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Machine eye for defects: Machine learning-based solution to identify and characterize
topological defects in textured images of nematic materials
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Topological defects play a key role in the structures and dynamics of liquid crystals and other ordered systems.
There is a recent interest in studying defects in different biological systems with distinct textures. However,
a robust method to directly recognize defects and extract their structural features from various traditional and
nontraditional nematic systems remains challenging to date. Here we present a machine learning solution, termed
machine eye for defects (MED), for automated defect analysis in images with diverse nematic textures. MED
seamlessly integrates state-of-the-art object detection networks, segment anything model, and vision transformer
algorithms with tailored computer vision techniques. We show that MED can accurately identify the positions,
winding numbers, and orientations of ±1/2 defects across distinct cellular contours, sparse vector fields of
nematic directors, actin filaments, microtubules, and simulation images of Gay-Berne particles. MED performs
faster than conventional defect detection methods and can achieve over 90% accuracy on recognizing ±1/2
defects and their orientations from vector fields and experimental tissue images. We further demonstrate that
MED can identify defect types that are not included in the training data, such as giant-core defects and defects
with higher winding numbers. Remarkably, MED provides correct structural information about ±1 defects, i.e.,
the phase angle for +1 defects and the orientation angle for −1 defects. As such, MED stands poised to transform
studies of diverse ordered systems by providing automated, rapid, accurate, and insightful defect analysis.
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I. INTRODUCTION

Topological defects are local regions within an ordered
medium where its order is frustrated or changes abruptly.
These defects are ubiquitous and play a salient role across
diverse physics disciplines, including liquid crystals (LCs),
superfluids, early universe, and optics [1,2]. In nematic LCs,
the average molecular orientation within LCs allows for the
introduction of the director field, indicative of the LC’s mi-
crostructure [3]. Notably, defects within the director field are
characterized by a relatively low scalar order parameter, typ-
ically S < 0.4 [4]. As the field of LC research has evolved,
there is a rapidly growing interest in studying diverse mate-
rials systems as nematic LCs, in which topological defects
are the focus of research [5–9]. Examples from biological
systems include epithelial cells [10], progenitor neural cells
[11], dense bacteria suspensions [12], and spindles during
mitosis [13]. Therefore, there is a strong need for a robust
method to analyze the director field and defects in distinct
systems with nematic texture.
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Reflecting upon the past research on LC materials, it is ev-
ident that it has benefited from experimental, theoretical, and
computational approaches, a traditional scientific paradigm
enumerated by Gray [14]. However, the landscape of scientific
exploration is undergoing a dynamic transformation, driven
by notable reductions in computational and data storage costs
[15–17]. This revolution in the research ecosystem is fostering
an emergent shift towards a data exploration paradigm, a
realm where data-driven discovery takes precedence. Central
to this paradigm is machine learning (ML), which has shown
remarkable progress over the past decade, as evidenced by
breakthroughs such as RESNET [18] in image recognition and
transformer models [19] across various language tasks. Large
language models, such as GPT-4 [20], are built upon the
transformer model, currently attracting significant attention,
implying a promising future for ML in physics.

The adoption of this emerging data-driven methodology
has begun to gain traction in LC research [21–33]. For in-
stance, Colen et al. employed convolutional neural networks
(CNN) and long short term memory (LSTM) for predicting
the activity and elastic constant of active nematics, demon-
strating the potential for forecasting the chaoticlike dynamics
of active defects [25]. Similarly, Golden et al. utilized a
symbolic regression-based method to develop a mathematical
model of active nematics from experimental data, remarkably
recovering the Leslie-Ericksen model [26]. In these efforts,
however, topological defects that are imperative to active ne-
matics phenomena are either implicitly included in the model
or explicitly excluded from the data.
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FIG. 1. The machine eye for defects (MED) system: schematic overview. The preprocessing modules are tasked with the extraction of
an equivalent-sized director field from the provided image, akin to how we would imagine the director field. Following this, defect detection
network is employed to find the defects’ positions and corresponding topological charge. Finally, the orientation transformer is assigned to
predict or calculate the orientations of all of the detected defects.

The challenge of directly recognizing defects has just be-
gun to be addressed using ML techniques. Ronhovde et al.’s
early work implemented unsupervised ML methods for the
systematic detection and analysis of structures in various com-
plex physical systems, with a specific emphasis on identifying
defects in crystals and discerning patterns in amorphous ma-
terials such as glasses [34,35]. Recent advancements in ML
have revolutionized the detection of defects in LCs. Walters
et al. trained deep neural networks (DNN) and LSTM using
the (x, y, θ ) coordinates for a two-dimensional (2D) direc-
tor field containing −1/2 or −1 defects, and achieved the
classification of defect types in testing director fields [36].
Minor et al. trained YOU ONLY LOOK ONCE (YOLO) v2 [37]
with simulated cross-polarization images of defects, thereby
enabling pinpointing defect locations in cross-polarized im-
ages [27]. Building upon this, Chowdhury et al. enhanced
their approach by training YOLOv5 [38] with experimental
cross-polarized images to locate ±1 defects in a smectic
LC film. They cross-correlated defect core regions with an-
gled synthetic templates to reveal the orientation dynamics
of surrounding brushlike structures. These dynamics are then
processed through a binary classification network to predict
the topological charges of the defects [28]. Li et al. [32]
developed a method where they trained RESNET [18] blocks
using experimental microtubule images and the correspond-
ing orientation fields obtained via POLSCOPE. This approach
predicts the orientation field directly from experimental im-
ages, then calculates the winding numbers of the defects and
predicts defect orientations using additional RESNET blocks.
Killeen et al. [33] extracted nematic field data from images of
confluent tissues, calculated areas with low nematic order, and
employed CNN to classify ±1/2 defects.

