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Geometry-independent superfluid weight in multiorbital lattices from the generalized
random phase approximation
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The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically
in the isolated band limit within the generalized random phase approximation. Time-reversal symmetry, spin
rotational symmetry, and the uniform pairing condition are assumed. It is found that the relation obtained in
Huhtinen et al. [Phys. Rev. B 106, 014518 (2022)] between the superfluid weight in the flat band limit and the
so-called minimal quantum metric is valid even at the level of the generalized random phase approximation. For
an isolated, but not necessarily flat, band it is found that the correction to the superfluid weight obtained from
the generalized random phase approximation D(1)

s = D(1)
s,c + D(1)

s,g is also the sum of a conventional contribution
D(1)

s,c and a geometric contribution D(1)
s,g, as in the case of the known mean-field result D(0)

s = D(0)
s,c + D(0)

s,g, in which
the geometric term D(0)

s,g is a weighted average of the quantum metric. The conventional contribution is geometry
independent, that is, independent of the orbital positions, while it is possible to find a preferred, or natural, set of
orbital positions such that D(1)

s,g = 0. Useful analytic expressions are derived for both the natural orbital positions
and the minimal quantum metric, including its extension to bands that are not necessarily flat. Finally, using
some simple examples, it is argued that the natural orbital positions may lead to a more refined classification of
the topological properties of the band structure.
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I. INTRODUCTION

An important result of Bardeen-Cooper-Schrieffer theory
is the prediction for the superconductive critical temperature

Tc ∝ e− 1
|U |ρ0 (EF ) [1], where U is the interaction strength of the

effective attractive interaction and ρ0(EF ) is the electronic
density of state at the Fermi energy. However, the mean-
field critical temperature Tc gives the energy scale for the
breaking of Cooper pairs, but in many unconventional su-
perconductors and in two-dimensional fermionic superfluids
the transition to the normal state is controlled by the phase
fluctuations of the order parameter rather than Cooper pair
breaking [2–6]. The quantity that measures the phase stiffness
of the order parameter phase with respect to perturbations or
thermal fluctuations is known as the superfluid weight Ds.
The superfluid weight can be obtained experimentally from
the penetration depth of the magnetic field characterizing the
Meissner effect in supercondutors. From a theoretical point of
view, the superfluid weight is defined as a specific limit of the
current-current response function [7,8]. Equivalently, it can be
computed from the change of the free energy due to a twist
in the boundary conditions [9]. In this work we adopt this
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second characterization since it is the most practical for our
purposes.

In the rather idealized but popular model of a supercon-
ductor as a system of charged particles propagating in a
homogeneous medium, the superfluid weight is simply given
by Ds = q2n

m , where q and m are the electric charge and the
mass of the particles, respectively, and n is the number density
[10]. Due to the crystalline structure, real materials pos-
sess discrete rather than continuous translational symmetry
and, as consequence, the inverse mass 1/m in the superfluid
weight has to be replaced by the inverse effective mass tensor
[ 1

meff
]i, j = 1

h̄2 ∂ki∂k j εnk obtained from the energy dispersion εnk

of the partially filled band [see (55) in the following]. For
a long time it was assumed that only the band dispersion
plays a role in determining the superfluid weight, which would
then be necessarily small if the charge carriers have a large
effective mass [11]. In particular the superfluid weight should
be strictly vanishing in the so-called flat band limit, in which
the band dispersion is constant εnk = εn as a function of
quasimomentum k.

The conventional wisdom was challenged by few specific
examples of systems with flat bands for which the superfluid
weight can be shown to be nonzero, namely, exciton conden-
sates in quantum Hall bilayers [12,13] and the surface states
in rhombohedral graphite [14,15]. Later, it was shown at a
general level that even in the flat band limit the superfluid
weight can be nonzero and large due to an additional con-
tribution associated to the band wave functions rather than the
band dispersion [16–18]. In particular, under some symmetry
assumptions, it is shown that the superfluid weight in the
flat band limit is proportional to the integral over the first
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Brillouin zone of the quantum metric, a geometric invari-
ant constructed out of the Bloch wave functions and their
derivatives with respect to the quasimomentum [16,19,20].
More generally, under the same symmetry assumptions but
not necessarily in the flat band limit, the superfluid weight is a
sum of two contributions Ds = Ds,c + Ds,g. The conventional
contribution Ds,c depends on the inverse effective mass, while
the so-called geometric contribution Ds,g is a weight averaged
of the quantum metric over the Brillouin zone [see (50) and
(51) in the following].

It is important to note that the geometric contribu-
tion to the superfluid weight can be nonzero only in
multiband/multiorbital lattices, since periodic Bloch func-
tions live in orbital space, whose dimension is the number
of orbitals per unit cell. For a simple lattice with one orbital
per unit cell, such as the square lattice, a periodic Bloch
function becomes a simple scalar, which cannot affect any
physical property, and the quantum metric vanishes. The ge-
ometric contribution is thus an effect genuinely associated to
the multiorbital character of lattice fermions. The geometric
contribution is sizable, for instance, in multiorbital lattices
with flat bands that can be realized with ultracold gases in
optical lattices, such as the Lieb lattice [17], and also in
iron-based superconductors such as FeSe [21], in which mul-
tiorbital effects are important [22,23]. Another example of
material with strong multiorbital character is twisted bilayer
graphene [24,25], in which quasiflat bands accompanied by
the onset of a superconducting state are obtained by tuning
the twist angle between the two graphene layers to a spe-
cific value, called the magic angle. Multiple theoretical works
have reached the conclusion that the geometric contribution
to the superfluid weight is comparable to the conventional one
in magic angle-twisted bilayer graphene [26–29] and, more
recently, experimental evidence for this prediction has been
provided [30]. The interplay between quantum geometry and
superconductivity in twisted multilayer systems is the topic
of two recent review articles [31,32]. The quantum metric has
also been shown to affect the superfluid properties of lattice
bosons [33–35].

The quantum metric is intimately related to the Berry cur-
vature, another band structure invariant that plays a crucial
role in the quantum Hall effect. Indeed, the two quantities
are respectively the real and imaginary parts of the quantum
geometry tensor, a positive semidefinite complex matrix ob-
tained from the Bloch functions and their derivatives [16].
Due to positive definiteness, there are relations between them
expressed by inequalities. While the Berry curvature and the
associated Berry phase has been extensively studied for in-
stance, in the context of the quantum Hall effect [36], the
semiclassical theory of electronic motion [37], and the modern
theory of polarization [38], the role of the quantum metric
in determining various observable properties is currently the
subject of ongoing research [39–46]. It is clear by now that the
quantum metric is relevant for many phenomena other than
superfluidity in multiorbital lattices.

The relation between superfluid weight and quantum met-
ric within the mean-field approximation is by now a rather
established fact, nevertheless in Refs. [47,48] it was pointed
out that these quantities have an unphysical dependence on
the positions of the lattice sites, more specifically on the basis

vectors determining the relative positions of different sublat-
tices within the unit cell [49]. Intuitively, one expects that the
superfluid weight should not depend on the relative positions
of the lattice sites, called in the following orbital positions.
The idea that certain physical observables are independent of
the geometry of the lattice has been discussed in Ref. [50].
In the mathematical physics literature the related concept of
unit cell consistency has also been introduced [51,52]. The
quantum metric is neither geometry independent nor unit cell
consistent and this leads to the unphysical result that the
superfluid weight can be nonzero even in the case of a trivial
flat band realized in a lattice model composed of completely
disconnected unit cells. The simplest example of this unphys-
ical phenomenon is probably the Su-Schrieffer-Heeger model
discussed in Sec. VI A.

The reason behind this inconsistency has been investigated
already in Ref. [47] (see also the lecture notes [53] for a more
pedagogical presentation) and is due to the fact that the depen-
dence of self-consistently calculated quantities on the change
of boundary conditions is neglected when applying mean-field
theory. This is a widely used approximation, equivalent to the
prescription of replacing the many-body Hamiltonian with the
mean-field Hamiltonian when calculating response functions
[8,9], and has the well-known drawback of breaking gauge
invariance [54]. More specifically, the superfluid weight is
computed as the second derivative of the free energy (or ther-
modynamic grand potential) with respect to the phase angle
parametrizing twisted boundary conditions. To explicitly pre-
serve translational invariance, it is convenient to implement
twisted boundary conditions by means of a constant electro-
magnetic vector potential A, which cannot be gauged away in
a finite system with torus geometry [9]. The usual approxima-
tion is to replace the exact free energy with the mean-field free
energy, which depends on quantities that need to be computed
self-consistently, such as the Hartree-Fock potential and, in
the case of superconducting systems, the pairing potential.
The mean-field potentials depend on the boundary conditions,
which means that they need to be computed self-consistently
for each different value of A. It is shown in Ref. [47] that the
geometry independence of the superfluid weight is restored by
taking into account the A dependence of the pairing potential
alone. Indeed, the crucial new result of Ref. [47] is that the
superfluid weight in the flat band limit is proportional to the
first Brillouin zone integral of the quantum metric minimized
with respect to all possible orbital positions. This so-called
minimal quantum metric is a geometry independent quantity
and it singles out a specific choice of the orbital positions pro-
viding a physically sensible result for the superfluid weight.

The purpose of the present work is to extend the results
of Ref. [47] in many ways. In Sec. II we prove rigorously
that the superfluid weight is a geometry independent quantity
as a consequence of gauge invariance. More specifically, it is
shown that a shift in the orbitals positions amounts to a gauge
transformation, which does not affect the value of the ther-
modynamic grand potential. Following Ref. [9], in Sec. III we
introduce mean-field theory as a variational approximation for
the grand potential. The mean-field grand potential depends
on A either directly, through the Peierls phase, or indirectly
through the variational parameters that enter in the mean-
field Hamiltonian, namely, the Hartree-Fock potential and the
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pairing potential, which are calculated self-consistently for
each value of A. A gauge-symmetry-preserving approxima-
tion for the superfluid weight is obtained by retaining the A
dependence of the pairing potential, as suggested in Ref. [47].
An important difference with this latter work is that here we
also retain the A dependence of the Hartree-Fock potential.
As shown in Ref. [9], this is equivalent to computing the
superfluid weight within the generalized random phase ap-
proximation (GRPA). The variational approach used here and
in Ref. [9] has the advantage to make it clear that the GRPA is
simply mean-field theory applied in a fully conserving fash-
ion by taking into account the fluctuations of the mean-field
potentials, and is not, strictly speaking, a beyond mean-field
approximation. In Sec. III and in Appendix A, we derive
the expression for the superfluid weight within the GRPA in
the terms of various correlation functions between quadratic
operators evaluated at A = 0. The derivation is carried out
using an alternative method compared to Ref. [9] and more
similar to Ref. [47], first in the case of a general interaction
term and later specialized to the Hubbard interaction term.

In Sec. IV we compute analytically the superfluid weight
within the GRPA in the case of a generic lattice model with
an Hubbard interaction term. We adopt the same symmetry
assumptions that allow to derive the relation with the quantum
metric in an isolated, but not necessary flat, band [18]. To
make this work self-contained and easier to read, we first
repeat with our notation the derivation of the conventional and
geometric contributions to the superfluid weight within the
simplest nongauge invariant mean-field theory. This deriva-
tion is found originally in Ref. [18]. Then in Sec. IV B we
extend this derivation to provide a closed-form expression for
the correction term to the superfluid weight that is obtained by
taking into account the dependence of both the Hartree-Fock
and pairing potentials on the constant vector potential A. An
important result of Sec. IV B is that this GRPA correction
term is also the sum of a conventional part and a geometric
part, which depend on the derivatives of the band dispersion
and the periodic Bloch functions, respectively. The conven-
tional GRPA correction is geometry independent and always
leads to an increase of the superfluid weight compared to the
mean-field result. The expression for the conventional part
of the GRPA correction is an original result of our work.
The conventional GRPA term appears because we take into
account the Hartree potential in our case, contrary to Ref. [47]
(the Fock potential vanishes for the Hubbard interaction in the
absence of magnetic order). On the other hand, the geometric
part of the GRPA correction is essential to cure the problem
found in Ref. [47] of the unphysical dependence of the super-
fluid weight on the orbital positions. Compared to Ref. [47],
we provide an explicit expression for the geometric GRPA
correction even for an isolated band that is not necessarily flat.

In Sec. V the geometric part of the GRPA correction is
analyzed in more detail. More precisely, we show that the sum
of the geometric GRPA correction and mean-field geometric
contribution gives the minimal quantum metric in the flat band
case, as found in Ref. [47]. Simple analytical expressions are
also provided for both the minimal quantum metric and the as-
sociated natural orbital positions that minimize the integrated
quantum metric; see Eqs. (84)–(88) and (90). At the end of
Sec. V we explain how these results can be straightforwardly

extended to an isolated band that is not necessarily flat. Since
we expect the minimal quantum metric and the natural or-
bital positions to find applications also beyond the context of
superfluidity in multiorbital lattices, in Sec. VI we provide
some examples, that is, we compute these band structure
invariants for three different representative lattice models: the
Su-Schrieffer-Heeger model, the Creutz ladder and the dice
lattice. Finally, in Sec. VII we summarize and discuss our
results and single out possible directions for further work.

Appendixes A, B, and C contain all the necessary com-
putational details that should allow the interested reader to
understand, reproduce, and ultimately extend and apply our
results to other related problems. Appendix A provides a
derivation of the GRPA result for the superfluid weight, which
in the case of the Hubbard interaction is given by Eqs. (30)–
(35) in Sec. III. This derivation is different but equivalent to
the one of Ref. [9]. Appendix B collects useful results for
computing the correlation functions that enter in the GRPA ex-
pression for the superfluid weight. Finally, in Appendix C the
self-consistency equations of mean-field theory are derived in
the case of the Hubbard interaction.

II. GEOMETRY INDEPENDENCE OF SUPERFLUID
WEIGHT AND GAUGE INVARIANCE

In this section we introduce the superfluid weight as the
second derivative of the thermodynamic grand potential �(A)
with respect to a constant electromagnetic vector potential
A. The vector potential parametrizes twisted boundary con-
ditions in a finite size lattice model with a torus geometry.
Moreover, we provide a simple argument based on gauge
invariance showing that the superfluid weight is a geometry
independent quantity. This section contains only a short sum-
mary of the concepts that are needed for the present work. For
a more extensive and rigorous presentation, the reader should
consult Refs. [9] and [47], which are the basis for the results
presented here. The notation used here is essentially the same
as the one of Ref. [9].

We consider a generic lattice model described by a non-
interacting, or free, Hamiltonian that is quadratic in the
fermionic field operators ĉiασ , ĉ†

iασ , and depends parametri-
cally on a constant electromagnetic vector potential A through
the usual Peierls phase

Ĥfree(A) =
∑

σ=↑,↓

∑
iα,jβ

ĉ†
iασ

[
Hσ

free

]
iα,jβeiA·riα,jβ ĉjβσ . (1)

Here Hσ
free is the hopping matrix, which is translationally in-

variant since its matrix elements [Hσ
free]iα,jβ = [Hσ

free(i − j)]α,β

depend only on the difference between the unit cell indices
i = (i1, i2)T and j = ( j1, j2)T , and riα,jβ is the displacement
vector from site jβ to site iα, where α, β = 1, 2, . . . , Norb

label the orbitals inside the unit cell. The number of orbitals is
denoted by Norb, while Nc is the number of unit cells. With-
out loss of generality, only two-dimensional lattice models
are considered in the present work. Note also that the free
Hamiltonian commutes by construction with the z-axis spin
component operator

Ŝz = 1

2

∑
iα

(n̂iα↑ − n̂iα↓), n̂iασ = ĉ†
iασ ĉiασ . (2)
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Periodic boundary conditions are imposed by starting with
an infinitely extended and translational invariant lattice, that
is a collection of lattice sites located at positions riα . As
a consequence of translational invariance, the site positions
transform as follows under shifts of the unit cell index:

ri+j,α = ri,α + j1a1 + j2a2, with j =
(

j1
j2

)
. (3)

The fundamental vectors a1 and a2 generate the Bravais lattice
B = SpanZ(a1, a2) that encodes the translational symmetry of
the model. Then, in order to obtain a finite size lattice model
with a torus geometry, one fixes two noncollinear Bravais lat-
tice vectors R1, R2 ∈ B and identifies any pair of lattice sites,
labeled by iα and jβ, such that riα − rjβ = m1R1 + m2R2

with m1, m2 arbitrary intergers. The hopping matrix elements
of the finite size lattice are obtained unambiguously from the
ones of the infinite lattice, provided that the hopping matrix
that enters in the free Hamiltonian (1) has finite range, namely,
[Hfree(i − j)]α,β = 0 for |riα − rjβ | > R, and R � |R1|, |R2|.
The procedure just presented for obtaining a finite size lattice
model with periodic boundary conditions from an infinitely
extended one has been introduced and explained in more
detail in Ref. [55].

