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Wave-particle correlations in multiphoton resonances of coherent light-matter interaction
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We discuss the conditional measurement of field amplitudes by a nonclassical photon sequence in the
Jaynes-Cummings (JC) model under multiphoton operation. We do so by employing a correlator of immediate
experimental relevance to reveal a distinct nonclassical evolution in the spirit of Foster et al. [Phys. Rev. Lett.
85, 3149 (2000)]. The correlator relies on the complementary nature of the pictures obtained from different
unravelings of a JC source master equation. We demonstrate that direct photodetection entails a conditioned
separation of timescales, a quantum beat, and a semiclassical oscillation, produced by the coherent light-matter
interaction in its strong-coupling limit. We single out the quantum beat in the analytical expression for the
waiting-time distribution, pertaining to the particle nature of the scattered light, and find a negative spectrum of
quadrature amplitude squeezing, characteristic of its wave nature for certain operation settings. Finally, we jointly
detect the dual aspects through the wave-particle correlator, showing an asymmetric regression of fluctuations to
the steady state which depends on the quadrature amplitude being measured.
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I. INTRODUCTION

Planck suggested [1] that “one should first try to move
the whole difficulty of the quantum theory to the domain of
the interaction of matter with radiation.” The suggestion was
followed up with enough rigor in the relevant proposal by
Bohr, Kramers, and Slater (BKS) [2,3]. Although BKS did
not mention light particles, the continuous-wave amplitude of
ambient radiation interacting with matter was to determine
probabilities for discrete transitions between stationary states
[4] in the classical attitude of keeping waves and particles
separate. Their approach foundered since it failed to causally
connect the downward jump of an emitting atom to the subse-
quent upward jump of a particular absorbing atom, excluding
direct correlation between individual quantum events and
contradicting x-ray experiments [5,6]. In other words, the
proposal only allowed super-Poissonian photoelectron count
fluctuations [7]. Any experimental quest for the disallowed
correlations should then involve a method for engineering the
fluctuations of light on the scale of Planck’s energy quantum
[7–9].

Over the past two decades, the exquisite control acquired
over cavity and circuit QED implementations has reappraised
the very nature of Bohr’s [10] indivisible quantum jump [11]
alongside the manifestation of coherence in nonlinear optics
at the level where adding (or subtracting) a single photon
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shifts the resonance frequencies with distinct observational
consequences [12–21]. Nonlinearity is here to be understood
in terms of multiphoton transitions [22,23], i.e., the quantum-
mechanical substitute against the linear Schrödinger equation,
taking place within an energy spectrum influenced by the
light-matter coupling strength [8,24]. Two recent experiments
studying multiphoton resonances [18,20] report on nonclassi-
cal features evinced by ensemble-averaged quantities, mainly
revolving around second- and higher-order correlation func-
tions of the light scattered from an ion or a quantum dot. At the
same time, histograms in the phase space depicting real-time
single-shot data of both quadratures of the transmitted output
field [21] detail the breakdown of photon blockade.

Conditioned balanced homodyne detection (BHD) has
been proposed and implemented in [25,26] as an extension
[27] of the intensity correlation technique introduced by Han-
bury Brown and Twiss [28–34]. The proposal reveals the
tensions raised by wave-particle duality in a distinct manner
[7], by detecting light as particle and wave, its dual-character
roles: The measured wave property (radiation field ampli-
tude) is correlated with the particle detection (photoelectric
count). A certain amount of motivation in fusing the wave
and particle ideas about light [35] can be traced back to the
prominent nonclassicality of resonance fluorescence [36,37],
where we find squeezing [38] along the quadrature which
is in phase with the mean scattered field amplitude [39]. A
negative value of the corresponding normal-ordered variance
is precisely the source of antibunching [40,41] in the weak-
field limit, a direct association with the nonclassical statistics
of a phased oscillator [24,42]. More recently, the regression
of the resonance fluorescence source field has been measured
in the experiment of Ref. [43], while the amplitude-intensity
correlations of selected transitions in a three-level ladder atom
and a V-shaped atom are known to exhibit a characteristic
temporal asymmetry [44].
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FIG. 1. Unraveling scheme and dynamical system response func-
tion. This schematic diagram of the wave-particle correlator follows
from [25,47]. A fraction 1 − r of the input photon flux, originating
from the JC oscillator coherently driven at frequency ωd and with
strength εd , is directed towards a balanced homodyne detector (BHD)
outputting a photocurrent i(t ), while the rest (fraction r) is sent to
a photon counter, i.e., an avalanche photodiode (APD), triggering
the sampling of i(t ). The local oscillator (LO) phase is θ and its
frequency is set to ωd . Changing the values of r and θ leads to
different ME unravelings. The upper left part depicts the four-state
scheme used [51] to model a two-photon JC resonance in the sec-
ular approximation [53]. The effective two-photon Rabi frequency
is � = 2

√
2ε2

d/g, while the transition rates �3(2)1 and � are linear
combinations of the decoherence rates 2κ and γ [8,51].

How then does the quantum substitute to classical nonlin-
earity unfold in an explicitly open-system setup? To address
the question on what information can we operationally read
off from a quantum nonlinear source, in this paper we con-
sider the ability of the wave-particle correlator to produce
complementary unravelings of the source dynamics. When
the source field is small and nonclassical, its fluctuations
dominate over the steady-state amplitude; see, e.g., the giant
violation of classical inequalities for squeezed light [25,45].
In this work we move to a largely unexplored region of cavity
QED [26,46,47], one where intense quantum fluctuations pro-
duce a continual disagreement with the mean-field response
of the source in what defines a so-called strong-coupling
thermodynamic limit [48,49]. Instead of focusing on a third-
order correlation function by averaging over an ensemble of
homodyne current samples to recover a signal out of shot
noise, our interest is actually with what makes the homodyne
current record in individual realizations. We refer to this de-
composition as the wave-particle correlator unraveling of the
master equation (ME) according to the scheme depicted in
Fig. 1, combining conditional measurements with quantum
measurement [47]. Light emanating from a coherently driven
Jaynes-Cummings (JC) oscillator is split between two paths.
Photodetections along one of the arms trigger homodyne
measurements of the quadrature amplitudes, producing the
current i(t ).

Our narrative is structured as follows. In Sec. II we
formulate the driven-dissipative unconditional dynamical de-
scription of an ensemble-averaged evolution. Section III is

devoted to the derivation of an analytical expression for the
waiting-time distribution of the forward-scattered photons in
the limit of vanishing spontaneous emission for the two-state
atom, i.e., the so-called zero-system-size limit of absorptive
optical bistability, which is of special interest to the persis-
tence of photon blockade [48,49]. In Sec. IV we use the
minimal four-state model of a cascaded two-photon resonance
to derive analytical results for the transmission spectrum and
for the spectrum of squeezing. In Sec. V we detail the un-
raveling scheme based on the wave-particle correlator applied
to the light emanating from the JC oscillator under multipho-
ton resonance operation. Our main findings are discussed in
Sec. VI.

