − (−1) jϕ) σ z

j . (A5)

The model (A4) can be naturally implemented on an array
of Rydberg atoms trapped in optical tweezers, where the trans-
verse and longitudinal fields would, respectively, correspond
to the Rabi frequency and to the detuning terms that are in-
duced by laser driving the ground- to Rydberg-state transition
of the atoms in the rotated frame [25,47]. The scheme that we
propose would then correspond to a local periodic modulation
of the atoms detuning—see Eq.(A5).

We notice that the transverse field term in Eq. (A4) can be

rewritten as
∑

j w[
(1−σ z

j−1σ
z
j+1 )

2 σ x
j + (1+σ z

j−1σ
z
j+1 )

2 σ x
j ]: spin flips

caused by σ x
j can either move domain walls (first term) or cre-

ate or annihilate them in neighboring pairs (second term). We
work under the assumption that J ∼ 
. The large staggered
Ising interaction results in a suppression of the hopping of
domain walls. We will show that the hopping is restored in the
high-frequency expansion, assisted by an additional Peierls
phase. Additionally, the terms that create (annihilate) domain
walls in pairs can be suppressed by an appropriate choice of
the driving amplitude.

We perform the time-dependent unitary transformation
H′(t ) = U †(t )H(t )U (t ) − iU †(t )∂tU (t ), with

U (t ) = exp −i
∑

j

[
χ j (t )

2
σ z

j + (−1) j
t σ z
j σ

z
j+1

]
(A6)
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and χ j (t ) = A



sin(
t − (−1) jϕ). It leads to

H′(t ) =
∑

j

{
τ

2
σ z

j + (−1) j (J − 
) σ z
j σ

z
j+1 + λ

4

[(
1 + σ z

j−1σ
z
j+1

)(
cos(χ j (t )) σ x

j − sin(χ j (t )) σ
y
j

)+ cos(4
t )
(
1 − σ z

j−1σ
z
j+1

)

× (
cos(χ j (t )) σ x

j − sin(χ j (t )) σ
y
j

)+ (−1) j sin(4
t )
(
σ z

j−1 − σ z
j+1

)(
cos(χ j (t )) σ

y
j + sin(χ j (t )) σ x

j

)]}
.

The stroboscopic dynamics described by H′(t ), observed at multiples of the driving period T = 

2π

in the limit of large 
, is

effectively described by the first order, time-independent Floquet Hamiltonian Heff = 1
T

∫ T
0 dt H′(t ). Under the assumption that

J ∼ 
, this results in

Heff =
∑

j

{
τ

2
σ z

j + λ

4
J0

(
A




)(
1 + σ z

j−1σ
z
j+1

)
σ x

j + λ

4
J4

(
A




)[
cos(4ϕ)

(
1 − σ z

j−1σ
z
j+1

)
σ x

j + sin(4ϕ)
(
σ z

j−1 − σ z
j+1

)
σ

y
j

]}
.

The term responsible for the creation or annihilation of
pairs of domain walls is suppressed under the assumption that
the driving amplitude is chosen accordingly to J0( A



) = 0.

The target model in Eq. (A3) is then obtained after the identi-
fication λ

2J4( A



) = w and ϕ = π�
2L�0

.

APPENDIX B: TWO-BODY PROBLEM

Consider the two-body problem for the Hamiltonian (A1).
States in the physical Hilbert space are chosen as eigenstates
of
∏

j n j and
∏

j σ
z
j+ 1

2

. Due to the Gauss law, to every fermion

configuration correspond two different spin orientations that
differ for a flip of all the spins. Specializing to the two-particle
case, labeling j1 and j2 as the positions of the two fermions,
with j1 < j2, the allowed states are the following:

| j1, j2〉↑ = | j1, j2〉|↓1+ 1
2

. . . ↓↑ j1+ 1
2

. . . ↑ j2− 1
2
↓ . . . ↓L+ 1

2
〉,

(B1)

| j1, j2〉↓ = | j1, j2〉|↑1+ 1
2

. . . ↑↓ j1+ 1
2

. . . ↓ j2− 1
2
↑ . . . ↑L+ 1

2
〉,

(B2)

where it is assumed that sL+ 1
2

≡ s1− 1
2

and

| j1, j2〉 = c†
j1

c†
j2
|0〉.

