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Spontaneous charge-ordered state in Bernal-stacked bilayer graphene
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We propose that a weakly spontaneous charge-ordered insulating state probably exists in Bernal-stacked
bilayer graphene, which can account for experimentally observed nonmonotonic behavior of resistance as a
function of the gated field, namely, the gap closes and reopens at a critical gated field. The underlying physics
is demonstrated by a simple model on a corresponding lattice that contains the nearest intralayer and interlayer
hoppings, electric field, and staggered potential between different sublattices. Combining density functional
theory calculations with model analyses, we argue that the interlayer van der Waals interactions cooperating
with ripples may be responsible for the staggered potential, which induces a charge-ordered insulating state in
the absence of the electric field.
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I. INTRODUCTION

Bilayer graphene has been extensively studied for more
than a decade. While fascinating progresses such as discovery
of the integer quantum Hall effect [1,2], superconductiv-
ity [3,4], higher-order topological insulators [5], tunable
excitons [6,7], and topological valley transport [8], induced
by external fields [9–14], doping [15,16], and twist [17–19]
have been reported, the ground state of Bernal-stacked bilayer
graphene (BBG) remains controversial. Originally, BBG was
thought to be a semimetal with massive Dirac cones at the
Fermi level. Additionally, a gated field applied perpendicu-
lar to the plane breaks the symmetry between the top and
bottom layers of BBG, rendering it an insulator, which has
been confirmed by transport [10,12] and photoemission exper-
iments [20,21]. Then, the gap should increase monotonously
as a function of the applied gated electric field [22–25].
However, this is challenged by intriguing experimental obser-
vations on ultraclean suspended BBG that resistance varies
nonmonotonously with the gated electric field at low temper-
atures [14,26–28], suggesting the presence of an intrinsic gap
that closes and then reopens when an electric field is applied.

So far, much effort has been made to understand the dis-
crepancy. Starting with the intrinsic gap at zero field, various
possible candidate states, which stem from different origins,
have been proposed. Using methods such as quantum Monte
Carlo, functional renormalization group, etc., a layered anti-
ferromagnetic (LAF) state has been suggested as a candidate
state in BBG, which is favored by on-site Coulomb interac-
tions [29–33]. By calculating the properties of Landau level
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n = 0 with spin and valley degree of freedom, a canted an-
tiferromagnetic (CAF) state is suggested to be stabilized by
isospin anisotropy of electron-electron and electron-phonon
interactions [34]. Besides, the quantum spin Hall (QSH)
state [33,35] and quantum anomalous Hall (QAH) state [36]
are also considered as two potential candidate states with
gap opening at zero field, which are favored by spin-orbit
coupling and zero-point fluctuations, respectively. Recently,
taking short-range interactions into account, a candidate state
with the coexistence of nematic and antiferromagnetic states
has also been proposed [37].

However, despite numerous investigations, a definitive
explanation for the phenomenon that resistance varies non-
monotonously with an electric field remains elusive, which is
probably due to the following two reasons. On one hand, most
of the previous studies focus on the ground state at zero field,
where there are many competing candidate states with very
close energies [31]. Consequently, the ground state strongly
relies on delicate details of the microscopic model [33,37–41]
that a specific perturbation may favor a particular candidate
state as introduced above. Although these studies suggest the
presence of a magnetic ground state at zero field [42], there is
no direct experimental evidence, such as a neutron diffraction
experiment, for the existence of spontaneous magnetization in
BBG. On the other hand, the models employed to investigate
the gap include only several tight-binding parameters to de-
scribe the low-energy dispersions in the vicinity of the Dirac
point [30,31,34]. Consequently, these models fail to capture
the realistic behavior of the gap, exhibiting inconsistencies
with experimental observations [30,31,34].

