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Persistent polarization oscillations in ring-shape polariton condensates
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We predict the limit cycle solution for a ring-shape bosonic condensate of exciton-polaritons confined in an
optically induced rotating trap. The limit cycle manifests itself with polarization oscillations on a characteristic
timescale of tens of picoseconds. The effect arises due to the interplay between orbital motion and the polariza-
tion degree of freedom. It is specific to spinor bosonic condensates and would be absent in a scalar case, where a
bistability of stationary solutions would be observed instead. This work offers a tool of initialization and control
of qubits based on superpositions of polariton condensates characterized by different topologic charges.
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I. INTRODUCTION

Strongly coupled exciton-photon systems are known for
their pronounced optical nonlinearities, enabling the dynamic
control of light. A typical representative of this class of
systems is an optical microcavity with one or several semicon-
ductor quantum wells characterized with resonant excitonic
transitions [1]. In such a structure, if the energies of confined
photons and excitons are tuned close to resonance, their inter-
action leads to the formation of half-light, half-matter hybrid
modes referred to as exciton polaritons. The field of polari-
tonics keeps attracting the enhanced attention of the research
community, as it offers a convenient testing platform for vari-
ous quantum coherent and nonlinear effects [2]. A remarkable
phenomenon that came to the focus of attention in the new
century is the formation of dynamical Bose-Einstein conden-
sates (BECs) of polaritons at exceptionally high temperatures
[3,4]. Similar to regular BECs formed at the thermodynamic
equilibrium, polariton condensates clearly demonstrate such
properties as macroscopic coherence and superfluidity, arising
from the repulsive polariton-polariton interactions [5–9]. The
effects of polariton condensation can be employed for the
creation of a new class of nanoscale coherent light sources
known as polariton lasers [10–12].
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The properties of the dynamic polariton condensates
in confined geometries are governed by the intrinsic
spatio-temporal dynamics of polaritons, that may include
formation of persistent polariton currents corresponding to
quantized vortex states [5,9,13–20]. An intriguing parallel can
be drawn between superfluid polariton vortices and Abrikosov
vortices that strongly affect properties of superconductors of
the second type [21]. Similar analogies extend to nonlinear
optics [22] and atomic Bose-Einstein condensates [23,24].

Recently, it has been suggested that a superposition of
polariton vortices with opposite topological charges can serve
as a robust and scalable qubit [25–28]. This makes especially
important creation of a theoretical framework for the descrip-
tion of the properties of polariton vortex states, including their
nonlinear dynamics [20,29–32]. Central to this problem is the
development of protocols allowing for the control of vortex
topological charges [33–39]

It should be noticed that while quantized vortices can exist
in spatially uniform planar microcavities, the introduction of
a confining potential can stabilize vortices and offer an addi-
tional tool to control their properties [40–47]. In particular,
introduction of chirality into the confining potential facilitates
the excitation of polariton vortex states with a precise control
over their topological charge [16,17,34,48]. The problem of
spinning of a polariton condensate by optically induced ro-
tating potentials has been recently studied theoretically and
experimentally [49–52]. It has been demonstrated that in the
case of a single component (scalar) condensate, in the vicinity
of the condensation threshold, the formation of a condensate is
governed exclusively by the properties of the fastest growing
linear mode. “The winner takes all” scenario [52,53], where
the fastest growing mode is the first to reach the nonlinear
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stage at which it depletes the pump and suppresses the growth
of the other modes, is realized in this regime. Let us remark
that the effect of rotating potentials can also be emulated by
biharmonic pump [54] or, in the broader context of vortex
dynamics, by twisting the waveguide arrays [55].

In the present work, we analyze the mechanisms of mode
selection in spinor condensates, where the polarization de-
gree of freedom is accounted for. Polaritons of different
polarizations exhibit distinct behaviors under the influence of
spin-orbit interaction effects, which link the polarization of
polaritons to their ballistic propagation within the microcavity
plane. Among such effects are the optical spin Hall effect
[56,57], zitterbewegung of polaritons [58–60], topological
spin Meissner effect [61] and etc. Of particular interest are
the effects of spin-orbit interaction in structures with annular
geometry [61–63]. Spin-orbit interaction occurs under condi-
tions of splitting of polarization states of polaritons, which
can be induced by both the inherent optical anisotropy of
the structure [64,65] and external influences [66–68]. In lay-
ered structures of optical microcavities, the most significant
source of spin-orbit interaction is the splitting of trans-
verse electric (TE) and transverse magnetic (TM) polariton
modes [69].

In this paper we show that in certain regimes, “the winner
takes all” scenario can be realized in the spinor condensate
as well. However, we also show that in the specific range of
the rotation speeds, a stable coexistence of two modes char-
acterized by different frequencies and polarizations becomes
stable. This gives rise to the limit cycle regime character-
ized by periodic polarization oscillations. Quite remarkably,
these oscillations are not accompanied by the oscillations of
the total polariton occupancy. This is demonstrated by direct
numerical simulations of the two-dimensional (2D) gener-
alized Gross-Pitaevskii equation describing the dynamics of
a driven-dissipative polariton condensate. Additionally, we
develop a simple perturbation theory based on the coupled
modes approach [17,18], which provides a qualitative descrip-
tion of the predicted phenomena.

II. THE FORMALISM

We consider the system consisting of an axially symmet-
ric semiconductor microcavity that is incoherently pumped
by two linearly polarized Laguerre-Gaussian optical beams.
These beams possess different angular momenta, l1 and l2,
�l = l1 − l2 �= 1, and are slightly detuned in frequency, so
that � = ω1 − ω2. The resulting spatial profile of the pump
can be represented as

P(t, r, θ ) = Ps(r) + Pr (r) cos �l (θ − �t ), (1)

where r and θ denote the radial and angular coordi-
nates, and Ps(r) and Pr (r) describe the radial distributions
of the nonrotating and rotating components of the pump.
In further consideration, we threat the rotating pump ex-
cited by a superposition of two optical Laguerre-Gaussian
beams having the angular momenta l1 = 1 and l2 = −1, thus
�l = 2.

FIG. 1. (a) Schematic of the excitation of a polariton condensate
in a rotating optical potential. The potential is created by two optical
beams with angular momenta l1 = 1 and l2 = −1, characterized by
different frequencies, � = ω1 − ω2. The polariton condensate exists
under the balance of the optical pump and decay. (b) Schematic
of the coupling of counter-propagating polariton flows via polar-
ization due to the TE-TM splitting. ↑ polarized polaritons (blue
arrows) propagating in the counterclockwise direction couple to
↓ polarized polaritons (red arrows) propagating in the clockwise
direction.

