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Detecting entanglement by pure bosonic extension
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In the realm of quantum information theory, the detection and quantification of quantum entanglement stand as
paramount tasks. The relative entropy of entanglement (REE) serves as a prominent measure of entanglement,
with extensive applications spanning numerous related fields. The positive partial transpose (PPT) criterion,
while providing an efficient method for the computation of REE, unfortunately, falls short when dealing with
bound entanglement. In this study, we propose a method termed “pure bosonic extension” to enhance the
practicability of k-bosonic extensions, which approximates the set of separable states from the “outside”, through
a hierarchical structure. It enables efficient characterization of the set of k-bosonic extendible states, facilitating
the derivation of accurate lower bounds for REE. Compared to the semi-definite programming (SDP) approach,
such as the symmetric/bosonic extension function in QETLAB, our algorithm supports much larger dimensions
and higher values of extension k.
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I. INTRODUCTION

Entanglement, a feature of quantum mechanics that was
first described by Einstein, Podolsky, and Rosen [1], stands as
one of the most fascinating aspects of the field. As quantum
information theory has emerged, entanglement has come to
be recognized not just as a phenomenon, but as a resource
in many quantum information tasks, ranging from quantum
cryptography [2] and quantum teleportation [3], to quantum
computation [4]. Despite ongoing efforts to establish a uni-
versal criterion for detecting entanglement, it continues to be
an unresolved challenge, confirmed to be NP-hard [5].

For a given bipartite system AB with dim(HA) = dA and
dim(HB) = dB, a state ρAB is separable if it can be written in
a convex combination form

ρAB =
∑

i

piρ
(i)
A ⊗ ρ

(i)
B , (1)

where
∑

i pi = 1, pi � 0, ρ
(i)
A and ρ

(i)
B are local density matri-

ces in Hilbert spaces HA and HB, respectively. Otherwise, it
is entangled [6].

Among many methods for entanglement detection and
quantification, relative entropy of entanglement (REE) ER(ρ)
is one important quantity [7,8], which is defined as

ER(ρ) = min
ρ ′∈SEP

S(ρ||ρ ′) = min
ρ ′∈SEP

Tr[ρlnρ − ρlnρ ′], (2)
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where SEP denotes the set of separable states. ER(ρ) can
be considered as the optimal distinguishability of the state ρ

from separable states. The calculation of ER(ρ) necessitates
the resolution of an optimization problem [9,10], a task ren-
dered challenging owing to the imperative of characterizing
the separable set.

In practice, the computation of ER(ρ) can be achieved by
determining its upper and lower bounds. Various methods
exist for obtaining these bounds. For example, one can ap-
proximate the separable set from the “inside” using convex
hull approximation (CHA) [11,12], which results in an upper
bound Eu

R (ρ). On the other hand, the semi-definite program-
ming (SDP) method [13] can be employed to determine a
lower bound El

R(ρ) by optimizing over the set of states with
positive partial transpose (PPT) [14,15], which approximates
the separable set from the “outside”. However, it is well recog-
nized that a gap exists between the boundaries of the PPT set
and the separable set, where bound entanglement resides [16].
Within this region, the PPT criterion does not yield accurate
results.

Alternatively, k-symmetric/bosonic extension also approx-
imates the separable set from the “outside” [17]. Here,
we mainly focus on the set of k-bosonic extendible states �̄k ,
which is a convex subset of the set of k-symmetric extendible
states �k . A bipartite state ρAB is considered k-bosonic ex-
tendible if there exists a global quantum state ρAB1B2...Bk , which
is supported on the symmetric subspace of B1B2...Bk , and
preserves the marginals on ABi equal to ρAB. A hierarchy
structure has been proved in the set �̄k , i.e., �̄k+1 ⊂ �̄k , and
�̄∞ = SEP [18], explaining how this method approaches SEP
asymptotically. Owing to their convex nature, determining
whether a quantum state belongs to �̄k can also be formulated
as an SDP problem [19], which can then be resolved by
tools like QETLAB [20]. In principle, k-symmetric/bosonic
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FIG. 1. The figure illustrates the behavior of our PureB-ext
method in density matrix space, which approximates the separable
set (green ellipse) from outside. The lines sketch the boundaries
of the separable set (SEP), k-bosonic extendible set with pure pre-
images [PureB(k)], the set of states with positive partial transpose
(PPT), and density matrices (DM). From the maximally mixed state
ρ0, going along the direction of a quantum state ρ in density matrix
space, we can see a clear and sharp transition in REE across the
boundary state σ , which can then give a nice lower bound El

R(ρ )
even if ρ is a bound entangled state.

extension can yield a superior lower bound for ER(ρ) com-
pared to the one obtained via the PPT criterion, particularly
when k reaches a sufficient number.