Therefore, it is necessary to investigate the behavior of the
gap under an electric field based on a reasonable model to
determine the ground state of BBG. Noticeably, some key
ingredients such as interlayer van der Waals (VdW) interac-
tions and ripples are often ignored by previous analyses. The
interlayer VdW interactions and the ripples, which naturally
occur in graphene sheets [43–45], are crucial to the properties
of BBG since interlayer VdW interactions play a dominant
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role in anchoring the layers at a fixed distance [46] and ripples
can drive graphene (including BBG consisting of two layers)
into an insulator [47,48]. Furthermore, it has been suggested
that a charge-ordered state, which may be favored by the two
aforementioned ingredients in BBG, is possible in suspended
graphene samples [49]. Thus, taking into account the effect
of interlayer VdW interactions and ripples to provide a com-
prehensive explanation for the field-induced nonmonotonic
behavior of the gap is an interesting work.

In this paper, we present a novel explanation for the
phenomenon observed in BBG that the resistance varies non-
monotonically with an applied electric field, corresponding
to the gap closing and then reopening with the electric field.
We start by demonstrating the underlying physics of the
phenomenon using a simple model with staggered potential
between inequivalent sublattices on a Bernal-stacked bilayer
honeycomb lattice. We reveal that the intrinsic gap at zero
field is attributed to the presence of a particular intralayer
charge-ordered state, which is characterized by an inverted
order of the four low-energy bands, where two touched bands
shift below the Fermi level while the other two untouched
bands move above it [see Fig. 4(b)], in contrast to the dis-
ordered case, where touched ones meet at the Fermi level
forming a massive Dirac cone [see Fig. 4(a)]. As an electric
field is applied to this charge-ordered state, the upper band
of the two touched bands and the lower band of the two
untouched bands move towards and then cross each other,
resulting in the nonmonotonic behavior of the gap at a small
electric field. To validate the proposal that this charge-ordered
state exists in BBG, we combine density functional theory
(DFT) calculations with model analyses to include the effect
of the interlayer van der Waals (VdW) interactions and rip-
ples. We find that interlayer VdW interactions, along with
ripples effectively generate a staggered potential between
inequivalent sublattices in BBG. Most importantly, the ex-
perimental phenomenon is successfully reproduced when the
strength of interlayer VdW interactions is on the order of
10 meV. Our results offer a fresh perspective on the field-
induced intriguing phenomenon in BBG.

Our paper is structured as follows. In Sec. II, we provide
a comprehensive description of the model and methods em-
ployed in our study. Section III presents our primary findings.
Specifically, we calculate the gaps and intralayer charge dis-
proportionations as functions of the staggered potential. We
also examine how the eigenvalues of the Dirac point and
low-energy bands vary when an electric field is applied. Ad-
ditionally, we investigate the evolution of the gap with respect
to the electric field when including the effect of interlayer
VdW interactions and ripples. Section IV presents a detailed
discussion, and Sec. V concludes our paper with a concise
summary.

II. MODEL AND METHOD

The simple model that we employ to demonstrate the un-
derlying physics for the intriguing phenomenon is given by

H = Hτ + HK + H� + HE , (1)

FIG. 1. (a) The structure of BBG, where the nearest intralayer
and interlayer hoppings, namely, t0 and t⊥ are presented. (b) The low-
energy bands of the disordered case, where H� = 0 and HE = 0.

where

HK = −t0
∑
〈i j〉σ

[C†
iA1σ

CjB1σ + C†
iA2σ

CjB2σ ] + H.c.,

Hτ = −t⊥
∑

iσ

C†
iA1σ

CiA2σ − t⊥
∑

iσ

C†
iA2σ

CiA1σ ,

H� = 1

2
�

∑
iσ

∑
m

n̂iAmσ − 1

2
�

∑
iσ

∑
m

n̂iBmσ ,

HE = −1

2
Eed

∑
iσ

∑
m

(−1)m[n̂iAmσ + n̂iBmσ ]. (2)

Here, HK , Hτ , H�, and HE denote the nearest intralayer hop-
ping terms, the nearest interlayer hopping terms, staggered
potential energy, and the external electric field terms, respec-
tively. CiSmσ annihilates an electron with spin σ on sublattice
S (including A and B) of layer m in ith unit cell. n̂iSmσ is
the particle-number operator. 〈i j〉 means summation over in-
tralayer nearest-neighbor sites. t0 and t⊥ are hopping integrals
as depicted in Fig. 1(a). � is the staggered potential with
opposite signs in inequivalent sublattices, arising from distinct
atomic environments of A1(2) and B1(2) sublattices, where A2

is on top of A1, whereas B2 (B1) is above (below) the center
of the hexagon in the bottom (top) layer. A downward electric
field E is studied. d = 3.4 Å is the interlayer distance, and e
is the elementary charge. By applying Fourier transform, the
Hamiltonian can be expressed in momentum space. Diago-
nalizing this Hamiltonian yields the eigenvalues of a given k
point. Notably, the eigenvalues of the Dirac point are
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2
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√
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4
. (3)