Despite the above recent advances in using ML to identify
defects in LCs, there are two groups of open questions re-
maining to be addressed. Scientifically, we are questioning the
generality or extensibility of ML algorithms. For example, can

an ML algorithm identify defects that are beyond the training
data? And beyond the positions of the defects, can an ML
algorithm identify their structural information from images,
such as their winding number, orientation, or phase angle?
Practically, existing ML attempts oftentimes rely on a specific
type of experimental images or nematic textures. Here we ask:
is there a robust ML package that can work with arbitrary
images of LC textures? And whether data-driven methods
can outperform the physics-based traditional defect tracking
method?

To answer these open questions, in this work, we har-
ness cutting-edge object detection algorithms [39], segment
anything model (SAM) [40], vision transformer [41–43], and
computer vision (CV) techniques to analyze the textured im-
ages of nematic materials. Our technique, termed machine
eye for defects (MED), transcends simple defect detection
methods by its capability to identify the positions, winding
numbers, and orientations of defects from images with distinct
nematic textures. Moreover, we show that MED can com-
prehend defects that are not included in the training data,
demonstrating its potential to be generalized. The specifics
of MED and its application to images of different nematic
systems for defect detection will be discussed in detail in the
following sections.

II. METHOD

MED consists of three key modules: a preprocessing mod-
ule that employs the segment anything model (SAM) and
computer vision (CV) techniques, a defect detection module
based on the object detection model, i.e., Nanodet-plus, and
a defect orientation prediction module based on the vision
transformer paradigm. The intricate architecture of the MED
framework is visually depicted in Fig. 1. In order to ensure
the accessibility and ease of use for MED, we performed all
the training and testing on a laptop equipped with an NVIDIA
RTX3060 GPU.
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FIG. 2. Topological defect identification in epithelial cells. (a) Wild type epithelial MDCK cell micrograph from Ref. [10]. (b) Nematic
director field corresponding to (a) presented in Ref. [10]. (c) The preprocessing module utilizes SAM [40] to segment cellular regions and
employs PCA to identify each cell’s principal axis. (d) MED identifies ±1/2 topological defect positions, winding numbers, and orientations,
represented by arrows or tri-arrows in square boxes, with red denoting +1/2 defects and blue denoting −1/2 defects. The zoomed-in boxes in
(b) and (d) show a comparison of the director fields extracted by the two methods. Scale bar: 10 µm.

A. Preprocessing module

Our preprocessing module adeptly addresses images with
distinct textures, such as discrete contours (e.g., epithelial
cells or vector fields of directors) and tight textures (e.g.,
cytoskeletal filaments). For images with discrete contours, a
distinct segment in the preprocessing module is employed.
Traditional CV methods, which often necessitate manual
parameter tuning across images, are inefficient. Here, we
integrate the SAM method [40], which excels in contour
delineation without the need for additional training. This
enables effective segmentation of cellular structures into dis-
tinct contours during cellular image analysis. A function for
quantifying segmentation overlap is also included to bolster
the model’s robustness (Appendix A). Subsequently, principal
component analysis (PCA) [44,45] is used to calculate the
dominant orientation of each segmented contour, which is
used for further interpolation and refinement of the director
field (Appendix A 1 a and A 1 b).

In the context of tight-textured images such as cytoskeletal
filaments, the algorithm is based on the concept that the in-
tensity gradient is orthogonal to the average orientation of the
filaments [46]. For high-quality and noise-free images, e.g.,
Fig. 3(a), the intensity gradient at each pixel directly gives the
local director field [47]. However, when noise or blurriness

is present in the image, such as Figs. 3(c) and 3(d), this
straightforward director field extraction becomes error prone.
To counteract this noise susceptibility, we extract the director
field from local areas using PCA method instead of from in-
dividual pixels. More details can be found in Appendix A 1 b.

B. Defect detection network

In various applications, ranging from autonomous driving
[48] to facial recognition and clustering tasks [49], object
detection algorithms serve as a critical component. It is worth
noting that the concept of object is not limited to conven-
tional entities but can also encompass topological defects.
For instance, Minor et al. [27] and Chowdhury et al. [28]
employed YOLO in their research, a prominent object detection
framework. These detection networks predominantly utilize
convolutional neural networks (CNNs) and feature classifica-
tion mechanisms based on annotated labels. Our work aims to
extend this paradigm by not only identifying defect positions
but also characterizing their winding number and orientation.
After evaluation, Nanodet-Plus [39] emerged as the most suit-
able key point-based object detection algorithm, leading us to
construct defect detection network. Further details regarding
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FIG. 3. Defect identification from nematic images with tight textures. (a) Actin-based nematic images from Ref. [47] marked with MED
predicted defects; scale bar: 10 µm. (b) Actin-based nematic images from Ref. [9] marked with MED predicted defects; scale bar: 30 µm. In
(c), 1: A snapshot of a microtubule-based active nematic from Ref. [26], scale bar: 50 µm; 2: the same image overlaid with MED predicted
director field; 3: the director field corresponding to 1 presented in Ref. [26]; 4, 5: the difference in analyzing the director field around a void
−1/2 defect between the original work (4) and the MED result (5). (d) Right: The background displays an MD simulation snapshot of a pair of
±1/2 defects in a nematic comprising Gay-Berne particles [50]. The inset shows the color map representing particle orientation; the overlaid
section is the director field and the defects analyzed by MED. Left: The corresponding director field computed by physics-based method
directly from simulation data files.

the selection criteria and methodological details of object
detection algorithms are provided in the Appendix A 2.