It is worth noting that the k-symmetric/bosonic extension
bears relevance to the N-representability problem [21], which
is QMA-complete [22]. This implication suggests that, even
when assisted by large-scale fault-tolerant quantum comput-
ers, efficiently solving this problem in the worst-case scenario
remains improbable. As a result, the complexity of solving
SDP problems for the k-symmetric/bosonic extension esca-
lates rapidly as the value of k increases. The practicability of
tools like QETLAB is significantly limited, as they can only
address problems of small dimensions and few extensions.

In this paper, we propose a method to characterize the
k-bosonic extendible set �̄k , focusing on those k-bosonic
extendible states with pure pre-images. Through our inves-
tigation of the numerical range [23] of �̄k , we find that for
generic states on the boundary, their pre-images are always
pure when k exceeds a certain transition value k� related
to the dimensions of the subsystems A and B. Surprisingly,
we further observe that k-bosonic extendible states with pure
pre-images can characterize �̄k quite effectively even for the
interior states, giving a clear and sharp transition across the
boundary. This is what we refer to as the “pure bosonic exten-
sion”, denoted by PureB-ext, as depicted in Fig. 1.

By parametrizing pure k-bosonic states |ψAB1...Bk 〉 and
employing the gradient backpropagation technique, we can
obtain satisfactory lower bounds for REE in various cases,
including the region of bound entanglement. Compared to
the traditional SDP approach, such as the symmetric/bosonic
extension function in QETLAB, our algorithm can handle
much larger dimensions and provide more extensions.

This paper is organized as follows: Section II lays the
groundwork by introducing necessary definitions and facts,
while elucidating the motivation behind our research. The
pure bosonic extension (PureB-ext) methodology is intro-
duced in Sec. III, wherein we delineate the computation
process for the lower bound of REE through this method
and validate the effectiveness of PureB-ext with numerical
evidence. Section IV presents our calculation results in di-
verse scenarios, compared with results obtained using other
established methods. Finally, Sec. V hosts further discussions
and provides forward-looking perspectives on the topic.

II. PRELIMINARIES

A. Vectorization of density matrix space

To represent a d-by-d density matrix ρ ∈ Cd×d as a real
vector �ρ ∈ Rd2−1, we can find a Hermitian orthogonal basis
that contains identity such that ρ can be expanded in such a
basis with real coefficients. These coefficients can be viewed
as the real-space coordinates of the quantum state on the given
basis. For example, the Pauli matrices are commonly used for
2-by-2 density matrices. For higher dimensions, we can use
generalized Gell-Mann matrices {λi} [24], satisfying

Tr[λi] = 0, Tr[λiλ j] = 2δi j, λ
†
i = λi.

Then any d-by-d density matrix ρ can be written as

ρ = ρ0 + �ρ · �λ, (3)

where ρ0 = I/d is the maximally mixed state and �ρ =
(x1, x2, . . . , xd2−1) ∈ Rd2−1 satisfies

xi = 1
2 Tr[ρλi], i = 1, 2, . . . , d2 − 1.

With the above decomposition, every density matrix can
be mapped to a vector in a density matrix space as shown in
Fig. 1, where the maximally mixed state ρ0 corresponds to the
origin point �0. The distance between two density matrices ρ1

and ρ2 can be defined as the Euclidean distance between their
vectorized forms,

D(ρ1, ρ2) = ‖ �ρ1 − �ρ2‖2,

where ρ1 = ρ2 if and only if D(ρ1, ρ2) = 0. The length of
a quantum state ρ can then be defined as ‖�ρ‖2, i.e., the Eu-
clidean distance from the origin point, which is related to the
purity of the state ρ,

γ (ρ) = Tr[ρ2] = 1

d
+ 2‖�ρ‖2

2.