The labels ↑ and ↓ refer to the orientation of the spins
comprised between the ordered positions of the fermions and

the corresponding states are unambiguously distinguished by
the value of σ z

L+ 1
2

. See Fig. 4 for a pictorial representation.

Every state in the two-particle space can thus be expanded
in this basis as

|ψ〉 =
∑
j1< j2

∑
a=↑,↓

ψa( j1, j2)| j1, j2〉a. (B3)

For the sake of keeping translational invariance manifest in
the calculations, it is convenient to adopt a relabeling of these
states. In particular, choosing the clockwise direction along
the ring as positive for definiteness, let R be the length (in
units of the lattice spacing) of a string of spins pointing in the
up direction and originating from site j. Then, the expansion
(B3) can be rewritten as

|ψ〉 =
L∑

j=1

L−1∑
R=1

ψ ( j, R)| j, R〉. (B4)

In particular, the two states in Eqs. (B1) and (B2), become

| j1, j2〉↑ = | j1, r〉, (B5)

| j1, j2〉↓ = | j2, L − r〉, (B6)

where r = j2 − j1. In the basis {| j, R〉}, the two-body Hamil-
tonian can be written as follows:

H2b =
∑
j,R

{τ (R − L/2)| j, R〉〈 j, R| + w[ei 2π�
L�0 [(1 − 2 δ j,1)|( j − 1) mod L, R + 1〉 + (1 − 2 δ j,L−R+1)| j, R − 1〉]

+ e−i 2π�
L�0 [(1 − 2 δ j,L )|( j + 1) mod L, R − 1〉 + (1 − 2 δ j,L−R)| j, R + 1〉]]〈 j, R|

}
. (B7)

The δ factors in the previous expression account for the sign change as the particles hop between the first and the Lth sites.
Notice that, if R = 1 or R = L − 1, two terms of the previous equation must be dropped, i.e., those relating R = 1 with R = 0
and R = L − 1 with R = L. This is equivalent to the Pauli exclusion principle, as R = 0, L correspond to fermions occupying
the same site.

We wish to exploit the translational symmetry of H. Denoting the translation operator as T , its action on the states | j, R〉
results in T | j, R〉 = (1 − 2 δ j+R,L − 2 δ j,L )|( j + 1) mod L, R〉, where the prefactor accounts for the minus sign we get upon
acting with T on states with one of the two particles at the first or last site of the ring. In fact, in terms of the basis {| j1, j2〉a}, this
is equivalent to T | j1, L〉↑/↓ = −|1, j1 + 1〉↓/↑, and the minus sign arises as we rearrange the particles’ positions in increasing
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order, due to anticommutation. The translation operator does not change the length of the string R, but it just shifts its origin
along the ring. Thus, T can be diagonalized in each subspace of fixed R, where it has the matrix form

(B8)

It is straightforward to check that the eigenvalues of T (R) satisfy

λL = 1 ⇒ λ = e−iK , K = 2πn

L
, n = 0, . . . , L − 1 (B9)

and its normalized eigenvectors, that we label as |K, R〉, are given by

|K, R〉 = 1√
L

L∑
j=1

eiK j θL−R( j)| j, R〉, (B10)

where we defined

θL−R( j) =
{

1 , j � L − R
-1 , j > L − R.