II. SOURCE MASTER EQUATION: DRESSING
OF DRESSED STATES IN ACTION

Without reference to any particular unraveling strategy, the
reduced density matrix of the open system evolves accord-
ing to the standard Lindblad ME carrying the many pictures
forward,

dρ

dt
≡ Lρ = − i[ω0(σ+σ− + a†a) + g(aσ+ + a†σ−), ρ]

− i[εd (aeiωd t + a†e−iωd t ), ρ]

+ κ (2aρa† − a†aρ − ρa†a)

+ γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (1)

where the terms of the first two lines on the right-hand side
correspond to the dynamical response function of the scat-
tering center: a coherently driven cavity mode a strongly
and resonantly coupled to a two-state atom (of transition fre-
quency ω0) with strength g � ω0 [50] and the last two terms
describe the two dissipative channels opened by the coupling
of the oscillator to the environment, i.e., photon loss from the
cavity at rate 2κ and spontaneous emission from the two-state
atom at rate γ . The experimenter controls the inputs to the JC
oscillator, tuning the frequency ωd of the drive and regulating
its strength εd , while they read outputs treated as excitations
of two independent zero-temperature reservoirs. Here we will
be operating under the hierarchy of scales g � 2κ, γ and
εd/g � 1, while there is a significant detuning between the
drive field and cavity mode �ωd ≡ (ωd − ω0) ∼ g to allow
for selectively exciting multiphoton resonances between the
dressed states in the manifold: |ξ0〉 = |0,−〉 and |ξn/(n+1)〉 =

1√
2
(|n,−〉 ∓ |n − 1,+〉) for n � 1, where |n,±〉 ≡ |n〉|±〉,

with |±〉 the upper and lower states of the two-state atom and
|n〉 the Fock states of the cavity field. For the minimal model
introduced in [51,52], the two-photon excitation occurs across
the ground state |ξ0〉 and |ξ3〉, while the cascaded decay is me-
diated by the first-excited doublet states |ξ1,2〉. The mediation
is observed through a coherent quantum beat [51], present in
any single realization we will meet.

To derive analytical results for two-time averages in
the steady state, we employ the minimal four-state model
and the quantum-regression formula [24] under the secular
approximation [53] and in the strong-coupling limit of non-
perturbative QED (g � κ, γ /2). Adiabatically eliminating the
intermediate states |ξ1〉 and |ξ2〉 leads to the effective ME
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FIG. 2. Conditioned separation vs unconditional coexistence of timescales in the particle aspect of light. (a) Sample trajectory of the
conditioned intracavity photon number 〈a†a(t )〉REC from the decomposition of the ME (1) under direct photodetection (r = 1) with the initial
condition ρ(0) = |1, −〉〈1,−|. The green (red crossed) strokes underneath indicate spontaneous (cavity) emission events. The surface plots
in (a) depict the transient conditioned Wigner function of the cavity field from the high to the lower photon excitation across the two cavity
emissions marked A and B, while the contour plots in both frames depict the unconditioned Wigner function from the steady-state numerical
solution of the ME (1) in MATLAB’s Quantum Optics Toolbox [54]. (b) Steady-state waiting-time distribution of the forward-scattered light,
Wss(τ ) ≡ κ−1wss,→(τ ) from Eq. (5), analytically derived from the minimal model and plotted for two different values of the driving strength
�/κ = 10/

√
2 for (i) [corresponding to the same drive strength as in (a)] and 1/

√
2 for (ii). The lower inset depicts the numerically determined

Wss(τ ) from the quantum regression formula, alongside the superposition of the quantum beat to the first half period of the Rabi oscillation.
Here g/κ = 1000 and (a) γ /2κ = 1 and (b) γ /2κ = 0. For (a) a Monte Carlo algorithm was developed ad hoc in MATLAB using a basis
truncated at the 14-photon level.

[Eq. (18) of Ref. [51]]

dρ

dt
= L̃ρ ≡ −(i/h̄)[H̃eff , ρ] + �32D[|ξ2〉〈ξ3|](ρ)

+ �31D[|ξ1〉〈ξ3|](ρ) + �D[|ξ0〉〈ξ1|](ρ)

+ �D[|ξ0〉〈ξ2|](ρ), (2)

with an effective Hamiltonian modeling the driving of a two-
photon transition,

H̃eff ≡
3∑

k=0

Ẽk|ξk〉〈ξk| + h̄�(e2iωd t |ξ0〉〈ξ3| + e−2iωd t |ξ3〉〈ξ0|).
(3)

The intermediate states are not to be discarded since they take
part in the cascaded process. The shifted energy levels dressed
by the drive as second-order corrections in εd/g are ‘

Ẽ0 = E0 + h̄δ0(εd ) = h̄
√

2ε2
d/g, (4a)

Ẽ1 = E1 + h̄δ1(εd ) = h̄
{
ω0 − g − [(20 + 19

√
2)/7]ε2

d/g
}
, (4b)

Ẽ2 = E2 + h̄δ2(εd ) = h̄
{
ω0 + g + [(20 − 19

√
2)/7]ε2

d/g
}
, (4c)

Ẽ3 = E3 + h̄δ3(εd ) = h̄
(
2ω0 −

√
2g −

√
2ε2

d/g
)
, (4d)

while the effective two-photon Rabi frequency is � =
2
√

2ε2
d/g [52]. In the effective ME (2), we define D[X ](ρ) ≡

XρX † − (1/2){X †X, ρ}, while the transition rates between
the four levels, in the special case where γ = 2κ , are [51]

�31 ≡ γ

4
+ (

√
2 + 1)2 κ

2
= γ

4
[1 + (

√
2 + 1)2], (5a)

�32 ≡ γ

4
+ (

√
2 − 1)2 κ

2
= γ

4
[1 + (

√
2 − 1)2], (5b)

� ≡ γ

2
+ κ = γ . (5c)

Including perturbative corrections, the two-photon reso-
nance must be excited with a drive frequency ωd obeying
2ωd = (Ẽ3 − Ẽ1)/h̄ = 2ω0 − √

2g + δ3(εd ) − δ0(εd ), yield-
ing �ωd ≡ ωd − ω0 = −g/

√
2 − √

2ε2
d/g. The effective ME

(2) governs the evolution of the matrix elements in the
dressed-state basis and needs to be solved twice [24], first
to obtain the steady-state density matrix ρss and second to
advance the argument of the evolution up to the time τ .

Three timescales revealed by the minimal model are
present in the unraveling of Fig. 2(a) under direct photode-
tection as well as in the numerically obtained waiting-time
distribution of Fig. 2(a). The fastest of these three corre-
sponds to the quantum beat, with frequency equal to ν ≡
(Ẽ2 − Ẽ1)/h̄ = 2g + δ2 − δ1 = 2g + O(ε2

d/g). An intermedi-
ate timescale, which is missed in the secular approximation
and therefore in the analytical treatment, is present in the nu-
merically extracted evolution due to the asymmetry between
the excitation paths |ξ3〉 → |ξ1〉 → |ξ0〉 and |ξ3〉 → |ξ2〉 →
|ξ0〉, since �31/�32 ≈ 5.8 for γ /2κ = 0 [see Sec. 3.2 of [51]
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FIG. 3. Conditional quantum beat frequencies in the transient. A sample trajectory of the conditional cavity photon number under direct
photodetection is shown for the same parameters used in Fig. 2(a) except for the initial pure state, which is now set to ρ(0) = |3, −〉〈3,−|. The
dominant quantum beat frequency of oscillation in the three segments A, B, and C of the evolution is ωQB = 2

√
3g, 2

√
2g, and 2g, respectively.