Defect detection network was trained on a data set com-
prising approximately 600 labeled images of sparse director
field, each paired with specific defect labels. Each image
possesses one +1/2 defect and one −1/2 defect, constructed
from the hybrid lattice Boltzmann simulations (Appendix B).
These images typify the Training Data Set 1 in Fig. 1. The
computational cost for this training process was approxi-
mately 7 h. It is essential to precisely position the defect
core at the label box’s center during labeling, allowing it to
serve as the key point of algorithms. Despite the uniformity
of director field images and limited training sample size, our
defect detection network exhibited commendable efficacy in
subsequent intricate recognition tasks.

C. Orientation transformer

The transformer models [19] have become noteworthy for
their high performance in diverse language tasks, solidifying
their role as the standard for natural language processing.
They have been extended to computer vision applications, no-
tably through the vision transformer (ViT) [41]. We integrated
ViT into our orientation transformer for effective feature ex-
traction and accurate prediction. A feature map as an output
from the ViT is fed into another neural network through a
rectified linear unit (ReLU) activation function (Fig. 1).

Two specialized transformers are used to predict defect
orientations: “plus transformer” outputs a coordinate pair
(Px, Py), representing the components of the orientation vector
P associated with the +1/2 defect; and “minus transformer”
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produces θ0 for the −1/2 topological defect, which is an
angular phase variable capable of characterizing the defect’s
orientation (Appendix B). When a defect is detected, defect
detection network sends to the orientation transformer the
image of the defect region and the corresponding topological
charge, prompting activation of the relevant transformer for
orientation prediction. The orientation transformer structure
details can be seen in Appendix A.

To keep the training cost manageable, we initially
employed the pretrained model vit-base-patch16-224-in21k
[42,43] with an equivalent architecture for feature extrac-
tion. We fine tuned the ViT model’s gradients and trained
the orientation transformer with our Training Data Set 2,
including 16050 ±1/2 defect images and the corresponding
(Px, Py ) and θ0. The computational cost for training the ori-
entation transformer was approximately 16 h. Further details
on methodological details and training data can be found in
Appendixes A 3 and B.

III. RESULTS

A. Robustness of MED

We first consider images of epithelial cells [10] [Figs. 2(a),
2(b)], which serve as quintessential examples with discrete
contours. By implementing the SAM model [40], we first
extract the local orientations of the cells [Fig. 2(c)], based
on which we generate a smooth director field [Fig. 2(d)].
The extracted director field image is subsequently processed
by the trained defect detection network to identify and char-
acterize defects within the image. +1/2 and −1/2 defects
are marked with red and blue boxes, respectively. The pro-
cessing of each defect region through the trained orientation
transformer allows for the acquisition of the corresponding
defect orientations, represented by arrows of corresponding
colors [Fig. 2(d)]. By comparing the director field and defects
provided by MED to those reported in literature [10], we find
that MED follows the long axis of the cells more faithfully,
yielding a more detailed analysis of the tissue texture. In what
follows, we discuss more examples showcasing the validity
and accuracy of MED.

We next study tight nematic textures. We challenge MED
by applying it to four different nematic systems as summa-
rized in Fig. 3. For a nematic comprising short actin filaments
[47], MED can correctly identify the positions and orienta-
tions of ±1/2 defects despite the presence of void regions
of tactoids [Fig. 3(a)]. In another type of actin-based nematic
image complicated by polarized light illuminations [9], MED
does equally well in identifying defects in spite of the spatially
variant lightness of the texture [Fig. 3(b)]. The prediction
quality of Figs. 3(a) and 3(b) demonstrates the MED’s robust
efficacy in predicting nematic images with different textures
[9,47]. In microtubule- or actin-based active nematics, cer-
tain areas, such as −1/2 defect cores, often appear as void
(dark) regions with a depletion of cytoskeletal polymers. For
an image containing such void defect regions [26], MED
performs better than existing methods in terms of correctly
identifying, for example, −1/2 defect positions [Fig. 3(c)].
Note that both void tactoids and void defects are not included
in our training data. Beyond experimental images of passive

and active nematics, MED can also be extended to analyze
simulation images of nematic materials. By analyzing the
snapshots from a simulation of a coarse-grained molecular
model, i.e., Gay-Berne particle system [50], MED gives rise to
reasonable director fields and defect information [Fig. 3(d)],
laying the groundwork for further explorations into new do-
mains of liquid crystal science and beyond.

B. Predictive accuracy and efficiency

To rigorously assess the predictive accuracy of MED, we
have performed two calculations. The first calculation is based
on sparse vector field images generated from hybrid lattice
Boltzmann method (LBM) simulations (Appendix B 2 and
Ref. [51]). Supplemental Material (SM), Movie 1 [52] shows
defects’ positions, winding numbers, and orientations pre-
dicted by the MED alongside with the corresponding ground
truth. The simulations included 123 defects (60 +1/2 defects
and 63 −1/2 defects), with the MED accurately identifying
120 of them, achieving a remarkable accuracy of 97.56%.
Only three defects were unaccounted for, two of which were
on the verge of annihilation.