(B11)

Any state of the two-particle subspace can now be expanded in terms of this basis as

|ψ〉 =
∑

K

∑
R

ψ (K, R)|K, R〉. (B12)

Now, since [H2b, T ] = 0, then H2b is block diagonal in a basis of T . Each block of H2b will correspond to a fixed value of
K and thus will connect all the states |K, R〉, with R spanning the set {1, . . . , L − 1}. We denote these blocks as HK

2b. Hence, we
are interested in evaluating H2b|K, R〉, which can be deduced from Eq. (B7):

H2b| j, R〉 = w
[
ei 2π�

L�0 [(1 − 2 δ j,1)|( j − 1) mod L, R + 1〉 + (1 − 2 δ j,L−R+1)| j, R − 1〉]

+ e−i 2π�
L�0 [(1 − 2 δ j,L )|( j + 1) mod L, R − 1〉 + (1 − 2 δ j,L−R)| j, R + 1〉]]+ τ

(
R − L

2

)
| j, R〉.

Now, we observe that

L∑
j=1

eiK jθL−R( j)(1 − 2 δ j,1)|( j − 1) mod L, R + 1〉 =
L∑

j=2

eiK jθL−R( j)| j − 1, R + 1〉 − eiK |L, R + 1〉

=
L−1∑
j=1

eiK ( j+1)θL−R( j + 1)| j, R + 1〉 − eiK |L, R + 1〉 = eiK
L∑

j=1

eiK jθL−R−1( j)| j, R + 1〉 =
√

L eiK |K, R + 1〉,

where, in the last equality, we used the property that
θL−R( j ± 1) = θL−R∓1( j). In the same way, we can prove that

1√
L

∑L
j=1 eiK jθL−R( j)(1 − 2 δ j,L )|( j + 1) mod L, R − 1〉 =

e−iK |K, R − 1〉. Moreover, noticing that

(1 − 2 δ j,L−R+1) θL−R( j) = θL−R+1( j),

(1 − 2 δ j,L−R) θL−R( j) = θL−R−1( j),

we easily obtain

1√
L

L∑
j=1

eiK jθL−R( j)(1 − 2 δ j,L−R+1)| j, R − 1〉 = |K, R − 1〉,

1√
L

L∑
j=1

eiK jθL−R( j)(1 − 2 δ j,L−R)| j, R + 1〉 = |K, R + 1〉.
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We can finally evaluate the action of the Hamiltonian on
the eigenstates of T . We promptly find

H2b|K, R〉 = 2 w cos

(
K

2
+ 2π�

L�0

)
{ei K

2 |K, R + 1〉

+ e−i K
2 |K, R − 1〉} + τ

(
R − L

2

)
|K, r〉.

(B13)

Now, let |�K〉 be an eigenstate of a block HK
2b of H2b

associated with an energy E :

HK
2b|�K〉 = E |�K〉. (B14)

Since K is held fixed, |�K〉 can be expanded as

|�K〉 =
∑

R

�K (R)|K, R〉. (B15)

We evaluate 〈K, R|HK
2b|�K〉 = E �K (R). The eigenvalue

Eq. (B14) translates to a difference equation for the wave
function. Defining wK (�) = 2 w cos( k

2 + 2π�
L�0

) and shifting E

by the energy of the negatively polarized vacuum state − τL
2 ,

we get

wK (�){e−i K
2 �K (R + 1) + ei K

2 �K (R − 1)}
+ τR �K (R) = E �K (R). (B16)

Choosing the ansatz

�K (R) = eiK R
2 φK (R), (B17)

Eq. (B16) becomes

φK (R + 1) + φK (R − 1) = τ

wK

(
E

τ
− R

)
φK (R). (B18)

This is just the recursion relation of Bessel functions, i.e.,
fν+1(x) + fν−1(x) = 2 ν

x fn(x), which leads to the solution

φK (R) = α J E
τ
−R

(
2 wK (�)

τ

)
+ β Y E

τ
−R

(
2 wK (�)

τ

)
,

(B19)

J and Y , respectively, being Bessel functions of the first
and second kinds. We still have to impose the boundary con-
ditions

φK (R) = 0 , R = 0, L (B20)

that we have already noticed are equivalent to the Pauli exclu-
sion principle. φK (0) = 0 results in