Red solid lines mark the cavity emissions and the blue dashed line indicates a spontaneous emission. A Hilbert space truncated at the 25-photon
level was used in the Monte Carlo algorithm.

and, e.g., the field-amplitude oscillations in Fig. 6(a)]. In a
frame rotating with the drive and for �ωd = −g/

√
2, the

unperturbed energies of the intermediate states are E (0)
1,2 =

g(1 ∓ √
2)/

√
2, whereas the outer states |ξ3〉 and |ξ0〉 have

zero energy. It follows that the excitation path |ξ3〉 →
|ξ1〉 → |ξ0〉 is associated with a periodic structure including
2
√

2/(
√

2 − 1) ≈ 6.8 quantum beat cycles, while the path
|ξ3〉 → |ξ2〉 → |ξ0〉 is associated with a period of about 1.2
times the beat cycle, manifested as an occasional deviation
from the pattern dictated by the dominant path. The slowest
timescale corresponds to the semiclassical oscillation with
frequency 2� = 4

√
2ε2

d/g [52] and is associated with driving
a saturable (effective) two-level transition, similar to ordinary
resonance fluorescence.

Numerical results show that initializing the JC oscillator at
a state |n,−〉 with high excitation n outside the manifold of
the minimal model devised to describe the steady state cre-
ates a sequence of transient quantum beats in the conditional
emission rate 2κ〈a†a(t )〉REC, with decreasing frequencies
2
√

ng, 2
√

n − 1g, . . . as we move down the JC ladder in re-
sponse to successive quantum jumps. The initial condition
chosen in Fig. 3 activates a quantum beat formed between
the dressed states |ξ5〉 and |ξ6〉 which is interrupted by the
first jump at κt1 ≈ 0.22. Another quantum beat of decreased
frequency develops involving the couplet states |ξ4〉 and |ξ3〉,
intertwined with an emerging semiclassical oscillation; this
pattern is again interrupted at κt2 ≈ 0.53. Segment C corre-
sponds to a quantum beat of frequency 2g, the one accounted
for by the minimal model and involving the first-excited cou-
plet states |ξ2〉 and |ξ1〉. The evolution from that point onward
resembles the conditional separation of timescales shown in
Fig. 2(a).

III. PARTICLE ASPECT: INTENSITY CORRELATION
AND WAITING-TIME DISTRIBUTION

Armed with these observations regarding the timescales
involved in the coherent part of the dynamical evolution,

we activate only one arm of the wave-particle correlator to
formulate our first unraveling of the source master equation.
Furthermore, from now on we operate in the so-called limit
of zero system size γ /2κ → 0 [8,55] in which the length
of the Bloch vector is preserved during the evolution, while
the system-size scale parameter nsc,w = (γ /2

√
2g)2 akin to a

weak-coupling thermodynamic limit gives its place to nsc,s =
(g/2κ )2, whose divergence defines a strong-coupling limit
[48].

We start by setting r = 1. Figure 2, from which we de-
duced the relevant timescales, is now seen from a different
perspective: It introduces us to the main departure from the
unconditional ME dynamics, namely, to the theme of a con-
ditioned separation between a fast and a slow timescale,
precipitated in this particular case by spontaneous emissions.
Preparing the JC oscillator in a pure state, in particular, in |n =
1,−〉 (an equal-weight superposition of the dressed states |ξ1〉
and |ξ2〉), generates a coherent evolution dominated by a quan-
tum beat of frequency ν ≈ 2g until the first quantum jump.
Such a collapse marks the onset of significantly slower semi-
classical Rabi oscillations of frequency 2� = 4

√
2ε2

d/g �
2g, a feature familiar to us from the saturation of a two-level
transition [24,56]. An intermediate timescale, of a period dur-
ing which about seven quantum beat cycles are completed, is
also present owing to the asymmetry between the excitation
paths |ξ3〉 → |ξ1〉 → |ξ0〉 and |ξ3〉 → |ξ2〉 → |ξ0〉 [51]. This
trend is interrupted by a cavity emission of the second photon
from the pair, bringing the cavity mode to a lower-excitation
state and reviving the quantum beat for a short while. Con-
ditioned phase-space distributions of the cavity field at the
two ends of the jump show a transition from an odd-parity
superposition to the Wigner function of a single-photon-added
coherent state (SPACS), evidence of the “smooth transition
between the [particlelike] and wavelike behavior of light”
[57]. Note the reliance on a conditional measurement, the
central element underpinning the generation of the quantum
trajectory depicted in Fig. 2: In the experiment of [57] a seed
coherent field is injected into the signal mode of a parametric
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amplifier, and the conditional preparation of the SPACS takes
place every time a single photon is detected in the correlated
idler mode.

Let us keep following further the trajectory generated by a
direct-photodetection unraveling of the ME. The emission of
the first photon from the second pair reinitiates the semiclassi-
cal oscillation, but now one where the superimposed quantum
beat does not feature as prominently. This is due to the weaker
participation of the states |ξ1〉 and |ξ2〉 in the conditioned
state resulting after the second spontaneous emission event.
The second recorded photon emission in the forward direction
follows an even-state superposition in the cavity-field distri-
bution, which is again reduced to a conditioned state with
the Wigner function of a SPACS. Both quantum-superposition
states in the distributions at the two ends of the jump are
framed by remnants of steady-state bimodality.

To assess the statistics of the light field stemming from
its corpuscular nature, we have derived the waiting-time dis-
tribution of the forward-scattered radiation [58–60] as (see
Appendix A)

wss,→(τ )/2κ = 1

2

[
1

2
e−κτ + 1

6
e−κτ cos(ντ )

]

+ 3�2e−3κτ/2

9κ2 − 16�2
sinh2

(
τ
√

9κ2 − 9�2

4

)
,

(6)

an expression plotted in Fig. 2(b). The time τ waited between
successive photoelectric emissions detected with perfect ef-
ficiency follows the superposition of the quantum beat [term
proportional to cos(ντ )] onto Rabi oscillations, the latter be-
ing developed as a characteristic ringing for increasing drive
strength [last term in Eq. (5)]. In contrast to ordinary reso-
nance fluorescence, the distribution minima do not reach zero
but are rather bound by the asymptote κ 1

3 e−κτ defined by the
occupation of the intermediate levels in the cascaded process.
The higher bound constraining the superposition of oscilla-
tions is reached in the limit εd/κ � 1. Figure 2(b) shows very
good agreement between Eq. (5) and the numerical solution of
the ME (1) combined with applying the quantum regression
formula.