It is crucial to note that in a finite size lattice with periodic
boundary condition, it is not possible to write the displace-
ment vectors as the difference of the site positions, namely,
riα,jβ �= riα − rjβ , otherwise it would be possible to eliminate
the Peierls phase eiA·riα,jβ in (1) by means of a gauge trans-
formation and the constant vector potential A would have no
observable effects. Instead, one has to define the displacement
vectors more carefully, as explained in Ref. [9]. For periodic
boundary conditions, the vector potential A affects the eigen-
values and eigenfunctions of the free Hamiltonian (1) since it
correspond to magnetic fluxes through the holes of the torus.
It can be shown using a gauge transformation, that a nonzero
A is equivalent to twisted boundary conditions [55].

The free Hamiltonian (1) is translationally invariant, thus
it is convenient to expand the field operators in their Fourier
components

ĉiασ = 1√
Nc

∑
k

eik·riα ĉkασ , (4)

where the wave vectors k are discretized according to the
relation k · R j = 2πn j for integers n j . Inserting the Fourier
expansion (4) in (1) leads to

Ĥfree(A) =
∑

σ

∑
k,α,β

ĉ†
kασ

[
Hσ

free(k − A)
]
α,β

ĉkβσ ,

[
Hσ

free(k)
]
α,β

=
∑
i−j

[
Hσ

free(i − j)
]
α,β

e−ik·riα,jβ . (5)

In the following we need the average current density operator
(current operator for short) defined as

Ĵ = −∇AĤfree(A)|A=0

=
∑

σ

∑
k,α,β

ĉ†
kασ

[∇kHσ
free(k)

]
α,β

ĉkβσ . (6)

Note that here we have not normalized the current density
operator by the area of the system as done in Ref. [9].

In order to formulate the concept of geometry indepen-
dence, introduced in Ref. [50], we define an operator encoding
a shift in the orbital positions

b̂ =
∑

σ

∑
iα

bα n̂iασ , b̂l =
∑

σ

∑
iα

[bα]l n̂iασ . (7)

The vector bα = ([bα]x, [bα]y)T is the shift of the position of
the orbital labeled by α since the new orbital positions r′

iα and
displacement vectors r′

iα,jβ are given as

r′
iα = riα + bα, r′

iα,jβ = riα,jβ + bα − bβ. (8)

The hopping Hamiltonian Hσ
free(k) in momentum space

depends on the choice of the position vectors and the displace-
ment vectors, and one has

[Hσ ′
free(k)]α,β =

∑
i−j

[
Hσ

free(i − j)
]
α,β

e−ik·r′
iα,jβ

= [
e−ik·bHσ

free(k)eik·b]
α,β

, (9)

where in the last equation b is a single-particle operator in
orbital space, whose eigenvalues are the orbital position shifts
bα , namely, b|α〉 = bα|α〉. The operator b̂ generates gauge
transformations parameterized by A,

Û (A) = eiA·b̂, Û (A)ĉiαÛ †(A) = e−iA·bα ĉiα. (10)

Using the shifted displacement vectors, one obtains a new
noninteracting Hamiltonian:

Ĥ′
free(A) = Û (A)Ĥfree(A)Û †(A)

=
∑

σ

∑
iα,jβ

ĉ†
iασ

[
Hσ

free(i − j)
]
α,β

eiA·r′
iα,jβ ĉjβσ . (11)

The current operator also changes accordingly

Ĵ′ = −∇AĤ′
free(A)|A=0 = Ĵ − i[b̂, Ĥfree],

with Ĥfree = Ĥfree(A = 0) = Ĥ′
free(A = 0). (12)

In this work we consider the case of an attractive Hubbard
interaction term

Ĥint = −
∑

iα

Uα n̂iα↑n̂iα↓, with Uα � 0. (13)

Thus, the full many-body Hamiltonian is

Ĥ(A) = Ĥfree(A) − μN̂ + Ĥint, (14)

with N̂ = ∑
σ

∑
iα n̂iασ the particle number operator. Note

that the interaction term is invariant under the gauge trans-
formations (10), namely, [Ĥint, Û (A)] = 0, as a consequence
only the noninteracting part of the many-body Hamiltonian is
modified by the gauge transformation (10)

Ĥ′(A) = Û (A)Ĥ(A)Û †(A)

= Ĥ′
free(A) − μN̂ + Ĥint. (15)

Due to the property of similarity invariance of the trace
Tr[H] = Tr[UHU −1], it follows that the thermodynamic
grand potential is invariant under gauge transformations

�(A) = −β−1 ln Tr[e−βĤ(A)]

= −β−1 ln Tr[e−βĤ′(A)] (16)
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(β = 1/(kBT ) is the inverse temperature). The superfluid
weight is defined as the second derivative of the grand po-
tential with respect to the uniform vector potential A,

Ds,lm = 1

A
∂2�(A)

∂Al∂Am

∣∣∣∣
A=0

, (17)

where A = |R1 × R2| is the area of the finite size system with
periodic boundary conditions. From (16), it is evident that the
superfluid weight is a geometry-independent quantity [50],
i.e., it is invariant under shifts of the orbital positions inside
the unit cell. Notice how this result is a consequence of the fact
that, under an orbital position shift, the displacement vectors
in (8) are modified by a difference term bα − bβ , while the
displacement vector riα,jβ cannot be written as a difference,
as discussed above.

The concept of geometry independence, or dependence,
has been discussed in Ref. [50] and its utility has been pointed
out in relation to several observable quantities. However, the
superfluid weight is the first observable that has been shown
to be geometry independent as a consequence of gauge invari-
ance. The same approach may be useful to prove the geometry
independence of other quantities in the future.

III. GENERALIZED RANDOM PHASE APPROXIMATION

An attractive interaction, such as the one in (13), generally
leads to the emergence of superfluid phases characterized by a
nonzero superfluid weight [7,8]. In the context of superfluid-
ity and superconductivity, mean-field theory is the simplest
and most common approximation. This is a variational ap-
proximation for the grand potential based on the Bogoliubov
inequality [9,56,57]

� � �m.f. = �0 + 〈Ĥ − Ĥ0〉. (18)

The auxiliary grand potential �0 = −β−1 ln Tr[e−βĤ0 ] is ob-
tained from a quadratic variational Hamiltonian Ĥ0, which, in
the case of the Hubbard interaction (13), takes the form

Ĥ0(A) = Ĥfree(A) − μN̂ +
∑
σ,α


σ
α N̂ασ

+
∑

α

(�αD†
α + �∗

αDα ), (19)

N̂ασ =
∑

i

ĉ†
iασ ĉiασ =

∑
k

ĉ†
kασ ĉkασ , (20)

D̂α =
∑

i

ĉiα↓ĉiα↑ =
∑

k

ĉ−kα↓ĉkα↑. (21)

The expectation value on the right-hand side of (18) is evalu-
ated with respect to the statistical ensemble associated to the
variational Hamiltonian Ĥ0, namely,

〈Ĥ − Ĥ0〉 = 1

Tr[e−βĤ0 ]
Tr[(Ĥ − Ĥ0)e−βĤ0 ]. (22)

The coefficients 
σ
α and �α that appear in Ĥ0 are variational

coefficients that are chosen so as to minimize the mean-field

grand potential �m.f. on the right-hand side of (18). When the
minimum of �m.f. is attained, the Hartree potential 
σ

α and the
pairing potential �α satisfy the self-consistency conditions of
mean-field theory:


σ
α = −Uα〈ĉ†

iασ̄
ĉiασ̄ 〉 = −Uα

Nc
〈N̂ασ̄ 〉, (23)

�α = −Uα〈ĉiα↓ĉiα↑〉 = −Uα

Nc
〈D̂α〉, (24)

where the expectation values are evaluated as in (22). In
(23) we define σ̄ =↓ if σ =↑ and viceversa. In the equa-
tions above, we have assumed that translational symmetry is
not broken, therefore the expectation values 〈ĉ†

iασ ĉiασ 〉 and
〈ĉiα↓ĉiα↑〉 do not depend on the unit cell index i. It is also
assumed that spin rotational symmetry around the z axis is
preserved by the mean-field solution, indeed the variational
Hamiltonian (19) commutes with the spin operator (2). This
implies that the Fock mean-field potential term, proportional
to ĉ†

iα↑ĉiα↓ in the case of the Hubbard interaction, does not

appear in Ĥ0. This assumption is justified since spin rotational
symmetry breaking is associated to magnetic order, which
generally occurs for repulsive interactions.

The mean-field grand potential is minimized with respect
to �α and 
σ

α for each separate value of the vector potential
A, therefore the Hartree and pairing potentials become them-
selves function of A. It has been shown in Ref. [47] that one
cannot ignore this dependence in the pairing potential �(A)
when the mean-field approximation for the superfluid weight
is evaluated as

Ds,lm ≈ 1

A
d2�m.f.(A, 
(A),�(A))

dAl dAm

∣∣∣∣
A=0

. (25)

We denote by d�m.f.(A,�(A), 
(A))/dAl the full deriva-
tive of the mean-field grand potential, including also the A
dependence of the mean-field potentials 
σ

α (A) and �α (A),
while the partial derivative ∂�m.f.(A, 
(A),�(A))/∂Al de-
notes the derivative with respect to the first argument
only. Replacing the full derivatives with the partial deriva-
tives in (25) is a commonly used approximation [8,16,18].
However, it has the disadvantage of breaking gauge invari-
ance and thus geometry independence [47]. On the other
hand, it has been shown [9] that the superfluid weight
computed from (25) (with the full derivatives) is in fact
equivalent to the generalized random phase approximation
[58,59], which is an approximation that preserves gauge
invariance.

As shown in Appendix A, it is possible to express the full
second derivatives of the mean-field grand potential in (25) in
terms of correlation functions evaluated on the mean-field sta-
tistical ensemble for A = 0 only. This is advantageous since
it is not necessary to solve the mean-field problem for several
different values of A in order to evaluate the superfluid weight.
To present this result, we introduce the following convenient
notation:

(Â, B̂) = −
∫ β

0
dτ 〈(Â(τ ) − Â〉)(B̂(τ ) − 〈B̂〉)〉, (26)
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where Â and B̂ are arbitrary operators and the notation Â(τ ) =
eτĤ0 Âe−τĤ0 for the time evolution of an operator in imaginary
time τ has been used. In fact, the symbol introduced in (26)
is simply the imaginary time Green’s function evaluated at
the Matsubara frequency iωn = 0 [60] and has some useful
properties that are easy to prove:

(Â, B̂) = (B̂, Â), (27)

(Â, B̂)∗ = (B̂†, Â†), (28)

(Â†, Â) � 0. (29)

In Appendix B we introduce a compact method to evaluate
the correlation function in (26) between two translationally
invariant quadratic operators Â and B̂.

To express the result for the superfluid weight in the gen-
eralized random phase approximation, we need correlations
functions of the form (26) of pairs of operators taken from the
set {Ĵl , N̂ασ , D̂α}. The correlation functions that involve the
components of the current operator Ĵl (6) are organized into a
vector

vl =

⎛⎜⎜⎜⎜⎜⎝
vl,α=1

vl,α=2

...

vl,α=Norb

⎞⎟⎟⎟⎟⎟⎠, vlα =

⎛⎜⎜⎜⎜⎜⎝
(Ĵl , N̂α↑)

(Ĵl , N̂α↓)

(Ĵl , D̂α )

(Ĵl , D̂†
α )

⎞⎟⎟⎟⎟⎟⎠. (30)

Instead, all the remaining correlation functions are collected
into a matrix:

Aα,β=

⎛⎜⎜⎜⎜⎜⎝
(N̂α↑, N̂β↑) (N̂α↑, N̂β↓) (N̂α↑, D̂β ) (N̂α↑, D̂†

β )

(N̂α↓, N̂β↑) (N̂α↓, N̂β↓) (N̂α↓, D̂β ) (N̂α↓, D̂†
β )

(D̂α, N̂β↑) (D̂α, N̂β↓) (D̂α, D̂β ) (D̂α, D̂†
β )

(D̂†
α, N̂β↑) (D̂†

α, N̂β↓) (D̂†
α, D̂β ) (D̂†

α, D̂†
β )

⎞⎟⎟⎟⎟⎟⎠,

(31)

A =

⎛⎜⎜⎜⎜⎜⎝
A1,1 A1,2 . . . A1,Norb

A2,1 A2,2

...
. . .

ANorb,1 ANorb,Norb

⎞⎟⎟⎟⎟⎟⎠. (32)

Finally, we need also the following matrix:

Bα = −Uα

Nc

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠, (33)

B =

⎛⎜⎜⎜⎜⎜⎝
Bα=1

Bα=2

. . .

Bα=Norb

⎞⎟⎟⎟⎟⎟⎠. (34)

As shown in Appendix A, the full derivative of the mean-field
grand potential can then be expressed as

d2

dAmdAl
[�m.f.(A,�(A), 
(A))]|A=0

= ∂2�0

∂Al∂Am

∣∣∣∣
A=0

+ vT
l Bvm + vT

l B
1

A−1 − B
Bvm

= ∂2�0

∂Al∂Am

∣∣∣∣
A=0

+ vT
l Bvm + vT

l BABvm

+ vT
l BABABvm + vT

l BABABABvm + · · · . (35)

In the last equality we have used the geometric series expan-
sion

1

A−1 − B
= A + ABA + ABABA + · · · . (36)

As mentioned above, the superfluid weight is often computed
by retaining only the second partial derivatives of the mean-
field grand potential in (35), given by

∂2�0

∂Al∂Am

∣∣∣∣
A=0

=
〈

∂2Ĥfree(A)

∂Al∂Am

〉∣∣∣∣∣
A=0

+ (Ĵl , Ĵm). (37)

The first term on the right-hand side is known as the diamag-
netic part of the current-current response function, while the
second term is the paramagnetic one [8,9]. It can be shown
[18] that the diamagnetic part is equal to a correlation function
of the form (26) [see (B43)].

IV. SUPERFLUID WEIGHT IN THE ISOLATED
BAND LIMIT

The aim of this section is to compute analytically the
superfluid weight in the isolated band limit within the gen-
eralized random phase approximation, which means that (35)
is reduced to integrals over the first Brillouin zone of certain
combinations of the band dispersions and band wave func-
tions, and of their derivatives with respect to quasimomentum.
Ultimately, these integrals have to be evaluated numerically;
however, in Sec. VI, we provide also some examples in which
fully analytical results can be obtained. The final expression
presented below is valid for generic lattice models under few
assumptions, the most important being time-reversal symme-
try and the uniform pairing condition to be introduced in
the following. For completeness, we first evaluate the terms
corresponding to the second partial derivatives of �0 (37)
and reobtain the known result that the superfluid weight in
a multiband/multiorbital lattice can be separated into two
contributions, called conventional and the geometric, respec-
tively [16,18]. In particular, the quantum metric enters in the
geometric contribution to the superfluid weight. However, as
pointed in Refs. [47,48], the quantum metric depends on the
orbital positions, therefore it is not a geometry independent
quantity. In order to restore gauge invariance and thus ge-
ometry independence, we evaluate the remaining terms in
(35). This amounts to computing the full derivatives with
respect to the vector potential A rather than just the partial
derivatives. The same approach has been used in Ref. [47],
with the only difference that the Hartree potential 
σ

α in
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the variational Hamiltonian Ĥ0(A) is neglected in this latter
work. By slightly modifying the derivation in Appendix A,
it is shown that neglecting the Hartree potential amounts to
setting to zero in (35) all the correlation functions in which the
number operators N̂ασ appear. One of the main result of this
work is to take into account the Hartree potential and show
that in this way one obtains a new correction to the superfluid
weight that is geometry independent and is proportional to the
derivatives of the band dispersion. Therefore, in the language
of Refs. [17,18], this is a conventional contribution since it
vanishes in the flat band limit.