It is easy to find that ε1 and ε2 are contributed by pz orbitals
of B2 and B1 atoms, respectively, whereas ε± are contributed
by a linear combination of pz orbitals of A1 and A2 atoms.

To accurately reproduce the intriguing phenomenon ob-
served in BBG, it is imperative to include the effect of
previously ignored interlayer VdW interactions and ripples.
While ripples can be readily introduced through DFT cal-
culations, the inclusion of interlayer VdW interactions is
challenging due to the existence of various corrections such
as vdW-DF [50], TS-vdW [51], vdW-DF-C [52], DFT-D [53],
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etc. Thus, in order to gain insight into the effect of VdW inter-
actions and eliminate the uncertainty from different choices of
corrections, we construct a Hamiltonian as

H = HD + Heff + HE , (4)

where

HD = −∑
isσ

∑
js′

tis js′C†
isσCjs′σ (5)

is the tight-binding Hamiltonian that describes the low-energy
dispersion of DFT band structures, where the hopping pa-
rameters tis js′ can be derived through the transformation from
Bloch space to maximally localized Wannier functions basis
by using WANNIER90 code [54,55]. Four bands close to the
Fermi energy, which are mainly contributed by pz orbitals
of four carbon sublattices, are taken into account. Sufficient
numbers of long-range hoppings tis js′s are included in or-
der to precisely describe the dispersion of low-energy bands
obtained from DFT calculations as shown in Appendix A.
The DFT band structures of BBG are calculated by the
full-potential linearized augmented plane-wave method [56]
within the density functional theory as implemented in the
WIEN2K package [57], where the exchange-correlation inter-
actions are treated by the local-density approximation [58].
A shifted 60 × 60 × 1 special k-point mesh with a modified
tetrahedron integration scheme [59] for the sampling of the
Brillouin zone is employed. The valence and core states are
separated by an energy of 6.0 Ry and the plane-wave cutoff
parameter Rmt × kmax is set to be 7.00, where Rmt = 1.33 a.u.
is used. The valence wave functions inside the atomic spheres
are expanded up to lmax = 10 while the charge density is
Fourier expanded up to Gmax = 12. We choose both a charge
convergence of 10−7e and an energy convergence of 10−7 Ry
as the convergence criteria. A sufficiently large vacuum dis-
tance of 17.1 Å is used to eliminate the interactions between
periodic images of the layers in the direction perpendicular
to the atomic plane. Heff is the effective Hamiltonian captur-
ing the effect of interlayer VdW interactions, and HE is the
aforementioned electric field terms. To obtain the effective
Hamiltonian Heff, we use a VdW potential of interatomic
Lennard-Jones type

wss′
i j = V0

[(
Rss′

|ris − r js′ |
)12

− 2

(
Rss′

|ris − r js′ |
)6]

, (6)

where i( j) and s(s′) correspond to cell and sublattice indices,
respectively. V0 is the strength of interlayer VdW interactions,
determining the depth of the potential well. Rss′ represents the
bottom of the sublattice-dependent interlayer VdW potential
well, including RAA, RBB, RAB, and RBA. Since the interlayer
VdW interactions play a dominant role in anchoring the layers
at a fixed distance [46], Rss′ can be approximated by force
equilibrium condition of s sublattice in ith unit cell
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where êss′
i j = (ris − r js′ )/|ris − r js′ | is the unit vector, and

∑′

represents the summation over the layer without s sublattice.
Thus, for a given V0, the potential energy of s sublattices in ith
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FIG. 2. The gaps Eg and intralayer charge disproportionation
δnBA as functions of staggered potential � for three nearest interlayer
coupling with t⊥ = 0.1 eV, t⊥ = 0.22 eV, and t⊥ = 0.3 eV. t0 =
2.7 eV is used here. Gray symbols and left axis describe the band gap
while red symbols and right axis depict the charge disproportionation
δnBA.