Additionally, eight spurious defects were detected, pre-
dominantly located at the boundary of the simulation domain.
By introducing false positive rate (FPR) defined as

FPR = FP

TN + FP
, (1)

with FP the number of false positives and TN the number
of true negatives, we find that the resultant FPR is 6.25%.
To better elucidate the prediction accuracy of MED, the sim-
ulation domain was partitioned into boundary and interior
regions. The interior region is demarcated by a yellow box
in Fig. 4(b). We introduce two quantities for each defect.
A positional error �r is defined as �r = rMED − rGT, with
rMED being the defect position vector predicted by MED,
and rGT being the ground truth position vector of the de-
fect. In Fig. 4(c), we present separate histograms for the
interior and boundary regions, showing the normalized mag-
nitude of the vector �l = |�r|/h, where h denotes the unit
size of the mesh in the simulation. For defect orientation,
we introduce orientation angle error �ψ defined as the angle
between the MED predicted defect orientation vector(s) and
the ground truth vector(s) [Fig. 4(d)]. The statistics of the �ψ

are again performed for interior and boundary regions sep-
arately. Although the boundary region exhibited marginally
inferior performance in predicting defect positions, the ma-
jority of the positional deviations remain below 2h. In terms
of orientation, the transformer’s performance was uniform
across both regions, with the majority of the deviations
falling below 5◦. Large deviations were generally associated
with defects experiencing considerable deformation or during
annihilation.

We also perform error analysis on tissue images from
Ref. [10], detailed in Appendix C. Due to the absence of
experimental ground truth, we calculated the scalar order pa-
rameter S from the refined MED-extracted director field as
benchmark. As shown in SM Movie 2 in the Supplemental
Material [52], the prediction accuracy exceeded 90% for both
the number of defects and the winding number. Furthermore,
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FIG. 4. Accuracy analysis of MED prediction for SM Movie 1 [52]. (a) Comparison between topological defects number as predicted by
MED and those from the ground truth. (b) A snapshot of a nematic director field with predicted defects with red and blue representing MED
results and purple and green denoting the ground truth. (c) Histogram of the position deviation �l (left) and orientation deviation �ψ (right)
from the ground truth for 120 defects using MED. (d) The definitions of �ψ for ±1/2 defects. For a +1/2 defect, the angle �ψ measures the
deviation between the predicted orientation (red arrow) and the ground truth (purple arrow). For a −1/2 defect, �ψ1, �ψ2, and �ψ3 represent
the angular differences between the predicted (blue arrows) and actual (green arrows) orientations.

the majority of the predicted defect positions have a deviation
of less than 2 µm, well below the average size of the epithelial
MDCK cell (∼10 µm) [10,53].

To assess the computational efficiency of MED, we con-
trast physics-based approaches with MED, as depicted in
Table I. For Case A pertaining to the MD simulation of
Gay-Berne particles, we adopt the physics-based methodol-
ogy described in Ref. [50]. Case B focuses on eight frames
of active turbulence, as showcased in SM Movie 1 [52]. The
computational technique written in C language is derived from
Ref. [7]. The results of the active turbulence simulation are
transferred to the physics-based method in the data form and
to the MED in the image form. It should be noted that the com-
putational time for the MED encompasses both the prediction
phase and the rendering of the result image via matplotlib.
In contrast, the computational time reported for traditional
physics-based methods solely accounts for the numerical cal-
culations. Analysis of Table I reveals that MED consistently
more efficient than traditional physics-based calculations.

C. Physics learned by MED

We subsequently subjected the MED to more challenging
testing scenarios that are not included in the training data.
Take a sparse double-arrow vector field (in comparison to the
training data comprising simple lines) as an example, MED
can correctly identify ±1/2 defects without a visible defect
core or with a giant, circular or elliptical core [Figs. 5(a),
5(b)]. Although the double-arrow and simple-line represen-
tations of the director field exhibit the same symmetry, they
contain different image details that challenge ML’s inter-
pretation. The robust performance of MED in recognizing
these defect images demonstrates its generalization ability
to recognize other abstract defect images. We further apply
MED to an experimental system consisting of a biphasic
lyotropic chromonic LC of disodium cromoglycate solution
[54]. During temperature change, ±1/2 defects with giant
cores of specific shapes are observed [54]. MED is able to
identify defects in these cases too by identifying defect loca-
tions and orientations, despite minor errors in defect positions
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TABLE I. Computational efficiency comparison of traditional physics-based calculation and MED.

[Figs. 5(c), 5(d)]. Note that this scenario is akin to the void
defects found in microtubule-based active nematic systems
[26], on which MED has proven its efficacy.

Considering the fact that the training data is solely com-
posed of simple images of ±1/2 defects, we extended the
prediction scope to defects with higher winding numbers
(charges), such as ±1 and +2. The results of this extrapolation
analysis are depicted in Fig. 6. Interestingly, MED recognizes
these stranger singularities as a cluster of multiple half-integer
defects in the vicinity of the defect core. The total topological
charge of these MED-comprehended defects coincides with
the charge of the actual defect (Fig. 6). The center of mass
of these defects appears to correspond to the location of the
defect core as well (Fig. 6).

Next, we examine whether these wrongly comprehended
information by MED (i.e., recognizing these integer defects

(a) (b)

(c)

50 μm

FIG. 5. Application of MED to ±1/2 defects with giant cores.
(a) Comparison of a sparse double-arrow field for a +1/2 defect
without core (left) and for a +1/2 defect with a giant core (right).
(b) Similar comparison of a sparse double-arrow field for a −1/2
defect without core (left) and for a −1/2 defect with a giant core
(right). (c) MED’s predictions for experimental images of a +1/2
defect (left) and a −1/2 defect (right) in a lyotropic chromonic liquid
crystal (disodium cromoglycate) adapted from Ref. [54]. Scale bar:
50 µm.

as several half-integer defects) contain correct structural in-
formation of the stranger singularities. We first generate a
sequence of images of +1 defects with different phase angle
ψ [using Eq. (B1) by choosing k = 1], and the prediction
results are shown in Fig. 7. By introducing two angles ω1 and
ω2 corresponding to the angle between the respective +1/2
defect and the line connecting the two defect cores, we can
extract the phase angle of the +1/2 defect through a simple
relation

ψ = −1

2

(
ω1 + ω2

2

)
. (2)

We find that there is an excellent agreement between ψ

calculated from Eq. (2) and the ground truth ψ , (Fig. 7(a), SM
Movie 3 [52]). In Fig. 7(b), we show some +1 defect images
overlaid with MED predictions. In these images, the director
is represented by either straight lines or double arrows, exem-
plifying again the robust predictive capability of MED across
diverse image types (SM Movie 3 [52]).