We start by rewriting the variational quadratic Hamiltonian
Ĥ0 in Nambu form

Ĥ0 = ĉ†
kH0(k)ĉk + const., (38)

where the column (row) vector ĉk (ĉ†
k) is defined in (B4)

and H0(k) is the single-particle Bogoliubov–de Gennes (BdG)
Hamiltonian given by

H0(k) =
(

H↑
free(k) + 
↑ − μ �

�∗ −[H↓
free(−k)]∗ − 
↓ + μ

)
,

(39)


σ = diag
(

σ

1 , 
σ
2 , . . . , 
σ

Norb

)
, (40)

� = diag(�1,�2, . . . ,�Norb ). (41)

The Nambu form for translational invariant quadratic opera-
tors is discussed in Appendix B. From now on time-reversal
symmetry is assumed, which implies [H↓

free(−k)]∗ = H↑
free(k)

and 
↑ = 
↓. The second assumption, which enables the an-
alytic evaluation of the superfluid weight for generic lattices,
is called the uniform pairing condition, expressed by

�α = �β = �, for all α, β. (42)

The pairing potential � can also be taken real and positive.
With a slight abuse of notation, we indicate with � both the
scalar value of the uniform pairing potential in (42) and the
matrix in (41), which becomes proportional to the identity.
The uniform pairing conditions is justified in Appendix C
starting from the self-consistency equations of mean-field the-
ory [(23) and (24)].

Under the above assumptions, the BdG Hamiltonian can be
diagonalized as follows:

H0(k) =
(

Uk 0
0 Uk

)(
εk − μ �

� −(εk − μ)

)(
U †

k 0
0 U †

k

)
= (Uk ⊕ Uk )WkEkW †

k (U †
k ⊕ U †

k ). (43)

Here Ek = E>
k ⊕ (−E>

k ) is the diagonal matrix of quasiparti-
cle excitations with E>

k = diag(Enk ) > 0 the block of positive
excitation energies, [Uk]α,n = gnk(α) = 〈α|gnk〉 the unitary
matrix of Bloch functions that diagonalizes H↑

free(k) + 
↑ =
UkεkU †

k and εk = diag(εnk ) the diagonal matrix of the band
dispersions. Finally, the BdG wave functions are given by

Wk =
(

diag(unk ) −diag(vnk )
diag(vnk ) diag(unk )

)
, (44)

unk = 1√
2

(
1 + εnk − μ

Enk

) 1
2

, (45)

vnk = 1√
2

(
1 − εnk − μ

Enk

) 1
2

, (46)

Enk =
√

(εnk − μ)2 + �2. (47)

The quantities unk and vnk are the usual BCS coherence factors
[54,61]. Note that in a multiband lattice model there is a pair
(unk, vnk ) of coherence factors for each band.

The total superfluid weight is separated into two contribu-
tions:

Ds = D(0)
s + D(1)

s . (48)

The first contribution D(0)
s is the one given by the second

partial derivative of �0, that is, (37), while D(1)
s includes all

the remaining terms in (35). In the following, D(0)
s is called

the “mean-field theory (MFT) superfluid weight,” because in
all previous works, with the exception of Refs. [47,48], this
is the only term that is evaluated when the superfluid weight
is computed within the mean-field approximation. Instead,
D(1)

s is referred to as the “GRPA correction”to the superfluid
weight. In fact, it would not be incorrect to consider the sum
of the two contributions in (48) the actual mean-field theory
result for the superfluid weight since it is obtained by taking
the full derivative of the mean-field free energy �m.f.; see (35).
However, we avoid this nomenclature in order not to create
confusion when referring to previous works.

As shown in the following, both the MFT superfluid weight
and the GRPA correction can be written as the sums of a
conventional contribution and a geometric contribution, which
we indicate as D( j)

s = D( j)
s,c + D( j)

s,g, with j = 0, 1. As explained
in Appendix B, the conventional contribution depends only
on the intraband matrix elements of the current operator. Ac-
cording to (B58), this means that only the derivative of the
band dispersions ∂εnk/∂kl with respect to the quasimomentum
k, that is, the group velocity, enters into D( j)

s,c and not the
derivatives of the Bloch functions |∂l gnk〉. On the other hand,
the geometric contribution D( j)

s,g is associated to the interband
matrix elements of the current operator, therefore it depends
only on scalar products of the form 〈gmk|∂l gnk〉, but not on
the group velocity. It was pointed out for the first time in
Refs. [16,18] that the derivatives of the Bloch functions affect
the mean-field superfluid weight in the form of an additional
geometric contribution, indicated by D(0)

s,g in our notation. A
major result of the present work is to show that, under the
same assumptions, the GRPA correction D(1)

s can also be
separated into a conventional D(1)

s,c and a geometric part D(1)
s,g

to be presented below.

A. MFT superfluid weight

Using the results in Appendix B, more specifically by
taking the isolated band limit in (B67), we obtain for the MFT
superfluid weight

D(0)
s = D(0)

s,c + D(0)
s,g, (49)

[
D(0)

s,c

]
l,m =

∫
d2k

(2π )2

�2

E2
n̄k

∂lεn̄k∂mεn̄k

×
[

tanh
(

βEn̄k
2

)
En̄k

− β

2 cosh2
(

βEn̄k
2

)], (50)
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[
D(0)

s,g

]
l,m

=
∫

d2k
(2π )2

2�2

En̄k
tanh

(
βEn̄k

2

)
Gl,m(k), (51)

where we have introduced the quantum metric

Gl,m(k) = Tr[∂lP(k)∂mP(k)] (52)

defined in terms of the projector P(k) = |gn̄k〉〈gn̄k| on the
only partially filled band labeled by n̄. The partially filled
band in the noninteracting limit is determined by the condi-
tion mink εn̄k � μ � maxk εn̄k on the chemical potential μ.
Isolated band limit means that the partially filled band is
separated from all other bands by a large band gap Egap

|εmk − εn̄k| � Egap for m �= n̄. (53)

Moreover, it is assumed that the interaction strength is much
smaller than the band gap:

Uα � Egap. (54)

In this limit, the superfluid weight and all of the observable
properties of the system are determined by the band dispersion
εn̄k and the Bloch functions |gn̄k〉 of the partially filled band.
Rather counterintuitively, in order to obtain the correct ex-
pression for the geometric contribution to the MFT superfluid
weight it is essential to take into account the interband matrix
elements of the current operator, as explained in Appendix B.
Naïvely, one may neglect the interband matrix elements of the
current operator in the isolated band limit, but the result is that
the geometric contribution is lost. In general, the geometric
contribution is considerably smaller than the conventional one
for a dispersive band with a bandwidth much larger than the
interaction strength, so the former can be safely neglected
[18,32]. On the other hand, when the partially dispersive band
is quasiflat, this not anymore an acceptable approximation,
since the conventional contribution vanishes in the flat band
limit (∂lεn̄k = 0) while the geometric one does not.

It is possible to rewrite the conventional contribution in a
more suggestive form by using (B59) in the form given by the
last term and performing an integration by parts. In this way,
one obtains the following expression:[

D(0)
s,c

]
l,m =

∫
d2k

(2π )2

(
nk∂l∂mεn̄k − β∂lεn̄k∂mεn̄k

2 cosh2
(

βEn̄k
2

)), (55)

with nk = 1 − εn̄k − μ

En̄k
tanh

(
βEn̄k

2

)
. (56)

The first term inside the parenthesis is the inverse effective
mass tensor ∂l∂mεn̄k = [ 1

meff
]l,m weighted by the occupation

factor nk. It is not difficult to show that nk is precisely the
occupation number (including both spins) of the state with en-
ergy εn̄k at thermal equilibrium. Therefore, the interpretation
of the first term is that all of the particles participate to the
superfluid flow at zero temperature and the superfluid weight
is an average measure of the effective mass of the carriers of
the superfluid current. The second term vanishes at zero tem-
perature and can be intepreted as a depletion of the superfluid
component due to the thermal excitations of quasiparticles
[62]. However, this interpretation does not provide the full
picture since the geometric contribution (51) is not taken into
account.

B. GRPA correction to the superfluid weight

In the previous section we have reobtained the general re-
sult for the MFT superfluid weight in multiband/multiorbital
lattices in the presence of an Hubbard interaction term, which
has been discussed in a number previous works. In this
section, we move on to consider the GRPA correction to
the superfluid weight, consisting of the terms in (35) which
depends on the matrix A and the vector vl . Thus, we need
to evaluate their these objects in the isolated band approx-
imation. The details of the calculation are again provided
in Appendix B. For the matrix elements of the matrix Aα,β

defined in (31), we obtain

Aα,β = −
∑

k

β|〈α|P(k)|β〉|2
4 cosh2

(
βEn̄k

2

) Cc
k

+
∑

k

|〈α|P(k)|β〉|2
2En̄k

tanh

(
βEn̄k

2

)
Cg

k, (57)

with the two 4 × 4 matrices Cc
k and Cg

k given by

Cc,g
k =

⎛⎝[Cc,g
k

]1,1 [
Cc,g

k

]1,2[
Cc,g

k

]2,1 [
Cc,g

k

]2,2

⎞⎠, (58)

[
Cc

k

]1,1 =
(

u4
n̄k + v4

n̄k −2u2
n̄kv

2
n̄k

−2u2
n̄kv

2
n̄k u4

n̄k + v4
n̄k

)
, (59)

[
Cc

k

]2,2 = −[Cg
k

]1,1 = 2u2
n̄kv

2
n̄k

(
1 1
1 1

)
, (60)

[
Cg

k

]2,2 =
(

2u2
n̄kv

2
n̄k −(u4

n̄k + v4
n̄k

)
−(u4

n̄k + v4
n̄k

)
2u2

n̄kv
2
n̄k

)
, (61)

[
Cc,g

k

]i, j = (
u2

n̄k − v2
n̄k

)
un̄kvn̄

(
1 1
1 1

)
(i �= j). (62)

For reason that will become clear in a moment, we distinguish
two contributions to the matrix A, a conventional one propor-
tional to Cc

k and a geometric one proportional to Cg
k . The same

separation applies to the vector vl (30):

vlα = vc
lα + vg

lα, (63)

vc
lα = (Ĵl , N̂α )

⎛⎜⎜⎝
1

−1
0
0

⎞⎟⎟⎠, vg
lα = (Ĵl , D̂α )

⎛⎜⎜⎝
0
0
1

−1

⎞⎟⎟⎠, (64)

(Ĵl , N̂α↑) = − (Ĵl , N̂α↓) =
∑

k

〈α|P(k)|α〉 �2

2E2
n̄k

×
[

tanh
(

βEn̄k
2

)
En̄k

− β

2 cosh2
(

βEn̄k
2

)]∂lεn̄k, (65)

(Ĵl , D̂α ) = −(Ĵl , D̂†
α )

=
∑

k

�

2En̄k
tanh

(
βEn̄k

2

)
〈α|[P(k), ∂l P(k)]|α〉.

(66)

These results are obtained from (B55) and (B56), (B61), and
(B64) in Appendix B. It is clear from (65) that vc

lα is a
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conventional term since it depends only on the group velocity
∂lεn̄k. In fact, expressing vc

lα in terms of the group velocity
alone is a nontrivial result that involves a fair amount of
algebra; see (B60). On the other hand, one can see from (66)
that vg

lα is purely geometrical, since it depends only on the
derivatives of the Bloch functions, or equivalently, only on the
derivatives of the flat band projector ∂lP(k).

The key observation that allows to considerably simplify
the calculation is to notice that the vectors vc,g

lα are eigenvec-
tors of the matrices C(c,g)

k and Bα (33):

Cc
kvc

lα = vc
lα, Cc

kvg
lα = 0, (67)

Cg
kvc

lα = 0, Cg
kvg

lα = vg
lα, (68)

Bαvc,g
lα = Uα

Nc
vc,g

lα . (69)

As a consequence, we have also

Aα,α′Bα′v(c,g)
lα′ = λ

(c,g)
α,α′ Uα′v(c,g)

lα′ , (70)

with λc
α,α′ = − 1

Nc

∑
k

β|〈α|P(k)|α′〉|2
4 cosh2

(
βEn̄k

2

) , (71)

λ
g
α,α′ = 1

Nc

∑
k

|〈α|P(k)|α′〉|2
2En̄k

tanh

(
βEn̄k

2

)
. (72)

It is then clear that GRPA correction to the superfluid weight
can be written as the sum of a conventional and geometric
components since the vectors introduced in (63) are orthogo-
nal vc

lα · vg
mβ = 0. The conventional component takes the form

[
D(1)

s,c

]
l,m

= 1

A
(
vc

l

)T
(

B + B
1

A−1 − B
B

)
vc

m

= 2AccT
l

(
U + U

1

(λc)−1 − U
U

)
cm. (73)

Here Ac = A/Nc denotes the unit cell area, U =
diag(U1,U2, . . . ,Uα=Norb ) is a diagonal matrix with
the coupling constants Uα on the main diagonal,
λc is a matrix with components given by (71) and
cl = (cl,1, cl,2, . . . , cl,α=Norb )T are vectors whose components
are given by clα = A−1(Ĵl , N̂α↑). Recall that, in the
thermodynamic limit, the summation over wave vectors
in the expression for (Ĵl , N̂α↑) in (65) is replaced by the
Brillouin zone integral

∑
k → A

(2π )2

∫
d2k.

At zero temperature λc = 0 and only the first term in (73)
survives. Since the components of the vector cl are purely real
and Uα > 0, the matrix M with components [M]l,m = cT

l Ucm

is positive semidefinite, which means that the conventional
part of the GRPA correction leads to an enhancement of the
superfluid weight compared to its mean-field value at zero
temperature.

It can be also shown that the second term in (73) is always
negative semidefinite, which is consistent with the discussion
below (A20) (see also Ref. [47]). To prove this, one notes that
the matrix Q(k) with components [Q(k)]α,α′ = |〈α|P(k)|α′〉|2
is positive semidefinite since

c†Qc = Tr[c†PcP] = Tr[(PcP)†(PcP)] � 0, (74)

with c = diag(c1, c2, . . . , cNorb ) the diagonal matrix obtained
from the components of the generic complex vector c =
(c1, c2, . . . , cNorb )T . In fact, this is just a special case of the
Schur product theorem according to which the Hadamard
product (entrywise product) C = A ◦ B of two positive (semi)-
definite matrices A and B is positive (semi)-definite [63]. In
our specific case, we have Q(k) = P(k) ◦ P∗(k) with both
P(k) and P∗(k) positive semidefinite. Thus λc is negative
semidefinite and as a consequence also ((λc)−1 − U )−1. This
concludes the proof. By the same token,

1

U −1 − λc
= U + U

1

(λc)−1 − U
U (75)

is a positive semidefinite matrix, showing that the conven-
tional GRPA correction D(1)

s,c always leads to an increase of
the mean-field superfluid weight even at finite temperature. It
will become clear in the following that the conventional GRPA
correction D(1)

s,c is also geometry independent.
Using (75) with λg in place of λc, we can write the geo-

metric component of the GRPA correction to the superfluid
weight in the following form:[

D(1)
s,g

]
l,m = 2AcdT

l

1

U −1 − λg
dm. (76)

Similarly to (73), the matrix λg has matrix elements λ
g
α,α′

given by (72) and dl = (dl,1, dl,2, . . . , dl,α=Norb )T is a vec-
tor with components dlα = A−1(Ĵl , D̂α ), whose expression
in terms of the periodic Bloch functions and their deriva-
tives is given in (66). Note that the components of the dl

vector just introduced are purely imaginary since (Ĵl , D̂α ) =
−(Ĵl , D̂†

α ) = −(Ĵl , D̂α )∗; see (27) and (28). Therefore, if it
is shown that the matrix U −1 − λg is positive definite and
so is its inverse, then D(1)

s,g is negative semidefinite, meaning
that superfluid weight is decreased by the geometric GRPA
correction compared to the mean-field result D(0)

s . This is in
contrast to the conventional GRPA correction D(1)

s,c discussed
previously. A subtle point here is that U −1 − λg is not invert-
ible, as shown below. This is not a problem since the formula
in (76) makes sense and gives the correct result if one denotes
by 1/(U −1 − λg) the Moore-Penrose inverse (pseudoinverse).