unit cell reads

Uis = 1

2
V0

∑
j

′ ∑
s′

wss′
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Interestingly, there is a total potential energy difference be-
tween A-type and B-type sublattices as

δUAB =
∑

i

(UiA1 + UiA2 − UiB1 − UiB2 ), (9)

namely, the potential energy well of A1(2) is higher than
that of B1(2). As a result, electrons redistribute in response
to eliminate this difference compared with the case without
the interlayer VdW interactions. Thus, interlayer VdW in-
teractions effectively generate a staggered potential between
inequivalent sublattices in the layer, namely, Heff satisfies

Heff = �
∑

iσ

∑
m

[n̂iAmσ − n̂iBmσ ]/2,

δUAB = −〈Heff〉. (10)

Thus, the staggered potential is determined as long as the
strength of interlayer VdW interactions V0 is given.

III. RESULTS

Here, we demonstrate first the underlying physics for the
phenomenon that the gap closes and then reopens with the
electric field using the simple model (1) as introduced above.
Starting with the insulating state at zero field (E = 0), we find
that the intrinsic gap at zero field is due to the presence of a
particular intralayer charge-ordered state where sublattice B
is charge rich while sublattice A is charge poor. To illustrate
this, we calculate the gaps Eg and intralayer charge dispro-
portionation (CD) δnBA = 1

2 (nB1 + nB2 -nA1 -nA2 ) as functions
of the staggered potential � for different interlayer couplings
t⊥ at zero field, as shown in Fig. 2. As can be seen, the
model always predicts a charge-ordered insulating state when
� > �c despite the differences in t⊥. This insulating state can

013255-3



JIANG, SONG, RUAN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013255 (2024)

FIG. 3. (a) δn21 and δnBA(E ) − δnBA(0) as functions of the elec-
tric field, where δn21, δnBA(E ), and δnBA(0) are the order parameters
of interlayer CD, field-dependent intralayer CD, and zero-field in-
tralayer CD, respectively. (b) The field-dependent eigenvalues at the
Dirac point. (c)–(f) present the evolution of low-energy bands with
respect to the electric field, including E = 0 mV/nm (a), 10 mV/nm
(b), 20 mV/nm (c), and 30 mV/nm (d). To show all of the low-energy
bands within the same energy scale, we use t⊥ = 4 meV, t0 = 2.7 eV,
� = 8.8 meV here.

be understood using the eigenvalues of Dirac point [Eq. (3)]
since they are relevant to the low-energy bands at half-filling.
We find that when � � t⊥, the system remains metallic as
the Fermi level lies between the degenerate eigenvalues ε1

and ε2. In contrast, when � > t⊥, ε− and ε1(ε2) are inverted
compared with the disordered case [see Figs. 1(b) and 3(c)],
resulting in a band-inverted charge-ordered insulating state
with a gap of Eg = � − t⊥. The latter may be relevant to
the zero-field insulating state observed in BBG. For exam-
ple, t⊥ ≈ 0.22 eV [24] in BBG, a weakly intralayer CD with
critical δnBA ≈ 0.07 can make it an insulator (Fig. 2). Since
a reduced threefold symmetry characteristic is observed by
high-resolution scanning tunneling microscopy [43], implying
an intralayer CD, we argue that the insulating state of BBG at
zero field is probably due to the presence of this band-inverted
intralayer charge-ordered state.

Proceeding to analyze the effect of an electric field E on
the band-inverted charge-ordered insulating state, we find that
the gap decreases for E < Ec, increases for E > Ec, with the
gap closing at critical value E = Ec, which is reminiscent
of the intriguing phenomenon observed experimentally that
resistance varies nonmonotonically with an electric field [26].
A downward electric field can drive the electrons from the bot-
tom to the top layers, resulting in interlayer CD. Figure 3(a)
shows δn21 and δnBA(E ) − δnBA(0) as functions of the electric