φK (R) = N
{
J E

τ
−R

( 2 wK (�)
τ

)
J E

τ

( 2 wK (�)
τ

) −
Y E

τ
−R

( 2 wK (�)
τ

)
Y E

τ

( 2 wK (�)
τ

)
}

, (B21)

while the remaining condition φK (L) = 0 fixes E to those
values that solve

J E
τ
−L

( 2 wK (�)
τ

)
J E

τ

( 2 wK (�)
τ

) −
Y E

τ
−L

( 2 wK (�)
τ

)
Y E

τ

( 2 wK (�)
τ

) = 0. (B22)

The eigenenergies will thus be fixed by an index l , which
denotes the lth solution of Eq. (B22) and by the center-of-
mass momentum K . The state |�K,l〉 associated to one energy

eigenvalue will then have the expansion

|�K,l〉 =
∑

R

eiK R
2 �K,l (R)|K, R〉. (B23)

We may now rewrite these results in terms of the origi-
nal basis {| j1, j2〉↑,↓}. In order to write the expressions for

the wave functions �
↑
K,l ( j1, j2) and �

↓
K,l ( j1, j2), we need to

evaluate ↑,↓〈 j1, j2|K, R〉. Equations (B5) and (B6) yield

↑〈 j1, j2| j, R〉 = δ j, j1 δR, j2− j1 , (B24)

↓〈 j1, j2| j, R〉 = δ j, j2 δR,L− j2+ j1 . (B25)

Finally, from the expansion of the states |K, R〉 in terms of
| j, R〉, Eq. (B10), we find

↑〈 j1, j2|K, R〉 = 1√
L

eiK j1 θL−R( j1) δR, j2− j1

= 1√
L

eiK j1 θL− j2 (0) δR, j2− j1 ,

↓〈 j1, j2|K, R〉 = 1√
L

eiK j2 θL−R( j2) δR,L− j2+ j1

= 1√
L

eiK j2 θ− j1 (0) δR,L− j2+ j1 ,

where we used the fact that θL− j2+ j1 ( j1) = θL− j2 (0) and
θ j2− j1 ( j2) = θ− j1 (0). Moreover, since j1, j2 ∈ {1, . . . , L},
θL− j2 (0) = 1 and θ− j1 (0) = −1. Hence

↑〈 j1, j2|K, R〉 = 1√
L

eiK j1 δR, j2− j1 , (B26)

↓〈 j1, j2|K, R〉 = − 1√
L

eiK j2 δR,L− j2+ j1 . (B27)

Therefore, we can now compute the wave functions

�
↑
K,l ( j1, j2) = 1√

L
eiK j1+ j2

2 φK,l ( j2 − j1), (B28)

�
↓
K,l ( j1, j2) = − 1√

L
eiK j1+ j2+L

2 φK,l (L − j2 + j1).

(B29)

In terms of the center of mass and the relative coordinates,
namely, s = j1+ j2

2 and r = j2 − j1 > 0, we have

�
↑
K,l (s, r) = 1√

L
eiKs φK,l (r), (B30)

�
↓
K,l (s, r) = − 1√

L
eiK(s+ L

2 ) φK,l (L − r). (B31)

APPENDIX C: TWO-BODY CURRENT
AND FLUCTUATIONS IN AN ENERGY EIGENSTATE

For τ = 0, [H, I] = 0. Therefore, in any energy eigenstate
σ 2
I = 〈I〉2 − 〈I〉2 = 0. This is not true anymore for τ �= 0,

leading to σI �= 0. Direct analysis of the equations of motion
for the two-particle problem provide that, in any energy eigen-
state of fixed center-of-mass momentum K , the current and its
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(a) (b)

FIG. 5. Current and string length fluctuations. (a) Fluctuations
of the single meson current; (b) fluctuations of the meson extent.
For visualization purposes, all the curves in (b) have been shifted
to zero minimum. The fluctuations are plotted for τ = 0.5, 1, 2, 3,
respectively, in yellow, green, red, and blue. All the data are shown
for L = 21.

fluctuations are expressed as

〈I〉K,l = g(K,�)(EK,l − τ 〈R̂〉K,l ), (C1)

(σI )K,l = τ |g(K,�)|(σR)K,l , (C2)

where g(K,�) = 2π
L�0

tan ( K
2 + 2π�

L�0
) and R̂ is the operator

associated to the length of a string of positive spins. Therefore,
we conclude that the current fluctuation calculated in each
energy eigenstate is related to the fluctuation of the spatial
scale on which the meson can be confined—see Fig. 5.