To prove that U −1 − λg is positive semidefinite, we need
the self-consistency equation of mean-field theory for the
parameters �α . By assuming the uniform pairing condition
(42) and taking the isolated band limit, one obtains from (C7)

1

Uα

= 1

Nc

∑
k

tanh
(

βEn̄k
2

)
2En̄k

〈α|P(k)|α〉. (77)

Therefore, we can write

U −1 − λg = 1

Nc

∑
k

tanh
(

βEn̄k
2

)
2En̄k

R(k), (78)

with R(k) = diag P(k) − P(k) ◦ P∗(k). (79)

The matrix R(k) is defined in terms of the Hadamard product
Q(k) = P(k) ◦ P∗(k) introduced in (74), while diag P(k) is
the diagonal part of P(k), that is, the matrix obtained by
setting to zero all of the matrix elements away from the main
diagonal. Since the linear combination of positive semidefinite

013256-9



MINH TAM AND SEBASTIANO PEOTTA PHYSICAL REVIEW RESEARCH 6, 013256 (2024)

matrices with positive coefficients is again positive semidefi-
nite, we just need to prove that R(k) is positive semidefinite.
This is done as follows:

2c†Rc = 2Tr[c†Pc] − 2Tr[Pc†Pc]

= Tr[[P, c]†[P, c]] � 0, (80)

where the vector c and the diagonal matrix c are as in (74).
This concludes the proof that D(1)

s,g is negative semidefinite. By
taking c as the identity matrix, one obtains that the right-hand
side of (80) is zero, showing that R(k) and U −1 − λg are
never invertible. This can be traced back to the fact that the
mean-field free energy does not change if all the variational
parameters �α are multiplied by the same constant phase
eiφ . The invariance under global phase rotations of the order
parameter is a general property of superconducting systems,
which is a consequence of gauge invariance.

The expressions (73) and (76) for the conventional and
geometric components of the GRPA correction are the main
results of this section, together with the statements regard-
ing their positive or negative semidefiniteness, respectively,
D(1)

s,c � 0 and D(1)
s,g � 0. The formulas (73) and (76) allow

to compute the full GRPA correction D(1)
s of generic lattice

models in the isolated flat band limit in terms of the en-
ergy dispersion εn̄k and the Bloch functions |gn̄k〉 of the only
partially filled band. An important difference between the
conventional and the geometric components is that the latter
is not geometry independent, meaning that it depends on the
orbital position vectors riα that enter in the Fourier transforms
of the field operators (4) and of the free Hamiltonian (5). In
the next section, it is explained how one can take advantage of
this fact and set the geometric GRPA correction to zero by a
suitable choice of the orbital positions.

V. MINIMAL QUANTUM METRIC AND NATURAL
ORBITAL POSITIONS

In this section we first assume that the partially filled
band is not only isolated, but also flat in order to simplify
the presentation. All of the results can be straightforwardly
extended to the case of an isolated, but not necessarily flat,
band as explained towards the end. In the isolated flat band
limit, only the geometric contribution to the superfluid weight
Ds = D(0)

s,g + D(1)
s,g survives, while the conventional one van-

ishes D(0)
s,c = D(1)

s,c = 0. Since the energy dispersion of the band
is just a constant εn̄k = εn̄, the superfluid weight depends only
on an invariant built out of the flat band Bloch functions. The
quantum metric (52), which appears in the expression (51)
for the geometric contribution to the MF superfluid weight,
is invariant under multiplication of the Bloch functions by
an arbitrary k-dependent phase factor |gn̄k〉 → eiφ(k)|gn̄k〉, be-
cause the projector P(k) = |gnk〉〈gnk| is unaffected by this
transformation. In this sense the quantum metric is a band
structure invariant. However, if we perform a shift of the
orbital positions as in (8), the flat band projector transforms
as [see (9)]

P(k) → P′(k) = e−ik·bP(k)eik·b, (81)

∂lP(k) → ∂lP
′(k) = e−ik·b{∂lP(k) − i[bl , P(k)]}eik·b. (82)

The components bl of the vector b are operators acting in
orbital space and encode the position shifts bα for each orbital,
that is, bl |α〉 = [bα]l |α〉. The presence of the commutator
term in (82) implies that the quantum metric is not geom-
etry independent. It follows that it is essential to include
the GRPA correction in order to restore the geometry in-
dependence of the total superfluid weight, which has been
established in Sec. II using the principle of gauge invariance.
On the other hand, it is clear that the quantities 〈α|P(k)|α〉
and |〈α|P(k)|α′〉|2, appearing in (65) and (71), respectively,
are invariant under orbital position shifts (81), therefore the
conventional component of the GRPA correction (73) is ge-
ometry independent.

The purpose of this section is to show that it is possible to
set to zero the geometric component of the GRPA correction,
D(1)

s,g = 0, by a suitable choice of the orbital positions. It is
also shown that these orbital positions, called in the follow-
ing the natural orbital positions, are the ones that minimize
the trace of the quantum metric integrated over the Brillouin
zone, in agreement with the results of Ref. [47]. Using the
nomenclature of this last reference, the integrated quantum
metric computed using the natural orbital positions is called
the minimal quantum metric.

Using (51) and (76), we can write the superfluid weight in
the isolated flat band limit in the following way:

[Ds]l,m = [
D0

s,g

]
l,m + [

D(1)
s,g

]
l,m = 2�2

En̄
tanh

(
βEn̄

2

)
M̃l,m,

(83)

where En̄ =
√

(εn̄ − μ)2 + �2 = En̄k is the quasiparticle dis-
persion, which is also flat, and the minimal quantum metric
M̃l,m is defined as

M̃l,m = Ml,m − 1

2
sT

l R−1sm, (84)

Ml,m =
∫

d2k
(2π )2

Gl,m(k), (85)

sl = (sl,1, sl,2, . . . , sl,Norb )T , (86)

sl,α = i
∫

d2k
(2π )2

〈α|[P(k), ∂l P(k)]|α〉, (87)

R =
∫

d2k
(2π )2

[diag P(k) − P(k) ◦ P∗(k)]. (88)

We call M̃l,m the minimal quantum metric as in Ref. [47], but
a more proper name would be minimal integrated quantum
metric, since Ml,m is the quantum metric (52) integrated
over the whole Brillouin zone. The vector sl is related to
the vector dl introduced in (76) and has purely real com-
ponents. As before, in (88) we have used the Hadamard
product Q(k) = P(k) ◦ P∗(k) whose matrix elements are
[Q(k)]α,α′ = |〈α|P(k)|α′〉|2. As in (76), R−1 denotes the pseu-
doinverse since R is not an invertible matrix.

It is possible to show that the result in (83)–(88) for the su-
perfluid weight in the isolated flat band limit is applicable also
in the case of several degenerate flat bands. The only modifica-
tion is that the projector reads P(k) = ∑

n∈F |gnk〉〈gnk| in this
case, where the sum runs over the set F of degenerate partially
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filled flat bands. An example of a lattice with degenerate flat
bands is the dice lattice presented in Sec. VI C.

We now show that, if the orbital positions are chosen so
as to minimize the trace of the integrated quantum metric
TrM = ∑

l Ml,l , then the vectors sl vanish and so does the
geometric GRPA correction D(1)

s,g proportional to the quantity
sT

l R−1sm/2 in (84). To this end, we need to compute how the
integrated quantum metric changes under a shift of the orbital
positions. From (81), we obtain

Ml,m → M′
l,m =Ml,m − i

∫
d2k

(2π )2
(Tr[[P(k), ∂l P(k)]bm]

+ l ↔ m)

+ 2
∫

d2k
(2π )2

Tr[P(k)bl [1 − P(k)]bm]

=Ml,m − sT
l b̃m − sT

mb̃l + 2̃bT
l Rb̃m,

with b̃l = ([bα=1]l , [bα=2]l , . . . , [bα=Norb ]l )
T . (89)

By setting to zero the derivatives of the trace TrM′ =∑
l M′

l,l with respect to the shift components [bα]l , it is found
that the integrated quantum metric is minimized when the
following condition is satisfied:

Rb̃l = sl

2
. (90)

The linear system (90) necessarily has a solution because
TrM′ is a positive quantity and has a minimum as a function
of the shifts [bα]l . However, the solution is not unique since
TrM′ is invariant if all orbitals are shifted by the same amount
([bα]l = [bβ]l for all α, β) as one expect from translational
invariance. Indeed, if e = (1, 1, . . . , 1)T is the vector with
all the components equal to one, it is easy to verify that
s · e = 0 and Re = 0. Thus, a solution of (90) can be expressed
in terms of the pseudoinverse R−1 of the matrix R, namely,
b̃l = R−1sl/2. According to the properties of the pseudoin-
verse, this solution has minimum norm ‖̃bl‖ =

√∑
α[bα]2

l ,
therefore it satisfies the condition e · b̃l = ∑

α[bα]l = 0.
On the other hand, we have from (82) and (87)

sl,α → s′
l,α = i

∫
d2k

(2π )2
〈α|[P′(k), ∂lP

′(k)]|α〉

= sl,α +
∫

d2k
(2π )2

〈α|[P(k), [bl , P(k)]]|α〉

= sl,α − 2
∑

β

[R]α,β[bβ]l

or s′
l = sl − 2Rb̃l . (91)

This result together with (89) implies that the minimal quan-
tum metric M̃ (84) is geometry independent, as expected
from the discussion in Sec. II. Another consequence is that,
if the orbital shifts are chosen so as to satisfy (90), then s′

l = 0
and the minimal quantum metric M̃ (84) coincides with the
integrated quantum metric M, thus it is a positive semidefinite
matrix. This also means that the correlation functions (Jl , Dα )
(66) and the GRPA correction in (83) and (84) vanish if calcu-
lated with the orbitals’ positions defined by (90). Importantly,
it is always possible to find such a preferred set of orbital

positions, which we call natural orbital positions. In general,
we have observed that the natural orbital positions are always
unique up to arbitrary translations. This is indeed the case of
the examples presented in Sec. V; however, a general proof of
this fact is lacking at present.

Even though only the flat band case has been considered so
far in this section, it is easy to show that natural orbital posi-
tions, for which D(1)

s,g = 0, exist also in the case of an isolated
band that is not necessarily flat. In order to do this, one simply
needs to repeat the arguments presented in this section with
the inclusion of the weight factor E−1

n̄k tanh(βEn̄k/2) under
the integral sign

∫
d2k in (85), (87), and (88). Indeed, it is

immediate to see that the derivations of the transformation
properties in (89) and (91) are unaffected by the weight factor.

It is a remarkable fact that the expression (84)–(88) for the
minimal quantum metric and the linear system (90) defining
the natural orbital positions are obtained also from the anal-
ysis of the two-body excitation spectrum. Here we quickly
recall how this has been done in Ref. [47]. The dispersion of
propagating two-body bound states is given by the effective
Hamiltonian,

〈α|h(q)|β〉 = −
∫

d2k
(2π )2

〈α|P(k + q)|β〉〈β|P(k)|α〉, (92)

first introduced in Ref. [64], under the assumption that∫
d2k

(2π )2
〈α|P(k)|α〉 =

∫
d2k

(2π )2
〈β|P(k)|β〉 (93)

for all α and β. This condition guarantees that the uniform
pairing condition is satisfied for Uα = Uβ = U [see (C8)] and
implies that the two-body bound state with lowest energy for
q = 0 is represented by the effective state vector |�0〉 with
〈α|�0〉 = 〈β|�0〉 = N−1/2

orb for all α, β. The effective Hamil-
tonian transforms as h(q) → h′(q) = e−iq·bh(q)eiq·b under an
orbital position shift, therefore its eigenvalues are geometry
independent quantities. Using second-order perturbation the-
ory, one finds that the inverse effective mass of the bound state
represented by |�0〉 is proportional to the minimal quantum
metric (84), which coincides with the integrated quantum
metric Ml,m = Norb〈�0|∂l∂mh(q)|�0〉, if the natural orbital
positions are used in (92). In particular, the linear system
determining the natural orbital positions obtained in Ref. [47]
[see Eq. (38) in this reference] is a special case of (90) when
(93) holds. Indeed, the components of sl can be written in the
following equivalent form:

sl,α

2
= i

2

∫
d2k

(2π )2
〈α|[P(k), ∂l P(k)]|α〉

= −i
∫

d2k
(2π )2

〈α|∂lP(k)P(k)|α〉

= i
∑

β

〈α|∂l h(0)|β〉, (94)

which can be identified with the right-hand side of Eq. (38)
in Ref. [47], while on the left-hand side it is also easy to
identify the matrix R (88). The second equality in the above
equation is a consequence of the fact that the projector P(k) is
in general not periodic, but rather �-equivariant [52], namely,
P(k + g j ) = e−ig j ·bP(k)eig j ·b for some given shift operator b
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[see (9)], while g j are reciprocal lattice vectors defined by ai ·
g j = 2πδi, j , therefore 〈α|P2(k)|α〉 = 〈α|P(k)|α〉 is periodic.

Our derivation of (84)–(88) and (90) is equivalent to the
one of Ref. [47] but is based on the direct evaluation of
the GRPA expression for the superfluid weight. It is rather
instructive to see how the same results can be obtained with
completely different methods. This provides strong evidence
that the relation between minimal quantum metric and super-
fluid weight in a flat band is an accurate, or even exact, result.
Our approach has the advantage that it is straightforward to
relax the flat band assumption, moreover, we have shown that
the condition (93) is unnecessary. This means that the minimal
quantum metric and the associated natural orbital positions
can be defined for arbitrary bands or composite bands, there-
fore they are likely to find applications in other contexts. With
this perspective in mind, we illustrate these band structure
invariants by considering some representative examples in the
following section.

VI. EXAMPLES

In this section, we illustrate the ideas introduced in
the previous section by considering three examples: Su-
Schrieffer-Heeger (SSH) model, Creutz ladder, and dice
lattice. In all of them, the Brillouin zone integrals that enter
in the definitions of the minimal quantum metric and natural
orbital positions can be worked out analytically. This gives us
the opportunity to understand these concepts in the simplest
possible setting. See also Ref. [47] for an analogous discus-
sion of the Lieb lattice.

A. Su-Schrieffer-Heeger model

The SSH model is a one-dimensional lattice model widely
used to illustrate the topological properties of the band struc-
ture and the concept of bulk-edge correspondence [65]. As
illustrated in Fig. 1, the unit cell of the SSH model contains
two orbitals, labeled by α = 1, 2. The single-particle free
Hamiltonian Hfree (1) for the SSH model is given by

Hσ
free(i − j) = 0 for |i − j| > 1, (95)

Hσ
free(0) =

(
0 v

v 0

)
, (96)

Hσ
free(1) = [Hfree(−1)]† =

(
0 w

0 0

)
. (97)

The two real and positive parameters v and w denote the intra-
cell and intercell hopping matrix elements, respectively. The
lattice constant is fixed to a = 1, thus the crystal momentum
k takes values in the range [−π, π ]. The orbital positions are
chosen to be the same for the two orbitals inside the same unit
cell (see top row in Fig. 1),

r j,(α=1) = r j,(α=2) = j. (98)

With this convention for the orbital positions, the Fourier
transform of the free Hamiltonian (5) reads

Hσ
free(k) =

∑
j

Hσ
free( j)e−ik j

=
(

0 v + we−ik

v + weik 0

)
. (99)

FIG. 1. The SSH model is a simple linear chain with alternating
hoppings. The unit cell, shown in the top row as a green rectangle,
consists of two orbitals labeled by α = 1, 2, while v and w denote
the hopping amplitudes within a unit cell (thick line) and between
neighboring unit cells (thin line), respectively. By convention, the
two orbitals in the unit cell have the same position; see (98). For
illustration purposes, they are displaced from each other in the figure.
The two energy bands of the SSH model are both flat when either
w = 0 (middle row) or v = 0 (bottom row). In both cases the lat-
tice model reduces to a collection of disconnected dimers, therefore
transport is not possible in any form. However, the quantum metric
and thus the MF superfluid weight is zero in the first case (w = 0)
and nonzero if w �= 0. To resolve this inconsistency, it is necessary
to take into account the geometric GRPA correction to the superfluid
weight, which amounts to computing the quantum metric using the
natural orbital positions. The red rectangles in the middle and bottom
rows contain orbitals whose natural positions are identical.