Analogous to the generation of +1 defects, a sequence
of −1 defect images was constructed using Eq. (B1). The
orientation vector of the −1 defect can be inferred by the
orientation vectors of the two MED-predicted −1/2 defects.
We denote the two defect cores by points P and P′, respec-
tively. Three unit vectors corresponding to the triad shape of
the −1/2 defect orientation are denoted by Vi and V′

i for
defect P and P′, respectively, with i = 1, 2, 3. The three vec-
tors for each defect are ordered in counterclockwise manner,
and for the same subscript i, Vi, and V′

i are chosen to be
approximately antiparallel to each other. By choosing a pair
of Vi and V′

i, which make the least angle with PP′, we can
infer the vector of one of the branches of the −1 defect by

VResult = (V′
i − Vi )e± j π

8 (sgn(Vi·
−→
PP′ )+1), where j represents the

imaginary unit.
The validation between the predicted orientation vec-

tor VResult and the ground truth yielded a high degree of
agreement, as evidenced in Fig. 8 and SM Movie 4 in the
Supplemental Material [52], again demonstrating that MED
has comprehended the structural information of the defects.
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(a) (c)(b)

FIG. 6. Higher-charge defects not included in the training data. (a) MED recognizes the +1 singularity as two +1/2 defects. (b) A −1
singularity identified as two −1/2 defects. (c) A +2 singularity recognized as four +1/2 defects. These images are adapted from Ref. [6].

IV. DISCUSSION

In this research, we present the machine eye for defects
(MED) system, a machine learning-based solution tailored to
automatically detect and characterize defects within nematic
materials with diverse textures. The MED functions analo-
gously to the human eye, first visualizing the nematic system
in the form of a director field, followed by a rapid and pre-
cise analysis within this specific context. We have integrated
state-of-the-art algorithms, including Nanodet-Plus, segment
anything model, and vision transformer, with advanced com-
puter vision techniques, allowing the MED to undertake a
thorough analysis of texture images of nematic systems. The
proposed system demonstrates exceptional adaptability, pre-
cision, and efficiency in evaluating a wide range of nematic
systems. For example, MED can correctly identify defects
from images of discrete contours as well as tight texture, and

from nematic images complicated by void tactoids, variant
lightness, or void and giant defect cores. For sparse vector
fields, MED works well with double-arrow director fields.
Remarkably, MED can even comprehend higher-charge de-
fects that were not trained. We find that MED interprets these
integer defects as a cluster of half-integer defects, resembling
the human cognition pattern that humans tend to comprehend
unknown objects using a combination of understood concepts.
Structural information about these stranger defects, includ-
ing phase angle and orientation, can be correctly extracted
from the positions and orientations of those half-integer de-
fects, implying that MED has learned the correct physics of
defects.

The MED offers substantial promise for aiding the in-
spection of defects across various nematic systems, providing
quick and automated image analysis, contingent upon an
appropriate set of training data. Its practical applications
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transcend liquid crystals, including any ordered systems
that harbor defects. Moreover, the fine tuning of the vision
transformer within MED might facilitate the extraction of
additional essential parameters, such as elastic constants and
activity (the quantification of microscopic energy sources in-
troduced in active nematics).

Despite the promising results showcased by MED, there re-
main several facets that could benefit from further refinement.
At present, the training data solely comprise basic images
of ±1/2 defects. The performance of MED can be further
improved if more types of defects are provided to MED.
The fact that MED can comprehend stranger defects needs
further studies to design better strategy for neural networks to
learn physics more explicitly. MED also has the potential to
learn the viscoelastic properties of nematic materials, as recent
works are pursuing [25,26]. In conclusion, we expect that our
work will stimulate more research efforts in this field and
help extend the application of machine learning in materials
science.

Training data set and trained model for defect detection
network and orientation transformer are available on an on
line Zenodo repository [72]. Some sample code of MED that
can predict defect positions, winding numbers, and orienta-
tions is also available on the Zenodo repository. More code
is available from the corresponding author upon reasonable
request.
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APPENDIX A: TECHNICAL DETAILS OF MED

1. Details of preprocessing module

a. Optimization of SAM seg4mentation outcomes

The selection of the SAM is predicated on its zero-shot
learning capability, which enables the segmentation of im-
ages with distinct contours without requiring prior knowledge.
However, this generalizability comes at the expense of speci-
ficity; SAM is not innately equipped to process epithelial cell
images. The direct application of SAM yields results exem-
plified in Fig. 9. Notably, the red box indicates the model’s
tendency to repeatedly identify the same cellular structure,
which can adversely impact the subsequent interpolation of
the director field.