The optical pump excites the reservoir of incoherent ex-
citons. Due to the repulsive polariton-polariton interactions,
the excitonic reservoir acts as an effective rotating complex
trapping potential for the polariton condensate, with its imag-
inary part describing the stimulated relaxation of the excitons
into the polariton state. We also account for an additional
real rotationally symmetric trapping potential stemming from
the patterning of a microcavity and stabilizing the polari-
ton confinement. A schematic plot of the system is given in
Fig. 1(a).

As typically the internal reservoir dynamics is much
slower then the relaxation from it into the conden-
sate, the reservoir can be adiabatically eliminated [70]
and the system is described by the two coupled gen-
eralized Gross-Pitaevskii equations for order parameters
�↑,↓ corresponding to counterclockwise (↑) and clockwise
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(↓) circular polarizations:

ih̄∂t�↑,↓ = h̄2

2meff

(
∂2

x + ∂2
y

)
�↑,↓ − (V + ih̄γ )�↑,↓ + h̄2β

2meff
(∂x ± i∂y)2�↓,↑ − h̄(H |�↑,↓|2 + H̃ |�↓,↑|2)�↑,↓

−
(

h̄(G2 − iG1)P


 + 2G1|�↑,↓|2 + h̄G̃2P


 + 2G1|�↓,↑|2
)

�↑,↓. (2)

The first term on the right-hand side describes the dispersion
of polaritons characterized by effective mass meff. The second
term accounts for the presence of an external conservative
potential V, created through microstruturing, together with a
finite lifetime of polaritons characterized by an energy broad-
ening γ . The third term corresponds to the TE-TM splitting,
with normalized splitting magnitude β being proportional to
the difference of the effective masses of TE and TM polarized
polaritons [71]. The fourth term describes the blueshift of
a polariton condensate due to repulsive polariton-polariton
interactions, with coefficient H describing the interaction
between polaritons with same circular polarizations, H̃
the interaction between polaritons with opposite circular
polarizations.

The last term describes polariton-reservoir coupling, with
its real part corresponding to the reservoir-induced polariton
blueshift, and its imaginary part corresponding to the conden-
sate gain stemming from the stimulated relaxation from the
reservoir to the condensate. The exciton reservoir is driven by
the linear polarized optical pump of intensity P, which excites
equally both circular polarization components. The parameter
G1 is the scattering rate from the reservoir to the condensate,
and 
 is the relaxation rate of the reservoir excitons. The
coefficient G2 defines the reservoir-induced blue shift of the
condensate. The small red shift caused by the interaction of
polaritons with excitons of opposite polarization is character-
ized by the coefficient G̃2.

For further analysis, we introduce dimensionless variables,
scaling time in units of the inverse polariton dissipation
rate, t0 = γ −1, t → t/t0, the spatial coordinates in units of
l0 = √

h̄/2γ meff, r → r/l0, and the order parameter �↑,↓ →√
2G1/
ψ↑,↓. Then Eq. (2) can be written as following:

i∂tψ↑,↓ = 1

2

(
∂2

x + ∂2
y

)
ψ↑,↓ −

(
i

2
+ V

)
ψ↑,↓

+ β(∂x ± i∂y)2ψ↓,↑ − (h|ψ↑,↓|2 + h̃|ψ↓,↑|2)ψ↑,↓

−
(

(1 − iε)p

1 + |ψ↑,↓|2 + gp

1 + |ψ↓,↑|2
)

ψ↑,↓, (3)

where V = V/h̄γ is the normalized stationary potential,
ε = G1/G2 is the ration of the effective gain to the frequency
shift caused by the reservoir, g = G̃2/G2 is the ration of the
frequency shifts due to interactions of polaritons with the
reservoir excitons of the opposite and the same polarizations,
p = PG2/γ
 is the normalized incoherent pump,
h = H
/2γ G1 and h̃ = H̃
/2γ G1 are the relative strengths
of the self- and cross-polarization polariton-polariton
interactions.

In our simulations, we use the following values of the
parameters, typical for polariton systems: β = 0.05, ε = 0.33,
and g = −0.1. We focus on the scenario in which the

nonlinearity stemming from the reservoir is dominating and
take the coefficients h = 0.018 and h̃ = −0.001. The cor-
responding values of dimensional parameters in Eq. (2) are
given in [72]. We also noted that in the vicinity of the
condensation threshold, variations of the values of these pa-
rameters did not qualitatively change the picture. External
confining potential was taken in the form: V = V0{exp[−(r −
RV )8/W 8

V ] + exp[−(r + RV )8/W 8
V ]} with V0 = 7, RV = 2.25

and WV = 1. This corresponds to a ring-shape confinement
with the height of the potential, radius, and width of the ring
being about 0.28 meV, 9.89 µm, and 4.39 µm, respectively.

As discussed above, the pump is the combination of the
static symmetric term ps(r) and the term pr (r) cos[2(θ −
�t )] rotating with angular velocity �. Hereafter, � is
given in units of the polariton decay rate γ [72]. The
radial distribution of the static pump is taken in the fol-
lowing form: ps(r) = ps0{exp[−(r − Rs)2/W 2

s ] + exp[−(r +
Rs)2/W 2

s ]}. For our simulations, we take ps0 = 3.45, Rs = 0.9
and Ws = 0.25. This corresponds to a ring-shape pump of
intensity 0.17 ps−1 µm−2 with radius and width of the ring
being of about 3.96 and 1.1 µm, respectively. In this case, the
confinement of polaritons results from the combination of the
external conservative potential V and static potential induced
by the pump. Selecting a smaller radius of the pump annulus
compared to the radius of the external potential enhances the
efficiency of the incoherent excitation of polaritons. Such a
combination ensures that only condensates with angular in-
dices of either +1 or −1 are formed in the system.

The radial distribution of the rotating pump component
pr (r) is taken to be equal to that of the stationary one ps(r) =
pr (r). In our simulations, we take the following values of the
parameters of the rotating pump: pr0 = 0.3, Rr = 0.9, and
Wr = 0.25. This corresponds to a ring-shape pump of intensity
0.015 ps−1 µm−2 with radius and width of the ring being of
about 3.96 and 1.1 µm, respectively.

III. RESULTS OF 2D MODELLING

A. Stationary regime

We performed numerical studies of the dynamics of polari-
ton states forming in the considered geometry in the presence
of a complex rotating potential. We covered a broad range
of the rotation velocities, wherein we observed the formation
of the stationary states stably developing from a weak noise.
Our results reveal that the density distributions of the polari-
tons in clockwise and counterclockwise circular polarizations
(↑ and ↓) depend on the angular velocity of the potential
rotation. For instance, at a relatively small rotation velocity
� = 0.05, we observed the distinct lobes in the density distri-
bution of ↑ polarization [as depicted in Fig. 2(a)], indicating
that in this polarization, the condensate is formed by two
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FIG. 2. The snapshots showing instantaneous profiles of the in-
tensity and the phase distributions of the polariton field in opposite
circular polarizations: ↑ for (a), (b) and ↓ for (c), (d). The angular
velocity of the potential is � = 0.05. The dashed lines show the
symmetry axes, with the white line passing through the minima and
the gray line through the maxima of the rotating potential. In this
figure and all subsequent ones, frequency parameters, including the
rotation velocity of the potential �, are scaled to the polariton decay
rate γ , while spatial coordinates and parameters are scaled to the
polariton propagation length l0 introduced in the main text.

counterpropagating waves of comparable amplitudes. The
phase distribution of the order parameter, illustrated in
Fig. 2(b), clearly demonstrates that the winding number for
this polarization of the condensate is equal to 1. Let us note
here that in the case of two counter-propagating waves, the
topological charge is determined by the wave with the larger
amplitude.