It is straightforward to obtain the energy dispersions εn(k) and
projection operators Pn(k) for the upper (n = +) and lower
(n = −) band:

ε±(k) = ±|v + weik| = ±
√

v2 + w2 + 2vw cos k, (100)

P±(k) = Pσ
± (k) = 1

2

(
1 + Hfree(k)

ε±(k)

)
= 1

2

(
1 ± f ∗(k)

± f (k) 1

)
, f (k) = v + weik

|v + weik| .
(101)

The spin index σ has been dropped since since the projec-
tor operator Pσ

± (k) does not depend on the spin. We need also
the derivative of the projector given by

∂kP±(k) = 1

2

(
0 ±[ f ′(k)]∗

± f ′(k) 0

)
,

with f ′(k) = iw(w + v cos k)

|v + weik|(v + we−ik )
. (102)

Since the diagonal matrix elements of the projector (100)
are constant and equal to 〈α|P±(k)|α〉 = 1/2, the SSH model
satisfies the uniform pairing condition if U1 = U2 = U . Under
this condition, the geometric contribution to the MF super-
fluid weight is given by the formula in (51) in the isolated
band limit (adapted to one dimension), which depends on the
quantum metric G(k). We obtain from (102) that the quantum
metric is

G(k) = Tr[∂kP±(k)∂kP±(k)] = | f ′(k)|2
2

= w2(w + v cos k)2

2(v2 + w2 + 2vw cos k)2
. (103)
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The quantum metric is the same for the two bands and
diverges at k = π when |w − v| → 0 concomitantly with the
closure of the energy gap between the two bands at the same
k point. The integral of the quantum metric over the Brillouin
zone M = ∫ π

−π
dk
2π
G(k) can be performed by using the change

of variable eik → z and applying the residue theorem to the
resulting contour integral

M = 1

2π i

∮
|z|=1

dz
w2(2wz + vz2 + v)2

8z(v + wz)2(vz + w)2

=
⎧⎨⎩

w2

4(v2−w2 ) for v > w,

2w2−v2

4(w2−v2 ) for v < w.
(104)

We have computed the integrated quantum metric even away
from the flat band limit, which in the SSH model is obtained
when v = 0 or w = 0, since it can be of interest also for
other applications besides the computation of the superfluid
weight. In the case w = 0, the unit cells are completely dis-
connected, as shown in Fig. 1, and one expects the absence of
all forms of transport. In fact, the superfluid weight vanishes
since M = 0. On the other hand, if v = 0, then the quantum
metric is nonzero (M = 1/2) even though the lattice is again
composed of disconnected two-orbital dimers and one would
again expect vanishing superfluid weight. As explained below,
this apparent paradox is due to the fact that we have ignored
the geometric GRPA correction D(1)

s,g or, in other words, we
have calculated the quantum metric using orbitals positions
that are different from the natural ones.

To compute the natural orbital positions and the GRPA cor-
rection, we need the vector s = (sα=1, sα=2)T [(87) and (86)],
in which the spatial index l has been dropped since we are
dealing with a one-dimensional model, and the pseudoinverse
of the matrix R (88). It is straightforward to obtain the latter
from (101)

R−1 =
(

1 −1
−1 1

)
= 4R. (105)

Instead, the components of the vector s are calculated again
using a contour integral as in (104):

sα = i
∫ π

−π

dk

2π
〈α|[P±(k), ∂kP±(k)]|α〉

= (−1)α

2π i

∫
|z|2=1

dz
w(2wz + vz2 + v)

4z(v + wz)(vz + w)

=
{

0 for v > w
(−1)α

2 for v < w.
(106)

The position shifts, given by b̃ = (bα=1, bα=2)T = R−1s/2
vanish in the case v > w, which confirms that the choice in
(98) corresponds to the natural orbital positions. On the other
hand, for v < w the natural orbital positions are given by

r′
j,α = r j,α + bα = j + (−1)α

2
. (107)

As a consequence, we have r j,2 = r j+1,1. This means that
in the SSH model the natural orbital positions are given by
assigning the same positions to the orbitals connected by the
hopping with largest magnitude, as illustrated in Fig. 1. We

can also compute the minimal quantum metric for arbitrary
value of the hopping amplitudes. From (105) and (106), one
obtains sT R−1s = 1 in the case v < w, therefore the minimal
quantum metric is given by

M̃ = M − 1

2
sT R−1s =

⎧⎨⎩
w2

4(v2−w2 ) for v > w,

v2

4(w2−v2 ) for v < w.
(108)

In particular M̃ = 0 for v = 0 or w = 0, thus the superfluid
weight vanishes in the flat band limit in the case of the SSH
model after taking into account the geometric GRPA correc-
tion, as expected. Note that the expressions of the minimal
quantum metric in the two cases are related by to each other
through the interchange v ↔ w. This is consistent with the
fact that one can interchange the two hopping hopping am-
plitudes v and w by a simple redefinition of the unit cell,
which amounts to a different specification of the orbitals posi-
tions. Thus, the minimal quantum metric captures an intrinsic
property of the band wave functions, which is not affected by
the unit cell choice or the specific assignment of the orbital
positions. Note also that the natural orbital positions respect
the symmetries of the lattice, more specifically the reflection
symmetry with respect to the middle point of the line connect-
ing two nearest-neighbor orbitals. We will see more examples
of this general phenomenon in the following.

Besides the superfluid weight, another potentially interest-
ing application of the natural orbital positions is related to
topological invariants. The SSH model possess a topological
invariant, the winding number W [65–67], which takes value
W = 0 for v > w and |W| = 1 for v < w when computed
using the projector operator given in (101). In fact, one can
show that the quantum metric is bounded from below by the
winding number [68], namely, M > W2/2. However, it is
well known that the winding number depends on the choice
of unit cell used to compute it, which amounts to a choice of
the orbitals positions [69,70]. Interestingly, our results show
that the winding number of the SSH model computed with the
natural orbital positions is always zero. Our next example, the
Creutz ladder, possesses bands with nonzero winding number,
when computed using the natural orbital positions. This sug-
gests that the natural orbital positions can be used to provide
a more refined classifications of the topological properties of
the band structure.

B. Creutz ladder

The Creutz ladder shown in Fig. 2 is a one-dimensional
lattice model with two orbitals per unit cell introduced in
Ref. [71]. It has the peculiar property that both of its two bands
are perfectly flat for a specific choice of the hopping matrix
elements. This model has been studied extensively both in the
bosonic and the fermionic case with the inclusion of different
types of interaction terms [48,55,68,72–78].

Adopting the convention for the phases of hopping matrix
elements introduced in Ref. [55], the free Hamiltonian of the
Creutz ladder reads

Hσ
free(1) = [

Hσ
free(−1)

]† = t

(
1 1

−1 −1

)
, (109)

Hσ
free( j) = 0 for j �= ±1, (110)
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FIG. 2. The Creutz ladder is a one-dimensional lattice model
composed of two simple linear chains. The two chains are distin-
guished by the orbitals index α = 1, 2 and coupled by interchain
hopping matrix elements, shown as the red and black diagonal lines
in the figure. The horizontal and diagonal black lines correspond to
the hopping amplitude t > 0 in the free Hamiltonian (109) and the
red lines to −t . With this choice of the hopping matrix elements, the
two bands of the Creutz ladder are perfectly flat and geometrically
nontrivial since the minimal quantum metric is nonzero. As in the
case of the SSH, orbitals in the same unit cell (green rectangle)
have the same position. As discussed in this paper, this choice of the
orbital position is natural. The two chains are displaced from each
other in the transverse direction only for illustration purposes.

with t > 0 the energy scale of the hopping amplitudes. This
Hamiltonian is represented graphically in Fig. 2. Choosing the
orbital positions as for the SSH model (98), i.e., the same po-
sition for orbitals in the same unit cell, the Fourier transform
of the free Hamiltonian of the Creutz ladder takes the form

Hσ
free(k) = 2t

(
cos k −i sin k
i sin k − cos k

)
. (111)

The dispersions of the two bands, labeled by n = ±, and the
associated projection operators are given by

ε±(k) = ±2t, (112)

P±(k) = 1

2

(
1 ± cos k ∓i sin k
±i sin k 1 ∓ cos k

)
. (113)

As in the case of the SSH model, the spin index has been
dropped since the projection operator is the same for spin up
and spin down. Again, the uniform pairing conditions is sat-
isfied for U1 = U2 = U since

∫ π

−π
dk
2π

〈α|P±(k)|α〉 = 1
2 . From

(113) it is immediate to obtain the result

[P±(k), ∂kP±(k)] = −1

2

(
0 i
i 0

)
, (114)

thus the components of the vector s in (87) are all zero. It
follows that the orbital positions given by (98) are in fact
natural ones for the Creutz ladder and the superfluid weight
is obtained simply from the integrated quantum metric M,
while the GRPA correction vanishes. As noted in Ref. [68], the
quantum metric of the Creutz ladder is constant, independent
of k,

G(k) = Tr[∂kP(k)∂kP(k)] = 1
2 . (115)

For completeness, we compute also the matrix R (88) and its
pseudoinverse

R−1 = 2

(
1 −1

−1 1

)
= 16R. (116)

Note that the natural orbital positions respect the sym-
metries of the Creutz ladder, in this specific case they are

FIG. 3. Schematics of the dice lattice. The orange hexagons and
the blue triangles denotes lattice sites. The hexagons are called
hub sites and are sixfold coordinated, while the triangles are called
rim sites and are threefold coordinated. The bonds between sites
represent Hamiltonian matrix elements, which are all equal up to a
sign encoded in the color of the bond (+ for black and − for orange).
With this choice of the hopping matrix elements, the Bravais lattice
is rectangular with the fundamental vectors given in (121). The red
rectangle denotes the associated unit cell, which contains six orbitals,
labeled by the orbital index α = 1, . . . , 6 as shown. The black cross
denotes the baricenter of the orbitals within the chosen unit cell. The
natural orbital positions are specified by the vectors b̃x (123) and
b̃y (124) with the baricenter taken as the origin of the coordinate
system. The positions of the lattice sites coincide with the natural
orbital positions.

preserved under the interchange of the two orbitals inside the
unit cell. The unitary operator R̂ implementing this transfor-
mation on the field operators is

R̂ĉ j,1R̂† = (−1) j ĉ j,2, R̂ĉ j,2R̂† = (−1) j ĉ j,1. (117)

The sign factors (−1) j in the definition of R̂ correspond a
gauge transformation and are necessary in order to preserve
the signs of the hopping matrix elements of the Creutz ladder
Hamiltonian (see Fig. 2).

As mentioned in the previous section, the winding number
computed with the natural orbital positions is W = 1 [68], in
contrast to the SSH model, for which it is always zero. It is
an interesting open question for the future is to understand
whether the different winding numbers of the two models
manifest in some observable properties, for instance, in the
edge states that occur in topologically nontrivial lattice mod-
els due to the bulk-edge correspondence.

C. Dice lattice

In this final example, we explicitly calculate the set of
natural orbital positions and the minimal quantum metric for
the two-dimensional dice lattice, also known as T3 lattice
[55,79,80]. The graphical representation of the free Hamilto-
nian of the dice lattice is given in Fig. 3, while its Fourier
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transform is provided in Ref. [55] and is not repeated here
for brevity. The labeling of the orbitals shown in the figure is
the same as in Ref. [81] and different from Ref. [55]. Note
that in Ref. [55] a more general model is considered, whereas
here we specialize to the case in which all the hopping matrix
elements are equal up to a sign. The hopping sign is denoted
by the color of the bonds in Fig. 3. As discussed in Ref. [79],
with this specific choice of hopping signs, the band structure
of the dice lattice is composed of six doubly degenerate flat
bands. We focus on the lowest pair of degenerate flat bands
(n = 1, 2) with energy

ε̄ = εn=1,2 = 1
2

(
εh −

√
ε2

h + 24
)
. (118)

The parameter εh is the on-site energy of the hub sites, while
the rim sites have zero on-site energy (see Fig. 3 for the def-
inition of hub and rim sites). The unit of energy in the above
expression is the absolute value of the hopping amplitude
between any two sites. The periodic Bloch functions for this
pair of flat bands are

|g1,k〉 = c(ε̄, 0, 1 + eik1 , 1, eik2 , eik2 (eik1 − 1))T , (119)

|g2,k〉 = c(0, ε̄,−1, 1 + e−ik1 , 1 − e−ik1 , 1)T , (120)

where the normalizing constant is given by c = (ε̄2 + 6)−1/2

and we have introduced the quantities ki = k · ai, with ai=1,2

the fundamental vectors of the Bravais lattice

a1 =
(

1
0

)
, a2 =

(
0√
3

)
. (121)

The periodic Bloch functions in (119) and (120) are obtained
with the following choice of the orbital positions:

riα = i1a1 + i2a2, i =
(

i1
i2

)
, (122)

i.e., the same position vector is assigned to all of the orbitals
inside the rectangular unit cell shown in Fig. 3 since riα is in-
dependent of the orbital index α. Note that these are different
from the positions of the lattice sites actually used in Fig. 3.

A convenient feature of the dice lattice is that the com-
ponents of the periodic Bloch functions and therefore also
of the projection operator P(k) = |gk,1〉〈gk,1| + |gk,2〉〈gk,2|
are polynomials in eik1 and eik2 , which allows to obtaining
analytical results. Indeed, the calculation of the matrix R (88)
and the vector sl [(87) and (86)] is straightforward but tedious
and is best done with the help of a computer algebra system.
The explicit expressions of these quantities are not particularly
illuminating and are not provided here. We simply note that
the vectors

b̃x = 1

4
(−1, 1, 1,−1,−1, 1)T , (123)

b̃y = 1

4
√

3
(−5, 1,−3,−1, 3, 5)T (124)

give a solution of the linear system (90) for arbitrary values of
the parameter εh. In fact, they give the unique solution satisfy-
ing the constrain e · b̃l = 0, thus this is the solution obtained
by using the pseudoinverse of the matrix R, as explained in
Sec. V. Due to this constrain, the vectors b̃l give the natural
orbital positions for the dice lattice in a coordinate system

in which the origin is the baricenter of the orbitals inside a
unit cell. The positions of the lattice sites shown in Fig. 3
coincide with the natural orbital positions given by (123) and
(124). One can see once again that the natural orbital positions
provide a maximally symmetric arrangement of the lattice
sites.

It also straightforward to compute the minimal quantum
metric (84), which is proportional to the identity and whose
diagonal elements are (l = x, y)

M̃l,l = 1

18

⎛⎜⎝5 + 12

ε2
h + 24

+ 5εh√
ε2

h + 24

⎞⎟⎠. (125)

The superfluid weight is proportional to the minimal quantum
metric according to (83), provided the uniform pairing condi-
tion (42), or equivalently (C8), is satisfied. For a discussion of
the uniform pairing condition in the case of the dice lattice
see Ref. [81]. Note that the integrated quantum metric M
(85) of the dice lattice is in general not proportional to the
identity matrix when computed using orbitals positions that
are different from the natural ones. This means that using
the integrated quantum metric alone in (83) can lead to an
unphysical anisotropy of the superfluid weight. Thus, it is
important to include the geometric GRPA correction, which
amounts to using the natural orbitals positions, in order to
restore the proper symmetry of the superfluid weight tensor.

VII. DISCUSSION AND CONCLUSION

In this work, we have provided the analytic expression
for the superfluid weight within the GRPA in the isolated
band limit. By analytic we mean that the evaluation of the
superfluid weight is reduced to performing Brillouin zone
integrals of certain combinations of the band dispersions εnk
and the band wave functions |gnk〉 of a generic lattice model
and their derivatives with respect to quasimomentum. This
allows to relate the superfluid weight, which is an important
observable for superfluid systems, to the properties of the band
structure, in particular the effective mass and invariants such
as the quantum metric (52). Our results hold under specific
assumptions: the interaction is of the Hubbard form (13) with
negative coupling constants Uα < 0 (attractive) that can de-
pend on the orbital α, and the free Hamiltonian (1) is invariant
under spin rotations along a given axis and also time-reversal
symmetric for A = 0. Moreover, it is assumed that the uni-
form pairing condition is satisfied, namely, that the pairing
potential �α is independent of the orbital index α (42). Under
the same assumptions, it was shown in Refs. [16] and [18]
that the superfluid weight computed within the mean-field ap-
proximation (BCS theory), denoted here by D(0)

s , can be split
into two contributions D(0)

s = D(0)
s,c + D(0)

s,g. The conventional
contribution D(0)

s,c can be written as in (50) or, equivalently,
as in (55) in terms of the effective mass, while the geometric
contribution D(0)

s,g is a weighted averaged of the quantum met-
ric over the Brillouin zone (51). The geometric contribution
becomes important for bands with small bandwidth compared
to the interaction coupling constants Uα since the conventional
contribution vanishes in the flat band limit.
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A major result of this work is that the same separation
holds also at the level of the GRPA. Indeed, we find that
the correction term to the superfluid obtained from the GRPA
D(1)

s = D(1)
s,c + D(1)

s,g is also the sum of a conventional contribu-
tion D(1)

s,c and a geometric contribution D(1)
s,g. The expression

for the conventional part of the GRPA correction is given
by combining (65), (71), and (73). One can see from the
expression (65) for correlation functions of the form (Ĵl , N̂ασ )
that D(1)

s,c vanishes in the flat band limit, as in the case of
D(0)

s,c . We also show that the conventional GRPA correction is a
positive semidefinite tensor, meaning that this correction term
leads to an increase of the superfluid weight compared to the
mean-field result.