APPENDIX D: GROUND STATE CURRENT

The persistent current is given by the ground-state expec-
tation value of the operator

I (�) = −i
2πw

L�0

∑
j

(ei 2π
L �/�0 c†

jσ
x
j+ 1

2
c j+1 − H.c.). (D1)

For any value of the string tension τ , the current displays a
sawtooth behavior with period of half-flux quantum �0/2—
see Fig. 6. In the deconfined regime τ = 0, the Hamiltonian
(1) of the main text is block diagonal in a basis of eigenvectors
of the Wilson loop operator W = ∏

j σ
x
j 1

2
. This can be made

manifest by writing

H = w

⎡
⎣L−1∑

j=1

(d†
j d j+1 + H.c.) + W (ei 2π�

�0 d†
Ld1 + H.c.)

⎤
⎦,

(D2)

FIG. 6. Ground-state current. We show 〈I(�)〉 in the confined
regime. Here, we considered L = 12 and N = 8 particles.

FIG. 7. Scaling of the ground state current in the two particle
sector. Here we display the amplitude of the ground sate sin-
gle meson current. The scaling points (τ̃ (L), Ĩ(L)) correspond to
the inflections of Imax(L). α = 2.08, τ̃ (L) ∼ L−2.98, Ĩ(L) ∼ L−1.91.

where d j = ∏ j−1
k=1 σ x

k+ 1
2

c j . Each block of the Hamiltonian

hence describes free fermions with twisted boundary condi-
tions and has eigenvalues E = 2w

∑N
i=1 cos(ki + ϕ/L), with

N and ki being the number of particles and their quasimo-
menta, respectively. Due to the original gauge constraints on
periodic boundary conditions, the parity of N is fixed to be
even. The total Aharonov-Bohm phase ϕ acquired by the
particles when going around the loop is ϕ = 2π�

�0
+ arg(W ),

where W is the eigenvalue of the Wilson loop operator. There-
fore, arg(W ) = 2nπ or arg(W ) = (2n + 1)π , n being integer,
for W = 1 or W = −1, respectively. Finally, by inspection of
the spectra of the two blocks, �/�0 = 1/4, 3/4 correspond
to an energy degeneracy, in turn providing the reduction of
the current flux periodicity.

In the confined regime τ �= 0, we claimed that the reduced
period of the current is determined by the formation of con-
fined bound states. Relevant insights into this case can be
obtained by a perturbative analysis that can be carried out for
τ 
 w. Indeed, a second order Schrieffer-Wolf transforma-
tion leads to the effective model [42]

Heff = P†
∑

j

[−w̄(ei 4π
L �/�0 b†

jb j+1 + H.c.) + V̄ nb
jn

b
j+2

]
P,

(D3)

in which b†
j = c†

jσ
x
j+ 1

2
c†

j+1, are hard-core bosonic operators

hopping with a rate w̄ = w2

τ
, and interacting through V̄ = 2w̄.

The operator P projects Heff onto the Hilbert space of those
states that satisfy the constraint b†

jb
†
j+1 = 0. We note that

bosons dynamics occurs as second order processes, in which
pairs of fermions move together coherently. Strikingly, the
effective magnetic field is effectively doubled in such a way
one flux quantum is shared by two particles. This feature
directly implies that the periodicity of the current is effectively
halved.

In the two-particle sector, we studied the maximum of the
ground-state current Imax as a function of the string tension
τ and of the number of sites in the ring L. We find that Imax
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FIG. 8. Ground-state single meson correlator. The main figure shows the raw data (points) and the fitting function (curve) for g(r) at L = 32
and τ = 0.5. Upper inset: the points correspond to the values of the correlation length ξ as a function of τ , for L = 32, while the curve shows
the fitting function for ξ (τ ); the error bars are not displayed because they would not be visible. Lower inset: decay of the exponent γ with
increasing system size L.

displays scaling behavior, as shown in Fig. 7. For large enough
τ , the scaling function provides the behavior Imax ∼ L−2,
from which it deviates substantially in the regime of small τ .

