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Universal responses in nonmagnetic polar metals
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We demonstrate that two phenomena, the kinetic magnetoelectric effect and the nonlinear Hall effect, are
universal to polar metals as a consequence of their coexisting and contraindicated polarization and metallicity.
We show that measurement of the effects provides a complete characterization of the nature of the polar metal, in
that the nonzero response components indicate the direction of the polar axis, and the coefficients change signs
on polarization reversal and become zero in the nonpolar phase. We illustrate our findings for the case of electron-
doped PbTiO3 using a combination of density functional theory and model Hamiltonian-based calculations. Our
model Hamiltonian analysis provides crucial insight into the microscopic origin of the effects, showing that
they originate from inversion-symmetry-breaking-induced interorbital hoppings that correlate to an asymmetric
charge density quantified by odd-parity charge multipoles. Our paper both heightens the relevance of the kinetic
magnetoelectric and nonlinear Hall effects, and broadens the platform for investigating and detecting odd-parity
charge multipoles in polar metals.
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I. INTRODUCTION

Anderson and Blount challenged the conventional notion
that electric polarization is screened by itinerant carriers in
their proposal [1], advocating instead for its combination
with metallicity. This proposition, once deemed unlikely, has
now been substantiated by the recent practical materializa-
tion of polar metals [2–4]. These have consequently opened
a paradigm for investigating numerous intriguing physical
effects that result from the coexistence of the seemingly mu-
tually exclusive properties of polarity and metallicity [5–8].

In the present paper, we point out two such effects, the
kinetic magnetoelectric effect (KME) and nonlinear Hall ef-
fect (NHE), which are universal to all polar metals. While
these effects have been sporadically investigated in some can-
didate polar metal systems [9–11], a consensus in applying
these effects to characterizing polar metals is still missing.
Here we show that both effects simultaneously carry key
signatures of the polar metal phase, that is, the direction of
the polar axis, the switchability of the polarization, and the
ferroelectriclike nonpolar to polar structural transition, and so
provide a complete characterization of polar metals. Further-
more, we reveal the microscopic origin of these two effects
by analyzing asymmetries in the charge density. While both
effects are dominated by contributions from the electric dipole
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moment, i.e., the first-order asymmetry in the charge density,
the electric octupole moment, characterizing the third-order
asymmetry in the charge density, also plays an important role.

The KME is a linear effect, describing electric field (E)
induced magnetization M j = Ki jEi in a nonmagnetic metal
[12–16]. Here Ki j is KME response. Unlike the conventional
magnetoelectric effect observed in time-reversal broken insu-
lators [17], the KME is a current-induced effect that can occur
in nonmagnetic metals that preserve time-reversal symmetry.
Although known for over three decades [12], recent advances
in topological Weyl semimetals [18,19] and the elucidation of
the symmetry requirements [14,16] have reignited interest in
this effect.

The magnetization that results from the current flow in
the KME further gives rise to a transverse Hall current (J)
as a second-order response to the applied electric field, Ji =
χi jkE jEk , known as a NHE [20]. Here, χi jk represents the non-
linear Hall conductivity (NHC) tensor, with i, j, k denoting
the Cartesian directions. Investigation of NHC in nonmagnetic
metals is particularly intriguing due to the absence of the
linear anomalous Hall effect in the presence of time-reversal
symmetry. The effect has been extensively studied in vari-
ous materials, including Weyl semimetals [21] and van der
Waals metals such as WTe2 [9,10], strained MoS2 [22], and
twisted bilayer WSe2 [23]. Materials featuring tunable NHC
hold significant promise for a wide range of technological
applications, including efficient energy harvesting, infrared
detectors, and next-generation wireless techniques, all of
which leverage second-harmonic generation or rectification
[24–26].

Within the relaxation-time approximation for the nonequi-
librium electron distribution, both KME and NHC responses
can be elegantly recast in terms of the reduced KME response
K̃i j , dictated by the equilibrium reciprocal-space magnetic
(spin plus orbital) moment �m(�k), and the Berry curvature
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dipole (BCD) Di j , respectively [14,16,20],

Ki j = eτ

h̄
K̃i j,

χi jk = −εilk
e3τ

2(1 + iωτ )
D jl . (1)

Here τ and εi jk are, respectively, the relaxation time constant
and the Levi-Civita symbol. Both the reduced KME response
K̃i j and the BCD are intrinsic properties of a material and are
given by [9,10,14,16]
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Here e, n, f0, and �	 are the electronic charge, band index,
equilibrium Fermi distribution function, and Berry curvature,
respectively. Both K̃i j and Di j are allowed in nonmagnetic
metals with gyrotropic point group symmetry [9,10,14,16].
Since all polar point groups are gyrotropic [27,28], both KME
and NHE are allowed by symmetry in all polar metals.

Interestingly, the components of the reciprocal-space mag-
netic moment �m(�k), which contributes to the KME response,
is determined by the direction of the electric polarization [29].
Similarly, the antisymmetric component of the BCD, D− =
(D − DT )/2, correlates with the orientation of the polar
axis �d , di ≡ εi jkD−

jk/2 [20], suggesting a possible switching
of both responses for a switchable orientation of the polar
distortion. Furthermore, since both effects are forbidden by
symmetry in an inversion symmetric structure, a structural
transition from a centrosymmetric to a noncentrosymmetric
polar structure can be inferred from the onset of these effects
as the temperature is lowered.