In the opposite polarization ↓, the density distribution sim-
ilarly exhibits two lobes, albeit notably less pronounced. This
discrepancy indicates that in this polarization, the waves with
angular momenta m = ±1 forming the state possess rather
different amplitudes. It’s important to highlight that the phase
gradient is directed oppositely in the opposite circular polar-
ization, meaning that polaritons of the ↑ and ↓ polarization
flow in opposite directions. Furthermore, it’s worth noting
that the lobes in both polarizations are oriented along the
symmetry axis, passing through the maxima of the rotating
potential.

For higher rotation velocities, the distributions of the polar-
ization intensities are different, as can be seen in Fig. 3, which
shows the snapshots of the stationary polariton densities and
phases for � = 0.15. Here the lobes in the ↑ polarization
are less pronounced than in the ↓ polarization. Notably, the
orientation of the lobes differs as well. Namely, the lobes in
the ↑ polarization now align along the symmetry axis that
traverses the minima of the potential.

FIG. 3. The snapshots showing instantaneous profiles of the in-
tensity and the phase distributions of the polariton field in opposite
circular polarizations: ↑ for (a), (b) and ↓ for (c), (d). The angular
velocity of the potential is � = 0.15. The dashed lines show the
symmetry axes, with the white line passing through the minima and
the gray line through the maxima of the rotating potential.

For discussing the polarization properties of polaritons, it
is convenient to introduce the normalized three-component
Stokes vector �S = (S1, S2, S3), whose components
are determined as follows: S1 = 2Re(ψ∗

↑ψ↓)/|ψ |2,
S2 = −2Im(ψ∗

↑ψ↓)/|ψ |2 and S3 = (|ψ↑|2 − |ψ↓|2)/|ψ |2,
where |ψ |2 = |ψ↑|2 + |ψ↓|2 is total condensate density. It’s
essential to note that we calculate the Stokes components in
the rotating frame x′oy′, see Fig. 4(e). In this frame, the S1

component corresponds to the x′/y′ linear polarizations, while
in the laboratory frame xoy, it characterizes the tangential
and radial polarization components of the condensate.
The other components, S2 and S3, are responsible for
diagonal/antidiagonal and clockwise/counterclockwise
circular polarizations, respectively.

The azimuthal distribution of the densities, as well as the
Stokes vector components of the polariton condensates in
the stationary state, are depicted in Fig. 4 for the discussed
rotation velocities of the potential �. It is evident that in the
regime corresponding to the lower rotation velocity � = 0.05
[panels (a) and (c)], the polariton field is predominantly radi-
ally polarized, with S1 close to −1. Conversely, in the regime
corresponding to the higher rotation velocity � = 0.15 [pan-
els (b) and (d)], the polariton field is primarily tangentially
polarized, with S1 close to +1.

We also calculated the normalized angular momenta in
the clockwise and counterclockwise (↑ and ↓) polariza-
tions defined as follows: M↑,↓ = M↑,↓/N↑,↓, where M↑,↓ =
Im

∫
ψ∗

↑,↓(∂x + i∂y)ψ↑,↓dxdy is the actual angular momen-
tum, while N↑,↓ = ∫ |ψ↑,↓|2dxdy stands for the number
of polaritons in the corresponding polarization. The total
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FIG. 4. (a) The angular distribution of the total density of the
stationary state of the polariton condensate |ψ |2 (black curves) as
well as the condensate polarization components |ψ↑|2 (red curves)
and |ψ↓|2 (blue curves) for the rotation angular velocities � = 0.05
(a) and 0.15 (b). [(c) and (d)] The angular dependencies of the nor-
malized Stokes parameters for the corresponding angular velocities.
The dependencies are plotted for r = 0.8. The Stokes parameters are
calculated in the rotating reference frame x′oy′, see (e). (e) The spatial
distribution of the rotating potential. xoy is the laboratory reference
frame, wile x′oy′ is the rotating reference frame.

normalized angular momentum can be calculated as follows:
Mtot = (M↑ + M↓)/Ntot, where Ntot = N↑ + N↓ is the total
number of polaritons in the condensate. The dependencies of
the normalized angular momenta of the stationary conden-
sates in the rotating potentials as functions of the rotation
velocity � are shown in Fig. 5(a).

It’s worth noting that in our numerical simulations, the
time required to reach a stationary state is relatively extended,
on the order of nanoseconds, given the parameters we have
chosen. This is a direct consequence of our choice to operate
very close to the condensation threshold, as illustrated in
Fig. 6. While this approach results in a prolonged condensate
formation time, it effectively helps to distinguish the effects of
the rotating pump from other phenomena that arise due to the
nonlinear shifts in the modes’ eigenfrequencies. Importantly,
the time for formation can be significantly shortened by em-
ploying higher levels of the pump.

B. Breathing regime

An important observation emerges: within a specific range
of the angular velocities of the trapping potential �, the sys-
tem supports only breathing steady state solutions. The typical
dynamics of polaritons is illustrated in Fig. 6, where the
evolution of the number of polaritons and the angular

FIG. 5. The dependencies of the normalized angular momenta
M↑,↓,tot [(a) and (c)] and the normalized polarization occupation
difference �N/Ntot = (N↑ − N↓)/(N↑ + N↓) [(b) and (d)] on the po-
tential angular velocity �. The open circles in (a) and (b) show the
quantities obtained from 2D numerical simulations. The solid lines
in all panels correspond to numerical simulations based on nonlinear
equations from the coupled mode theory. The dashed lines in (c) and
(d) are for the fastest growing linear mode calculated from the cou-
pled mode theory. Pink and gray rectangles indicate the ranges of the
rotation velocity �, predicted from 2D numerical simulations (pink)
and from the coupled mode approach (gray), where the steady state
exhibits oscillatory behavior.

momentum of the polariton states in different polarizations is
presented. As shown in panel (a), for relatively slow rotation,
the number of particles grows in both polarizations until the
steady state is reached. A similar behavior is observed for
angular momenta, see panel (b).

However, within the angular velocity range indicated by
the pink rectangle in Figs. 5(a) and 5(b), the dynamics takes
on a markedly different character. This becomes evident in
Fig. 6(c), where the steady state manifests oscillations in the
number of polaritons in both polarizations. A spatial counter-
part to this periodic interpolarization transfer of polaritons has
been recently observed in polariton waveguides [73].