APPENDIX E: GAUGE-INVARIANT CORRELATOR

We present the analysis of the exponential decay of
the gauge invariant correlator g(r) = 〈c†

j+r

∏ j+r−1
l= j σ x

l+ 1
2
c j〉.

We fit the data obtained via exact diagonalization, with the
law g(r) = p1e−r/p2 cos(p3r + p4). Hence, we extract the
correlation length ξ from the fit parameter p2. We find that
the correlation length decays with the string tension τ , with
the law ξ (τ ) = a τ−γ . The exponent γ is a weakly decreasing
function of the system size L and is seen to saturate at a value
γ ∼ 0.52 for large L (see Fig. 8).

APPENDIX F: TWO-BODY DYNAMICS

The first-quantized two-body Hamiltonian, Eq. (B7), can
be rewritten in terms of suitably defined canonically con-
jugate operators. Denoting s and R as the center-of-mass
coordinate and the string length of a two-particle configura-
tion, as described in the previous section, we introduce Q̂ =∑

s s|s〉〈s|, R̂ = ∑
R R|R〉〈R|, e−iK̂/2 = ∑

s |s + 1/2〉〈s|, e−i p̂ =∑
R |R + 1〉〈R|. These operators define the center-of-mass po-

sition, the string length, the center-of-mass momentum, and
the relative momentum, respectively. They satisfy canonical
commutations relations [Q̂, K̂] = [R̂, p̂] = i. It is implicit that
summations over s and R are indeed constrained by the lattice:
odd (even) values of the string length R can only correspond to
half-integer (integer) values of the center-of-mass coordinate
s. The two-body Hamiltonian is thus rewritten as

Ĥ2b = 2 w cos

(
K̂

2
+ 2π�

L�0

)
cos( p̂) + τ

2
R̂. (F1)

The Pauli constraints at R = 0, L are implicit. The Heisen-
berg equations of motion can be integrated exactly, away from
the boundary conditions at R = 0, L [50]. The string length is
seen to perform Bloch oscillations, as

R̂(t ) = R̂ − 4w

τ
cos

(
K̂

2
+ 2π�

L�0

)

× [sin(τ t ) sin( p̂) − (1 − cos(τ t )) cos( p̂)] (F2)

and p̂(t ) = p̂ − τ t , with p̂ = p̂(t = 0). Due to the coupling
between center of mass and relative coordinates, we find that
the Bloch oscillations of the string length propagate to oscil-
lations of the center-of-mass position, with a velocity which
is fixed by the current operator:

∂t Q̂(t ) = ∂t Q̂(t = 0) − L�0

4π
[Î(t ) − Î (t = 0)]. (F3)

Indeed, the dynamics of the current is related to the dynam-
ics of the string length, as

Î (t ) = Î − 2πτ

L�0
tan

(
K̂

2
+ 2π�

L�0

)
[R̂(t ) − R̂], (F4)

where Î = Î(t = 0).
In this paper, we considered the dynamics of a single

meson after a quench of the external flux � : 0 → �̄. The
initial state is chosen as the energy eigenstate, in the case
� = 0, corresponding to K = 0, l = 1, whose center of mass
is localized within a Gaussian distribution—see Eq. (4) of the
main text. Depending on the width of the Gaussian localiza-
tion �, center-of-mass momenta are excited that are different
from K = 0. Due to the coupling between the center of mass
and the relative motion, levels corresponding to l �= 1 are also
excited. Therefore, the initial state can be generally expanded
as |ψ0〉 = ∑

K,l cK,l |�K,l〉. In the case of a deltalike localiza-
tion, � → 0, a perturbative calculation to second order in w/τ
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(b) (d)