We illustrate these concepts by explicitly considering
the case of electron-doped PbTiO3 (PTO) as an example
material. Undoped PTO is a prototypical conventional fer-
roelectric insulator [30]. Interestingly, even upon electron
doping via replacing the Ti4+ ions by Nb5+ ions, the re-
sulting PbTi1−xNbxO3 was observed to sustain the electric
polarization up to x = 0.12, at which point the system also
becomes conducting [31,32]. In the present paper, using both
first-principles density functional theory (DFT) and a model
Hamiltonian-based approach we show that the presence as
well as the orientation of the polar axis in the polar metal
phase of doped PTO can be determined from the nonzero
components of KME and the NHE.

The remainder of this paper is organized as follows. We
start by describing the computational details in Sec. II. This is
followed by the results and discussions in Sec. III, where we
present our computational results for doped PTO, describing
the existence and tuning of KME and NHE, the effect of spin-

orbit coupling (SOC), the momentum space distribution of the
orbital moment and Berry curvature that determine these ef-
fects, their microscopic origin within the model Hamiltonian
framework, and the role of odd-parity charge multipoles. Fi-
nally, we summarize our results in Sec. IV and give a proposal
for measuring these effects.

II. COMPUTATIONAL DETAILS

The responses K̃i j and Di j are computed using the QUAN-
TUM ESPRESSO [33] and WANNIER90 codes [34–36]. We use
fully relativistic norm-conserving pseudopotentials for all the
atoms with the following valence electron configurations: Pb
(6s26p2), Ti (4s23d2), and O (2s22p4). Self-consistency is
achieved with a 12 × 12 × 10 k-point mesh and a conver-
gence threshold of 10−7 Ry. The ab initio wave functions, thus
obtained, are then projected to maximally localized Wannier
functions [34,35] using the WANNIER90 code [36]. In the
disentanglement process, as initial projections, we choose 42
Wannier functions per unit cell which include the s and p
orbitals of Pb, d orbitals of Ti, and s and p orbitals of O atoms,
excluding the rest. After the disentanglement is achieved, the
Wannierization process is converged to 10−10 Å2. We then
compute the k-space distribution of the orbital moment and
the Berry curvature as well as the reduced KME response,
K̃i j , and the BCD Di j for a 150 × 150 × 140 k-point mesh.
To estimate the doped charge density, we also compute the
density of states (DOS) for the same k-point mesh.

III. RESULTS AND DISCUSSION

A. NHE and KME and their tuning in polar metals

We start with the electronic structure of PTO, which
crystallizes in the noncentrosymmetric tetragonal (P4mm)
structure with the polar C4v point group symmetry [30]. In
tetragonal PTO, both Pb2+ (6s2 lone pair) and Ti4+ (3d0) ions
off-center with respect to the surrounding O2− ions, resulting
in a net polarization along ẑ, which is switchable to −ẑ using
an external electric field. We refer to these two structures,
schematically depicted in Fig. 1(a), as +P and −P, respec-
tively. The electronic structure of the polar undoped PTO
(corresponding to +P) is shown in Fig. 1(b), depicting the
insulating band structure in which the occupied O-p states and
the formally empty Ti-t2g states form the valence band maxi-
mum and conduction band minimum (CBM), respectively.

The doping electrons in doped PTO occupy the CBM,
leading to a metallic band structure within the rigid band
approximation. To compute K̃i j and Di j , we first project the
computed ab initio wave functions onto maximally localized
Wannier functions and then disentangle the relevant bands
(see Sec. II for computational details) from the rest using the
WANNIER90 code [36]. As depicted in Fig. 1(b), the Wan-
nierised bands agree well with the full DFT band structure.
The central quantities K̃i j and Di j in determining the magni-
tudes of the KME and NHE are then computed using the first
expressions in Eqs. (2) and (3), respectively, as implemented
within the WANNIER90 code [34–36].

The computed nonzero components of the reduced KME
response, K̃xy (blue circle), K̃yx (red circle), and BCD Dxy

(blue circle) and Dyx (red circle) are shown as functions of
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FIG. 1. (a) Schematic illustration of the crystal structure of PTO,
showing the off-centering of the Ti atom leading to a polarization +P
along ẑ. The dashed circle indicates the displacement of the Ti atom
in the opposite direction, switching the direction of the polarization
(−P) indicated by the dashed arrow. (b) Comparison of the band
structure of undoped PTO, computed within DFT (dashed line) and
that obtained from WANNIER90 (solid line), showing good agreement
between the two. (c) Computed reduced KME response components
K̃xy (blue) and K̃yx (red) for the two directions of polarization +P
(circle) and −P (dashed line), shown in (a), as a function of energy.
(d) BCD components Dxy (blue) and Dyx (red) for the polarization
directions, +P (circles) and −P (dashed line) as a function of en-
ergy. (e) Energy variation of the spin and orbital contributions to
the absolute value of the antisymmetric component of the reduced
KME response, K̃−

xy = 1
2 (K̃xy − K̃yx) for polarization +P. (f) Energy

variation of the doped electron densities for the two polarization
directions, +P (circles) and −P (dashed line). The vertical black
dashed line corresponds to the experimentally achieved maximum
doped electron density, that maintains the polarity of the structure.
The zero of energy in [(b)–(f)] refers to the CBM of undoped PTO.

energy in Figs. 1(c) and 1(d) for the +P structure. To de-
termine whether the energy range used in the computation
is experimentally achievable, we further compute the doped
electron density by integrating the corresponding DOS and
show the results in Fig. 1(f). Note that the zero of the energy
corresponds to the CBM for the undoped case. The vertical
dashed line in Fig. 1(f) indicates the maximum doped electron
density up to which the polarity of the lattice persists in the
experiments [31,32], justifying the chosen energy range.