FIG. 4. The charge distribution and bands in the vicinity of the
Dirac point for different cases with (a) absence of electric field
and staggered potential, (b) staggered potential is larger than the
critical value but without an electric field, (c) both electric field and
staggered potential are larger than the critical value. The size of the
ball represents the charge population in corresponding site.

field, where δn21 = nA2 + nB2 -nA1 -nB1 is the order parameter
of the interlayer CD while δnBA(E ) and δnBA(0) ≈ 5.84512 ×
10−3 are the order parameters of the field-dependent and zero-
field intralayer CDs, respectively. Noticeably, as the band gap
is relatively small, we have chosen t⊥ and � comparable to
the band gap to clearly demonstrate the detailed evolution
of all four relevant low-energy bands with the small electric
field, which does not alter the underlying physics. As can
be seen, distinct behaviors of δn21 and δnBA(E ) − δnBA(0)
in E < Ec and E > Ec imply a phase transition from phase
I to II at E = Ec. As a small electric field mainly affects
the low-energy bands of the system, the phase transition can
also be understood using the eigenvalues of the Dirac point.
Figure 3(b) shows the eigenvalues of the Dirac point varying
with the electric field. We find ε2 and ε+ raise up, whereas ε1

and ε− go down with the increase of the electric field. This
is because ε2, ε+, ε1, and ε− are mainly contributed by pz

orbitals of B1, A1, B2, and A2 sites, respectively, where the
on-site potentials of B1 and A1 sites increase, whereas those
of B2 and A2 sites decrease when an electric field is applied.
Given that ε− is higher than ε2 at E = 0, ε− and ε2 will move
towards and then cross each other as shown in Figs. 3(c)–3(f)
[or in Figs. 4(b) and 4(c)]. Consequently, the gap decreases
for E < Ec and increases for E > Ec. Notably, the gap closes
at the critical electric field Ec = (�2 − t2

⊥)/(ed�). Thus, the
gap of the band-inverted intralayer charge-ordered insulating
state varies nonmonotonously with the electric field.

In brief, the findings above can be summarized as a
schematic illustration in Fig. 4, demonstrating the following
physics. (i) An intralayer charge-ordered state can open an in-
trinsic gap in the BBG lattice at zero field when band inversion
between the two touched bands and the lower band of the two
untouched bands occurs, compared with the disordered case
[see Figs. 4(b) and 4(a)]. (ii) When an electric field is applied
to this charge-ordered insulating state, the upper band of the
two touched bands and the lower band of the two untouched
bands move towards and then cross each other as shown from
Figs. 4(b)–4(c), resulting in a nonmonotonic behavior of the
gap that closes and then reopens with the electric field. As we
proposed in Sec. II that the interlayer VdW interactions can
effectively generate a staggered potential between intralayer
inequivalent sublattices. Besides, the ripples, which naturally
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FIG. 5. The gaps of flat and rippled structures as functions of the
electric field. d = 0.34 nm and a = 0.142 nm are used. �d = 0.01
nm in rippled structure which is presented in inset.

exist in BBG, may favor a charge-ordered state. Thus, this
band-inverted intralayer charge-ordered insulating state may
be the key to the nonmonotonic resistance phenomenon ob-
served in BBG, and it is imperative to study the effect of
previously ignored interlayer VdW interactions and ripples.