IV. WAVE ASPECT: SPECTRUM OF SQUEEZING

Setting r = 0 cancels the triggering in the wave-particle
correlator and actuates solely the BHD arm, typically used for
the measurement of amplitude squeezing based on the ability
of light to interfere with a strong coherent local oscillator (LO)
field. These signatures indicate the continuous (wave) charac-
ter of light. The spectrum of squeezing can be calculated by
constructing the photocurrent autocorrelation i(t )i(t + τ ) for
the selected quadrature of the field Aθ ≡ 1

2 (ae−iθ + a†eiθ ) as a
time average over ergodic records [61] and taking the Fourier
transform [8].

Using once again the quantum regression formula, we
have derived analytical expressions for the normal (denoted
by : :) and time-ordered variance 〈:Aθ (0)Aθ (τ ):〉ss for two-
photon resonance conditions (see Appendix B). For very
low intracavity photon numbers, two of the peaks in the
Fourier cosine transform (those corresponding to transitions

between the ground state and the first-excited couplet) turn
negative at low values of drive εd/κ , an effect which is
maximized in the direction θ = π/4. This direction is orthog-
onal to the antisqueezed quadrature along which steady-state
bimodality develops for stronger drive fields [see Fig. 5(a)
and [62]]. Examples of a negative spectrum of squeezing
are given in Figs. 4 and 6(a) in different regimes of the JC
nonlinearity.

Let us now revert to unconditional dynamics obeying
the master equation (1) with reference to the nonclassi-
cal attributes of the particle and wave aspects separately,
each revealed by a suitable multitime correlation function.
Figure 4 presents the complementary nonexclusive probabil-
ity densities expressed through the normalized second-order
correlation function [59] for the forward-scattered field. We
witness the transition from photon bunching to antibunch-
ing as steady-state bimodality builds up alongside a more
pronounced Rabi splitting. Consequences of this change in
photon statistics are revealed in the individual quantum trajec-
tories of Figs. 5(a) and 5(b), where the two occurring photon
emissions are being spaced further apart in the course of an
unraveling which combines both particle and wave aspects of
light. When we move away from the two-photon resonance
peak we come across a superposition of quantum beats with
different frequencies and smaller amplitudes [see Fig. 4(d)],
a consequence of significant detuning of the drive field from
an effective two-level resonance structure formed between the
dressed JC eigenstates.

V. PARTICLES TRIGGERING THE SAMPLING OF WAVES

At this stage, let us put both arms in operation by set-
ting r = 1

2 to produce a sampling of a nonlinear stochastic
Schrödinger evolution solved by the conditioned wave func-
tion |ψc(t )〉. Our interest is with the full function of the
wave-particle correlator, with reference to Fig. 1, in its ability
to jointly detect the dual aspects of the incoming radiation.
The set (r, θ ) determines each one of the infinite unravelings
of the ME: 0 < r < 1, while the phase θ of the local oscillator
selects the quadrature of interest. The negative spectrum of
squeezing we previously depicted for the two-photon reso-
nance driving of the JC oscillator signifies a redistribution
of fluctuations between the different quadratures of the cavity
field. Here we aim to analyze the quantum fluctuations of the
field as ostensible deviations from the steady state, combining
conditional measurements with the process of quantum mea-
surement.

We write the master equation for the source, a driven JC os-
cillator in its zero-system-size limit γ /2κ → 0, extended now
to include the local oscillator mode tuned to the frequency of
the coherent drive ωd . The density matrix ρ̃ of the composite
system in a frame rotating with ωd reads [26]

dρ̃

dt
= − i[−�ωd (σ+σ− + a†a) + g(aσ+ + a†σ−), ρ̃]

− i[εd (a + a†), ρ̃] + κ (2aρ̃a† − a†aρ̃ − ρ̃a†a)

+ κLO(2cρ̃c† − c†cρ̃ − ρ̃c†c) + κLOβ[c† − c, ρ̃],
(7)
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FIG. 4. Photon blockade and intensity correlation functions. (a) Steady-state intracavity photon number obtained from the numerical
solution to the ME (1), plotted against the (absolute value of the) scaled drive detuning |�ωd |/g for three increasing values of the drive strength
εd/g, 0.03, 0.055, and 0.16 in one-to-one correspondence to the three resonance sequences of growing excitation in the cavity. Intersection 1
corresponds to the operation point selected for Fig. 5(a), 2 to Figs. 5(b) and 5(c), and 3 to Fig. 5(d). The three interaction points correspond
to the inputs for the wave-particle correlator whose outputs are depicted in Fig. 5. The steady-state intensity correlation functions of the
forward-scattered photons g(2)

ss (τ ) corresponding to these three operation points are plotted in frames (b), (c), and (d), respectively. The two
insets in (b) and (c) depict the unlabeled spectrum of squeezing Sθ

→(ω) against (ω − ω0)/κ , calculated from Eq. (B19) and the same conditions
as in Figs. 5(a) (for θ = 3π/4) and 5(c) (for θ = π/4), respectively. The inset in (d) focuses on the initial repetitive pattern formed by the
superposition of quantum beats corresponding to Fig. 5(d). The intensity correlation functions have been numerically calculated in MATLAB’s
Quantum Optics Toolbox [54] using the quantum regression formula [24] in a Hilbert space of 14-photon levels.

FIG. 5. Sampling a homodyne current under low-amplitude nonlinearity. Individual trajectories of the conditioned intracavity photon
number (positive-value plots) and the conditioned field (plots with alternating sign) are measured for r = 0.5 with the initial condition ρ(0) =
|1, −〉〈1,−| at different values of the driving frequency and strength (�ωd/g, εd/g): (a) (−0.7114, 0.03), (b) and (c) (−0.7114, 0.055), and
(d) (0.545, 0.16). The inset contour plots in each frame depict the steady-state Wigner function, while the dashed white line indicates the
direction set by the phase θ of the LO. The two additional insets in (d) depict the variation of the correlation function of the forward-scattered
photons g(2)

ss (τ ) over an average photon lifetime, at the peaks of the three-photon (n = 3) and four-photon (n = 4) resonances for εd/g = 0.16.
The shaded insets of (b) and (c) depict unconditional wave-particle correlation functions hπ/4(τ ) and h3π/4(τ ), respectively, normalized to unity
at long delays. In all frames, g/κ = 200 and γ /2κ = 0. A Monte Carlo algorithm unraveling the ME (1) under the action of the wave-particle
correlator was developed ad hoc in MATLAB using a basis truncated at the 14-photon level [63].
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FIG. 6. Wave-particle correlator unraveling the ME in a direction orthogonal to steady-state bi(tri)modality. (a) Individual trajectory of the
conditioned intracavity photon number (positive-value plot in blue) and the conditioned field (plot with alternating sign in orange) forming
part of the homodyne photocurrent [see Eq. (9)] for r = 1

2 . The operation point is the same as in Fig. 5(a), except for the phase of the local
oscillator, which is set to θ = π/4. Inset (i) depicts the unlabeled spectrum of squeezing Sθ