On the other hand, the geometric part of the GRPA cor-
rection, given by (66), (72), and (76), is not necessarily zero
in the flat band limit and, as discussed in Sec. V and through
examples in Sec. VI, it is important to include it in order to
restore the geometry independence of the superfluid weight.
Indeed, we find that, within the GRPA, the superfluid weight
in the flat band limit is proportional to the minimal quantum
metric M̃ (84)–(88), the integral of the quantum metric over
the Brillouin zone minimized with respect to the orbital po-
sitions (see Sec. V). The relation between minimal quantum
metric and superfluid weight was pointed out in Ref. [47] for
the first time, where it was shown that the geometry indepen-
dence of the superfluid weight is restored by not neglecting
the A dependence of the pairing potential �(A) when taking
derivatives of the mean-field free energy (25).

In this work we extend the results of Ref. [47] in several
ways. First, in (25) we take also into account the A depen-
dence of the Hartree-Fock potential 
(A), which amounts to
computing the superfluid weight within the full GRPA [9].
By doing so, we obtain the conventional part of the GRPA
correction to the superfluid weight, which is a new result. This
does not affect the results of Ref. [47] since D(1)

s,c = 0 in the flat
band limit, which means that the relation between superfluid
weight and minimal quantum metric holds at the level of the
GRPA. This is consistent with numerical investigations per-
formed using quantum Monte Carlo methods [82,83], which
find that (83) gives a rather accurate estimate of the superfluid
weight in the flat band limit.

Another useful result of the present work is the derivation
of the simple analytical expressions for both the minimal
quantum metric [(84)–(88)] and the natural orbitals posi-
tions, the latter given as the solution of the linear system
(90). Our approach is based on the direct evaluation of
the GRPA formula for the superfluid weight. Compared
to the one of Ref. [47], where these band structure invariants
were introduced, we are able to remove unnecessary assump-
tions, namely, the flat band requirement and the condition
(93). This is very important in view of potential future appli-
cations in other contexts. While the quantum metric has found
by now many important applications, the issue of its geometry
dependence is almost never addressed, therefore we expect
the analytical formulation of the minimal quantum metric and
the natural orbital positions to become very useful in this
sense. Also, our gauge symmetry-based argument for estab-
lishing the geometry independence of the superfluid weight
(Sec. II) may be extended to other observable quantities.

In Sec. VI an interesting application is already provided,
since we find that the SSH model is topologically trivial when
the winding number is computed using the natural orbital
positions, while the Creutz ladder is not. For the future, it
would be interesting to better understand in what sense these
two models, and other ones as well, are topologically dis-
tinct. Note that the SSH model is often used as a toy model
to illustrate the concepts of bulk-edge correspondence and
topological phase transition [65], while at the same time it
is debated whether it is a truly topologically lattice model
given that its winding number is not unit cell consistent [70].
In view of these examples, we speculate that the concept
of natural orbital positions may ultimately lead to a more
refined classification of the topological properties of the band
structure.

As we have seen in Sec. VI (see also Ref. [47]), another
useful feature of the natural orbital positions is to provide a set
of positions that are maximally symmetric without requiring
any input other than the band projector P(k). Thus, they could
find applications in the field of electronic structure theory,
for instance. In this sense, more work is needed in order to
better understand the physical meaning of the natural orbital
positions since symmetry alone is not sufficient to determine
them. For instance, this is the case of the Lieb lattice with
staggered hopping [47], in which many orbital positions are
compatible with the lattice symmetries, but the natural ones
are uniquely determined up to translations.

Finally, an interesting direction for future work is to ex-
tend our results to bosonic superfluids. Some work as already
been done in this direction [33–35,84], however the superfluid
weight has not been computed in the full GRPA approxima-
tion since the A-dependence of the Hartree-Fock potential is
not taken into account. This might be especially important in
cases where translational symmetry is spontaneously broken
by interactions, for instance, the supersolid phase observed in
ultracold gases with dipolar interactions [85–88].
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APPENDIX A: DERIVATION OF THE GENERALIZED
RANDOM PHASE APPROXIMATION

FOR THE SUPERFLUID WEIGHT

In this Appendix we derive the expression for the super-
fluid weight in the generalized random phase approximation
(35) using a method different from the one presented in
Ref. [9]. While in this latter reference an approach based on
the one-particle density matrix has been used, here we work
directly with the mean-field potentials 
 and �.

To keep the derivation general, we consider a more general
type of interaction term of the form

Ĥint = 1

2

∑
i, j

Viσ, jσ ′ n̂iσ n̂ jσ ′ , (A1)
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with Viσ, jσ ′ = Vjσ ′,iσ and Viσ,iσ = 0. Moreover, translational
invariance is not assumed, therefore the unit cell index and
the orbital index are grouped together into collective indices
iα → i, jβ → j, as done in Ref. [9]. Contrary to Ref. [9],
however, spin rotational symmetry along the z axis is assumed
from the start, that is, the many-body Hamiltonian commutes
with the spin operator (2) and so does the variational Hamil-
tonian

Ĥ0 = Ĥfree − μN̂ +
∑

σ

∑
j, j′


σ
j, j′ ĉ

†
jσ ĉ j′σ

+
∑
j, j′

(� j, j′ ĉ
†
j↑ĉ†

j′↓ + �∗
j, j′ ĉ j′↓ĉ j↑) (A2)

that enters in the right-hand side of the Bogoliubov inequality
(18). This is the most general quadratic Hamiltonian con-
strained only by spin rotational symmetry along the z axis.
The expectation value in (18) can be evaluated using Wick’s
theorem and, for an interaction term of form (A1), reads

〈Ĥ − Ĥ0〉 = 1

2

∑
σ,σ ′

∑
i, j

Viσ, jσ ′ 〈n̂iσ 〉〈n̂ jσ ′ 〉

− 1

2

∑
σ

∑
i, j

Viσ, jσ 〈ĉ†
iσ ĉ jσ 〉〈ĉ†

jσ ĉiσ 〉

+
∑
i, j

Vi↑, j↓〈ĉ†
i↑ĉ†

j↓〉〈ĉ j↓ĉi↑〉

−
∑
i, j

∑
σ


σ
i, j〈ĉ†

iσ ĉ jσ 〉

−
∑
i, j

(�i, j〈ĉ†
i↑ĉ†

j↓〉 + �∗
i, j〈ĉ j↓ĉi↑〉). (A3)

The expectation values that appear in the above expression
are obtained as the derivatives of �0 = −β−1Tr[e−βĤ0 ] with
respect to the mean-field potentials

∂�0

∂
σ
i, j

= 〈ĉ†
iσ ĉ jσ 〉, (A4)

∂�0

∂�i, j
= 〈ĉ†

i↑ĉ†
j↓〉, ∂�0

∂�∗
i, j

= 〈ĉ j↓ĉi↑〉. (A5)

Then, by minimizing the mean-field grand potential [9],
one obtains the self-consistency equations of mean-field
theory


σ
j, j =

∑
j′

Vjσ, j′σ ′ 〈n̂ j′σ ′ 〉, (A6)


σ
i, j = −Viσ, jσ 〈ĉ†

jσ ĉiσ 〉, for i �= j, (A7)

�i, j = Vi↑, j↓〈ĉ j↓ĉi↑〉, for i �= j. (A8)

The variational coefficients 
σ
j, j corresponds to the Hartree

potential, 
σ
i, j for i �= j to the nonlocal Fock potential and �i, j

to the pairing potential.
Following the notation of Ref. [9], we define the vector of

mean-field potentials as

�a = (
σ
i, j,�i, j,�

∗
i, j ), (A9)

and we use the following variation of the Einstein summation
convention:

∂ f

∂�a

∂�a

∂g
def=

∑
σ

∑
i, j

∂ f

∂
σ
i, j

∂
σ
i, j

∂g

+
∑
i, j

(
∂ f

∂�i, j

∂�i, j

∂g
+ ∂ f

∂�∗
i, j

∂�∗
i, j

∂g

)
. (A10)

The vector of expectation values of operators quadratic in
ĉ jσ , ĉ†

jσ is then written as [see (A4) and (A5)]

∂�0

∂�a
=
(

∂�0

∂
σ
i, j

,
∂�0

∂�i, j
,

∂�0

∂�∗
i, j

)T

= (〈ĉ†
iσ ĉ jσ 〉, 〈ĉ†

i↑ĉ†
j↓〉, 〈ĉ j↓ĉi↑〉)T . (A11)

Using this notation we can write the expectation value of the
interaction term in a concise form:

〈Ĥint〉 = 1

2

∂�0

∂�a
V ab ∂�0

∂�b
= 1

2

∑
i, j,i′, j′

(〈ĉ†
i↑ĉ j↑〉, 〈ĉ†

i↓ĉ j↓〉, 〈ĉ†
i↑ĉ†

j↓〉, 〈ĉ j↓ĉi↑〉)

×

⎛⎜⎜⎜⎜⎝
Vi↑,i′↑δi, jδi′, j′ − Vi↑, j↑δi, j′δ j,i′ Vi↑,i′↓δi, jδi′, j′

Vi↓,i′↑δi, jδi′, j′ Vi↓,i′↓δi, jδi′, j′ − Vi↓, j↓δi, j′δ j,i′
0

0
0 Vi↑, j↓δi,i′δ j, j′

Vj↓,i↑δi,i′δ j, j′ 0

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
〈ĉ†

i′↑ĉ j′↑〉
〈ĉ†

i′↓ĉ j′↓〉
〈ĉ†

i′↑ĉ†
j′↓〉

〈ĉ j′↓ĉi′↑〉

⎞⎟⎟⎟⎟⎟⎟⎠.

(A12)

Thus, from this last equation and (A3), we have for the mean-
field grand potential

�m.f. = �0 − �a ∂�0

∂�a
+ 1

2

∂�0

∂�a
V ab ∂�0

∂�b
. (A13)

Taking the partial derivative with respect to �c gives

∂�m.f.

∂�c
=
(

V ab ∂�0

∂�b
− �a

)
∂2�0

∂�c∂�a
. (A14)
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The first partial derivatives of the mean-field grand potential
vanish when

V ab ∂�0

∂�b
− �a = 0. (A15)

These are just the self-consistency equations of mean-field
theory (A6)–(A8) written using our Einstein summation con-
vention (A10)–(A12). After taking another partial derivative
of (A14) and imposing that the mean-field potentials are self-
consistent (A15), we have

∂2�m.f.

∂�c∂�d
= − ∂2�0

∂�c∂�d
+ ∂2�0

∂�c∂�a
V ab ∂2�0

∂�b∂�d
. (A16)

Recall that both the mean-field grand potential �m.f. and �0

depend either directly or indirectly on the vector potential
A, namely, �m.f.(A,�a(A)) and �0(A,�a(A)) [see (25)].
The self-consistency equations are satisfied for any A, which
means that

d

dAl

(
∂�m.f.

∂�a
(A,�a(A))

)
= ∂2�m.f.

∂Al∂�a
+ ∂2�m.f.

∂�a∂�b

∂�b

∂Al
= 0.

(A17)

This last result gives the derivatives of the mean-field poten-
tials with respect to A:

∂�a

∂Al
= −

[
∂2�m.f.

∂�a∂�b

]−1
∂2�m.f.

∂Al∂�b
. (A18)

Here and in the following, we use the notation [Ma,b]−1 to
denote the inverse of the matrix with elements Ma,b rather
than the inverse of a single matrix element. We ignore here
the subtleties occurring when the inverse of the Hessian ma-
trix ∂�m.f./∂�a∂�b does not exists. In this case one should
express the solution of the linear system (A17) using the
pseudoinverse (Moore-Penrose inverse).

We can now compute the full derivatives of the mean-field
grand potential and express them in terms of the mean-field
solution for A = 0. We start with the first full derivative

d

dAl
[�m.f.(A,�a(A))]

= ∂�m.f.

∂Al
+ ∂�m.f.

∂�a

∂�a

∂Al
= ∂�m.f.

∂Al
, (A19)

where in the last equality we have used (A14) and (A15). The
second full derivative is then

d2

dAmdAl
[�m.f.(A,�a(A))]

= d

dAm

(
∂�m.f.

∂Al
(A,�a(A))

)
= ∂�m.f.

∂Am
Al + ∂�a

∂Am

∂2�m.f.

∂�a∂Al

= ∂2�m.f.

∂Am∂Al
− ∂�a

∂Am

∂2�m.f.

∂�a∂�b

∂�b

∂Al

= ∂2�m.f.

∂Am∂Al
− ∂2�m.f.

∂Am∂�b

[
∂2�m.f.

∂�b∂�a

]−1
∂2�m.f.

∂�a∂Al
, (A20)

where in the last two equalities we have used (A17) and
(A18). Since the self-consistent solution minimizes �m.f., the

Hessian matrix ∂�m.f./∂�a∂�b (and also its inverse) is pos-
itive semidefinite. This fact together with (A20) implies that
the superfluid weight is bounded from above (in the sense of
matrix inequalities) by the matrix ∂�m.f./∂Am∂Al .

It is convenient to express the result in (A20) only in
terms of the quantities ∂�0/∂�a∂�b, which are correlations
function relative to the mean-field statistical ensemble, as
shown below. We have already done this is in the case of
∂�m.f./∂�a∂�b in (A16), thus we only need to do the same
for ∂�m.f./∂Am∂Al and ∂�m.f./∂�a∂Al . Since �m.f. = �0 +
〈Ĥ − Ĥ0〉 we consider the partial derivatives of the expecta-
tion value

∂〈Ĥ − Ĥ0〉
∂Al

= ∂

∂Al

(
−�a ∂�0

∂�a
+ 1

2

∂�0

∂�a
V ab ∂�0

∂�b

)
= ∂2�0

∂Al∂�a

(
V ab ∂�0

∂�b
− �a

)
. (A21)

Again this quantity vanishes if the self-consistency equa-
tions (A15) are satisfied, therefore from (A19), we have

d

dAl
[�m.f.(A,�a(A))] = ∂�m.f.

∂Al
= ∂�0

∂Al
+ ∂〈Ĥ − Ĥ0〉

∂Al

= ∂�0

∂Al
=
〈
∂Ĥfree(A)

∂Al

〉
= −〈Ĵl〉,

(A22)

where (6) has been used in the last equality. Thus, we find
the important result that the first full derivative of the grand
potential with respect to A is proportional to the current.
Taking another partial derivative with respect to Am in (A21)
and (A14) and imposing self-consistency gives

∂2〈Ĥ − Ĥ0〉
∂Al∂Am

= ∂2�0

∂Al∂�a
V ab ∂2�0

∂�b∂Am
, (A23)

∂2�m.f.

∂Al∂�c
= ∂2�0

∂Al∂�a
V ab ∂2�0

∂�b∂�c
. (A24)

Using these results together with (A16) and the last line of
(A20) leads to

d2

dAmdAl
[�m.f.(A,�a(A))]

= ∂2�0

∂Am∂Al
+ ∂2�0

∂Al∂�a
V ab ∂2�0

∂�b∂Am
− vl,c[Mc,d ]−1vm,d ,

with Mc,d = − ∂2�0

∂�c∂�d
+ ∂2�0

∂�c∂�g
V gh ∂2�0

∂�h∂�d

and vl,c = ∂2�0

∂Al∂�a
V ab ∂2�0

∂�b∂�c
. (A25)

To simplify this expression we use the identity

A(A − ABA)−1A = (A−1 − B)−1

= A + ABA + ABABA + · · · , (A26)

where A and B are matrices defined by

[A]a,b = ∂2�0

∂�a∂�b
and [B]a,b = V ab. (A27)
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Thus, our final result is

d2

dAmdAl
[�m.f.(A,�a(A))]

= ∂2�0

∂Am∂Al
+ ∂2�0

∂Al∂�a
V ab ∂2�0

∂�b∂Am

+ ∂2�0

∂Al∂�a
V ab

[(
∂2�0

∂�b∂�c

)−1

− V bc

]−1

V cd ∂2�0

∂�d∂Am
.