We note from Figs. 1(c) and 1(d) that K̃xy = −K̃yx and
Dxy = −Dyx, consistent with the C4v point group symmetry.
Here K̃i j has both spin and orbital contributions. To under-
stand the relative contributions of the two, the individual spin
and orbital contributions are also shown in Fig. 1(e) for the
absolute value of the antisymmetric component of the reduced
KME response, K̃−

xy = 1
2 (K̃xy − K̃yx ). This clearly shows that

the orbital contribution dominates over the spin contribution.
Such a current-induced orbital magnetization has also been

FIG. 2. (a) Comparison of the energy variation of the absolute
value of K̃−

xy for two different displacements of the Ti ion, P and
P1, with the former being larger than the latter. (b) Comparison of
the energy variation of the absolute value of the antisymmetric BCD
component D−

xy = 1
2 (Dxy − Dyx) for the same P and P1.

reported for other systems with broken inversion symmetry
[13,37–39] and may have important implications in the field
of orbitronics.

To see the effect of the polarization direction, we reverse
the direction of the displacement of the ions, leading to the
−P structure [see Fig. 1(a)]. The corresponding computed
K̃xy (blue dashed line), K̃yx (red dashed line), and Dxy (blue
dashed line), Dyx (red dashed line) are shown in Figs. 1(c) and
1(d), respectively. We note that in this case, all the computed
quantities switch sign compared to the +P structure, while
still maintaining the symmetry of the C4v point group, as
discussed above.

We further artificially decrease the amount of the Ti dis-
placement to see the effect of the magnitude of polarization.
We refer to the corresponding structure as +P1. The computed
absolute values of K̃−

xy and D−
xy = 1

2 (Dxy − Dyx ) for +P1 are
depicted in Figs. 2(a) and 2(b) respectively, together with the
values for +P. We find that both K̃−

xy and D−
xy have smaller

magnitudes for +P1 compared to +P, suggesting that both
effects not only depend on the direction of polarization but
also on the magnitude of the polarization.

It is important to point out here that polarization is not the
only factor that contributes to the value of the responses. For
example, both responses also depend on the details of the
electronic structure [see Eqs. (2) and (3)]. As a result, the
situation can be more complicated if there is a drastic change
in the band structure with the change in electric polarization.
Nevertheless, our analysis clearly shows that the polarization
is an important factor and that both KME and NHE are tun-
able by changing the direction or magnitude of the electric
polarization.

B. Effect of spin-orbit coupling

To understand the dependence on SOC, we perform
additional calculations with the SOC turned off in our com-
putations. Comparisons of the computed K̃−

xy and D−
xy both

in the absence and presence of SOC are shown in Figs. 3(a)
and 3(b). As seen from these figures, both K̃−

xy and D−
xy exist

even without the SOC. This suggests that both effects occur
due to the symmetry of the structure and the presence of
SOC is not necessary. Indeed, in the absence of SOC, the
KME response is driven by the orbital contribution. With the
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FIG. 3. Comparison of the energy variation of the absolute value
of (a) K̃−

xy and (b) D−
xy in the absence and presence of SOC.

inclusion of SOC, the orbital degrees of freedom couple to the
spin degrees of freedom, leading to additional current-induced
spin magnetization in the system. We notice that, while the
inclusion of SOC increases the magnitudes of both effects,
the change in the KME response is smaller than that of the
NHC. This can be attributed to the weak SOC-induced spin
contribution to the KME response as depicted in Fig. 1(e).

To gain further insight into the effect of SOC, we an-
alyzed the corresponding band structures. Figures 4(a) and
4(c) depict the conduction bands of undoped PTO both in the
absence and presence of spin-orbit interaction. These bands
have dominating contributions coming from Ti-d orbitals [see
Fig. 4(b)]. A striking feature of the band structure in the pres-
ence of SOC is the lifting of the degeneracy of the bands with
opposite spin polarization. In particular, the spin-polarization
direction of the bands is normal to the momentum direction.
For example, as shown in Fig. 4(c), the bands along the kx

FIG. 4. Effect of spin-orbit coupling on the band structure.
(a) Conduction bands of undoped PTO in the absence of SOC.
(b) The corresponding total densities of states (DOS) and partial Ti-d
DOS, showing the dominance of the Ti-d states in the CBM. The
band structures in the presence of spin-orbit interaction for (c) +P
and (d) −P electric polarization directions [see Fig. 1(a)]. The color
map represents the Sy spin polarization of the bands. Zero of energy
corresponds to the CBM.

direction are Sy spin polarized. Similarly, the bands are Sx

spin polarized along the ky direction in momentum space (not
shown here). The energy splitting of the spin-polarized bands
is, however, weak near the CBM, justifying the small spin
contribution to the KME response and, consequently, the weak
changes in the KME response upon inclusion of SOC effects.

We note that the spin splitting 
εs(�k) reverses as the
momentum direction is reversed, i.e., it is antisymmetric in
�k, corresponding to p-wave symmetry. This is due to the
presence of time-reversal symmetry, which dictates 
εs(�k) =
ε↑(�k) − ε↓(�k) = −
εs(−�k). Such antisymmetric, spin-orbit-
induced spin splitting is known as the Rashba effect [40].
Interestingly, as shown in Fig. 4(d), for the opposite electric
polarization direction in the −P structure, the spin polariza-
tion of the bands is also reversed. Such spin-orbit-induced
spin splitting and its reversal upon switching the electric po-
larization could be observed using techniques like magnetic
Compton scattering [29], which probes the spin-polarized
electron momentum density in materials.