The estimated oscillation period in our study can be ap-
proximately equated to the inverse of the effective TE-TM
splitting strength, which, for our parameters, is on the order
of ten picoseconds. This estimation suggests that these oscil-
lations are likely to be observable in experimental settings.
Furthermore, it is notable that enhancing the TE-TM splitting
and reducing the trap’s size could effectively shorten the os-
cillation period.

The angular momenta in the ↑ and ↓ polarizations oscillate
in phase, as depicted in panel (d), thus yielding pronounced
oscillations in the total angular momentum of polaritons. In-
triguingly, the numbers of polaritons in ↑ and ↓ polarization
oscillate in anti-phase, leading to only minor oscillations in
the total number of polaritons.

This phenomenon arises when the polarization os-
cillation period Tosc is much shorter compared to the
characteristic timescale of evolution of the polariton density
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FIG. 6. The temporal dependencies of the polariton numbers N
and the angular momenta M are shown in (a), (c), (e) and (b), (d),
(f) correspondingly. The potential rotation angular velocity is � =
0.05 for (a) and (b); � = 0.095 for (c) and (d) and � = 0.15 for (e)
and (f).

Tdns, Tosc < Tdns. The latter is determined by how much the
pump intensity exceeds the condensation threshold intensity.
In particular, for intensities that are sufficiently close to the
threshold, this condition is always satisfied. The total number
of the polaritons thus cannot follow the rapid periodic transfer
of the polaritons between the polarizations, and, therefore, the
total number of the polaritons does exhibit pronounced oscil-
lations. Some estimates are given in Appendix D to explain
the discussed effect.

In the oscillatory regime, the temporal dynamics of the
Stokes vector becomes quasi-periodic, see Fig. 7. The oscil-
lations of the polarization measured at a fixed point in real
space (specifically, at x = 0.8, y = 0) are accompanied by
oscillations of intensity. The trajectory of the Stokes vector
on the Poincaré sphere demonstrates intricate behavior and
covers the entire sphere’s surface, indicating that during the
evolution, the polariton condensate undergoes oscillations be-
tween linear and circular polarization states.

With an increase in the rotation velocity, suppression of the
oscillations becomes evident. As seen in Figs. 6(e) and 6(f),
after some transitional processes, a stationary state (shown
in Fig. 3) eventually emerges. Nevertheless, it’s worth noting
that the transitional stage is notably more intricate compared
to that observed at lower angular velocities [cf. panels (a), (b)
and (e), (f)].

In the next section, we develop a perturbation theory that
allows us to analyze this phenomenon.
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FIG. 7. Evolution in time of the polariton densities (a) and the
Stokes parameters (b)–(d) in the oscillatory regime for the polariton
field at x = 0.8, y = 0. (e) The trajectory of the normalized Stokes
vector on the Poincaré sphere.

IV. COUPLED MODES APPROXIMATION

In order to comprehend the effects reported in the previous
section, we developed a straightforward perturbation theory
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based on the observation that only the modes possessing an-
gular indices of ±1 can be effectively excited in the system.
We also restrict our consideration to the case where the spa-
tial structure of the modes is predominantly defined by the
real parts of stationary potentials, supposing that dissipative
and nonlinear effects, the rotating potential and the TE-TM
splitting can be treated as small perturbations. This allows
us to represent the field as a sum of the four modes, each
characterized by its polarization and angular momentum. The
total field can be represented as follows:(

ψ↑(r, θ, t )
ψ↓(r, θ, t )

)
= ρ(r)eiω0t

(
A↑+(t )eiθ + A↑−(t )e−iθ

A↓+(t )Eiθ + A↓−(t )e−iθ

)
, (4)

where ω0 is the eigenfrequency of the unperturbed mode,
and ρ(r) describes their radial structure of the mode. We
normalize the latter as 4π

∫
rρ(r)dr = 1 ensuring that the to-

tal number of polaritons is equal to Ntot = |A↑+|2 + |A↑−|2 +
|A↓+|2 + |A↓−|2.

To eliminate explicit time dependencies of coefficients, we
introduce new variables

C↑+ = A↑+, C↑− = A↑−e2i�t , (5a,b)

C↓+ = A↓+e−2i�t , C↓− = A↓. (5c,d)

The dynamic equations can be then written as

Ċ↑+ = −[γ0 + (αd − iα)(|C↑+|2 + 2|C↑−|2)]C↑+

+ iαx[(|C↓+|2 + |C↓−|2)C↑+ + C↑−C↓+C∗
↓−]

+ iηC↑− + iσC↓−, (6a)

Ċ↑− = −[γ0 − 2i� + (αd − iα)(|C↑−|2 + 2|C↑+|2)]C↑−

+ iαx[(|C↓+|2 + |C↓−|2)C↑− + C↑+C↓−C∗
↓+]

+ iηC↑+, (6b)

Ċ↓+ = −[γ0 + 2i� + (αd − iα)(|C↓+|2 + 2|C↓−|2)]C↓+

+ iαx[(|C↑+|2 + |C↑−|2)C↓+ + C↓−C↑+C∗
↑−]

+ iηC↓−, (6c)

Ċ↓− = −[γ0 + (αd − iα)(|C↓−|2 + 2|C↓+|2)]C↓−

+ iαx[(|C↑+|2 + |C↑−|2)C↓− + C↓+C↑−C∗
↑+]

+ iηC↓+ + iσC↑+. (6d)

The details of derivation of Eqs. (7) are given in Appendix A.
The effective losses of the modes γ0, the coupling strength

between the modes of the same polarization but opposite
angular momenta η, the effective TE-TM splitting σ , the dis-
sipative nonlinearity αd , the conservative cubic nonlinearity
α as well as the conservative cross-polarization nonlinearity
αx coefficients can be derived by fitting the special series of
2D simulations. This procedure gives the following estimates
for the coefficient values: γ0 = 0.006, σ = 0.21, αd = 0.081,
α = 0.281, and αx = −0.027. The coefficient characterizing
the rotating potential is expressed as η = ηr + iηi, with ηr =
0.052, ηi = −0.017.

One should pay special attention to the last terms in the
right-hand side of Eqs. (6a) and (6d). These terms elucidate
the role of the TE-TM splitting in the polariton evolution
in the ring geometry, which consists in the coupling of

counter-propagating polariton flows via the polarization de-
gree of freedom [18,51]. Namely, it couples counterclockwise
propagating (+) flows of ↑ polarized polaritons with clock-
wise propagating (−) flows of ↓ polarized polaritons [see
Fig. 1(b)].