Since the purity cannot exceed 1, we can further obtain the
outermost boundary of density matrix space where ‖�ρ‖2 �√

(d−1)
2d .
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Given a set of quantum states S , we can also define the
distance between a state ρ and S as

D(ρ,S ) = min
ρ ′∈S

D(ρ, ρ ′). (4)

If ρ ∈ S , then D(ρ,S ) = 0. Otherwise, D(ρ,S ) > 0.

B. The set of k-extendible states

We recall some facts about k-(symmetric/bosonic) ex-
tendible states and their relationship to separability.

A bipartite state ρAB is said to be k-symmetric extendible
if there exists a global state ρAB1B2...Bk such that for any i, j ∈
{1, 2, ..., k},

TrB2···Bk [ρAB1B2···Bk ] = ρAB,

(IA ⊗ Pi j )ρAB1B2···Bk (IA ⊗ Pi j ) = ρAB1B2···Bk . (5)

Here, Pi j is a permutation operator that exchanges the
ith and jth subsystems in B1B2 . . . Bk , dim(HA) = dA and
dim(HBi ) = dB. The set of all k-symmetric extendible states,
denoted by �k , is convex with a hierarchy structure �k+1 ⊂
�k . Moreover, when k → ∞, �k converges exactly to the set
of separable states [17].

The k-bosonic extendible set �̄k is a convex subset of �k ,
which further requires the global state ρAB1B2...Bk is supported
on the symmetric subspace of B1B2 . . . Bk . Similarly, a hi-
erarchy structure arises in the set �̄k , i.e., �̄k+1 ⊂ �̄k , and
�̄∞ = SEP. In the following, we denote the set of all states
ρAB1B2···Bk supported on the symmetric subspace as Bk . Let
ϕk = TrB2...Bk , we know that �̄k = ϕk (Bk ).

The set of k-extendible states is known to be closely related
to the ground state of some (k + 1)-body Hamiltonians [25].
To elucidate this relationship, we focus on the bosonic exten-
sion and adopt the generalized Gell-Mann matrices {λi} as our
basis. For any ρ ∈ �̄k , there exists a ρ ′ ∈ Bk such that

Tr[λiρ] = Tr[λiϕk (ρ ′)] = Tr[ϕ∗
k (λi )ρ

′],

where ϕ∗
k is the adjoint map of ϕk . The expression Tr[λiρ] is

connected with an important concept known as the numerical
range (NR) as follows:

W ({λi}) = {(Tr[λ1ρ], ..., Tr[λd2−1ρ]) : ρ ∈ �̄k}
= {(Tr[A1ρ

′], ..., Tr[Ad2−1ρ
′]) : ρ ′ ∈ Bk}, (6)

where Ai = ϕ∗
k (λi ) and d = dAdB. W not only represents the

joint algebraic numerical range of �̄k on the basis {λi} but
also can be considered as the projection of Bk onto the low-
dimensional subspace constructed by {Ai}.

In practice, the k-bosonic extendible set �̄k can be ex-
plored through its NR, due to the one-to-one correspondence
depicted in Eq. (3). Here, the NR can be viewed as a graphical
representation of the given set, with the boundary of the set
being of prime importance. Based on the studies of numerical
ranges [23], it is known that the extreme point on the boundary
of W can be determined by the ground state of some Hamil-
tonian H = −∑

i niAi, where n̂ = (n1, n2, ..., nd2−1) ∈ Rd2−1

represents the unit normal vector on the boundary. Those
ground states belong to Bk since the bosonic symmetry of
the given Hamiltonian H . However, if for some direction �n�,
Hamiltonian H� exhibits degeneracy in its ground states that

implies the presence of a flat boundary, which may not be
obtained by pure states in Bk .

C. Degeneracy contraction on the boundary

According to the Ref. [26], there is a best possible bound
for the existence of degeneracy in a matrix subspace, which is
given by the following theorem.

Theorem 1. Let H be a m-dimensional subspace in the
space of n × n Hermitian matrices. If

m � (r − 1)(2n − r + 1),

then H contains a nonzero matrix H� such that the greatest
eigenvalues of H� is at least of multiplicity r, where 2 � r �
n − 1.