→(ω) against (ω − ω0)/κ (upper plot) on top
of the transmission spectrum T (ω) (lower plot) calculated from Eq. (B18) (the four peaks labeled a, b, c, and d correspond to transitions
|ξ3〉 → |ξ2〉, |ξ1〉 → |ξ0〉, |ξ3〉 → |ξ1〉, and |ξ1〉 → |ξ0〉, respectively), while inset (ii) depicts a contour plot of the steady-state Wigner function.
(b) Schematic representation of the conditioned Wigner function (two projections) of the intracavity field at the time κtmax ≈ 9.95 when the
conditional photon number plotted in Fig. 5(d) reaches its maximum 〈a†a〉REC,max ≈ 2.74. The zero level is colored in green, midway between
the main peak (yellow) and dip (blue).

where c and c† are the raising and lowering operators for
the local oscillator driven mode with excitation amplitude β.
Under the BHD scheme of Fig. 1, the total measured fields at
the photodetectors 1 and 2 (in photon flux units) read

EBHD1,2 = ±i
√

κLOc +
√

κ (1 − r)a (8)

and the field measured at the photon-counting detector is

Ecount =
√

2κra. (9)

Under the assumption that the local oscillator mode is
unaffected by the signal mode, the density matrix fac-
torizes into a piece corresponding to the driven JC os-
cillator under photon blockade and a piece corresponding
to the local oscillator ρ̃ = ρ̃s|β〉〈β|. Defining the local

oscillator flux as f ≡ κLO|β|2, we construct the collapse
superoperators

SBHD1,2 ρ̃s = [±
√

f eiθ +
√

2κ (1 − r)a]ρ̃s[±
√

f e−iθ

+
√

2κ (1 − r)a†], (10a)

Scountρ̃s = 2κraρ̃sa
†. (10b)

Subtracting the action of superoperators (7) from the Liouvil-
lian of Eq. (5), we arrive at an expression for the superoperator
which governs the evolution of the unnormalized conditioned
density operator ρ̃s(t ),

(L−SBHD1,2 −Scount )ρ̃s = −i[−�ωd (σ+σ− + a†a)

+g(aσ+ + a†σ−)+ εd (a + a†), ρ̃s]

−κ (a†aρ̃s + ρ̃sa
†a) − f ρ̃s. (11)
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Equation (11) defines a non-Hermitian Hamiltonian which
propagates the conditioned wave function |ψc(t )〉 of the sys-
tem between measurements whose action is defined by the
superoperators (10).

There are two types of detections which take place under
the conditioned BHD measurement scheme. The first comes
from Eq. (10b) and corresponds to detection clicks at the
avalanche photodiode (APD). These collapses occur with
probability 2κr〈ψc(t )|a†a|ψc(t )〉dt . The second type of col-
lapses concerns the clicks registered through the BHD. In any
realistic homodyne measurement the local oscillator photon
flux f is many orders of magnitude larger than the signal
flux, here 2κ (1 − r)〈ψc(t )|a†a|ψc(t )〉. This means that under
the action of (8), a photoelectric emission corresponds with
high probability to an annihilation of a local oscillator photon.
There is only a small probability f /2κ〈ψc(t )|a†a|ψc(t )〉 that
a photon originated from the JC oscillator. We should note
here that these two possibilities exist as a superposition and
not as a classical choice, either one or the other. Despite the
fact that the collapses are very small, on the characteristic
timescale (2κ )−1 for fluctuations in the signal field they occur
very often. The quantum mapping into a stochastic differen-
tial equation, i.e., a Schrödinger equation with a stochastic
non-Hermitian Hamiltonian, involves a coarse graining in
time, an expansion of the nonunitary evolution in powers of√

2κ (1 − r)/ f , and the consideration of a stochastic process
for the number of the emitted photoelectrons which depends
on a conditioned wave function that satisfies the very same
Schrödinger equation. Taking that path leads to the following
expressions for the difference in photocurrents between de-
tectors 1 and 2 (in Fig. 1), and the wave-function propagation
between photodetections at the APD:

di = −B[idt −
√

8κ (1 − r)〈Aθ 〉cdt − dWt ], (12)

d|ψc〉 =
(

1

ih̄
H ′dt +

√
2κ (1 − r)ae−iθ

× [
√

8κ (1 − r)〈Aθ (t )〉cdt + dWt ]

)
|ψc〉. (13)

Here |ψc〉 is the unnormalized wave function and H ′ is the
non-Hermitian Hamiltonian

H ′ ≡ HJC − ih̄κa†a

= − h̄�ωd (a†a + σ+σ−) + h̄g(a†σ− + aσ+)

+ h̄εd (a + a†) − ih̄κa†a. (14)

In Eqs. (12) and (13), 〈Aθ (t )〉c is the conditioned average
〈Aθ (t )〉c ≡ 1

2 〈ψc(t )|eiθa† + ae−iθ |ψ (t )〉, calculated with the
normalized conditioned wave function |ψc(t )〉, B is the detec-
tion bandwidth, and dWt is the Wiener noise increment, the
same in both Eqs. (12) and (13). In the Monte Carlo algorithm
developed to simulate the wave-particle correlator unraveling,
the stochastic differential equation (13) is solved by means of
an explicit order 2.0 weak scheme proposed by Kloeden and
Platen [63].

From the concrete visualization offered by the quantum
trajectory approach we gain significant understanding of the

departure from the steady-state profile, underlying the dy-
namical unfolding of multiphoton resonances in an explicitly
open-quantum-system setup. The complete picture is the com-
plement of all the separate pictures (an infinity of unravelings
are obtained for different values of r and θ ) and by the very
nature of quantum mechanics no single picture can substitute
for them all. In other words, the ME (1) carries the many
pictures forward in parallel and the individual trajectories
revealing the conditioned separation of timescales separate
these pictures out [59].

For an initial guidance on θ , we rely on the form of the
steady-state Wigner function from the solution to ME (1) and
select the phase of the LO along those field quadratures which
are characteristic of the development of nonlinearity as a func-
tion of the drive parameters (�ωd/g, εd/g). We first consider
an unraveling along θ = 3π/4, probing a direction close to the
antisqueezed quadrature, for a weak drive prior to the onset of
bimodality. Figure 5(a) shows a transient uninterrupted decay
of the quantum beat before a first cavity emission marks the
relaxation towards steady state, to be followed by a closely
spaced photon pair, indicating photon bunching and reviving
the quantum beat [we calculate g(2)

ss (0) = 2.17]. When the first
photon of a pair is emitted from the cavity, the conditioned
mean photon number [whence we obtain the collapse proba-
bility 2κ〈ψc(t )|a†a|ψc(t )〉dt] jumps upward; this ensures that
the second photon from the cascade will be emitted within a
short time, here τ < (2κ )−1 after the first. The quantum beat
on top of a segment of semiclassical evolution reappears as a
feature of coherent superposition between these two jumps.