We can now define the angular momenta and the occupan-
cies of the polariton state in ↑ and ↓ polarizations via the
amplitudes of the polariton modes as follows:

M↑,↓ = |C↑,↓ +|2 − |C↑,↓ −|2, (7a)

N↑,↓ = |C↑,↓ +|2 + |C↑,↓ −|2. (7b)

With the notation (7), the quantities Mtot and Ntot defined in
the previous section keep their meaning.

The results of the numerical solution of Eqs. (7) are shown
in Fig. 5 by solid lines. The dependencies of the normalized
angular momenta M↑,↓,tot and the normalized population dif-
ference of the orthogonal circularly polarized modes �N/Ntot,
where �N = N↑ − N↓, on the angular velocity � of the rotat-
ing potential are shown in Figs. 5(a) and 5(b), respectively.
The quantity �N/Ntot actually represents the degree of circu-
lar polarization of the polariton condensate.

One can see that the developed perturbation theory re-
produces qualitatively well the dynamics observed in 2D
numerical simulations. However, there is a noticeable quan-
titative discrepancy. We shall now briefly discuss the effects
that are not accounted for by the perturbation theory, yet have
a significant impact on the dynamics of the polaritons.

As demonstrated in the paper, dissipative effects play a
crucial role in the competition between hybridized modes.
The theory we have developed acknowledges that the imag-
inary part of the rotating potential alters the growth rates
of linear modes, notably causing the mode with the highest
eigenfrequency to grow the fastest. Concurrently, the trapping
potential exhibits finite transparency that increases with the
energy (frequency) of the polaritons. This results in higher
effective losses for modes with larger eigenfrequencies, which
can influence the selection of the dominant mode, see, e.g.,
Ref. [39].

To accurately calculate the effective losses experienced by
the modes, it is essential to consider both the gain induced
by the rotating potential and the radiative losses. Our targeted
numerical simulations have revealed that, in the absence of
the rotating potential but with the presence of TE-TM split-
ting, the upper mode (with a higher frequency) experiences
greater losses than the lower mode. However, this difference
in losses is significantly smaller than the increment difference
caused by the rotating complex potential. Therefore, for the
parameters we used, the influence of the complex rotating
potential is predominant. The impact of radiative losses could
be described by a more sophisticated perturbation theory, but
delving into this aspect exceeds the scope of the present paper.

Another factor contributing to the discrepancy we observed
is the general need to account for nonresonant interactions
with other modes. While this effect is less dominant compared
to the gain induced by the rotating potential and radiative
losses, it remains a significant factor for the parameters we
used. This interaction could also be incorporated into a more
refined perturbation theory. Our investigations have confirmed
that the results from the numerical simulations align more
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closely with the perturbation theory when considering scenar-
ios with a deeper trapping potential, smaller TE-TM splitting,
and the inclusion of dissipative terms.

To achieve precise quantitative alignment with experimen-
tal data, it would be necessary to adjust the parameters of our
theoretical model in a way that would make them unrepresen-
tative of existing polariton systems. However, it is important
to highlight that despite the coupled mode theory’s limita-
tions in providing a precise quantitative match with numerical
simulations, it successfully captures the primary phenomenon
observed. This theory elucidates the process in terms of mode
competition, offering valuable insights into the underlying
mechanisms, even if the quantitative details are not perfectly
aligned.

It is worth mentioning that the transition to the oscillatory
regime is also qualitatively reproduced by the coupled mode
approximation. However, the range of the angular veloci-
ties where the oscillatory regime occurs [gray rectangles in
Figs. 5(a) and 5(b)], does not coincide with the one obtained
from 2D simulations. This discrepancy could be attributed to
the sensitivity of the dynamics of the system to the values
of the parameters as well as to the neglect of certain effects
in the coupled mode approach, such as the contributions of
nonresonant modes and the frequency dependence of effective
losses.

Another noteworthy aspect is that at low angular velocities
of the rotating potential, the stationary states obtained from
both 2D simulations and the coupled mode approach exhibit
the same structural characteristics. However, at higher angular
velocities, this congruence no longer holds, and the coupled
mode approach predicts a distinct structure of the polariton
condensates. A possible explanation is that the stationary state
anticipated by the coupled mode approach exists in the 2D
model, but it proves to be unstable with quite a relatively small
increment. This instability might account for the scenario de-
picted in Figs. 6(e) and 6(f), where an oscillatory state initially
forms with the averages quite close to that predicted by the
coupled mode approach for the chosen parameters. However
in the coupled mode approach, we observe the decay of the
oscillations, whereas in full-scale 2D simulations, transition
to a different state takes place. It is acknowledged that further
research is required to comprehensively understand this intri-
cate dynamic behavior, which is left for future exploration.

Based on our numerical simulations, we propose that in
the vicinity of the condensation threshold, the formation of
the stationary state follows the “winner takes all” scenario.
When the initial conditions involve a randomly distributed
low-intensity field, the mode with the fastest growth rate is the
first to reach the nonlinear stage. However, both the nonlinear
depletion of the pump and the linear increment are small,
and consequently, the nonlinearity does affect the structure
of the modes. It is worth noting that the rotating pump cou-
ples the modes of the unperturbed problem, resulting in the
eigenmodes becoming compositions of the eigenmodes of the
axially symmetric problem. When we refer to the “structure
of the eigenmode”, we are describing the relative amplitudes
of the waves that compose the eigenmode.

In the scenario under consideration, the fastest growing
mode tends to dominate and suppress the other modes before
its amplitude reaches the stationary value. Consequently, the

structure of the nonlinear stationary state gets inherited from
the fastest growing linear mode. This scenario holds well in
the scalar case. For certain values of the rotation velocities,
this concept also applies to the vector case, as detailed in
Appendix B, where we analyze the linear eigenmodes. Further
insights into the perturbative analysis of the nonlinear stage of
the dynamics can be found in Appendix C, where we derive
an approximate expression for the amplitude of the stationary
state.

In the vector case, at specific rotation velocities �, the
fastest growing mode exhibits a structure where a majority
of polaritons are in the ↑ (or, for a different sign of �, in
↓) polarization. Consequently, the mode with dominant ↑ (↓)
polarization cannot effectively suppress the mode where a
significant portion of polaritons are in the ↓ (↑) polarization.
This phenomenon is illustrated in Fig. 5(b), where the polari-
ton portion in one polarization decreases before transitioning
to the oscillation regime. To substantiate this observation, an
analysis of the stability of the nonoscillating states is required.
This analysis is presented in Appendix D. Additionally, in the
same Appendix D, it is demonstrated that the oscillating states
can be seen as the coexistence of two substates of different
frequencies. The structures of the sub-state are similar to the
structures of the fastest and second fastest growing modes.