(A28)

With further simple manipulations, it is possible to prove the
equivalence between this and the result for the superfluid
weight in the generalized random phase approximation pro-
vided in Ref. [9].

We can specialize (A12) to the case of the attractive Hub-
bard interaction given by

Ĥint = −
∑

j

Uj n̂ j↑n̂ j↓, with Uj > 0. (A29)

The Hubbard interaction in the above equation is more general
than (13) since the latter is translationally invariant, while
the former is not as we allow for an arbitrary dependence of
the coupling constant Uj on the site index j. The Hubbard
interaction in (A29) is obtained by choosing the interaction
coefficients in (A1) as follows:

Vi↑, j↓ = Vi↓, j↑ = −Ujδi, j, Viσ, jσ = 0. (A30)

Then the expectation value of the interaction term in (A12)
becomes

〈Ĥint〉 = 1

2

∂�0

∂�a
V ab ∂�0

∂�b

= −
∑

j

Uj (〈n̂ j↑〉〈n̂ j↓〉 + 〈ĉ†
j↑ĉ†

j↓〉〈ĉ j↓ĉ j↑〉)

= −1

2

∑
j

(〈n̂ j↑〉, 〈n̂ j↓〉, 〈ĉ†
j↑ĉ†

j↓〉, 〈ĉ j↓ĉ j↑〉)

×

⎛⎜⎜⎝
0 Uj 0 0

Uj 0 0 0
0 0 0 Uj

0 0 Uj 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝

〈n̂ j↑〉
〈n̂ j↓〉

〈ĉ†
j↑ĉ†

j↓〉
〈ĉ j↓ĉ j↑〉

⎞⎟⎟⎟⎟⎠. (A31)

This gives the matrix B in (33), after translational invariance
is enforced. Instead, the expressions for the matrices Aα,β (31)
and the vectors vlα (30) in terms of correlation functions of the
form (26) are obtained by using the results [9]

∂2�0

∂�a∂�b
=
(

∂Ĥ0

∂�a
,
∂Ĥ0

∂�b

)
(A32)

and

∂2�0

∂Al∂�a
=
(

∂Ĥ0

∂Al
,
∂Ĥ0

∂�a

)
= −

(
Ĵl ,

∂Ĥ0

∂�a

)
, (A33)

respectively. As an example, we have

∂2�0

∂Al∂�i,i
= −

(
Ĵl ,

∂Ĥ0

∂�i,i

)
= −(Ĵl , ĉ†

i↑ĉ†
i↓)

= −(Ĵl , ĉ†
iα↑ĉ†

iα↓)

= −
(

Ĵl ,
1

Nc

∑
i

ĉ†
iα↑ĉ†

iα↓

)
= −(Ĵl , D̂†

α ). (A34)

In the second line we have performed the substitution i → iα
and used the fact that the correlation function (Ĵl , ĉ†

iα↑ĉ†
iα↓) is

independent of the unit cell index i since the operator Ĵl is
translationally invariant. This completes the derivation of the
expression for the superfluid weight in the generalized random
phase approximation given in (35).

APPENDIX B: NAMBU FORMALISM AND EVALUATION
OF CORRELATION FUNCTIONS

In this section, it is explained how to evaluate the correla-
tion function (26) between translationally invariant quadratic
operators, which are conveniently recast in the following
Nambu form:

Â =
∑

k

Â(k), (B1)

Â(k) =
∑
α,β

(
ĉ†

kα↑[A(k)]1,1
α,β ĉkβ↑ + ĉ−kα↓[A(k)]2,2

α,β ĉ†
−kβ↓

+ ĉ†
kα↑[A(k)]1,2

α,β ĉ†
−kβ↓ + ĉ−kα↓[A(k)]2,1

α,β ĉkβ↑
)

= ĉ†
kA(k)ĉk, (B2)

with A(k) =
(

[A(k)]1,1 [A(k)]1,2

[A(k)]2,1 [A(k)]2,2

)
, (B3)

ĉk =
(

ĉk↑

(ĉ†
−k↓)T

)
and ĉ†

k = (ĉ†
k↑ (ĉ−k↓)T ). (B4)

Here ĉkσ (ĉ†
kσ ) is the column (row) vector whose components

are the field operators ĉkασ (ĉ†
kασ ) for α = 1, . . . , Norb. The

column vector ĉk in (B4), grouping together both creation and
annihilation operators, is called a Nambu spinor. Consistently
with the Nambu spinor structure, the quadratic operatic Â(k)
corresponds to the single-particle operator A(k), a 2Norb ×
2Norb matrix consisting of four blocks of dimension Norb de-
noted by [A(k)]i, j , as shown in (B3). We adopt the convention
that the blocks of a single-particle operator in the Nambu
representation are labeled by superscripts, while subscripts
label the matrix elements in each block. This convention is
used already in (B2). Note that, in order to bring a quadratic
operator in Nambu form, it is necessary to rearrange the field
operators, which produces additional c-number terms due to
the fermionic anticommutation relations. However, all of the
c-number terms cancel out when the expectation value of
the same operator is subtracted, namely, Â(k) − 〈Â(k)〉. This
combination is precisely the one appearing in (26), implying
that, for the purpose of computing correlation functions, we
are free to reorder the field operators and represent quadratic
operators in Nambu form. The ultimate reason for using the
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Nambu formalism is that it allows to diagonalize in a conve-
nient way quadratic operators that contain anomalous terms,
such as ĉiα↓ĉiα↑ and ĉ†

iα↑ĉ†
iα↓. In our specific case, we need to

diagonalize the variational Hamiltonian Ĥ0 (see Sec. IV).
In the following we denote by 〈ĉk(τ )ĉk′ 〉 the set of ex-

pectation values obtained by replacing each of the Nambu
spinors with any of their components, namely, 〈ĉkα↑(τ )ĉk′β↑〉,
〈ĉ†

−kα↓(τ )ĉk′β↑〉, 〈ĉkα↑(τ )ĉ†
−k′β↓〉 and 〈ĉ†

−kα↓(τ )ĉ†
−k′β↓〉 for

α, β = 1, . . . , Norb. The same convention is used for
〈ĉ†

k(τ )ĉk′ 〉 and so on. Using this notation, we can express in
a concise way the constraints imposed by the conservation of
spin Ŝz and momentum on the expectation values of products
of two operators, which read

〈ĉ†
k(τ )ĉ†

k′ 〉 = 〈ĉk(τ )ĉk′ 〉 = 0, (B5)

〈ĉ†
k(τ )ĉk′ 〉 = 〈ĉ†

k(τ )ĉk〉δk,k′ , (B6)

〈ĉk(τ )ĉ†
k′ 〉 = 〈ĉk(τ )ĉ†

k〉δk,k′ . (B7)

These relations are used in the evaluation of the expectation
value that appears under the integral sign in (26)

〈(Â(k, τ ) − 〈Â(k)〉)(B̂(k′) − 〈B̂(k′)〉)〉
= 〈Â(k, τ )B̂(k′)〉 − 〈Â(k)〉〈B̂(k′)〉
= 〈ĉ†

k(τ )A(k)ĉk(τ )ĉ†
k′B(k′)ĉk′ 〉

− 〈ĉ†
kA(k)ĉk〉〈ĉ†

k′B(k′)ĉk′ 〉
= −δk,k′Tr[A(k)〈Tτ [ĉk(τ )ĉ†

k(0)]〉
× B(k)〈Tτ [ĉk(0)ĉ†

k(τ )]〉]
= −δk,k′Tr[A(k)〈Tτ [ĉk(τ )ĉ†

k(0)]〉
× B(k)〈Tτ [ĉk(−τ )ĉ†

k(0)]〉]
= −δk,k′Tr[A(k)G(k, τ )B(k)G(k,−τ )]. (B8)

Here Tτ is the time-ordering symbol for imaginary time

Tτ [â(τ )b̂(τ ′)] =
{

â(τ )b̂(τ ′) for τ > τ ′,

−b̂(τ ′)â(τ ) for τ < τ ′,
(B9)

where â and b̂ are anticommuting operators. Note that 0 <

τ < β in (26) and the field operator are ordered accordingly
in (B8). In the third equality, we have used Wick’s theorem
[60], which holds since all expectation values are evaluated
with respect to the quadratic Hamiltonian Ĥ0; see (22). In the
last line of (B8) we have introduced the standard definition of
the imaginary-time Green’s function

G(k, τ − τ ′) = −〈Tτ [ĉk(τ )ĉ†
k(τ ′)]〉. (B10)

After expanding the Green’s function using Matsubara fre-
quencies ωn = (2n + 1)π/β in (B8)

G(k, τ ) = 1

β

∑
ωn

G(k, iωn)e−iωnτ , (B11)

and performing the imaginary time integral in (26), one ob-
tains

(Â, B̂) = 1

β

∑
ωn

∑
k

Tr[A(k)G(k, iωn)B(k)G(k, iωn)].

(B12)

The Nambu form H0(k) of the variational Hamiltonian is
given in (39). It is a standard result that the Matsubara Green’s
function can be written as [60]

G(k, iωn) = 1

iωn − H0(k)

= (Uk ⊕ Uk )Wk
1

iωn − Ek
W †

k (U †
k ⊕ U †

k ). (B13)

The second line follows from (43). To proceed, we also need
the operators Ĵl , N̂α , and D̂α in Nambu form, namely,

J (k) =
(

∂lH
↑
free(k) 0

0 −[∂lH
↓
free(−k)]∗

)
, (B14)

Nα↑(k) =
(

[Nα↑(k)]1,1 0

0 0

)
, (B15)

Nα↓(k) =
(

0 0

0 [Nα↓(k)]2,2

)
, (B16)

[Nα↑(k)]1,1
β,γ = −[Nα↓(k)]2,2

β,γ = δα,βδα,γ , (B17)

Dα (k) =
(

0 0

[Dα (k)]2,1 0

)
, (B18)

D†
α (k) =

(
0 [D†

α (k)]1,2

0 0

)
, (B19)

[Dα (k)]2,1 = [D†
α (k)]1,2 = δα,βδα,γ . (B20)

It is important to keep track of the minus sign associated with
the down spin in (B17).

In order to perform the Matsubara frequency summation in
(B12), it is convenient to introduce the following matrix:

L(k, iω) = Wk
1

iω − Ek
W †

k

=
(

[L(k, iω)]1,1 [L(k, iω)]1,2

[L(k, iω)]2,1 [L(k, iω)]2,2

)
. (B21)

This is simply the Green’s function G(k, iωn) (B13) from
which the Bloch functions Uk have been removed. Note
that each of the blocks of L(k, iω) is diagonal, namely,
[L(k, iω)]i, j

m,n = [L(k, iω)]i, j
n,nδm,n, and the diagonal elements

are given by

[L(k, iω)]1,1
n,n = u2

nk

iω − Enk
+ v2

nk

iω + Enk
, (B22)

[L(k, iω)]2,2
n,n = v2

nk

iω − Enk
+ u2

nk

iω + Enk
, (B23)

[L(k, iω)]i, j
n,n = unkvnk

iω − Enk
− unkvnk

iω + Enk
, (B24)
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where i �= j in the last equation. Using these definitions and
the Matsubara frequency sum

s(E1, E2) = 1

β

∑
iωn

1

(iωn − E1)(iωn − E2)

= nF(E1) − nF(E2)

E1 − E2

= ∂nF(E )

∂E
for E = E1 = E2, (B25)

with nF(E ) = (eβE + 1)−1 the Fermi-Dirac distribution, we
obtain the following useful results (i �= j):

1

β

∑
ωl

[L(k, iωl )]
i,i
n,n[L(k, iωl )]

i,i
m,m

= (
u2

nku2
mk + v2

nkv
2
mk

)
s(Enk, Emk )

+ (
u2

nkv
2
mk + v2

nku2
mk

)
s(Enk,−Emk ), (B26)

1

β

∑
ωl

[L(k, iωl )]
i,i
n,n[L(k, iωl )]

j, j
m,m

= (
u2

nkv
2
mk + v2

nku2
mk

)
s(Enk, Emk )

+ (
u2

nku2
mk + v2

nkv
2
mk

)
s(Enk,−Emk ), (B27)

1

β

∑
ωl

[L(k, iωl )]
i, j
n,n[L(k, iωl )]

j,i
m,m

= 1

β

∑
ωl

[L(k, iωl )]
i, j
n,n[L(k, iωl )]

i, j
m,m

= 2unkvnkumkvmk[s(Enk, Emk ) − s(Enk,−Emk )], (B28)

1

β

∑
ωl

[L(k, iωl )]
i,i
n,n[L(k, iωl )]

i, j
m,m

= 1

β

∑
ωl

[L(k, iωl )]
i,i
n,n[L(k, iωl )]

j,i
m,m

= (−1)i−1
(
u2

nk − v2
nk

)
umkvmk

× [s(Enk, Emk ) − s(Enk,−Emk )]. (B29)

As an example, it is shown how to compute the correlation
function (D̂α, D̂†

β ) using the above results. From (B18)–(B20)
and (B12)

(D̂α, D̂†
β ) = 1

β

∑
ωl

∑
k

Tr[Dα (k)G(k, iωn)D†
β (k)G(k, iωn)]

=
∑

k

∑
n,m

∑
α,β

gnk(α)g∗
nk(β )gmk(β )g∗

mk(α)

× 1

β

∑
ωl

[L(k, iωl )]
1,1
n,n[L(k, iωl )]

2,2
m,m. (B30)

Finally the Matsubara sum is evaluated with (B27).
From (B26)–(B29), it is apparent that several relations hold

between the correlation functions (Â, B̂), where the operators
Â and B̂ are taken from the set {N̂ασ , D̂α, D̂†

α}. They are the
following:

(N̂α↑, N̂β↑) = (N̂α↓, N̂β↓), (B31)

(D̂α, D̂β ) = (D̂†
α, D̂†

β ) = −(N̂ασ , N̂βσ̄ ), (B32)

(N̂ασ , D̂β ) = (N̂ασ̄ , D̂†
β )

= (D̂†
α, Nβσ ) = (D̂α, N̂βσ̄ ), (B33)

(D̂α, D̂†
β ) = (D̂†

α, D̂β ). (B34)

In (B32) and (B33) σ̄ denotes the spin opposite to σ . From the
properties (27) and (28), we obtain also the additional relation

(N̂ασ , D̂β )∗ = (N̂ασ , D̂†
β ). (B35)

If n̄ denotes the only partially filled band, then in the
isolated band limit En̄k ∼ U and Enk ∼ Egap for n �= n̄ and
the leading order contribution ∼U −1 to the matrix Aα,β is
obtained by retaining only the term n = m = n̄ in (B30) and in
all of the other correlation functions appearing in (31). Thus,
the Matsubara sum (B25) becomes

s(En̄k, En̄k ) = − β

4 cosh2
(

βEn̄k
2

) , (B36)

s(En̄k,−En̄k ) = − 1

2En̄
tanh

(
βEn̄k

2

)
, (B37)

s(Enk, Emk ) = 0 if n �= n̄ or m �= n̄. (B38)

Observe that, in the isolated band limit, all the matrix elements
of Aα,β are real since the Matsubara sums (B26)–(B29) are
always real and the Bloch functions of the band n̄ appear
in the combination |gn̄k(α)|2|gn̄k(β )|2 = |〈α|P(k)|β〉|2, which
is positive. As a consequence, the correlation functions that
appear in (B33) and (B35) are all equal. With the notation
and the results established so far, it is immediate to obtain the
matrix elements of Aα,β in the isolated flat band limit, which
are shown in (57)–(62).