In essence, when (dAdB)2 − 1 � 2dAdk − 1, where dk is the
dimension of the symmetric subspace in B1 . . . Bk , degeneracy
can invariably be detected. However, as the dimension of the
symmetric subspace increases, the degeneracy tends to disap-
pear generically. The transition dimension for the symmetric
subspace can be estimated around 1

2 dAd2
B (the exact value

depends on the specific structure of the given matrix subspace,
in our case, they have bosonic symmetry).

Consequently, when k > k�, for randomly selected states
on the boundary of �̄k , they always have pure pre-images
|ψAB1...Bk 〉 ∈ Bk . But it is worth noting that we have not ex-
cluded the possibility of degeneracy in higher dimensions.
What we emphasize here is that in generic cases, there are
always no degeneracies.

III. METHODOLOGY

As informed by the discussion in the preceding section,
we recognize that the marginals of pure k-bosonic states
|ψAB1...Bk 〉 ∈ Bk on ABi can almost characterize the boundary
of �̄k when k surpasses a particular transition value k�.

We then proceed to investigate the above phenomenon
through some numerical analysis. For simplicity, we designate
the approach, which only considers the states with pure pre-
images as the “pure bosonic extension”, denoted as PureB-ext.

A. Parameterization

The generalized Dicke states form a complete orthogonal
basis for the symmetric subspace of B1 . . . Bk , which can be
written as

∣∣Dk
�w
〉 =

(
k!

w0!w1!...wdB−1!

)−1/2 ∑
wt(x)=�w

|x〉,

where wt(x) = �w means the number of particles on ith energy
level is wi(i = 0, 1, ..., dB − 1), satisfying the conservation of
particle number

∑
i wi = k. For example,∣∣D4

1,3

〉 = 1
2 (|0111〉 + |1011〉 + |1101〉 + |1110〉).

And the dimension of the symmetric subspace is

dk := dim
(
HB1...Bk

) =
(

k + dB − 1

dB − 1

)
= (k + dB − 1)!

(dB − 1)!k!
,

e.g., for the qubit case, the dimension is k + 1. Furthermore,
a recurrence relation can be obtained for generalized Dicke
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states,

∣∣Dk
w0,...,wdB−1

〉 =
dB−1∑
i=0

√
wi

k
|i〉 ⊗ ∣∣Dk−1

w0,...,wi−1,...,wdB−1

〉
. (7)

Based on the above knowledge, we can parametrize the
pure k-bosonic state |ψAB1...Bk 〉 as the following form:∣∣ψAB1...Bk

〉 =
∑
i, �w

ci, �w|i〉 ⊗ ∣∣Dk
�w
〉
. (8)

Then the corresponding marginal state on ABi can be obtained
as

ρAB = TrB2...Bk

[∣∣ψAB1...Bk

〉〈
ψAB1...Bk

∣∣]
=

∑
i, j, �w, �w′,r,s

ci, �wc∗
j, �w′Bk

�w �w′rs|i〉〈 j| ⊗ |r〉〈s|, (9)

where the marginal bosonic coefficient Bk
�w �w′rs can be derived

from the recurrence relation in Eq. (7),

Bk
�w �w′rs = 〈r|TrB2···Bk

[∣∣Dk
�w
〉〈

Dk
�w′
∣∣]|s〉

= 1

k

√
wrw′

sδw0,w
′
0
...δwr−1,w′

r
...δws,w′

s−1...δwd−1,w
′
d−1

.

B. Analysis

With the parametrization of |ψAB1...Bk 〉, we can efficiently
characterize pure states in Bk and subsequently investigate the
behavior of the PureB-ext across the boundary of �̄k .

We randomly select directions ρ̂ in the density matrix space
and evaluate the Euclidean distance defined in Eq. (4) between
the given state ρ and the marginals of all pure states |ψAB1...Bk 〉.
This evaluation is conducted repeatedly along the selected
directions, starting from the maximally mixed state ρ0 = I/d
and ending at the quantum state boundary. The boundary of
k-bosonic extendible set can be calculated exactly by SDP in
QETLAB [20] with the parameter bos = 1.