V. CONCLUSION

We have studied the polarization dynamics of polariton
condensates in the presence of a rotating potential. Our main
attention was focused on low density condensates that are
formed when the pump intensity is close to the condensation
threshold. We have shown that during the initial linear stage of
the condensation, the rotating potential leads to the formation
of super-modes, resulting from the hybridization of modes
affected by TE-TM splitting with those unaffected by it. The
most pronounced hybridization occurs at the resonant angular
velocity of the rotating potential, which matches the strength
of TE-TM splitting. Due to the dissipative component of the
rotating potential, the imaginary parts of these super-modes
differ. Interestingly, the mode with the highest frequency also
exhibits the highest growth rate.

We have demonstrated that in a nonconservative system,
the “winner takes all” scenario can be realized. In this case,
during the nonlinear stage of condensation, the fastest grow-
ing mode suppresses the other modes. Consequently, the
stationary state is predominantly determined by the structure
of the fastest growing linear mode, provided that the pump
intensity is close to the condensation threshold and the density
of the polariton state does not influence the field distributions.

The main result of this study is the finding of an original
dynamics of the system characterized by persistent oscil-
lations of the polarization. This limit cycle regime can be
achieved even for the pump intensity slightly above the
threshold. It occurs for certain angular velocities where the
system is in a state where the fastest growing mode predomi-
nantly consists of polaritons of a specific circular polarization.
Consequently, this mode cannot effectively deplete the gain
created by the pump in the opposite polarization. As a re-
sult, the remaining pump is sufficient to support the growth
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of another super-mode. Thus, the final state comprises two
coexisting supermodes with different polarizations.

The frequency difference between these modes leads to
oscillations in the number of polaritons in clockwise and
counterclockwise circular polarizations. The total angular mo-
mentum of polaritons undergoes periodic oscillations as well,
but the total number of polaritons remains close to constant
over time.

The results of direct numerical solutions of the two-
dimensional coupled generalized Gross-Pitaevskii equa-
tions are supported by a simple semi-analytical theory based
on coupled mode approximation.

In our numerical simulations, we have carefully selected a
set of parameters that are not only relevant to the experimental
context but also ensure the clarity of the phenomenon under
discussion, avoiding its obfuscation by other effects that in-
fluence the formation of polariton states. The time scale of the
polarization oscillations we report is governed by the effective
TE-TM splitting, and our estimates suggest that these oscilla-
tions could be observable in real experiments. It is important
to note that these simulations are based on a scenario with
a relatively short polariton lifetime. However, this parameter
can vary significantly, potentially reaching hundreds of pi-
coseconds [74–76]. Such an extended lifetime facilitates the
observation of polarization oscillations not only in stationary
states, supported by persistent gain, as in our numerical simu-
lations, but also in decaying condensates.

This research on the polarization dynamics of polariton
condensates in rotating potentials has significant implications
for developing polariton qubits [25–28]. The observed per-
sistent oscillations in polarization hint at a robust method
for encoding quantum information. The distinct polarization
states in the limit cycle regime could potentially be harnessed
as stable qubit states. Furthermore, the controlled manipu-
lation of these states via external rotation speeds offers a
promising pathway for quantum state preparation and manip-
ulation in polariton-based quantum computing systems.
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APPENDIX A: DERIVATION OF EQUATIONS
IN THE COUPLED MODES APPROXIMATION

Let us develop a simplified model for revealing the evolu-
tion of the polariton condensate in a rotating potential. We
start with the dimensionless Gross-Pitaevskii equation (3).
Given the assumption that the nonlinear effects in the con-
sidered system are weak (which is valid at the pump power
close to the condensation threshold), we limit ourselves to

considering nonlinearity up to the third order in amplitude.
We expand the nonlinear terms in Taylor series up to the cubic
terms in ψ and obtain

[
(1 − iε)p

1 + |ψ↑,↓|2 + gp

1 + |ψ↓,↑|2
]
ψ↑,↓ + (h|ψ↑,↓|2 + h̃|ψ↓,↑|2)ψ↑,↓

≈ (1 + g − iε)pψ↑,↓ + (h − p + iεp)|ψ↑,↓|2ψ↑,↓

+ (h̃ − gp)|ψ↓,↑|2ψ↑,↓. (A1)

It is worth mentioning that the effective nonlinearity
comprises the contribution from both polariton-polariton in-
teractions and the depletion of the incoherent pump. Typically,
these contributions are of different signs, leading to a variation
in the sign of the effective nonlinearity based on which con-
tribution dominates. In our findings, the qualitative outcomes
remain consistent regardless of the sign of the nonlinear
frequency shift. For our current investigation, we focus on
the scenario where the primary nonlinearity arises from the
depletion of the reservoir, resulting in a nonlinear red shift
experienced by polaritons.

To describe the dynamics within this approximation, we
need to derive ordinary differential equations for the ampli-
tudes A↑,↓±. We substitute the decomposition (4) into the
master equation (3) and, using the approximation (A1), obtain
the equations for the mode amplitudes A↑↓,±:

Ȧ↑+ = −(γ0 + (αd − iα)(|A↑+|2 + 2|A↑−|2))A↑+

+ iαx((|A↓+|2 + |A↓−|2)A↑+ + A↑−A↓+A∗
↓−)

+ iηe2i�t A↑− + iσA↓−, (A2a)

Ȧ↑− = −(γ0 + (αd − iα)(|A↑−|2 + 2|A↑+|2))A↑−

+ iαx((|A↓+|2 + |A↓−|2)A↑− + A↑+A↓−A∗
↓+)

+ i ηe−2i�t A↑+, (A2b)

Ȧ↓+ = −(γ0 + (αd − iα)(|A↓+|2 + 2|A↓−|2))A↓+

+ iαx((|A↑+|2 + |A↑−|2)A↓+ + A↓−A↑+A∗
↑−)

+ iηe2i�t A↓−, (A2c)

Ȧ↓− = −(γ0 + (αd − iα)(|A↓−|2 + 2|A↓+|2))A↓−

+ iαx((|A↑+|2 + |A↑−|2)A↓− + A↓+A↑−A∗
↑+)

+ iηe−2i�t A↓+ + iσA↑+. (A2d)

After changing the variables in (A2) according to (5), we
arrive at Eq. (7).

APPENDIX B: DYNAMICS OF LINEAR EXCITATIONS

To comprehend the behavior of polaritons, we conduct
a linear analysis using the coupled modes approximation.
This involves neglecting the nonlinear terms in Eqs. (7)
and subsequently writing the equation for the vector �C =
(C↑+,C↑−,C↓+,C↓+)T of the mode amplitudes in a matrix
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FIG. 8. The real (a) and imaginary (b) parts of the frequencies of
the polariton eigenmodes as functions of the angular velocity of the
potential �.

form:
d

dt
�C = iL̂ �C, (B1)

where

L̂ =

⎛
⎜⎜⎝

iγ0 η 0 σ

η iγ0 + 2� 0 0
0 0 iγ0 − 2� η

σ 0 η iγ0

⎞
⎟⎟⎠.