To validate our proposal that the intriguing phenomenon
observed in BBG is due to the presence of the aforementioned
band-inverted charge-ordered state, the model presented in
Sec. II, specifically Eq. (4), which includes the effect of inter-
layer VdW interactions and ripples, is employed to calculate
the gap of BBG. For a given strength of interlayer VdW
interactions V0, the effective Hamiltonian Heff, especially the
staggered potential �, should be self-consistently determined.
Thus, we derive first the potential energy difference between
A and B sublattices using the method presented in Sec. II.
We find δUAB ≈ 1.08NV0 and δUAB ≈ 2.08NV0 for flat struc-
ture and Peierls-type rippled structure with �d = 0.01 nm,
respectively, where N is the number of unit cells. Using
Eq. (10), the effective staggered potential is calculated as
� = δUAB/(NδnBA). Thus, δnBA and � are self-consistently
determined by combining this equation with Eq. (4) as long
as V0 is given, indicating that Heff can be determined self-
consistently. Therefore, the gaps and CDs of bilayer graphene
for a given strength of interlayer VdW interactions are cal-
culated. Figure 5 shows the gaps of BBG as functions of the
electric field for flat and rippled structures with the strength
of interlayer VdW interactions of V0 = 30.18 meV and V0 =
20.22 meV, respectively, where the gap decreases for E < Ec,
increases for E > Ec, with the closure of the gap at Ec = 20
mV/nm. As the resistance R ∝ exp[Eg/(kBT )], our results are
in excellent agreement with the experimental phenomenon
that the resistance decreases and then increases with the
electric field, where minimal resistance is at critical electric
field Ec ≈ 20 mV/nm [26] and the zero-field gap is Eg ≈
2 meV [27,28,60,61]. It is necessary to mention that a weakly
spontaneous charge-ordered state occurs for both cases with
intralayer CD δnBA = 0.10 ∼ 0.12, where δnBA changes very
little with the electric field while δn21 increases from 0 to
3 × 10−4. In addition, a smaller V0 can lead to the same behav-
ior of gap for the rippled structure compared with the flat case,

FIG. 6. (a) The potential energy differences between inequiva-
lent sublattices generated individually by the interlayer Coulomb
interactions (δU NC

BA ) and that generated individually by the inter-
layer VdW interactions (δUBA) for the flat structure as functions
of interlayer distance d , where V0 is the strength of the interlayer
VdW interactions and V⊥ is the strength of the nearest-neighbor
interlayer Coulomb interaction. V (r) = V⊥ d

r is used for the interlayer
Coulomb interactions. N is the number of unit cells. (b) The calcu-
lated band gap of model (4) as functions of the electric field, where
the Kolmogorov-Crespi potential is used to derive Heff and α is the
correction factor for the repulsive term of the Kolmogorov-Crespi
potential in BBG as introduced in Appendix B.

suggesting that the ripple concerned and interlayer VdW in-
teractions are cooperative. Thus, interlayer VdW interactions
cooperating with ripples can effectively generate a staggered
potential between inequivalent sublattices, which induces an
intralayer charge-ordered insulating state, resulting in the ex-
perimental phenomenon observed in BBG. The strength of
the interlayer VdW interactions is of the order of 10 meV.
Please note that Rss′s are not tunable parameters, which are
determined by the force equilibrium condition. The critical
values of V0 that cause the metal-to-insulator phase transitions
at zero field for flat and ripple structures are 29.85 meV and
20.00 meV, respectively.

IV. DISCUSSION

Here, a simple model has been used to demonstrate the
underlying physics for the intriguing phenomenon observed
in BBG that the resistance decreases and then increases with
the electric field at low temperatures. We ascribe this phe-
nomenon to the presence of a band-inverted charge-ordered
insulating state in BBG. Our proposal is further confirmed by
combining DFT calculations with model calculations, where
we take into account the effect of the interlayer VdW in-
teractions and ripples. Our results are reliable because our
calculations include not only the effects of the nonlocal
Coulomb interactions and remote hoppings at the DFT level
but also the previously ignored ingredients, namely interlayer
VdW interactions and ripple in the layer. Noticeably, although
the interlayer Coulomb interactions are stronger than the in-
terlayer VdW interactions, the potential difference between
inequivalent sublattices generated by the interlayer Coulomb
interactions is much smaller than that generated by the inter-
layer VdW interactions as presented in Fig. 6(a). Thus, the
interlayer VdW interactions play a major role in determining
the intralayer charge-ordered state of BBG. However, this key
ingredient is often ignored by previous studies.
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The validity of modeling BBG by a bilayer honeycomb lat-
tice with staggered potentials is as follows: Although DFT can
provide a reasonable energy difference between AA-stacking
bilayer graphene and BBG due to cancellation of the un-
certainty from interlayer interactions simultaneously [62], it
fails to capture the interlayer interactions for each structure
individually. Therefore, it is necessary to model the uncer-
tainty arising from interlayer interactions, which may induce
a staggered potential between A1(2) and B1(2) sublattices due
to their inequivalent interlayer environment. Indeed, our re-
sults suggest the presence of a staggered potential due to the
interlayer interactions, e.g., VdW interactions. The calculated
small band gap, which is consistent with the experimental ob-
servations in bilayer graphene devices [27,28,60,61], strongly
indicates that the system is in the critical region of insulator-
to-metal transition.