The correlation functions that involve the current operator
Ĵl require some care when taking the isolated flat band limit.
To begin with, time-reversal symmetry implies that the current
operator in Nambu form becomes

J (k) =
(

∂lH
↑
free(k) 0

0 ∂lH
↑
free(k)

)
= ∂lH0(k)τ z, (B39)

with τ z =
(

1 0
0 −1

)
. (B40)

To derive (B39) from (B14), we have used the identity

∂lH
↑
free(k) = −[∂lH

↓
free(−k)]∗, (B41)

which is obtained by taking the partial derivative ∂l ≡ ∂
∂kl

on
both sides of the relation expressing time-reversal symmetry
H↑

free(k) = [H↓
free(−k)]∗. An equivalent form of (B39) is

Jl (k)τ z = −∂lG−1(k, iωn). (B42)

Using this last result, one can show that the diamagnetic term
in (37) can written as a correlation function in the same way
as the paramagnetic one,〈

∂2Ĥfree(A)

∂Al∂Am

〉
A=0

= −(Ĵlτ
z, Ĵmτ z ) � 0. (B43)
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The fact that the diamagnetic term is nonnegative is an im-
mediate consequence of the general property (29). In order
to compute (Ĵlτ

z, Ĵmτ z ) and other correlation functions that
involve the current operator, it is useful to introduce the fol-
lowing operator in Nambu form:

M±
l (k) = 1

β

∑
ωl

L(k, iωl )N
±
l (k)L(k, iωl ), (B44)

N±
l (k) =

(
J̃l (k) 0

0 ±J̃l (k)

)
, (B45)

J̃l (k) = U †
k ∂lH

↑
free(k)Uk. (B46)

It is not difficult to show that this operator satisfies the follow-
ing properties:

[M±
l (k)]† = M±

l (k), (B47)

τ yM±
l (k)τ y = ±M±

l (k), (B48)

with τ y =
(

0 −i
i 0

)
. (B49)

From these relations and the results in (B26)–(B29), one
obtains the following expressions for the matrix elements of
M±

l (k):

[M±
l (k)]1,1

m,n = ±[M±
l (k)]2,2

m,n

= [J̃l (k)]m,n[s(Emk, Enk )(umkunk ± vmkvnk )2

+ s(Emk,−Enk )(umkvnk ∓ vmkunk )2], (B50)

[M±
l (k)]1,2

m,n = (
[M±

l (k)]2,1
n,m

)∗ = ∓([M±
l (k)]1,2

n,m

)∗
= [J̃l (k)]m,n[s(Emk, Enk ) − s(Emk,−Enk )]

× [(
u2

mk − v2
mk

)
unkvnk ∓ umkvmk

(
u2

nk − v2
nk

)]
.

(B51)

Using the definitions in (45)–(47) and after some laborious
algebra, one finds the following alternative expressions for the
same matrix elements [(B50) and (B51)]:

[M−(k)]1,1
m,n = 1

2

[J̃l (k)]m,n

εmk − εnk
[(εnk − μ) f (Enk )

− (εmk − μ) f (Emk )],

with f (E ) = 1

E
tanh

(
βE

2

)
, (B52)

[M+(k)]1,1
m,n = [M−(k)]1,1

m,n

+ �2 [J̃l (k)]m,n(
E2

mk − E2
nk

) [ f (Enk ) − f (Emk )], (B53)

[M±
l (k)]1,2

m,n = �

2

[J̃l (k)]m,n

E2
mk − E2

nk

( f (Enk ) − f (Emk ))

× [(εmk − μ) ∓ (εnk − μ)]. (B54)

These are useful to compute the components of the vector vlα

in (30), which read

(Ĵl , N̂α↑) =
∑
m,n

∑
k

〈α|gmk〉[M+
l (k)]1,1

m,n〈gnk|α〉

=
∑
m,n

∑
k

〈α|gmk〉[M+
l (k)]2,2

m,n〈gnk|α〉

= −(Ĵl , N̂α↓), (B55)

(Ĵl , D̂α ) =
∑
m,n,k

〈α|gmk〉[M+
l (k)]1,2

m,n〈gnk|α〉

= −
∑
m,n,k

〈α|gmk〉[M+
l (k)]2,1

m,n〈gnk|α〉 = −(Ĵl , D̂†
α ).

(B56)

Here the relations [M+
l (k)]1,1

m,n = [M+
l (k)]2,2

m,n (B50) and
[M+

l (k)]1,2
m,n = −[M+

l (k)]2,1
m,n (B51) have been used in the first

and second equation, respectively. It is convenient to consider
separately the terms with m = n and m �= n in the double sum
over the bands indices

∑
m,n in (B55). For the terms with

m = n we use (B50), which gives

[M+
l (k)]1,1

n,n = − β

4 cosh2
(

βEnk
2

)∂lεnk. (B57)

Here we have also taken advantage of (B25) and of the identity

[J̃l (k)]m,n =
{

∂lεnk, m = n,

(εmk − εnk )〈∂l gmk|gnk〉, m �= n,
(B58)

which is easily obtained by inserting H↑
free(k) = UkεkU †

k into
(B46) and is employed repeatedly in the following. The result
for [M−

l (k)]1,1
n,n is also useful and is computed in a similar way:

[M−
l (k)]1,1

n,n

= −
[(

εnk − μ

Enk

)2
β

4 cosh2
(

βEnk
2

) + �2

2E2
nk

f (Enk )

]
∂lεnk

= −∂l

[
εnk − μ

2
f (Enk )

]
. (B59)

The easiest way to obtain the second equality is to take the
limit εmk − εnk → 0 in (B52).

In the case m �= n, the term ∝ �2 in (B53) can be ignored
from the start, thus [M+(k)]1,1

m,n ≈ [M−(k)]1,1
m,n. Indeed, this

term gives a contribution of order �2/Egap ∼ U 2
α /Egap, which

vanishes in the isolated band limit. Then, using again (B58),
we derive the following useful result:∑

m,n
m �=n

∑
k

〈α|gmk〉[M−
l (k)]1,1

m,n〈gnk|β〉

= 1

2

∑
m,n,k

〈α|gmk〉〈∂l gmk|gnk〉〈gnk|β〉

× [(εnk − μ) f (Enk ) − (εmk − μ) f (Emk )]

= −1

2

∑
n,k

〈α|∂l gnk〉〈gnk|β〉(εnk − μ) f (Enk )

− 1

2

∑
m,k

〈α|gmk〉〈∂l gmk|β〉(εmk − μ) f (Emk )
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= −1

2

∑
n,k

∂l (〈α|gnk〉〈gnk|β〉)(εnk − μ) f (Enk )

=
∑
n,k

〈α|gnk〉〈gnk|β〉∂l

[
εnk − μ

2
f (Enk )

]
= −

∑
n,k

〈α|gnk〉〈gnk|β〉[M−
l (k)]1,1

n,n. (B60)

Note that in the second line the sum over the band indices
is unrestricted since for m �= n the term in square brackets
vanishes. In the second equality, we have used the property
〈∂l gmk|gnk〉 = −〈gmk|∂l gnk〉, which is a consequence of the
orthonormality of the Bloch wave functions 〈gmk|gnk〉 = δm,n.
Moreover, one sum of over the band indices has been carried
out by using the completeness relation

∑
n |gnk〉〈gnk| = 1.

Then an integration by part has been performed, which is
allowed since in the thermodynamic limit the sum over wave
vectors becomes an integral over the Brillouin zone

∑
k →

A
(2π )2

∫
d2k. It is understood that in the following all sums

over wave vectors represent Brillouin zone integrals. The last
equality follows from (B59).

Finally, (B57), (B59), and (B60) are combined to give

(Ĵl , N̂α↑) = −(Ĵl , N̂α↓)

≈
∑
n,k

|〈α|gnk〉|2
(
[M+

l (k)]1,1
n,n − [M−

l (k)]1,1
n,n

)
=
∑
n,k

|〈α|gnk〉|2 �2

2E2
nk

[
f (Enk ) − β

2 cosh2
(

βEnk
2

)]∂lεnk.

(B61)

In the isolated band limit, only the term n = n̄ corresponding
to the partially filled band gives a nonzero contribution. Note
that, to obtain the correct result for the correlation function
(B61), it is important to retain all of the matrix elements
of the current operator [J̃l (k)]m,n, even if n, m �= n̄. Indeed,
retaining these matrix elements allowed us to use the com-
pleteness relation for the Bloch functions in (B60). The need
to take into account also the interband matrix elements of the
current operator even in the isolated flat band limit is a general
phenomenon, as we will see in the following. For this reason,
one has to be particularly careful when evaluating correlation
functions that involve the current operator.

To compute the correlation function between the current
operator and the pairing operator (B56), one can use the ap-
proximation

[M+
l (k)]1,2

n̄,m = −([M+
l (k)]1,2

m,n̄

)∗
(B62)

≈ �

2
f (En̄k )〈∂l gn̄k|gmk〉,

[M+
l (k)]1,2

m,n ∼ �

Egap
∼ 0 for m, n �= n̄, (B63)

valid again in the isolated band limit. In addition, all the
diagonal matrix elements vanish [M+

l (k)]1,2
n,n = 0, as one can

see from (B54). Thus, for the correlation function (B56) we
have

(Ĵl , D̂α ) =
∑
m,n,k

〈α|gmk〉[M+
l (k)]1,2

m,n〈gnk|α〉

≈ �

2

∑
k,m �=n̄

f (En̄k )(〈α|gn̄k〉〈∂l gn̄k|gmk〉〈gmk|α〉

− 〈α|gmk〉〈gmk|∂l gn̄k〉〈gn̄k|α〉)

= �

2

∑
k

f (En̄k )[〈α|gn̄k〉〈∂l gn̄k|(1 − P(k))|α〉

− 〈α|(1 − P(k))|∂l gn̄k〉〈gn̄k|α〉]

= �

2

∑
k

f (En̄k )[〈α|∂lP(k)(1 − P(k))|α〉

− 〈α|(1 − P(k))∂lP(k)|α〉]

= �

2

∑
k

f (En̄k )〈α|[P(k), ∂l P(k)]|α〉. (B64)

Again, the completeness relation in the form 1 − P(k) =∑
m �=n̄ |gmk〉〈gmk| with P(k) = |gn̄k〉〈gn̄k| has been used.
The last two correlation functions needed in order to com-

pute the superfluid weight are(
Ĵl1 , Ĵl2

) = 2
∑
m,n

[M+
l1

(k)]1,1
m,n[J̃l2 (k)]n,m, (B65)(

Ĵl1τ
z, Ĵl2τ

z
) = 2

∑
m,n

[M−
l1

(k)]1,1
m,n[J̃l2 (k)]n,m. (B66)

In fact, according to (37), only their difference is required:(
Ĵl1 , Ĵl2

)− (
Ĵl1τ

z, Ĵl2τ
z
)

=
∑
n,k

�2

E2
nk

[
f (Enk ) − β

2 cosh2
(

βEnk
2

)]∂l1εnk∂l2εnk

+ 2�2
∑

k

∑
m,nm �=n

(εmk − εnk )2

E2
mk − E2

nk

[ f (Enk ) − f (Emk )]

× 〈∂l1 gmk|gnk〉〈gnk|∂l2 gmk〉. (B67)

In the isolated band limit, the first sum gives the conventional
contribution to the superfluid weight in (50), while the second
one with m �= n corresponds to the geometric contribution in
(51). Indeed, in the case of the geometric contribution, one
can proceed as follows:

∑
m,nm �=n

(εmk − εnk )2

E2
mk − E2

nk

[ f (Enk ) − f (Emk )]

× 〈∂l1 gmk|gnk〉〈gnk|∂l2 gmk〉
≈ f (En̄k )

∑
m �=n̄

〈∂l1 gn̄k|gmk〉〈gmk|∂l2 gn̄k〉 + (l1 ↔ l2)

= f (En̄k )〈∂l1 gn̄k|(1 − P(k))|∂l2 gn̄k〉 + (l1 ↔ l2)

= f (En̄k )Tr
[
∂l1 P(k)∂l2 P(k)

]
. (B68)

Thus, the Bloch function |gn̄k〉 of the partially filled band
enters only through the quantum metric (52). Again, it is
important to notice that the completeness relation has been
used in the above derivation.
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APPENDIX C: SELF-CONSISTENCY EQUATIONS
OF MEAN-FIELD THEORY FOR THE HUBBARD

INTERACTION AND UNIFORM PAIRING ASSUMPTION

In this section, we solve the self-consistency equations of
mean-field theory in the case of the Hubbard interaction, thus
justifying the uniform pairing condition (42). In order to solve
the self-consistency Eqs. (23) and (24), it is necessary to com-
pute the expectation values that appear on the right hand side.
These are obtained from the imaginary-time Green’s function
(B10) by taking the limit τ − τ ′ → 0−

nkα↑ = 〈ĉ†
kα↑ĉkα↑〉 = [G(k, τ = 0−)]1,1

α,α, (C1)

nkα↓ = 〈ĉ†
kα↓ĉkα↓〉 = 1 − [G(−k, τ = 0−)]2,2

α,α, (C2)

〈ĉ−kα↓ĉkα↑〉 = [G(k, τ = 0−)]1,2
α,α, (C3)

To evaluate the Green’s function for τ = 0− one can use
(B11) together with the standard summation over Matsubara
frequencies:

1

β

∑
ωn

eiωnη

iωn − E
= 1

eβE + 1
= nF(E ), η = 0+. (C4)

Using the definition in (B21), we obtain

1

β

∑
ωn

L(k, iωn)eiωnη

= 1

β

∑
ωn

Wk
eiωnη

iωn − Ek
W †

k

= 1

2

⎛⎝1 − εk−μ

E>
k

tanh βE>
k

2 − �
E>

k
tanh βE>

k
2

− �
E>

k
tanh βE>

k
2 1 + εk−μ

E>
k

tanh βE>
k

2

⎞⎠. (C5)

Recall that εk = diag(εnk ) is a diagonal matrix containing the
band dispersions εnk, while E>

k = diag(Enk ) is also diagonal
but contains the quasiparticle dispersions Enk instead, that is,
the eigenvalues of the BdG Hamiltonian H0(k); see (43). Note
that the result in (C5) is valid only under the uniform pairing
condition (42). Then the Green’s function at τ = 0− is com-

puted by combining (B13) with (C5). Thus, from (C1)–(C3),
we can rewrite the self-consistency equations as


σ
α = − Uα

2Nc

∑
n,k

|〈α|gnk〉|2
(

1 − εnk − μ

Enk
tanh

βEnk

2

)
,

(C6)

�α = Uα

2Nc

∑
n,k

|〈α|gnk〉|2 �

Enk
tanh

(
βEnk

2

)
. (C7)

The parameters �α , obtained from the second equation for
a given value of �, do not in general satisfy the uniform
pairing condition. However, it is possible to adjust the relative
strength of the coupling constants Uα so as to ensure that (42)
is at least approximately satisfied.

In the isolated band limit, it is possible to derived an
explicit condition on the coupling constants Uα that ensures
uniform pairing. First, the self-consistency equation relative
to the Hartree potential 
σ

α is neglected for simplicity and only
the partially filled band n̄ is retained in the sum over bands in
(C7). Indeed, the contribution of the terms n �= n̄ is negligible
in the isolated band limit since � is of the same order of Uα .
If it is assumed that the n̄th band is flat (εn̄k = εn̄), then the
quasiparticle dispersion En̄k = En̄ =

√
(εn̄ − μ)2 + �2 is also

flat and the uniform pairing conditions is equivalent to the
following requirement:

Uα

Nc

∑
k

|〈α|gn̄k〉|2 = Ū > 0 ∀α, (C8)

namely, that the quantity on the left-hand side is independent
of the orbital index α, when it is not zero. Equation (C8) can
always be satisfied by a suitable choice of the coupling con-
stants Uα . In this case, the self-consistent value of the pairing
potential � (called also the order parameter) is obtained from

Ū

2En̄
tanh

(
βEn̄

2

)
= 1. (C9)

This equation is obtained by combining (C7) and (C8) and is
identical to the self-consistency equation of the Weiss mean-
field theory of ferromagnetism, in which the quasiparticle
energy En̄ plays the role of the magnetization. If the quan-
tity

∑
k |〈α|gn̄k〉|2 is independent of the orbital index α, for

instance, because of some lattice symmetry, then the uniform
pairing condition follows from Uα = Uβ = U = NorbŪ for all
α, β, where Norb is the number of orbitals in the unit cell.
This is the case considered in Ref. [16] and other subsequent
works.
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