The eigenvalues of L̂ correspond to the eigenfrequencies of
the polariton modes, with the imaginary part indicating the
decay rate of the mode. While exact solutions of Eq. (B1)
can be obtained analytically, they are cumbersome and are not
included in the text of this paper.

For further analysis, we rely on the numerically calculated
dependencies of the eigenfrequencies on the angular velocity
of the rotating potential. These dependencies are shown in
Fig. 8. It is evident that there exist four modes characterized
by distinct effective decay rates γeff. These differing decay
rates emerge due to the dissipative contribution introduced
by the rotating potential, characterized by the coupling con-
stant η. The effective decay rate γeff encompasses a range of
nonconservative processes that influence the mode. These pro-
cesses include not only losses of polaritons but also the filling
of the mode due to the presence of an external pump. Due to
the pump, the dissipation rate γeff can take negative values,
which correspond to the temporal growth of the mode. From

the physical point of view, this growth signifies the conden-
sation of the incoherent reservoir excitons into the coherent
polariton mode. It is worth mentioning that in our model,
the mode with the highest frequency experiences the fastest
growth. Given our focus on this mode in further analysis, we
extract its associated eigenvector �X = (X↑+, X↑−, X↓+, X↓−)T

to emphasize its characteristics
The structure of the stationary polariton state is expected

to resemble that of the fastest growing mode when the latter
effectively suppresses other modes, and the stationary conden-
sate density remains low enough to alter the field distributions
in the polariton state significantly. To validate the similar-
ity between the structures of the fastest growing mode and
the stationary polariton state, we conducted a comparison of
their normalized angular momenta M↑,↓,tot and population
difference in the orthogonal circularly polarized components
�N/Ntot, as depicted in Figs. 5(c) and 5(d). The indicated
quantities for the fastest growing mode were calculated from
Eq. (7) after substituting C with X . The dependencies of these
quantities on the angular velocity � are shown in Figs. 5(c)
and 5(d). It is evident that both the angular momenta and the
population differences of the stationary nonlinear states are
quite close to those of the fastest growing linear mode. This
robust similarity strongly suggests that the former inherits the
structure of the latter.

APPENDIX C: PERTURBATIVE TREATMENT
OF THE NONLINEAR PROBLEM

We now extend our investigation by considering the evo-
lution of polaritons within the coupled modes approximation
while introducing nonlinear effects through the framework of
perturbation theory. We amend Eq. (B1) by incorporating the
nonlinear term �N ( �C) from the right-hand side:

d

dt
�C = iL̂ �C + �N ( �C). (C1)

The nonlinear term can be derived by the calculation of the
nonlinear term and then by the projection on the modes of
the axially symmetric conservative problem. After a simple
algebra, one can obtain

�N ( �C) =

⎛
⎜⎜⎜⎜⎝

(iα − αd )(|C↑+|2 + 2|C↑−|2)C↑+ + iαx[(|C↓+|2 + |C↓−|2)C↑+ + C↑−C↓+C∗
↓−]

(iα − αd )(|C↑−|2 + 2|C↑+|2)C2 + iαx[(|C↓+|2 + |C↓−|2)C↑− + C↑+C↓−C∗
↓+]

(iα − αd )(|C↓+|2 + 2|C↓−|2)C↓+ + iαx[(|C↑+|2 + |C↑−|2)C↓+ + C↓−C↑+C∗
↑−]

(iα − αd (|C↓−|2 + 2|C↓+|2)C↓− + iαx[(|C↑+|2 + |C↑−|2)C↓− + C↓+C↑−C∗
↑+]

⎞
⎟⎟⎟⎟⎠. (C2)

As discussed in the main part of the paper, the rotat-
ing potential couples the modes. To get analytical results
on the nonlinear dynamics, it is convenient to write the
equation analogous to (C1) but for the amplitudes of the
supermodes—the eigenmodes of the linear problem account-
ing for all real potentials. The dissipative and nonlinear effects
will be treated perturbatively in terms of the amplitudes of the
supermodes. Thus, in our treatment, we assume that the linear

conservative terms included in the real part of the operator L̂,
namely the TE-TM splitting (σ ) and the conservative mode
coupling originating from the rotating potential (ηr), signifi-
cantly outweigh the increments (decrements) of the modes as
well as the contributions from all nonlinear terms.

Then we split the right-hand side of Eq. (C1) into two
components: the conservative linear part, which provides
the fundamental solutions to a linear problem, and the
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supplementary part, encompassing dissipative and nonlinear
effects that we treat as perturbations. Then, in the leading
approximation order, the linear part is characterized by the
operator

L̂0 =

⎛
⎜⎜⎝

0 ηr 0 σ

ηr 2� 0 0
0 0 −2� ηr

σ 0 ηr 0

⎞
⎟⎟⎠ (C3)

including the TE-TM splitting (σ ) and conservative coupling
due to the rotating potential (ηr). The nonconservative effects
are of the next perturbation order and characterized by the
operator

L̂1 = i

⎛
⎜⎜⎝

γ0 ηi 0 0
ηi γ0 0 0
0 0 γ0 ηi

0 0 ηi γ0

⎞
⎟⎟⎠ (C4)

including the losses of the modes (γ0) and gain from the
rotation-induced mode mixing (ηi). In (C3) and (C4), ηr =
Re(η) and ηi = Im(η).

We look for a solution in the following form:

�C =
4∑

k=1

ak �Ykeiωkt , (C5)

where ωk are the eigenvalues of L̂0. One should underline
that ω and �Y are purely real. For the sake of convenience, we
normalize �Y such that | �Y |2 = 1. We assume that the mode �Y1

is the fastest growing and thus dominating mode.
Then we project Eq. (C1) onto the basis of eigenvectors

�Y of the operator L̂0 = Re(L̂) and consider the terms L̂1 �C =
Im(L̂) �C and �N ( �C) as perturbations. For our purposes, it is
sufficient to derive the equation for the amplitude of the fastest
growing supermode, assuming that the other super-modes are
negligibly small. The equation reads

ȧ1 = ( �Y T
1 L̂1 �Y1

)
a1 + ( �Y T

1
�Ny1

)|a1|2a1, (C6)

where �Ny1 is �N calculated for �Y1.
From this equation, it is easy to find the stationary ampli-

tude of the mode:

|a1st|2 = Re

(
�Y T
1 L̂1 �Y1

�Y T
1

�Ny1

)

= −2ηi(Y1↑+Y1↑− + Y1↓+Y1↓−) + γeff

αd
(
Y 4

1↑+ + Y 4
1↑− + Y 4

1↓+ + Y 4
1↓−

) , (C7)

where �Y1 = (Y1↑+,Y1↑−,Y1↓+,Y1↓−)T . The correction to the
frequency of the state is found as follows:

δnl = α

αd
[2ηi(Y1↑+Y1↑− + Y1↓+Y1↓−) + γeff]. (C8)

The total number of polaritons is expressed through the
amplitudes ak as N = ∑

k |ak|2. The perturbatively found de-
pendency N on the angular velocity of the potential � is
illustrated in Fig. 9(a) with a green dashed line. Clearly,
perturbation theory provides a satisfactory approximation for
the parameters employed in direct numerical simulations. We

FIG. 9. (a) The dependencies of the polariton number in the
stationary states, calculated within the coupled modes approxima-
tion, on the rotation velocity � of the potential. The black solid
line corresponds to the direct numerical simulations of Eq. (7),
while the dashed green line is for the results of the perturbation
theory treatment. The shaded rectangle marks the range of � where
single-frequency solutions of Eqs. (7) do not exist. (b) The effective
increments of the linear excitations on the backgroung of the station-
ary states calculated through the perturbation theory. The colors of
the lines correspond to those in Fig. 8. The shaded rectangle shows
the range of � where one of the modes (red) has a positive increment.

have verified that this agreement becomes better for lower
values of the effective gain γeff.