To mitigate this issue, we introduce a postprocessing step
involving the construction of a list of binary masks generated
by SAM. A parameter known as intersection over union
(IoU) is subsequently employed to evaluate and eliminate
incorrectly segmented outcomes. The IoU between two
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SAM

FIG. 9. Direct application of SAM to a tissue image. The red box
highlights the cellular structure repeatedly identified in an image of
epithelial cells.

masks, referred to as mask1 and mask2, is quantified as the
ratio of their intersection to their union. An iterative function
traverses each mask in the list (mask1) and compares its
IoU with every other mask (mask2). Should the IoU exceed
a predefined threshold and if mask1 possesses a smaller
area compared to mask2, mask1 is consequently discarded.
Furthermore, in the presence of numerous spurious contours
erroneously classified as cellular structures, an additional
filtering mechanism based on contour size is incorporated
to enhance segmentation accuracy. This approach effectively
minimizes redundant identification of the same cellular
structures, as illustrated in Fig. 2(c).

b. Interpolation and smoothing method for generating
the director field

The orientation angle θ , extracted from distinct con-
tour and localization window configurations, constitutes the
foundational framework for the interpolation and subsequent
refinement of the director field. The desired length of the
director is directly determined by the dimensions of the un-
derlying 2D grid. Interpolation of the cos(2θ ) and sin(2θ )
components is executed via linear interpolation techniques
and subsequently smoothed using a Gaussian filter, yielding
the smoothed fields grid_s2t and grid_c2t. The final orien-
tation field, grid_theta, over the 2D grid is computationally
derived as:

grid_t = 0.5 × arctan2(grid_s2t, grid_c2t),

grid_theta = mod(grid_t, π ). (A1)

Additionally, we also introduce an auxiliary method based
on image super-resolution techniques to augment the textural
features of actin-based images, thereby further attenuating the
adverse effects of noise and blurriness.

2. Details of defect detection network

Object detection algorithms bifurcate into anchor-based
[37,38,55] and key-point-based (or anchor-free) [39,56,57]
classifications. Anchor-based detectors often struggle with
hyperparameters, such as the numbers, sizes, and aspect ratios
of anchors, which are highly dependent on the data set [58].
Conversely, key-point-based strategies simplify this task by
detecting objects through central key points, thereby avoid-
ing the need for complex bounding box configurations. In
the context of defect detection, key-point-based algorithms
commence by identifying the core of the defect, which is
then followed by a key-point-assisted extrapolation of the

defect region’s size. It can offer some improvement in dealing
with hyperparameter tuning that are prevalent in anchor-based
methods.

Within the spectrum of key-point-based algorithms,
Nanodet-Plus [39] is noteworthy for its single-stage, fully
convolutional framework that judiciously balances compu-
tational efficiency and detection accuracy. This assertion is
corroborated by a thorough evaluation from Arani et al. [58],
which attests to Nanodet-Plus’s superior performance across
multiple metrics, including accuracy, robustness to perturba-
tions, and energy efficiency.

Object detection networks such as Nanodet-Plus are usu-
ally composed of three principal parts: backbone, neck, and
prediction heads. The backbone, primarily responsible for
feature extraction, leverages the ShuffleNetV2 algorithm [59].
Serving as an intermediary, the neck enhances the extracted
features by aggregating them across multiple scales through
the path aggregation network for feature pyramid (PAFPN)
[60]. This is particularly salient for scenarios requiring object
detection at varying resolutions. Finally, the prediction heads
employ these refined features to generate robust and precise
object classifications, thereby fulfilling the object detection
pipeline. The efficacy of our defect detection network, par-
ticularly when trained on a limited data set comprising 600
labeled images, is significantly bolstered by the label assign-
ment distillation-based training aid module integrated into
Nanodet-Plus [61].

3. Details of the orientation transformer

Figure 10 illustrates the structural makeup of the orien-
tation transformer. After generating the Training Data Set 2
using the method detailed in Appendix B, we first invoke the
feature extractor in the pretraining model vit-base-patch16-
224-in21k [42,43] to convert the images in the training set
into representative tensors. Simultaneously, we transform the
orientation labels from textual data into the numerical format.
This process converts the training set into a serialized dictio-
nary, significantly reducing the training time and enhancing
the training efficacy.

The architecture we employed for both plus transformer
and minus transformer mirrors the pretraining model vit-
base-patch16-224-in21k. Prior to training, the parameters of
the pretraining model are loaded, endowing the system with
substantial feature extraction capabilities from the outset.
Subsequently, additional training based on the data in the
training set substantially enhances ViT’s aptitude for ex-
tracting specific types of images we use. The feature map,
extracted by the feature extractor, serves as the input for the
transformer, denoted as Xin.

The tokenizer groups pixels into semantic concepts to gen-
erate a concise set of visual tokens. The spatial attention
mechanism dynamically allocates computational resources by
focusing on significant regions rather than uniformly process-
ing all pixels. Semantic grouping clusters pixels into a limited
number of visual tokens, each signifying a semantic concept
within the image. Post-tokenization, transformers model in-
teractions between these visual tokens. Subsequently, the pro-
jector maps these visual tokens back to pixel space to derive
an augmented feature map Xout. A more detailed exploration
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FIG. 10. Structural compositions of orientation transformer.

of this series of processes can be found in Ref. [42]. Following
their passage through the ReLU activation function, the output
neurons can deliver the necessary orientation results.

APPENDIX B: GENERATION METHOD
OF TRAINING DATA SET

Our training data are sourced from two primary method-
ologies: theoretical nematic field based on the Frank-Oseen
theory and the hybrid lattice Boltzmann method (LBM) sim-
ulations. Specifically, Training Data Set 1 used for defect
detection network is from LBM simulations, and the second
type of images are generated by the Frank-Oseen theory.
Training Data Set 2 utilized for the orientation transformer
is generated by the Frank-Oseen theory and includes the first
and third type of images. Additionally, LBM simulations are
also performed to produce movies depicting active turbulence.

1. Theoretical nematic field

We generate three types of director field images based on
the Frank-Oseen elasticity theory:

(1) Single half-integer defect images: This type of image
involves a single, isolated half-integer defect, either +1/2 or
−1/2, on a square lattice. We randomize the positions and
orientations of these defects as training data.

(2) Dual half-integer defect images: This type of image
involves a pair of +1/2 and −1/2 defects. The emphasis here
is to include the information of defect-defect interactions.