Increasing the drive amplitude, we enter the regime of
steady-state bimodality where g(2)

ss (0) < 1. All but one of
the seven photon emissions visible in Fig. 5(b) are associ-
ated with jumps downward in 〈a†a(t )〉REC. After the initial
interruption of the beat, the semiclassical oscillation con-
verges to the two steady-state attractors, while quantum jumps
bring it close to the unstable state near the phase-space
origin. Contrary to what we expect from steady-state anti-
bunching, aligning the LO in the orthogonal direction (θ =
π/4) to the development of bimodality generated a sample
trajectory with a single closely spaced pair, stopping the
relaxation to the steady state with 〈a†a〉ss ≈ 0.54. At the
same time, the unconditional cross correlation of the inten-
sity and the field amplitude of the forward-scattered light,
hθ (τ ) = 〈Aθ (τ )〉c ≡ 〈a(τ )〉ce−iθ + c.c. (τ � 0), where 〈a〉c ≡
tr[aeLτ (aρssa†)], and its time-reversed version for τ � 0 [47]
reveal an asymmetry of fluctuations [46] depending on the
chosen value for θ . A pronounced temporal asymmetry of
intensity-field correlations before and after a trigger “click”
has been identified for three-level atoms in Ref. [44]. An
asymmetric hθ (τ ) rules out the validity of Gaussian statistics
and signals the breakdown of detailed balance in the region
of bimodality [46]. For photon numbers on the order of 10−4

where we note the presence of strong bunching (r = 1) [51]
and a negative spectrum of squeezing (r = 0), the correlation
function attains very large negative values, violating its classi-
cal bounds as a result of the anomalous phase of the amplitude
oscillation first noted for squeezed light in [25].

It is also interesting to note that the characteristic long
span of the quantum beat (owing to the purposefully selected
initial coherent-state superposition of the couplet states) for
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the two-photon resonance of Figs. 5(b) and 5(c) is replaced
by a weaker transient interference of beats for the trimodality
of Fig. 5(d), while the persistent semiclassical oscillations
are replaced by a pattern reminiscent of traditional amplitude
bistability involving two long-lived metastable states (to pro-
duce 〈a†a〉ss ≈ 0.88 with a critical slowing down [48,64] in
the average response) even when aligning the LO orthogonal
to steady-state phase-space trimodality. The two inset plots of
Fig. 5(d) testify to a reduced intensity correlation as higher-
order resonances are accessed for the same value of εd/g;
moreover, the photon stream is no longer antibunched at the
four-photon resonance peak.

Furthermore, a few background comments are in or-
der concerning the fluctuating conditioned field amplitude
〈ψc(t )|Aθ |ψc(t )〉 plotted in all frames of Fig. 5, in conjunc-
tion with the photon number. This quantity is of particular
importance since it forms part of the measured differential
photocurrent together with the Gaussian white noise. There
is a clear time asymmetry with respect to the origin set by
each trigger photodetection at the APD. The BHD backac-
tion tends to recover the symmetry, albeit in a background
of intense fluctuations. The backaction comes about because
of the quantum superposition of the local oscillator and the
JC source field. These two fields should not be thought of
as being separable since each time a local oscillator photon
is detected the evolution of the cavity field is affected. This
entails that the conditioned state |ψc(t )〉 at time t is correlated
with the shot noise at detectors 1 and 2 from the recent past.
Consequently, through the APD trigger clicks (the particle
aspect in the duality) we postselect a subensemble of the shot
noise which has been filtered through the dynamical response
function of the source in the course of its coherent evolution.

As a further instance of the wave-particle unraveling (with
r = 1

2 ), Fig. 6(a) depicts an individual realization correspond-
ing to a negative steady-state spectrum of squeezing (one
obtained for r = 0). Despite the presence of photon bunching
[with g(2)

ss (0) = 2.17; see Fig. 4(b)], the three photon emis-
sions are spaced further apart than the inverse of the average
photon lifetime (2κ )−1. Interestingly, the same number of
emissions occurs compared to the unraveling with θ = 3π/4
where the quadrature amplitude is larger [see Fig. 5(a)]. The
steady-state cavity photon number calculated from the so-
lution of the ME (1) is 〈a†a〉ss ≈ 0.16. In conjunction with
the photon emission probabilities, the conditioned Wigner
function depicted in Fig. 6(b), corresponding to the maximum
conditional emission probability plotted in Fig. 5(a), brings
two aspects of the dynamics together: Quantum interference
between dressed states produces a succession of peaks and
dips with alternating signs as remnants of steady-state bista-
bility, aligned in the direction imposed by the local oscillator
(set at θ = 0), once again, variations on the theme of con-
ditionally generating single- or few-photon-added coherent
states we encountered in Fig. 2(a). In the steady-state distri-
bution computed from the time-averaged density operator (the
time average is equivalent to the ensemble average since quan-
tum trajectories are ergodic [8]) the interference is interrupted
at random times, dephasing to the purely positive profiles of
Fig. 5.

The BHD detector of bandwidth � measures the fluctu-
ations in the field amplitude, i.e., the wave aspect in the

duality, before the arrival of another triggering photon [26].
To recover the signal out of the residual shot noise ξ (τ ) with
correlation function ξ (0)ξ (τ ) ∝ (�/Ns) exp(−�τ ), the en-
semble of Ns � 1 current samples initiated at the APD
triggers {t j} is to be averaged as [25,47] H(τ ) = (1/Ns)∑Ns

j=1 i(t j + τ ). Neglecting third-order moments and consid-
ering the limit of large detection bandwidth and negligible
residual shot noise (Ns → ∞), the average photocurrent H(τ )
is connected to the wave-particle correlation function hθ (τ ) of
the field fluctuations �a via the expression [26] (for a nonzero
steady-state field amplitude 〈a〉ss)

hθ (τ ) = lim
Ns→∞

hθ (τ ) = H(τ )

|〈a〉ss|
√

8κ (1 − r)

= 1 + 2
〈:�Aθ (0)�Aθ (τ ):〉ss

|〈a〉ss|2 + 〈�a†�a〉ss
, (15)

where Aθ ≡ 1
2 (ae−iθ + a†eiθ ) is the quadrature amplitude se-

lected by the local oscillator. From Eq. (15) we find that
assuming Gaussian statistics for a weak source field, the wave-
particle correlation of the fluctuations hθ (τ ) − 1 [see Eq. (11)]
and the spectrum of squeezing form a Fourier-transform pair,
which means that small violations of nonclassicality in one
part lead to large violations in the other (see [25] and Sec. 2
of [47]). On top of calculating unconditional quantum aver-
ages, we examine the regression of the fluctuations to steady
state in the course of single trajectories generated in the
wave-particle correlator unraveling. Note that the quantity
〈:�Aθ (0)�Aθ (τ ):〉ss appearing in Eq. (11) is equal to Rθ (τ )
introduced in Sec. IV, since 〈a〉ss = 0. Low strengths of the
drive operationally qualify as those for which the detected
forward photon emission stream is highly bunched [51].