The numerical results are shown in Fig. 2 with bi-
partite system 2 ⊗ 2, 3 ⊗ 2, 2 ⊗ 3, 3 ⊗ 3 in the subfigure
(a)/(b)/(c)/(d) correspondingly. When k is relatively small,
e.g., k = 3 in subfigure (a) for 2 ⊗ 2 case, PureB-ext cannot
provide correct information about the exact boundary. When k
is large enough, e.g., k = 5, the sharp change of Euclidean dis-
tance given by the PureB-ext matches with the exact k-bosonic
boundary quite well. Therefore, k� = 4 can be considered
as a transition value for 2 ⊗ 2 system. This phenomenon is
consistently observed in all four subfigures. Additionally, we
note that the marginals of |ψAB1...Bk 〉 not only establish the
boundaries of �̄k but also effectively characterize the interior
states when k exceeds the transition value. A simple explana-
tion is that when k is large enough, the projection of those pure
states in Bk onto �̄k is sufficiently dense. One typical interior
state is the maximally mixed state ρ0 in 2 ⊗ 2, which has the
pure pre-image as∣∣ψAB1···B4

〉 =|0〉 ⊗ (
b
∣∣D4

0

〉 − a
∣∣D4

2

〉 + b
∣∣D4

4

〉)
+ c|1〉 ⊗ (∣∣D4

1

〉 + ∣∣D4
3

〉)
,

where a = 1
2
√

2
, b =

√
3

4 , c = 1
2 . For other dimensions, the an-

alytical form of the pure pre-image of ρ0 can be written in
the same way. However, the mechanism of the PureB-ext for
interior states is still unclear and needs further investigation.

FIG. 2. Squared Euclidean distance D(ρ,S )2 for various exten-
sion numbers. Here, S denotes the set of marginals of pure k-bosonic
states. The solid lines are the values computed by PureB-ext and the
dashed-vertical lines correspond to the exact k-bosonic boundaries
from SDP. The sharp transition implies the boundary of certain S.
Transition values k� can be computed by Eq. (10), which is consistent
with the numerical results as shown in the subtitles.

In conclusion, we conjecture that the marginals of pure k-
bosonic states can effectively characterize the set of k-bosonic
extendible states �̄k (for both boundary and interior states)
when k > k� = �k′ + 1�, where k′ satisfies(

k′ + dB − 1

dB − 1

)
= 1

2
dAd2

B. (10)

C. Optimization

With the pure bosonic extension, we can effectively charac-
terize the k-bosonic extendible set �̄k and efficiently compute
the objective functions over �̄k . One famous application is
that we can calculate the relative entropy of a quantum state
ρ over �̄k to obtain a lower bound for the relative entropy of
entanglement (REE),

El
R(ρ) = min

ρAB∈�̄k

S(ρ||ρAB), (11)

which can be calculated efficiently by optimizing the coeffi-
cients {ci, �w} of pure k-bosonic state |ψAB1...Bk 〉 in Eq. (8) whose
size is O(dAkdB−1), much smaller than the dimension of Bk .
As the value of k increases, the accuracy of the lower bounds
improves. A variational algorithm can be summarized below.

Algorithm 1. REE based on pure bosonic extension.

Input: ρ ∈ HA ⊗ HB, tolerance ε, extension number k
1: Initialization: generate {ci, �w} randomly
2: repeat
3: ρAB = ∑

i, j, �w, �w′,r,s ci, �wc∗
j, �w′ Bk

�w �w′rs|i〉〈 j| ⊗ |r〉〈s|
4: El

R = S(ρ||ρAB),∇El
R(gradient backpropagation)

5: Update {ci, �w} by gradient descent
6: until El

R converges up to tolerance ε

Output: El
R, {ci, �w}

The optimization can be divided into the forward pass
and the backward pass. The forward pass starts with the
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normalization of the trainable variables

ci, �w = c̃i, �w∑
i, �w |c̃i, �w|2 ,

where ci, �w on the left-hand side is the amplitude coefficient
to construct the pure k-bosonic state in Eq. (8) and c̃i, �w are
unnormalized and free-tuned parameters. Then, the reduced
density matrix (RDM) is evaluated using Eq. (9) instead of
explicitly constructing the generalized Dicke basis. To per-
form matrix logarithm for computing REE, we adopt the Padé
approximation [27] with hyperparameters m = 8 and k = 6,

log (X ) ≈ 2krm(X 1/2k
),

rm(X ) :=
m∑

j=1

w j
X − 1

t j (X − 1) + 1
,

where w j and t j are the weights and the nodes of the
Gauss-Legendre quadrature. With these techniques, the rel-
ative entropy of some given density matrix ρ with respect to
the RDM of the pure bosonic state |ψAB1...Bk 〉 can be calculated
efficiently.