APPENDIX D: THE STABILITY OF A SINGLE-MODE
SOLUTION AND OSCILLATING STATES

The previously found single-mode solution may be unsta-
ble, with other modes potentially growing and significantly
affecting the solution. To assess its stability, we linearize
(C1) and derive an equation for small excitation �ξ on the
background of the stationary solution a1st �Y1. Excitations with
eigenfrequencies substantially detuned from the frequency of
the stationary solution, when the detuning is much greater
than the characteristic timescales of the dissipative and non-
linear terms, can be described by the following equation:

d�ξ
dt

= iL̂0�ξ + M̂�ξ . (D1)

Here M̂ = L̂1 + |a1st|2(∂ �N/∂ �C), where ∂ �N/∂ �C represents the
Jacobian evaluated at �C = �Y1. It is important to note that this
equation does not account for parametric effects.

Considering M̂ as a perturbation, we can search for a
solution in the form �ξk = �Ykeiωkt eiδkt and derive expressions
for δk:

δk = −i
( �Y T

k M̂ �Y1
)
. (D2)

One should note that (D2) is not applicable to excitaions
having the same structure as the fastest growing mode �Y1, so
this formula is valid only for k �= 1.

The perturbatively obtained dependencies of the incre-
ments of the modes γlp k = Im(δk ) are shown in Fig. 9(b). The
negative value of γlp k indicates that the corresponding mode
k grows in time. One can see that for the mode labeled as “3”
in the figure (red curve), there is a range of angular velocities
�, where it exhibits a positive increment. This implies that the
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FIG. 10. The temporal spectrum of the stationary state as a func-
tion of the angular velocity of the potential �. The simulations were
conducted within the coupled mode approximation. The white curves
show the red-shifted dependencies of the real parts of the eigenfre-
quencies of the two linear modes, including the fastest growing mode
shown by the black curve and the state indicated by the red curve in
Fig. 8(a). The eigenfrequencies are shifted downward by 0.04.

stationary state cannot be defined by the fastest growing linear
mode alone, and one can anticipate the oscillatory dynamics.

Note that the range of � for the oscillating behavior is
shifted compared to what was observed in direct numerical
simulations. This discrepancy can be attributed to the rela-
tively large magnitude of the perturbation for the parameters
used in direct numerical simulations. We have verified that
most of this discrepancy arises from the nonlinear shift of the
modes’ eigenfrequencies, and that the agreement improves as
pump intensity decreases.

Now, let’s consider whether the oscillatory state can be
considered as coexistence of modes with the structures of the
fastest growing linear mode and the mode that is not sup-
pressed by the former. According to the perturbation theory,
the second mode constituting the oscillating state should be
similar to the linear mode labeled as “3” in Fig. 8.

Through direct numerical simulations, we have obtained
the temporal spectra of the stationary states for various an-
gular velocities of the potential �, as depicted in Fig. 10. In
this plot, an interval of � exists where the system exhibits
two-frequency dynamics, when some polaritons oscillate at
a higher frequency δ1, while others oscillate at a lower fre-
quency δ2. The white curves on this spectrum correspond to
the eigenfrequencies of the modes “1” (fastest growing) and
“3” shifted down by 0.04. This shift is approximately equal
to the shift observed in these modes due to the nonlinearity
effect. Notably, these spectral lines closely follow the depen-
dencies of the linear eigenfrequencies on the potential rotation
velocity.

In our numerical experiments, we have the flexibility to
isolate the first or second spectral lines, enabling us to analyze
the polarization and angular momentum of polariton states

FIG. 11. The structure of the components corresponding to the
upper (a) and the lower (b) spectral lines shown in Fig. 10. The
open circles correspond to the data extracted from the numerical
simulations within the coupled modes model, while the solid lines
correspond to the quantities calculated for the eigenmodes shown by
black (a) and red (b) colors in Fig. 8. The field structure is char-
acterized by the rations Ni/

∑
n Nn = |Ci|2/| �C|2 shown as functions

of �.

associated with each of the frequencies. In essence, we repre-
sent the stationary solution as �C = c1 �Z1eiδ1t + c2 �Z1eiδ2t . Here,
c1,2 denote the amplitudes determining the number of polari-
tons, while the vectors �Z1,2, normalized such that | �Z1,2| = 1,
describe how polaritons with frequencies δ1,2 are distributed
among the states of ↑ and ↓ polarizations, as well as among
positive (+) and negative (−) angular momenta. The depen-
dencies of the reduced occupations of the states |Zi j |2/| �Z|2,
where i =↑,↓ and j = ±, are shown in Fig. 11 as functions
of � for polaritons of the frequency δ1 (a) and δ2 (b). One can
see that, indeed, the distribution of polaritons with frequency
δ1 across polarizations and angular indices closely resembles
that of the fastest growing linear mode, which has the highest
eigenfrequency. At the same time, the dependencies plotted
in panel (b) confirm that the polaritons with frequency δ2

exhibit an order parameter similar to that of the mode that is
not suppressed by the fastest growing mode, which is labeled
as “3.”

Finally, let us provide some estimations to clarify the pre-
viously discussed effect, which is the limited influence of
polariton transfer between polarizations on the total number
of polaritons. The polarization oscillations arise due to the
interaction between two coexisting modes, and therefore the
period of the polarization oscillations Tosc is inversely propor-
tional to the frequency difference between these coexisting
modes. For the modes involved, this frequency difference is
primarily defined by the TE-TM splitting and can be estimated
as �δ ≈ 2σ . On the other hand, the characteristic timescale
for the evolution of the polariton number Tdns is inversely
proportional to |γ0 + ηi|. This allows us to estimate the ratio
of these characteristic times as Tdns/Tosc ≈ 2|σ |/|γ0 + ηi|. For
the used parameters, this ratio is approximately 20, which
explains why our numerical simulations do not show signif-
icant oscillations in the total polariton number despite the
inter-polarization polariton transfer.
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