For the two-photon resonance and under the secular ap-
proximation underlying the minimal model, 〈a〉c = 0, since
the matrix (aρssa†) resulting after the emission of the first
photon post steady state only contains diagonal matrix ele-
ments and the quantum beat, none of which are contained in
the dressed-state resolution of a [51]. The fact that 〈a〉c = 0
for every quadrature phase amplitude of the field is also sug-
gested by the circular symmetry characterizing the Wigner
function of the state 〈+|(aρssa†)|+〉 + 〈−|(aρssa†)|−〉. As
we have seen, in the general case hθ (τ ) involves 〈a〉c ≡
tr[aeL̃τ (aρssa†)] and vanishes for τ � 0, while for τ < 0 the
unconditional wave-particle correlation involves the average
tr[a†aeL̃|τ |(aρss)], which evaluates to zero as well (without
applying any coherent offset to the cavity output [25]). The
nonzero hθ (τ ), in which the intermediate timescale domi-
nates, and the asymmetric relaxation of the oscillations in the
individual realizations of Figs. 5(b) and 5(c) testify to the
departure of the quantum dynamics from the predictions of
the minimal model. In Fig. 5(d) we also find a large posi-
tive cavity-field amplitude following the photon number in a
pattern conforming to the conventional amplitude bistability.
Moreover, the displayed time asymmetry in the fluctuations in
principle precludes the connection of hθ (τ ) with the spectrum
of squeezing for very low strengths of the drive field exciting
a JC multiphoton resonance, since autocorrelations are time
symmetric for a stationary process [46,47]. For JC resonances
of higher order than second, examined in this work, even when
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the source field is weak (εd/κ � 1), preliminary numerical
results show that the unconditional wave-particle correlation
function is once more not symmetric with respect to the time
origin [the two inset plots in Figs. 5(b) and 5(c)], with the
asymmetry also being a function of θ .

VI. CONCLUSION

We have demonstrated notable departures from the un-
conditional ME dynamics in the conditional photon-counting
time-series generation as well as in the selection of the light
amplitude by a nonclassical photon stream for the wave-
particle correlator unraveling of a JC ME. The quantum beat,
i.e., a fast coherent oscillation revealing the JC spectrum with
its

√
n nonlinearity, is the common denominator in all realiza-

tions under multiphoton resonance operation. A conditional
separation of timescales unfolds in the course of a particu-
lar unraveling dictated by the selected quadrature amplitude
of the signal field. We have visualized the time-asymmetric
fluctuations of the field amplitude triggered by recordable
photon-counting sequences and have also explored the possi-
bility of an operational determination [65–69] of phase-space
quasiprobability distributions and photon-state superpositions
[70–72] for the different unravelings.

The dual nature of the measurement process, allowing
the use of quantum trajectory theory to unravel the ME in
two distinct ways, reappraises BKS’s proposal of light-matter
interaction by emphasizing the traceable coherent dynamics
[7]. In our discussion, we have seen that it does so in the
strong-coupling limit of light-matter interaction, one where
photon blockade persists [49], meaning that the discrepancy
between the mean-field predictions and the quantum dynam-
ics continues to grow as the relevant system-size parameter
nsc,s = (g/2κ )2 is sent to infinity [48]. In such a limit, fluc-
tuations dominate over the steady-state amplitude, and the
addition or subtraction of a few quanta, those organizing the
multiphoton resonances, plays a significant role in the experi-
mentally observable and contextual system response.
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APPENDIX A: DERIVATION OF THE WAITING-TIME
DISTRIBUTION

To assess the corpuscular nature of the forward-scattered
light, we employ the waiting-time distribution defined by con-
ditional exclusive probability densities. This quantity is given
by [58,59]

wss,→(τ ) = 2κ
trS[a†aeLτ (aρssa†)]

〈a†a〉ss
= 2κ trS[a†aeLτ (ρcond )],

(A1)

where L ≡ L − 2κaa† and ρcond ≡ aρssa†/〈a†a〉ss is the
(normalized) conditioned density matrix following the post-
steady-state emission of the first photon. We remark that

the intensity correlation function is instead given by [58,59]
g(2)

ss (τ ) = trS[a†aeLτ (ρcond )]/〈a†a〉ss to reflect an uncondi-
tional probability (with a Liouvillian L instead of L).

We move now to the minimal model in the dressed-
state basis, where L is replaced by L̃. Then the vector x ≡
(ρ00, ρ33, Im(ρ03))T solves the homogeneous system of equa-
tions ẋ = Mx, where

M =
⎛
⎝0 0 −2�

0 −3κ 2�

� −� −3κ/2

⎞
⎠, (A2)

with eigenvalues λ1 = −3κ/2 and λ2(+),3(−) = λ1 ± δ, with
δ ≡ |λ1|

√
1 − 16�2/9κ2. The solution of the above system of

equations can be written as

x(τ ) = Se�τ S−1x(0), (A3)

where � = diag(λ1, λ2, λ3), the columns of the matrix S are
the right eigenvectors of M, and the vector x(0) is populated
by the elements of the conditioned density matrix. The only
nonzero element is [x(0)]1 = (ρcond )00 = 1

2 (p1 + p2)/3p3 =
1
2 . Now, for the calculation of photon number under the action
of L, only the matrix element x2 = ρ33(τ ) is of interest, for
which we find

ρ33(τ ) = 2�2

9κ2 − 16�2
e−3κτ/2 sinh2

(
τ
√

9κ2 − 9�2

4

)
.

(A4)

The rest of the matrix elements under the evolution with L are
uncoupled, and we find the simple expressions

ρ11(τ ) + ρ22(τ ) = 1

3

⎡
⎣(√

2 + 1

2

)2

+
(√

2 − 1

2

)2
⎤
⎦e−κτ

= 1

2
e−κτ (A5)

and

ρ12(τ ) = ρ∗
21(τ ) = 1

12 e−κτ eiντ . (A6)

Finally, we express the photon-number operator in terms of
the dressed states in the truncated Hilbert space as [51,52]

a†a ≈ 1
2 (|1〉〈1| + |2〉〈2| + |2〉〈1| + |1〉〈2|) + 3

2 |3〉〈3|. (A7)

Putting the pieces together, we find

wss,→(τ ) = 2κ

(
1

2
{ρ11(τ ) + ρ22(τ ) + 2 Re[ρ12(τ )]}

+ 3

2
ρ33(τ )

)

= 2κ

[
1

2

[
1

2
e−κτ + 1

6 e−κτ cos(ντ )

]

+ 3�2

9κ2 − 16�2
e−3κτ/2 sinh2

(
τ
√

9κ2 − 9�2

4

)]
.

(A8)
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The terms in square brackets in the penultimate line, evaluated
at the minima of the quantum beat, define the lower asymptote
sL(τ ) = κ ( 1

2 e−κτ − 1
6 e−κτ ) = κ 1

3 e−κτ plotted in Fig. 2(b).
The upper asymptote sU (τ ) = κ ( 7

12 e−κτ + 3
2 e−3κτ/2) is ob-

tained for �/κ � 1.