In the backward pass, the gradient of the relative entropy
with respect to the trainable parameters p̃i, �w can be calculated
automatically by the PyTorch framework [28]. Most opera-
tions above can be backpropagated in the PyTorch framework
except the matrix square root used in the Padé approximation.
The chain rule for the matrix square root requires solving
the Sylverster equation [29] for which we use the algorithm
provided in the SciPy package [30]

With all gradients of the trainable parameters obtained
after the backward pass, the limited-memory BFGS algorithm
implemented in the SciPy package is applied with the con-
vergence tolerance 10−10. For such a nonlinear optimization,
which might contain many local minimums, we run the op-
timization program several times with different initial values.
Most numerical results presented in this paper are rerun three
times with the hope that the global minimum could be found.

IV. RESULTS

In this section, we mainly focus on the feasibility of our
algorithm for detecting entanglement in different situations
and compare it with other well-known algorithms, including
the PPT criterion [14,15], CHA method [11,12], and the sym-
metric/bosonic extension function in QETLAB [20]. Relative
entropy of entanglement (REE) is used as the entanglement
measure.

A. States with analytically known REE

We start with the famous Werner states for d ⊗ d bipartite
systems. They have the form

ρW (α) = 1

d2 − dα
(Id2 − αF ),

where F = ∑
i j |i j〉〈 ji| is a swap operator. Whether a Werner

state is entangled can be given by the PPT criterion. In other
words, when we calculate ER for Werner states, optimization
over either a separable set or a PPT set will give the same

FIG. 3. Results of the REE calculated by analytical method, PPT
criterion, CHA, and PureB-ext.

value. ER also has analytical form [31] as the following:

ER(ρW (α)) =
{

0, if α < 1
d

S
(
ρW (α)||ρW

(
1
d

))
, otherwise

.

We then consider d ⊗ d isotropic states, which have the form

ρI (α) = 1 − α

d2
Id2 + α|ψ+〉〈ψ+|,

where |ψ+〉 = 1√
d

∑
j | j j〉, i.e., maximally entangled state.

Similar to the case of Werner states, PPT criterion or analyt-
ical method [32] can be used to calculate ER. The analytical
form follows as

ER(ρI (α)) =
{

0, if α < 1
d+1

S
(
ρI (α)||ρI

(
1

d+1

))
, otherwise

.

Firstly, we calculate the REE for 3 ⊗ 3 Werner states and
isotropic states respectively, with the following approaches:
the analytical method, PPT criterion, CHA method, and our
method, PureB-ext. The results are shown in Fig. 3, which
demonstrates the numerical behavior of the PureB-ext com-
pared to others.
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TABLE I. Boundary values α� of 2 ⊗ 2 Werner states across
different k-symmetric/bosonic extendible sets. “NA” means it’s not
available within the acceptable time.

k Analytical PureB-ext Bos-ext Sym-ext

5 0.63636 0.63661 0.63650 0.63650
6 0.61538 0.61206 0.61556 0.61554
7 0.6 0.60019 0.60016 0.60017
8 0.58823 0.58846 0.58840 NA
9 0.57894 0.57918 0.57919 NA
10 0.57142 0.57165 0.57168 NA
11 0.56521 0.56547 0.56548 NA
12 0.56 0.56024 NA NA
16 0.54545 0.54575 NA NA
512 0.50146 0.50175 NA NA
8192 0.50009 0.50040 NA NA
65536 0.50001 0.50034 NA NA

The results obtained by the PPT criterion and CHA method
are consistent with the analytical curve while PureB-ext pro-
vides a series of satisfactory lower bounds that approach the
analytical results as the value of k increases. And we can see
the clear boundaries for each pure bosonic extension.