The switching of the spin polarization on electric polar-
ization reversal explains the reversal of the spin contribution
to the KME response for the −P structure. Both the KME
and the NHC responses are, however, significant in magnitude
even without the SOC. Hence, further understanding of the
two responses requires analysis of the orbital moment and
Berry curvature in reciprocal space, which are present even
without SOC. We discuss these below.

C. k-space distribution of orbital moment and Berry curvature

We now analyze the k-space distributions of the relevant
x and y components of the orbital magnetic moment and
Berry curvature in the kx-ky plane. Since the K̃i j response
is dominated by the orbital contribution, here for simplicity
we only consider the orbital magnetic moment distribution.
The k-resolved contribution to the orbital magnetization at
equilibrium, �Morb(�k), is computed within the modern theory
of orbital magnetization [41–44] as implemented in the WAN-
NIER90 code [45]:

�Morb(�k) =
∑

n

[
e

2h̄
Im

〈∇kun
k

∣∣ × [
H(�k) − εn

k

]∣∣∇kun
k

〉

+ e

h̄
Im

〈∇kun
k

∣∣ × [
εn

k − εF
]∣∣∇kun

k

〉]
. (4)

Here, εn
k and un

k are the energy eigenvalues and eigenfunctions
of the Hamiltonian H(�k) obtained from Wannierization, εF is
the Fermi energy, and the sum is over all occupied bands n.
The computed value of Morb

x (Morb
y ) is shown in Fig. 5(a)

(Fig. 8 in Appendix 1).
We note that the second term in Eq. (4) does not contribute

to the KME response (see Appendix 2 for details) and, hence,
only the first term is relevant to us. The first term in Eq. (4)
represents the intrinsic Bloch orbital moment �morb

n (�k) [41,46]
that also appears in the expression for reduced KME response
in Eq. (2).
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FIG. 5. Computed k-space distributions of (a) Morb
x (in units of

eV/Å2) and (b) the Berry curvature 	x (in units of Å2) in PTO for
the doped electron density ∼0.001Å−3, corresponding to ∼ 0.202 eV
above the CBM of undoped PTO. The black circle around the � point
indicates the Fermi surface corresponding to this electron density.
�Morb(�k) and �	(�k) (summed over occupied bands n) are computed

using Eqs. (4) and (5). The high-symmetry k points are indicated on
the kz = 0 plane for easy reference.

The k-space distribution of the Berry curvature is com-
puted using the Kubo formula [47],

	n
k (�k) = −2h̄2

∑
m �=n

Im

〈
un

k

∣∣vi

∣∣um
k

〉〈
um

k

∣∣v j

∣∣un
k

〉
(
εn

k − εm
k

)2 , (5)

where �v = 1
h̄

∂H
∂�k is the velocity operator and (i, j, k) are

cyclic permutations of the Cartesian directions (x, y, z). The
computed value of the Berry curvature component 	n

x (�k)
(	n

y (�k)) is shown in Fig. 5(b) (Fig. 8 in Appendix 1).

The computed k-space distributions of �Morb(�k) and �	(�k)
can be understood based on the symmetries of the crystal
structure and are detailed in Appendix 2. The existence of
these two quantities in different parts of the BZ of PTO,
even though their BZ sum is zero due to the presence of T
symmetry at equilibrium, explains the current induced mag-
netization in the KME response and, consequently, the NHC.
It is important to point out that both �Morb(�k) and �	(�k) exist
even in the absence of SOC, justifying the existence of the
two responses even without the SOC. We also notice an inter-
esting resemblance between the computed orbital texture and
the spin polarization of the Rashba-split bands in Sec. III B,
with both having the same toroidal distribution in momentum
space.

D. Microscopic origin: role of odd-parity charge multipoles

1. Model Hamiltonian

To understand the microscopic origin of the k-space orbital
texture and Berry curvature, and, hence, the two responses,
we construct a minimal tight-binding (TB) model in the basis
set of the Ti-t2g orbitals, {dxy, dyz, dxz}. For small doping, the
doped electrons occupy the Ti-d bands [see Fig. 4(b)] around
the � point of the BZ that correspond to the CBM for the
undoped case, indicated by the black circles in Fig. 5. We,
therefore, expand the TB model around the � point, and the
resulting low energy model Hamiltonian is given by

H(�k) = Hinv(�k) + HBI(�k). (6)

TABLE I. Effective hopping parameters (in units of 10−2 Ry) in
Eq. (8), derived from the computed TB hopping parameters and on-
site energies for PTO using the NMTO downfolding technique.

t1
eff t2

eff t3
eff t4

eff t5
eff t6

eff t7
eff t8

eff t9
eff

4.95 −2.26 0.4 10.09 −0.19 −0.97 −1.59 −0.48 −0.28

Here Hinv is the inversion symmetric part of the Hamiltonian
and is given by

Hinv =
⎛
⎝h11 h12 h13

h12 h22 h23

h13 h23 h33

⎞
⎠, (7)

with the explicit analytical forms of the elements hi j up to
quadratic order in k given below:

h11 = t1
eff − t2

eff

(
k2

x + k2
y

)
a2 − t3

effk
2
z c2,

h22 = t4
eff − t5

effk
2
x a2 − t6

effk
2
y a2 − t7

effk
2
z c2,

h33 = t4
eff − t6

effk
2
x a2 − t5

effk
2
y a2 − t7

effk
2
z c2,

h12 = t8
effkxkzac,

h13 = t8
effkykzac,

h23 = t9
effkxkya2. (8)

Here a and c are the lattice constants for the tetragonal unit
cell. Note that since Hinv is inversion symmetric, it contains
only terms that are even in k. The effective hopping param-
eters t i

eff, i = 1, 9 are linear combinations of the different
effective t2g-t2g electronic hopping parameters that we extract
using the Nth order muffin-tin orbital (NMTO) downfolding
technique [48]. The computed parameters for one direction
of polarization (+P) are listed in Table I. We consider up
to fourth-nearest neighbor (NN) interactions. It is important
to consider such long-range neighbor interactions which are
needed to capture the physics of the two effects of interest, as
we discuss later.