APPENDIX B: DERIVATION OF THE
SQUEEZING SPECTRUM

For the spectrum of squeezing we will employ the quantum
regression formula to determine the normal and time-ordered
averages

〈a†(0)a(τ )〉ss = trS[aeLτ (ρssa
†)], (B1a)

〈a(τ )a(0)〉ss = trS[aeLτ (aρss)], (B1b)

where trS indicates the trace taken over the system degrees
of freedom. The equations of motion for the matrix elements
involved in these two averages follow from the effective ME
(2). They can be divided into two autonomous pairs, with

ρ̇01 = −�

2
ρ01 − i�ρ31, (B2a)

ρ̇31 = −�31 + �32

2
ρ31 − i�ρ01 (B2b)

and the complex-conjugate elements

ρ̇10 = −�

2
ρ10 + i�ρ13, (B3a)

ρ̇13 = −�31 + �32

2
ρ13 + i�ρ10, (B3b)

as well as

ρ̇02 = −�

2
ρ02 − i�ρ32, (B4a)

ρ̇32 = −�31 + �32

2
ρ32 − i�ρ02 (B4b)

and the complex-conjugate elements

ρ̇20 = −�

2
ρ20 + i�ρ23, (B5a)

ρ̇23 = −�31 + �32

2
ρ23 + i�ρ20, (B5b)

with initial conditions (at τ = 0) set by the quantum regres-
sion formula (B1a) as

ρ10(0) = 1√
2

p1, ρ20(0) = 1√
2

p2,

ρ01(0) =
√

2 + 1

2
ρ03,ss, ρ02(0) =

√
2 − 1

2
ρ03,ss,

ρ31(0) =
√

2 + 1

2
p3, ρ32(0) =

√
2 − 1

2
p3,

ρ13(0) = ρ23(0) = 0, (B6)

where p3 = 4�2/(9κ2 + 20�2) is the steady-state excitation
probability of |ξ3〉. Owing to the detailed balance estab-
lished in the steady state, the two intermediate levels |ξ1〉

and |ξ2〉 are occupied with probabilities p1 = (�31/�)p3 and
p2 = (�32/�)p3, respectively. The steady-state polarization
in the subspace of the driven transition is calculated as
ρ03,ss = i3κ p3/2�.

For a decay via the cavity channel, setting γ = 0, we
Laplace transform the two sets of equations to find

ρ(1,2)0(τ ) = p(1,2)√
2

e−κ|τ |
(

cos(μτ ) + κ

2μ
sin(μ|τ |)

)
, (B7)

ρ3(1,2)(τ ) =
√

2 ± 1

2
p3e−κ|τ |[cos(μτ ) + d(1,2) sin(μ|τ |)],

(B8)
with

d(1,2) = −
κ
2 p3 + i�p03,ss

μp3
= κ

μ
, (B9)

where μ ≡
√

�2 − κ2/4. The required first-order correlation
function then reads

〈a†(0)a(τ )〉ss = 1√
2

[ρ10(τ ) + ρ20(τ )]

+
√

2 + 1

2
ρ31(τ ) +

√
2 − 1

2
ρ32(τ ), (B10)

while 〈a†(0)a(τ )〉ss = 〈a†(τ )a(0)〉∗ss. For the correlator
〈a(τ )a(0)〉ss we now find

〈a(τ )a(0)〉ss = 1√
2

[ρ10(τ ) + ρ20(τ )], (B11)

where the matrix elements ρ10 and ρ20 satisfy the systems of
Eqs. (B3) and (B5), but now with initial conditions set by the
quantum regression formula (B1b),

ρ(1,2)0(0) =
√

2 ± 1

2
ρ30,ss, ρ(1,2)3(0) = 0. (B12)

This yields the simpler expressions

ρ(1,2)0(τ ) =
√

2 ± 1

2
ρ30,sse

−κ|τ |
(

cos(μτ ) + κ

2μ
sin(μ|τ |)

)
.

(B13)

We now consider decay via both channels with γ = 2κ .
The correlator 〈a†(0)a(τ )〉ss involves instead the matrix ele-
ments

ρ(1,2)0(τ ) = p(1,2)√
2

e−(3γ /4)|τ |
(

cos(μ′τ ) + γ

4μ′ sin(μ′|τ |)
)

(B14)

and

ρ3(1,2)(τ ) =
√

2 ± 1

2
p3e−(3γ /4)|τ |

× [cos(μ′τ ) + d ′
(1,2) sin(μ′|τ |)], (B15)

with

d ′
(1,2) = −

γ

4 p3 + i�p03,ss

μ′ p3
, (B16)
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where μ′ =
√

�2 − γ 2/16. As for the correlator 〈a(τ )a(0)〉ss,
we have

ρ(1,2)0(τ ) =
√

2 ± 1

2
ρ03,sse

−(3γ /4)|τ |

×
(

cos(μ′τ ) + γ

4μ′ sin(μ′|τ |)
)

. (B17)

For the spectrum of squeezing we need to calculate the normal
and time-ordered variance

Rθ (τ ) ≡ lim
t→∞ 〈:Aθ (t )Aθ (t + τ ):〉 ≡ 〈:Aθ (0)Aθ (τ ):〉ss , (B18)

where Aθ ≡ [a exp(−iθ ) + a† exp(iθ )]/2 and 〈: :〉 denotes
normal ordering. This gives

4Rθ (τ ) = exp(−2iθ ) 〈a(τ )a(0)〉ss + 〈a†(τ )a(0)〉ss

+ 〈a†(0)a(τ )〉ss + exp(2iθ ) 〈a†(0)a†(τ )〉ss

= 2 Re[exp(−2iθ ) 〈a(τ )a(0)〉ss + 〈a†(0)a(τ )〉ss].

(B19)

The normalized transmission spectrum is given by a sum of
Laplace transforms

T (ω) = 1

π

∑
i, j

Re[Pi j (s̃i j )], (B20)

with s̃i j = −i[(ω − ω0 + Ẽ j/h̄ − Ẽi/h̄)]/κ , while the spec-
trum of squeezing in the forward direction reads

Sθ
→(ω) = 2(2κ )

∫ ∞

0
dτ cos(ωτ )Rθ (τ )

= 4κ Re

(∫ ∞

0
dτ eiωτ Rθ (τ )

)
. (B21)

We express the result in terms of linear combination of the
general integral

I (ω; a1, b1, λ) =
∫ ∞

0
dt eiωt e−a1t

(
cos(b1t ) + λ

a1

2b
sin(b1t )

)
,

(B22)
distinguishing the cases where b1 =

√
�2 − a2

1/4 > 0 and
b1 = i|b1| = i

√
a2

1/4 − �2 . In the former case we find

I = 1

a2
1 + (ω + b1)2

{
1

2

[
a1

(
1 + λ

ω + b1

2b

)
+ i

(
ω + b1 − λ

a2
1

2b

)]}

+ 1

a2
1 + (ω − b1)2

{
1

2

[
a1

(
1 + λ

b1 − ω

2b

)
+ i

(
ω − b1 + λ

a2
1

2b

)]}
(B23)

and in the latter

I = 1

ω2 + (a1 + |b1|)2

{
1

2

[
a1

(
1 + |b1|

a1
− λ

1

2|b1| (a1 + |b1|)
)

+ iω

(
1 − λ

a1

2|b1|
)]}

+ 1

ω2 + (a1 − |b1|)2

{
1

2

[
a1

(
1 − |b1|

a1
+ λ

1

2|b1| (a1 − |b1|)
)

+ iω

(
1 + λ

κ

2|b1|
)]}

. (B24)
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