Then we compare the symmetric/bosonic extensions in
QETLAB with PureB-ext. QETLAB is a MATLAB toolbox
for quantum information that provides functions for determin-
ing whether a state is k-symmetric/bosonic extendible based
on convex optimization. Here, we list the boundary values α�

of 2 ⊗ 2 Werner states across different k-symmetric/bosonic
extendible sets, computed by different methods. We set a
threshold of ε = 10−7 to determine the boundaries of pure k-
bosonic extensions by computing REE. The results are shown
in Table I.

According to the previous study [33], symmetric and
bosonic extendible sets are identical when dB = 2. As a result,
the outcomes derived using the Sym-ext and Bos-ext functions
in QETLAB are consistent. The analytical values for different
extensions [34] are also included in the table for reference.
As we can see, PureB-ext effectively characterizes the k-
bosonic extendible set, providing highly accurate boundary
values (even though the threshold ε we choose will affect). On
the other hand, QETLAB is unable to manage large dimen-
sions, whereas our algorithm can handle tens of thousands of
extensions and asymptotically approach the boundary of the
separable set (α = 1

2 ).

B. Bound entanglement

In this section, our algorithm is utilized to detect bound
entangled states (BES), specifically PPT BES, a category
for which the PPT criterion fails to yield any entanglement
information. Prior research has presented a special family of
two-qutrit PPT BES [35], as the following:

ρ = 1

dAdB − dS
P⊥
S ,

where dA, dB are the local dimensions of HA ⊗ HB, S is a
subspace spanned by some unextendible product basis (UPB)

FIG. 4. Two-dimensional cross section spanned by two UPB
BES ρtiles and ρpyramid in the density matrix space. Using different
methods, we can obtain different boundaries to approximate the real
boundary of separable states. CHA approximates the boundary from
inside, while PPT and PureB-ext approximate the boundary from
outside. On this plane, the boundaries of quantum state (DM) and
PPT are identical. The bound entanglement is expected to hide in the
gap between CHA and PPT.

with dimension dS , and P⊥
S is the projector onto the orthogo-

nal complementary space of S .
Consider the case of 3 ⊗ 3 density matrices, where we

select two special BESs, ρtiles and ρpyramid with the respective
subspaces

Stiles = span{|0〉 ⊗ (|0〉 − |1〉), |2〉 ⊗ (|1〉 − |2〉),

(|0〉 − |1〉) ⊗ |2〉, (|1〉 − |2〉) ⊗ |0〉,
(|0〉 + |1〉 + |2〉) ⊗ (|0〉 + |1〉 + |2〉)}

Spyramid = span{|ψi〉 ⊗ |ψ2i mod 5〉, i = 0, . . . , 4},

where |ψi〉 = cos( 2π i
5 )|0〉 + sin( 2π i

5 )|1〉 + 1
2

√
1 + √

5|2〉.
Utilizing Eq. (3), we can convert them to their vectorized

forms, �ρtiles and �ρpyramid. On the two-dimensional cross sec-
tion spanned by these vectors, we delineate the boundaries
obtained by different approaches, including the PPT criterion,
CHA, and PureB-ext. These boundaries are the approxima-
tions of the real boundary of separable states, from inside
(CHA) or outside (PPT, PureB-ext). We achieve this by iden-
tifying the boundary states σ along different directions on this
plane and then compute ||�σ ||2. See Appendix A for detailed
procedures. The results are illustrated in Fig. 4.

From the figure, it is evident that the boundaries of PureB-
ext with k = 8, 32 lie between the boundaries of PPT and
CHA, certifying that PureB-ext can successfully detect some
bound entanglement within that region.

C. Random states

To compute the accuracy of PureB-ext for random states,
we generate 100 random directions in the 2 ⊗ 2 density matrix
space, then compute the length of the boundary state in each
direction for different extension numbers k. Subsequently, we

013249-6



DETECTING ENTANGLEMENT BY PURE BOSONIC … PHYSICAL REVIEW RESEARCH 6, 013249 (2024)

FIG. 5. Relative errors of PureB-ext for computing the length of
a boundary state σ , denoted by ||�σ ||2. One hundred random direc-
tions in 2 ⊗ 2 density matrix space are selected for each extension.
However, since the QETLAB cannot handle too large extension
number k, we only plot the results for k � 11.

plot the max/average relative error (assuming that QETLAB
provides the exact value) in Fig. 5. The average relative error
initially decreases and then remains constant. The plateau
arises because we set the converge tolerance in QETLAB
around 10−4 to avoid numerical instability. These results show
that our method is reliable for random states.