On the other hand, HBI includes the hopping parameters
that are induced by the broken I symmetry. It can be written
in terms of the components of the orbital angular momentum

operator �̂L:

HBI = αa

h̄
(kxL̂y − kyL̂x ) − αa3

6h̄

(
k3

x L̂y − k3
y L̂x

)

− βac2

h̄
k2

z (kxL̂y − kyL̂x ) − γ a3

h̄
kxky(kyL̂y − kxL̂x ).

(9)

The parameters α, β, γ are determined by the broken I-
symmetry-induced hopping parameters and have opposite
signs for +P and −P. In centrosymmetric PTO, α, β, γ are
zero, so H = Hinv. In addition, t8

eff = −2(t x − t y) = 0 in the
centrosymmetric structure, where t x and t y are the fourth-NN
interorbital hopping integrals, which we discuss in detail later.
The components of the orbital angular momentum operator in
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FIG. 6. Atomic-site charge dipole moment component p10 and
octupole moment component O30 on the Ti4+ ions as a function of
the displacement (in units of out-of-plane lattice constant c) of the
Ti ion from the center of the unit cell in PTO. The inset shows the
schematic for the toroidal arrangement of the orbital (spin) moment
(indicated in thick arrows) in the kx-ky plane due to the first term in
the Hamiltonian (9) driven by the charge dipole. (b) Fourth-nearest
neighbor Ti atoms (connected by the brown straight lines) along
(±a, 0, ±c) and (0,±a, ±c). Note that in the cubic high-symmetry
structure with c = a, these are second-nearest neighbors.

Eq. (9) in the t2g orbital basis {dxy, dyz, dxz} are given by

L
(t2g)
x = h̄

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, L

(t2g)
y = h̄

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠,

L
(t2g)
z = h̄

⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠. (10)

It is important to point out here that, although the con-
sidered model Hamiltonian is specific to PTO, the inversion
symmetry breaking in any polar metal system will always
induce new channels for interorbital hopping that are other-
wise forbidden in an inversion symmetric structure (e.g., in
the high-temperature nonpolar phase). This is independent of
the choice of orbitals as the basis of the model Hamiltonian.
For example, the inclusion of all Ti-d orbitals in the model or
O-p orbitals in addition to the Ti-d orbitals will not affect this
conclusion.

The advantage of writing HBI in terms of the �̂L operators is
that we can readily identify the resulting orbital texture in mo-
mentum space. For example, the first term in Eq. (9), which is
linear in �k, depicts a toroidal arrangement of orbital magnetic
moment in reciprocal space [see the inset of Fig. 6(a)]. Such a
toroidal arrangement of the orbital moment in k space is also
in agreement with our DFT results (see Figs. 5 and 8) and the
symmetry analysis presented in Appendix 1. We note that the
first term in Eq. (9) has a form ∼(�k × �L), which is an orbital
counterpart of the (spin) Rashba effect ∼(�k × �σ ) and, hence,
is often referred to as an orbital Rashba effect [49,50].

We note that formation of the orbital moment in the BZ of
the material is related to the interorbital hopping, as discussed
before. The hybridization between different orbitals, mediated
by these hopping parameters, gives rise to complex orbitals
in momentum space that carry a net orbital moment, as also
represented by the Hamiltonian in Eq. (9). Since interorbital
hopping is always present in polar metal systems, the mo-
mentum space Rashba-like orbital texture is also general to

all polar metals, with the specific component of the orbital
moment determined by the polar axis of the material. This
further suggests the polar metals as potential candidates for
orbitronic applications, in which the momentum space orbital
texture is an important ingredient.

In the presence of SOC, the orbital texture in the orbital
Rashba effect couples to the spin, additionally leading to spin
texture and the Rashba effect in PTO [51] as also found in our
DFT calculations (see Sec. III B). Here, for simplicity, we do
not include SOC in our model Hamiltonian in Eq. (6), since
both KME and BCD exist even in its absence (see Fig. 3).

2. Role of odd-parity charge multipoles

Interestingly, each term of different order in �k in the
Hamiltonian HBI of Eq. (9) has a direct correlation to a corre-
sponding odd-parity charge multipole. Recently, we showed
that the k-space orbital and spin textures in ferroelectrics
result from the k-space magnetoelectric multipoles that are
reciprocal to the real-space odd-parity charge multipoles [29].
The odd-parity charge multipoles characterize the asymme-
tries in the charge density that are present due to the broken
I symmetry. For example, the electric dipole dictates the
first-order asymmetry in the charge density, while the electric
octupole corresponds to the third-order asymmetry, and so on.
The first term within the parentheses in Eq. (9), which is linear
in �k, corresponds to the k-space representation of the electric
dipole moment (p10) whereas the remaining terms, which are
all cubic in �k, correspond to the electric octupole moment
(O30).