Although varieties of corrections such as vdW-DF [50],
TS-vdW [51], vdW-DF-C [52], DFT-D [53], and so on have
been proposed, the electronic properties of the BBG and
graphite obtained from these corrections are diverse from each
other [63,64]. Thus, in order to gain insight into the effect of
VdW interactions and eliminate the uncertainty from different
choices of corrections, it is necessary to treat the interlayer
VdW interactions as free parameters, namely modeling the
effect of interlayer VdW interactions. In our calculations, the
model Hamiltonian for interlayer VdW interactions is ob-
tained naturally from the interatomic Lennard-Jones potential,
where the strength of interlayer VdW interactions V0 serves as
the sole free parameter except for the electric field in Eq. (4).
Noticeably, the isotropic nature of the Lennard-Jones VdW
potential can not capture the anisotropic properties of BBG.
Thus, we also employ the Kolmogorov-Crespi potential [62]
to take into account the interlayer interactions with anisotropy
as introduced in Appendix B. Similar behavior that the band
gap varies nonmonotonically with the electric field has also
been observed as shown in Fig. 6(b).

Although several correlated symmetry-broken gapped
states with parabolic dispersion relation have been proposed at
zero field, namely LAF, CAF, QAH, and QSH, the low-energy
bands of BBG observed experimentally at a small applied
magnetic field cannot be explained within the framework of
parabolic bands, which predicts roughly equidistant Landau
levels at low temperatures [65]. Besides, there is a pronounced
asymmetry in the cyclotron mass between hole and electron
doping [24]. These findings raise doubts about the candidates
that exhibit a parabolic dispersion relation with particle-hole
symmetry near the Fermi level. Moreover, as the temperature
increases from zero, two resistance transitions occur. One
transition is observed at ∼12 K [66], while the other occurs
at 200 ∼ 250 K [67], which is suggested to be caused by the
interlayer ripple scattering effect. As the charge-ordered state
we proposed still exists even when the gap is closed, it may
suggest that the former transition corresponds to the evolution
from the charge-ordered insulating state to the charge-ordered
metallic state, while the latter transition corresponds to the
change from the charge-ordered metallic state to the disor-
dered state.

Ripples are inherent features of BBG, arising from the
natural undulations of suspended graphene sheets. It has been
proposed that suspended graphene sheets are not perfectly flat

showing ripples with an amplitude of about 1 nm [43–45] with
dislocations [68]. Here, for simplicity, we take the Peierls-type
ripple into account, which is energetically favored by elastic
effects [69]. However, it should be noted that the ripples
in BBG exhibit a complex nature. Thus, it is interesting to
study how the experimentally observed ripples cooperate with
interlayer VdW interactions to affect the properties of the
intralayer charge-ordered state.

Although the charge-ordered state we studied has been pre-
viously investigated [70], the properties of this charge-ordered
state under an external field have not been explored before.
Noticeably, a low-energy theory based on a 2 × 2 Hamiltonian
matrix with consideration of the charge-ordered characteristic
is used to study the properties of BBG [36]. However, it
fails to deal with the properties of the charge-ordered state
concerned here, where the low-energy bands are inverted.
Besides, although low-energy theory based on a 4 × 4 Hamil-
tonian matrix is also proposed, it does not take into account
the effect of a charge-ordered state [23,71].

Here, we study the phenomenon observed in BBG that
the gap varies nonmonotonously with the electric field. Our
results strongly suggest that the ground state of BBG is
a charge-ordered insulating state. Therefore, further experi-
ments are needed to confirm the ground state of BBG. There
are two experimental approaches to identify this state: one
is angle-resolved photoelectron spectroscopy and the other
is scanning tunneling spectroscopy. An experiment based on
angular-resolved photoemission spectroscopy should be done
at low temperatures, without external perturbations, to detect
the low-energy bands of BBG. If the low-energy bands are
inverted, the ground state of BBG is a charge-ordered state.
Alternatively, the scanning tunneling spectroscopy would be
sensitive to the charge ordering at atomic scale, allowing one
to measure spatial variations of the local density of states to
determine the ground state of BBG.