(a) (c)

FIG. 9. A single meson whose center of mass has been localized
within a Gaussian distribution of width �, is put in motion by
quenching the flux to the value �/�0 = 0.8. The average current
(representing the center-of-mass velocity) and the probability to find
the meson with string length R (labeling the length of a string
of spin ups connecting the two bound particles), I(t ) and P(R) =∑

s |〈s, R|ψ (t )〉|2, are displayed in (a), (b) and (c), (d) respectively.
The upper panels refer to � = 2, τ = 3; the lower panels refer to
� = 10−6, τ = 3. In all cases, we consider L = 21 sites.

provides

〈I (t )〉 = 8πw2

τL2

∑
K

sin[K + (4π/L)�̄/�0]

× cos[(τ + (4w2/τ ) cos2[K/2 + (2π/L)�̄/�0])t].

(F5)

The last expression reproduces the features observed in
Fig. 5 of the main text.

APPENDIX G: QUENCH DYNAMICS

Here, we present further results to support our analysis
of the quench dynamics. In Fig. 9, we plot the current and
the string dynamics after a quench of the external flux, as a
complement to Fig. 2 in the main text. In this case, a larger
value of the string tension (τ = 3) is considered, while the
width of the Gaussian localization � is chosen as either � = 2
or � → 0. As detailed in the main text, this choice is reflected
in the behavior of the current, displaying clear beating modes
and a strongly delayed motion in the case � → 0. On the
other hand, the string oscillations are more suppressed and
faster, as can be seen by comparison to the equivalent cases
for τ = 1, shown in Fig. 2 of the main text.

APPENDIX H: SINGLE-PARTICLE AHARONOV-BOHM
OSCILLATIONS

In this Appendix, we present the analysis of the Aharonov-
Bohm oscillations for a single particle in a ring pierced by a

(a) (b)

FIG. 10. Single particle Aharonov-Bohm oscillations. A single-
particle wave function, initialized in the site j = j0 as specified in
Eq. (H1), evolves along the ring and is monitored at j = j0 + L/2.
(a) Pmid(t ) = |〈 j0 + L/2|ψ (t )〉|2. (b) Fourier transform of (Pmid(t ) −
Pmid) = P̃mid(w) at � = 0. The figure refers to L = 20 sites and the
hopping parameter is set to h = 1.

magnetic flux—see Fig. 10 for comparison with the case of a
confined meson. The particle is initially localized at site j0,

|ψ (t = 0)〉 = c†
j0
|0〉, (H1)

and is evolved by means of the free-Hamiltonian Hfree =∑
j h(ei 2π�

L�0 c†
j c j+1 + H.c.).

We point out that, in this case, the analysis is carried out
for �/�0 ∈ [0, 1]. Indeed, a free fermion system displays
a periodic behavior with a period of one flux quantum �0,
while the model in Eq. (1) of the main text is characterized
by an halved periodicity, fixed by �0/2. Direct calculation of
Amid(t ) = 〈 j0 + L/2|ψ (t )〉 yields

Amid(t ) = 2
∞∑

ν=1

(−i)(2ν−1)L/2

× J(2ν−1) L
2
(2ht ) cos

[
(2ν − 1)π

�

�0

]
, (H2)

where J denotes the Bessel function of the first kind. The last
expression provides that destructive interference occurs at all
times if � = (2m + 1)�0

2 , m ∈ Z.
A single meson, in the limit of very large string tension

τ , behaves like a free particle, hopping on the lattice with a
renormalized amplitude—see Eq. (D3). The same calculation
then yields

Ameson
mid (t ) = 2

∞∑
ν=1

(−i)(2ν−1)L/2J(2ν−1) L
2

(
2w2

τ
t

)

× cos

[
(2ν − 1)π

2 �

�0

]
, (H3)

where w is the hopping parameter in Eq. (1) of the main
text. We observe that, in this case, destructive interference
occurs at all times for � = (2m + 1)�0

4 , m ∈ Z and that time
is effectively rescaled by a factor of w/τ .
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