To verify the existence of the local electric dipoles and
octupoles in PTO, we decompose the T symmetric density
matrix ρlm,l ′m′ , computed within the DFT framework, into
parity-odd tensor moments and explicitly compute the atomic-
site electric dipole and octupole moments, for which only the
odd l − l ′ terms contribute [52]. The computed odd-parity
charge multipoles on the Ti4+ ions are non-zero in the polar
structure, as shown in Fig. 6(a), and confirm the presence
of a ferrotype ordering of electric dipole component p10 and
octupole component O30 at the Ti site. Here the indices at
the suffix of the multipole components represent the l and
m indices of the spherical harmonics that are used to build
these charge multipoles. The electric dipole moment �p is a
tensor of rank 1 (vector), with p10 indicating its z component.
Similarly, the octupole moment Oi jk is a totally symmetric
tensor of rank 3 with seven components. The O30 component
has the representation 1

2 z(5z2 − r2).
Correlating each of the terms in the Hamiltonian (9) to

odd-parity charge multipoles of different orders provides the
multipolar description of the two responses in polar metals.
This opens up a door for investigating as well as detecting
the higher-order multipoles in polar metals. Furthermore, this
confirms that for any polar metals with nonzero charge dipoles
and octupoles due to broken mirror symmetry, analogous
terms to those in the Hamiltonian (9) will emerge, with their
explicit form depending on which components of the charge
multipoles are present. Consequently, the results of the model
Hamiltonian calculation, as we discuss below, have important
implications for all polar metals, beyond the specific example
of doped PTO.
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FIG. 7. Results of the tight-binding analysis. Computed variation
(in circles) of (a) the reduced KME density component κxy and (b) the
BCD density component dxy around the � point along ky for the +P
polarization. The same variation (in diamonds) for −κxy and −dxy for
the polarization −P are also shown in (a), (b). The lines serve as a
visual guide. The same variation of (c) κxy, (d) dxy in the presence
of inversion symmetry (black solid line), in absence of fourth-NN
interorbital hopping parameters t x and t y (dashed brown line), and
in absence of the first term (linear in �k) in Eq. (9) (green line with
circles). The parameters used for the plots are listed in Table I, and
α = 0.22, β = 0.02, and γ = −0.10 (in units of 10−2 Ry) for +P
polarization.

3. Results and discussion

Now that we have correlated the individual terms of the
Hamiltonian to the charge multipoles, we diagonalize the
Hamiltonian H(�k) in Eq. (6) for the realistic parameters listed
in Table I, extracted using the NMTO downfolding technique
[48,53]. We then use the computed eigenvalues εn

k and eigen-
functions un

k to obtain the k-space distribution of the Berry
curvature and the orbital moment using Eq. (5) and the first
term of Eq. (4), respectively, for the lowest energy band of the
Hamiltonian in Eq. (6).

We then compute the BCD density di j (�k) = ∂ki	 j (�k) and
the reduced KME density κi j (�k) = ∂ki m

orb
j (�k) for i, j = x, y,

the integrals of which over the occupied part of the BZ de-
termine the magnitude of Di j and K̃i j , respectively [see the
second expressions in Eqs. (2) and (3)]. The computed densi-
ties show that they have the same sign (+ or −) over k space
only if i �= j and hence when integrated over the occupied
part of the BZ, only the xy and yx components of D and K̃
have nonzero values. The variations of dxy(�k) [dyx(�k)] and
κxy(�k) [κyx(�k)] along ky (kx) are shown in Fig. 7 (Fig. 10 of
Appendix 3).

For the opposite polarization direction (−P), the param-
eters α, β, γ switch signs and, consequently, as shown in
Figs. 7(a) and 7(b) (Fig. 10), the xy (yx) components of d
and κ switch signs, keeping their magnitudes unaltered. In an
I-symmetric system, on the other hand, α = β = γ = 0 and,
consequently, we find that di j , κi j become zero as shown in
Figs. 7(c) and 7(d), emphasizing the important role of I sym-
metry breaking. Our paper, therefore, identifies the interorbital
hoppings, induced by the broken inversion symmetry, as the

microscopic origin of the KME and NHC responses in polar
metals.

Further, to gain insight into the role of odd parity mul-
tipoles, we switch off the linear term in Eq. (9), which
originates from the electric dipole moment. Interestingly, in
this case, we find that while all considered components of d ,
κ still survive, their values reduce drastically by an order of
magnitude. This suggests that the linear terms in k in Eq. (9),
originating from the electric dipole moment, play an impor-
tant role in determining the magnitudes of both these effects,
although the importance of the electric octupole-driven k3

terms cannot be ignored. Our findings are consistent with
the multipole description of the KME response, proposed by
Hayami et al. based on symmetry analysis [54]. Indeed, we
find that the antisymmetric part of the KME response K−

i j in
PTO can be described by the existence of an electric dipole
moment component, K̃−

i j = 1
2 (Ki j − K ji ) = εi jk pk . It is im-

portant to point out here that the KME, although universal
to all polar metals, can also occur in noncentrosymmetric but
nonpolar systems, e.g., chiral materials, in which case other
multipoles such as the monopole of the electric toroidal dipole
moment will dictate the symmetric part (with the trace) of the
KME response [54].

We further note that the fourth-NN [see Fig. 6(b)], interor-
bital (dxy − dxz and dxy − dyz) hopping integrals, t x and t y,
induced by the broken I symmetry, are the key ingredients
for both effects. While both hopping integrals contribute to
the parameters α and β, β is solely determined by t x and
t y, while α has additional contributions. As a result, in the
absence of these hoppings, β and the effective hopping, t8

eff ,
in Hinv vanish. In this case of t x = t y = 0, we find that the
components of both d and κ also vanish, as shown in Fig. 7
(see the dashed brown line), emphasizing the importance of
the further neighbor interactions.