V. CONCLUSION

In conclusion, an intriguing phenomenon that the resis-
tance varies nonmonotonously with an electric field applied
perpendicular to the plane has been observed at low temper-
atures in BBG. Here, we suggest that this phenomenon is
probably due to the presence of a spontaneous charge-ordered
insulating state in BBG. The underlying physics is illustrated
by a simple model on BBG lattice with staggered potential
between inequivalent sublattices. To validate our proposal, we
combine DFT calculations with model calculations to include
the effect of the interlayer VdW interactions and ripples. We
find that the interlayer VdW interactions cooperating with
ripples can effectively generate a staggered potential in BBG.
Remarkably, we have successfully reproduced the gap am-
plitude and the critical electric field when the strength of
the interlayer VdW interactions is on the order of 10 meV.
Our results provide a new perspective on the nonmonotonic
resistance phenomenon in BBG and suggest that the ground
state of BBG is likely a charge-ordered state. We argue that
angular-resolved photoemission spectroscopy studies at zero
field or scanning tunneling spectroscopy can be used to iden-
tify the ground state at low temperatures.
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FIG. 7. The bands obtained from DFT calculations and the cor-
responding Wannier fittings (a) for flat structure and (b) for ripple
structure with �d = 0.01 nm.
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APPENDIX A: WANNIER FITTINGS TO THE
LOW-ENERGY DFT BANDS

Due to the fact that only including t0 and t⊥ is not suffi-
cient to well describe the low-energy DFT bands of BBG, we
establish a tight-binding model HD with long-range hoppings
to accurately describe the entire dispersions of low-energy
DFT bands. For both flat and ripple structures, the fitted bands
provided by the tight-binding Hamiltonian of all pz orbitals
(blue) and DFT bands (red) match well as shown in Fig. 7.

APPENDIX B: TOTAL POTENTIAL ENERGY
DIFFERENCE BETWEEN A-TYPE AND B-TYPE

SUBLATTICES DERIVED FROM THE
KOLMOGOROV-CRESPI POTENTIAL

It has been pointed out that the isotropic nature of the
Lennard-Jones VdW potential can not capture the anisotropic
properties of the graphitic systems. Then, Kolmogorov and
Crespi take into account the in-plane and out-of-plane
anisotropy, proposing the so-called Kolmogorov-Crespi po-
tential to describe the interlayer interactions in graphite
systems [62]. The interatomic Kolmogorov-Crespi potential

depicting the graphitic systems reads

wss′
i j = e−λ(r js′

is −d )[C + f
(
ρ

js′
is

) + f
(
ρ is

js′
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(
r js′
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d

)6

,

(B1)
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where d is the interlayer distance while the other constants are
as follows:

C0 = 15.71 meV C2 = 12.29 meV

C4 = 4.933 meV C = 3.030 meV

δ = 0.578 Å λ = 3.629 Å−1 A = 10.238 meV. (B3)

Besides, it was shown that for a layered system composed of
two monolayer planes such as BBG, the Casimir force plays
a significant role in phase transitions [72]. As the Casimir
force generates an additional attractive interaction between
the two planes, the repulsive term of the Kolmogorov-Crespi
potential for BBG has to be larger than that of graphite. Thus,
the interatomic Kolmogorov-Crespi potential describing BBG
can be written as

wss′
i j = αe−λ(r js′

is −d )[C + f
(
ρ

js′
is

) + f
(
ρ is

js′
)] − A

(
r js′

is

d

)6

,

(B4)
where α is the correction factor for the repulsive term of
the Kolmogorov-Crespi potential in BBG, which should be
slightly larger than 1 and the other constants remain the same
as those of graphite. Substituting this equation into Eq. (8) can
determine the staggered potentials and consequently calculate
the band gap of BBG once α is given by applying Eqs. (4), (9),
and (10) subsequently. The calculated band gap of BBG un-
der the applied electric field is shown in Fig. 6(b), which
qualitatively agrees with the result shown in Fig. 5 where the
Lennard-Jones VdW potential is used.
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