(3) Defect images using disparate elastic constants: To en-
hance the model’s generalizability, this type of image focuses
on a single, isolated half-integer defect with different ratios of
elastic constants.

a. Single half-integer defect images

For this type of image we adopt one-elastic-constant ap-
proximation. By establishing a polar coordinate system (r, φ)
centered at a defect core, the local orientation angle θ of all

the directors in the lattice are determined by [6]:

θ (r, φ) = kφ + ψ, (B1)

where k and ψ are the winding number and phase angle of the
defect, respectively.

The above Eq. (B1) utilizes φ to represent the angle de-
termined by the x and y distances between the defect core
and lattice points, where φ = arctan(y/x). Here, k denotes
the defect charge and θ0 is the defect phase that represents
an arbitrary overall rotation of the director about the z axis.
The defect orientation is extrapolated from ψ , described as:

(1) For the single branch of the +1/2 defect orientation:

P = [cos(2ψ ), sin(2ψ )]; (B2)

(2) For the three branches of the −1/2 defect orientation:

V1 = [
cos

(
2
3ψ

)
, sin

(
2
3ψ

)]
,

V2 = [
cos

(
2
3 (ψ + π )

)
, sin

(
2
3 (ψ + π )

)]
,

V3 = [
cos

(
2
3 (ψ + 2π )

)
, sin

(
2
3 (ψ + 2π )

)]
. (B3)

Incorporating Gaussian white noise into the director facilitates
the generation of relevant training data for the orientation
transformer. This training set, denoted as Training Data Set
2, comprises 7700 +1/2 defect images and 8350 −1/2 defect
images.

b. Dual half-integer defect images

For this type of image, the associated director field is de-
rived from [6]:

θ (r) = k1 tan−1

(
y − y1

x − x1

)
+ k2 tan−1

(
y − y2

x − x2

)

+ δθ

2

[
1 + log(|r − R1|2) − log(|r − R2|2)

log(|R1 − R2|2) − log
(
rc

2
)

]
+ 
.

(B4)

Equation (B4) describes arbitrary defect charges k1 and k2

at positions R1 = (x1, y1) and R2 = (x2, y2). The term rc is
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indicative of the core radius. The quantities δθ and 
 are given
by:

δθ = θ2 − θ1 + k2 tan−1

(
y1 − y2

x1 − x2

)
− k1 tan−1

(
y2 − y1

x2 − x1

)
,


 = θ1 − k2 tan−1

(
y1 − y2

x1 − x2

)
. (B5)

We generated approximately 100 images, each containing
both +1/2 and −1/2 defects, using the above methods. These
images were subsequently incorporated into Training Data Set
1 for Nanodet-Plus training. Every image was manually anno-
tated with meticulous care to delineate the exact nature and
location of the defect present within the image. The labeling
of the data set was executed using LABELIMG [62]. Given the
nonuniformity of director fields in practical applications, the
hybrid LBM and the Beris-Edwards equation were employed
to ensure consistent alignment on the grid, as detailed in
Appendix B 2.

c. Different elastic constants defect images

Derived from the Frank elastic free energy, we have:

f = 1
2 K11(∇ · n)2 + 1

2 K22[n · (∇ × n)]2

+ 1
2 K33[n × (∇ × n)]2. (B6)

For 2D considerations, only K11 and K33 serve as signifi-
cant elastic constants, represented by the ratio r = K33/K11.
The director n = (cos θ, sin θ ) is represented by an angle θ

in the polar coordinate (ρ, φ) centered at the defect core. By
introducing a function f (θ ) as defined below [9]:

(1) For a +1/2 defect:

f (θ ) =
√

1 + r + (1 − r) cos(2θ )

1 + r − c0 + (1 − r) cos(2θ )
; (B7)

(2) For a −1/2 defect:

f (θ ) =
√

1 + r + (1 − r) cos(2θ )

1 + r + c0 + (1 − r) cos(2θ )
. (B8)

The angle θ can be solved by
dφ

dθ
= f (θ ).

In the equation corresponding to the +1/2 defect, c0 is
initialized as 0.5 × min(1, r) × 2, and subsequently algorith-
mically modified to ensure that the numerical integration of
f (θ ) over the interval [0, π/2] is precisely equal to π . In
contrast, for the c0 related to the −1/2 defect equation, the
initialization is performed as 0.5 × max(1, r) × 4, and further
adjustments are made programmatically to satisfy the con-
dition that the numerical integration of f (θ ) over the range
[0, 3π

2 ] equals π . The root-finding procedure detailed above
ensures a consistent integration of the defect energy across
diverse configurations.

We have generated a total of 2100 images of +1/2 defects
by systematically varying both the value of r and the orienta-
tions of the defects. This variation led to the manifestation of
distinct defect profiles, such as U-shaped or V-shaped +1/2
defects, consistent with the observations detailed in Ref. [9].
In a parallel effort, we produced 1700 images of −1/2 defects,
once again modulating the value of r and the orientations,

thereby allowing for an extensive investigation into the full
spectrum of conceivable defect structures. These images have
also been incorporated into Training Data Set 2.

2. Hybrid LBM method

The 2D nematic considered here can be described by a
tensorial order parameter Q and a velocity field u, respec-
tively. For a uniaxial nematic LC, Q = S(nn − I/3), where
the unit vector n represents the nematic director field, S is the
scalar order parameter of the nematic LC, and I is the identity
tensor. By defining the strain rate D = (∇u + (∇u)T )/2 and
the vorticity � = [∇u − (∇u)T ]/2, we introduce an advec-
tion term S = (ξD + �) · (Q + I

3 ) + (Q + I
3 ) · (ξD − �) −

2ξ (Q + I
3 )(Q : ∇u), where ξ is related to the constituent’s as-

pect ratio. In our simulation, we consider flow-aligning liquid
crystal by setting ξ = 0.8.