To understand why the fourth-NN hopping parameters are
crucial, we first note that the nonzero β and t8

eff resulting
from the fourth-NN hopping parameters appear in the third
term of Eq. (9) and the off-diagonal elements h12 and h13

of Eq. (7), respectively. Interestingly, these are the only in-
terorbital contributions in our minimal model that are also
responsible for the band dispersion along the out-of-plane kz

direction. Since the inter-orbital hopping parameters drive the
nonzero Berry curvature [55] and since the dispersion along kz

is crucial for the existence of the in-plane components of both
orbital moment and Berry curvature [see Eqs. (4) and (5)], we
see that both quantities vanish in the absence of fourth-NN
hopping. This, in turn, also leads to an absence of xy and
yx components of d and κ , explaining the crucial role of the
fourth-NN hopping integrals in driving the KME and NHE in
doped PTO.

IV. SUMMARY AND OUTLOOK

To summarize, taking the example of doped PTO, we have
shown that both KME and the NHE are universal to all po-
lar metals and can be used for a complete characterization
of this class of materials. Our paper paves the way for the
broad applicability of these two effects in polar metals, in
general, going beyond their earlier investigation in topological
systems [14,16,18,56]. Our detailed TB analysis reveals the
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importance of the broken-symmetry-induced interorbital hop-
ping parameters, correlated to the odd-parity charge mul-
tipoles, in mediating these effects. In particular, we have
identified the broken-inversion-induced fourth-NN interor-
bital hopping parameters as being essential in driving these
effects in doped PTO.

It is crucial to emphasize that both KME and NHC are
present in a material as long as the polar distortion persists
in the presence of itinerant charge carriers, defining the polar
metal phase. However, beyond a certain doping concentration,
the polar distortion in doped PTO is suppressed and, in this
doping regime, the system is no longer in the polar metal
phase. Consequently, both the NHC and KME also disappear.
In essence, the KME and NHC are inherent to the polar metal
phase, whether it is present intrinsically in the system or
introduced by doping ferroelectric insulators.

Before concluding, here we briefly discuss possible routes
to detecting the two effects. The second-order NHE in polar
metals can be detected by measuring the second harmonic
current J2ω at a frequency 2ω for an applied ac electric field �E
of frequency ω [20]:

�j2ω = e3τ

2(1 + iωτ )
�Eω × ( �p × �Eω ). (11)

Here �p is the direction of the electric dipole moment, which
is along ẑ for doped PTO. This suggests that for �E along
ẑ (i.e., with polar angle θ = 0), the Hall current vanishes,
as we also found from our explicit calculations discussed
above. Furthermore, for a general form of the field, �E =
Eeiωt (sin θ cos φ, sin θ sin φ, cos θ ), it is also easy to see from
Eq. (11) that the Hall current does not depend on the azimuthal
angle φ made by �E with x̂ for an in-plane �E (i.e., θ = π/2).
This means that rotation of �E within the x-y plane will leave
the Hall current invariant.

The current-induced magnetization in the KME should be
detectable using the magneto-optical Kerr effect. The com-
puted reduced KME response is about an order of magnitude
larger than that reported in Te [16]. In doped PTO, the gener-
ated magnetization is dominated by the orbital moment for a
reasonable doping concentration [see the inset of Fig. 1(c)]
and has a magnitude of 1.8 × 10−4μB/atom at the experi-
mentally observed maximum doping concentration (nx=0.12 =
1.9 × 1021 cm−3) up to which the system retains the ferro-
electricity, and for an applied field of 105 V/m and a typical
relaxation time constant τ 	 1 ps [18]. For the same applied
field, the computed total (spin plus orbital) magnetization is
∼1.0 × 10−3μB per unit cell, which is comparable to the mag-
netization of the Rashba system Bi/Ag(111), the (001) surface
of the topological insulator α-Sn, and the Weyl semimetal
TaAs [18] and, hence, likely to be discernible in measure-
ments.

In the present paper, we considered a rigid band approxi-
mation to describe the doped PTO case. While we expect this
to provide a good description of the NHE and KME for the
small doping concentration achievable in the measurements,
future work should investigate computationally how electron
doping affects the electronic structure of PTO. The dominance
of the orbital magnetization in the KME response of doped
PTO that emerges from our work, opens the door for the

application of polar metals in orbitronics with the additional
advantage of switchable orbital texture by reversal of the
electric polarization. We hope that our paper will motivate
both theoretical and experimental work in these directions in
the near future.
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APPENDIX

1. Symmetry analysis of the k-space orbital moment
and Berry curvature

Both the k-resolved contribution to the orbital magneti-
zation �Morb(�k) (also, the Bloch orbital moment �morb) and
�	(�k) follow the same symmetry relations: Under spatial in-

version I symmetry, both remain invariant, with �Morb(�k)
I−→

�Morb(−�k), whereas under time-reversal (T ) symmetry they

switch signs, �Morb(�k)
T−→ − �Morb(−�k) [similarly for �	(�k)].

Hence, for a nonzero �Morb(�k) [ �	(�k)], either of these two
symmetries must be broken. In the present case, the broken
I symmetry leads to nonzero values of �Morb(�k) and �	(�k).
Figure 8 depicts the y components of the k-resolved contri-
bution to the orbital magnetization in Eq. (4) and the Berry
curvature in Eq. (5) for small electron doping concentration.
We note that since T symmetry is preserved, �Morb ( �	) at +�k
has the opposite sign to that at −�k and, as a result, the sum of
�Morb(�k) [ �	(�k)] over the occupied part of the Brillouin zone

(BZ) is zero, consistent with the overall nonmagnetic behavior
of PTO.