The governing equation of the Q tensor, the Beris-Edwards
equation, is [63]

∂Q
∂t

+ u · ∇Q − S = �H, (B9)

where � is associated with the rotational viscosity of the
nematic liquid crystals (LCs), expressed as γ1 = 2S2

0/�

[64]. The molecular field H is defined by H = −[ δF
δQ −

I
3 Tr( δF

δQ )], which drives the system towards thermody-
namic equilibrium with the free energy functional F =∫

V f dV . Here, f represents the free energy density in the
bulk, given by [2] fLdG = A0

2 (1 − U
3 )Tr(Q2) − A0U

3 Tr(Q3) +
A0U

4 [Tr(Q2)]2 + L
2 (∇Q)2, where A0 is a phenomenological

coefficient setting the energy density scale and U is a ma-
terial constant, which controls the magnitude of S0 via S0 =
1
4 + 3

4

√
1 − 8

3U . L is the elastic constant. The nematic coher-
ence length, denoted by ξN = √

L/A0, ascertains the defect
core size and functions as the essential length scale in our
description of nematic materials.

Using the Einstein summation rule, the Navier-Stokes
equation for active nematics can be written as:

ρ(∂t + uβ∂β )uα = ∂β�αβ + η∂β[∂αuβ + ∂βuα

+ (1 − 3∂ρP0)∂γ uγ δαβ]. (B10)

The stress � is defined as

�αβ = − P0δαβ − ξHαγ

(
Qγ β + 1

3
δγβ

)

− ξ

(
Qαγ + 1

3
δγβ

)
Hγ β + 2ξ

(
Qαβ + 1

3
δαβ

)
Qγ εHγ ε

− ∂βQγ ε

δF

δ∂αQγ ε

+ Qαγ Hγ β − Hαγ Qγ β − ζQαβ,

(B11)

where η is the isotropic viscosity, while the hydrostatic pres-
sure P0 is expressed by [65] P0 = ρT − f . The temperature T
correlates with the speed of sound cs through the relationship
T = c2

s . The activity parameter ζ encompasses the local stress
stemming from the spatial gradients of the nematic order
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FIG. 11. Quantitative statistics of SM Movie 2 [52]. (a) Comparison of defect number between MED calculations and manual counting
(S < 0.5 regions are judged as defects). (b) Top portion illustrates MED’s prediction for Frame 3, while the bottom part shows the distribution of
order parameter S calculated from the director field data. (c) Enhanced interpolation is performed on the ten low-S regions in the S distribution
image to pinpoint the locations of defect cores. (d) Histogram of deviation of MED predicted defect core positions from those manually
measured.

parameter [66,67]. We address the evolution equations em-
ploying the finite difference method, and the Navier-Stokes
Eq. (B10) is tackled using a lattice Boltzmann method on a
D3Q15 grid [68]. The validity of our model and its implemen-
tation has been substantiated by comparing our simulation
outcomes [8,51] in both passive and active nematic sys-
tems with predictions derived from the Ericksen-Leslie-Parodi
(ELP) theory [4,69–71].

Under the one-elastic-constant approximation (L = L1 =
0.1, L2 = L3 = L4 = 0), we conducted simulations for both
passive and active nematics and applied periodic bound-
ary conditions in both cases. For the passive nematic case,
which constituted the Training Data Set 1 for defect detection
network, we embarked on a nascent defect annihilation simu-
lation by introducing a pair of ±1/2 defects into the system.
The data set was enriched by applying rotation and mirror
transformations to the extracted images from the simulation,
ultimately amassing around 500 images for the training of
Nanodet-Plus. The labeling procedure was analogous to that
described in Appendix B 1 b. What’s more, the active turbu-
lence scenario in SM Movie 1 [52] was utilized to assess the
accuracy and efficiency of MED. Within the active turbulence
simulation, an activity parameter of ζ = 0.007 was used.

APPENDIX C: STATISTICAL DETAILS
OF SM MOVIE 2 [52]

To rigorously assess the robustness of MED in predicting
images with distinct contours, we extended our predictions to
additional epithelial cell images from Ref. [10]. Three images
are analyzed, and the corresponding predictions are present
in SM Movie 2 in the Supplemental Material [52]. Given the
challenge of discerning defect positions from experimental
images with naked eyes, we recorded the extracted director
field data, which enables us to compute a map of the scalar
order parameter S, from which we manually identify defects
according to an empirical relation S < 0.5. Note that MED’s
accuracy requirements for the extracted director field are not
stringent and do not rely on the S director. SM Movie 2 [52]
includes a comparative analysis of defect positions filtered by
S and the MED predictions. Out of three image frames, 54
defects were identified based on S < 0.5 and experience, with
MED accurately predicting 49 of them (26 −1/2 defects and
23 +1/2 defects), as demonstrated in Fig. 11(a). The predicted
defect charges passed individual verification with no errors,
achieving a prediction accuracy of 90.74%. Furthermore, we
conducted a statistical analysis of the positional deviation of
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the predicted defect cores, as summarized in Fig. 11(d). For
a given image of the director field, MED is capable of accu-
rately ascertaining the charges, positions, and orientations of
most topological defects within a time frame of approximately
3 s, following the extraction of the director field. In con-
trast, the calculation of the order parameter S, utilizing more

precise director field data, necessitates a substantially longer
time period exceeding 3 s. This process also involves judging
whether a feature is a defect based on empirical assessment,
but without providing orientation information. The described
efficiency and comprehensiveness underscore the advantage
of using ML methods.
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