The key features of the computed distributions in Figs. 5
and 8 are the following. First, Morb

x (and, hence, morb
x ) and 	x

are equal and opposite at ±ky, while they have the same sign at
±kx, consistent with the σv mirror symmetries [see Fig. 9(a)]

FIG. 8. Computed k-space distributions of (a) Morb
y (in units of

eV/Å2) in Eq. (4) and (b) 	y (in units of Å2) in Eq. (5) in PTO for
the same doped electron density as in Fig. 5.
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FIG. 9. (a) Vertical (σv) and (b) diagonal (σd ) mirror planes in
PTO.

that dictate

Morb
x (kx, ky, kz )

M100−−→ Morb
x (−kx, ky, kz )

and Morb
x (kx, ky, kz )

M010−−→ −Morb
x (kx,−ky, kz ). (A1)

In contrast, Morb
y (morb

y ) and 	y are equal and opposite at
±kx, while having the same sign at ±ky due to the same σv

symmetries, that is,

Morb
y (kx, ky, kz )

M100−−→ −Morb
y (−kx, ky, kz )

and Morb
y (kx, ky, kz )

M010−−→ Morb
y (kx,−ky, kz ). (A2)

Furthermore, the x and y components of �Morb(�k) [ �morb(�k)]
and �	(�k) are related to each other by the mirror

M11̄0 symmetry [see Fig. 9(b)], viz. Morb
x (kx, ky, kz )

M11̄0−−→
−Morb

y (ky, kx, kz ). Moreover, since the velocity operator

transforms as (vx, vy, vz )
M11̄0−−→ (vy, vx, vz ) under the mirror

M11̄0 symmetry, Eq. (2) [Eq. (3)] leads to the constraint K̃xy =
−K̃yx [Dxy = −Dyx], in agreement with our results in Fig. 1(c)
[Fig. 1(d)].

2. Derivation of the KME response

The BZ integral of Eq. (4) (the k-resolved contribution to
the orbital magnetization) gives the net orbital magnetization

�Morb =
∑

n

∫
d3k

(2π )3
fnk �Mn,orb(�k)

=
∑

n

∫
d3k

(2π )3
fnk

(
e

2h̄
Im

〈∇kun
k

∣∣ × [
H(�k)−εn

k

]∣∣∇kun
k

〉

+ e

h̄
Im

〈∇kun
k

∣∣ × [
εn

k − εF
]∣∣∇kun

k

〉)

=
∑

n

∫
d3k

(2π )3
fnk

(
�mn,orb(�k) + [

εn
k − εF

] e

h̄
�	n,k

)
.

(A3)

Here, �mn,orb(�k) and �	n,k are the Bloch orbital moment and the
Berry curvature, respectively. In the presence of an electric
field Ei along î in a metal, within the Boltzmann approx-
imation, the nonequilibrium Fermi distribution function is

given by

fnk = f 0
nk − e

h̄
Eiτvni

(
df 0

nk

dε

)∣∣∣∣
ε=εn

k

. (A4)

Here f 0
nk is the equilibrium Fermi distribution function. Sub-

stituting Eq. (A4) in Eq. (A3), we get the magnetization
induced by the current. Because of the time-reversal sym-
metry in equilibrium, the positive and negative regions of
the orbital moment cancel each other to give rise to zero net
orbital magnetization. Therefore, f 0

nk does not contribute, and
consequently we get

�Morb = − eEiτ

h̄

∑
n

∫
d3k

(2π )3

(
�mn,orb(�k) + [

εn
k − εF

] e

h̄
�	n,k

)

× vni

(
df 0

nk

dε

)∣∣∣
ε=εn

k

. (A5)

Now, in the T → 0 limit, ∂ f 0

∂εn
k

= −δ(εn
k − εF), and hence the

second term in the above equation does not contribute, which
gives

�Morb = − e

h̄
Eiτ

∑
n

∫
d3k

(2π )3 �mn,orb(�k)vni

(
df 0

nk

dε

)∣∣∣∣
ε=εn

k

= e

h̄
Eiτ

∑
n

∫
d3k

(2π )3
f 0
nk

[
∂ki �mn,orb(�k)

]
. (A6)

Comparing the above equation with M j =
Ki jEi gives the expression for the KME

FIG. 10. Computed variation (in circles) of (a) the reduced KME
density component κyx , and (b) the BCD density component dyx

around the � point along kx for the +P polarization. The same vari-
ation (indicated in diamonds) for −κyx and −dyx for the polarization
−P are also shown in (a), (b). The lines are for a visual guide. The
same variation of (c) κyx and (d) dyx in the presence of inversion
symmetry (black solid line), in absence of fourth-NN interorbital
hopping parameters t x and t y (dashed brown line), and in absence
of the first term (linear in �k) in Eq. (9) (green line with circles). The
parameters used are the same as in Fig. 7.
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response:

Ki j = − e

h̄
τ

∑
n

∫
d3k

(2π )3
mn,orb

j (�k)vni

(
df 0

nk

dε

)∣∣∣∣
ε=εn

k

= e

h̄
τ

∑
n

∫
d3k

(2π )3
f 0
nk

[
∂ki m

n,orb
j (�k)

]
. (A7)

3. Momentum space variation of κyx and dyx as obtained from
the model calculations

Figure 10 depicts the variation of the reduced KME den-
sity component κyx and the BCD density component dyx

along ky as obtained from the model calculation, discussed
in Sec. III D.
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