In Table II, the related computation time of determining
those boundaries is listed. The benchmark is performed on a
standard laptop with AMD R7-5800H, 16 CPU cores (hyper-
thread enabled), and 16GB memory. It is clear that the time
required by QETLAB increases exponentially with k, while

TABLE II. Computation time (in seconds) of determining the
boundaries of k-bosonic extensions in a 2 ⊗ 2 system. “–” means we
skip these numbers of extensions in comparison since PureB-ext is
nonsense if k is smaller than the transition value k� = 4 in this case.
And “NA” implies it is not available within the acceptable time.

k PureB-ext QETLAB

1 – 0.002 ± 0.019
2 – 0.003 ± 0.022
3 – 0.339 ± 0.564
4 6.312 ± 4.276 0.561 ± 0.727
5 7.762 ± 6.047 0.707 ± 0.796
6 8.974 ± 6.543 0.812 ± 0.835
7 10.358 ± 7.425 1.137 ± 0.945
8 10.041 ± 7.121 1.854 ± 1.460
9 9.954 ± 6.783 8.816 ± 6.756
10 9.844 ± 6.396 144.819 ± 106.711
11 9.911 ± 6.500 2496.404 ± 1839.132
16 8.294 ± 5.755 NA
64 7.570 ± 5.047 NA
256 7.788 ± 5.104 NA
1024 9.744 ± 5.715 NA
4096 18.493 ± 10.055 NA
16384 56.196 ± 29.903 NA

that required by PureB-ext increases linearly. This behavior
can be attributed to the fact that QETLAB stores the full den-
sity matrix of size 2k+1 × 2k+1, while PureB-ext only requires
a vector of size 2(k + 1).

V. DISCUSSIONS

In the present study, we unveil a methodology named “pure
bosonic extension” (PureB-ext). This approach facilitates ef-
ficient characterization of the k-bosonic extendible set and
enables precise computation of lower bounds for the rela-
tive entropy of entanglement (REE). Our numerical results
suggest that PureB-ext is effective, resource-efficient, and
able to handle large dimensions. In comparison to traditional
convex optimization methods, PureB-ext requires relatively
few parameters to optimize, which makes it outperform the
bosonic extension function in QETLAB, a widely used tool
for quantum entanglement. However, PureB-ext is not “silver
bullet” since it is generically exact and we may identify some
special directions in the density matrix space that it struggles
to handle (see Appendix B). Also, the mechanism of PureB-
ext is not fully understood. We leave the investigation of these
issues for future work.

The symmetric/bosonic extension proves to be a versatile
tool, not merely employed to characterize the set of separable
states, but also relevant to a variety of other domains. These
include the quantum marginal problem [36], and quantum key
distribution [37], among others.

In a recent study, a hybrid quantum-classical algorithm
has been proposed for detecting and quantifying entangle-
ment [38]. Our pure bosonic extension method can also be
adapted for use in such a hybrid algorithm. With the assistance
of NISQ-era devices, this hybrid approach can be used to
effectively handle larger dimensions. We have successfully
demonstrated it for the 2 ⊗ 2 case, with the quantum circuit
ansatz and numerical results provided in the Appendix C.

The set of pure states is not convex, but our research has
shown that it is connected to the convex set of mixed states.
There have been recent studies exploring this connection
[39,40]. We hope that our paper will inspire further research
into the nonconvexity in quantum information.
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APPENDIX A: CALCULATION OF ||�σ||2

Here, we explain how to compute the length of the bound-
ary state σ along the given direction σ̂ for different methods
we used in the main text. For simplicity, ||�σ ||2 is denoted as
β.

Boundary of the density matrix βDM. The smallest eigen-
value of the density matrix is zero,

λmin(ρ0 + βDMσ̂ · �λ) = 0,

013249-7



ZHU, ZHANG, CAO, LI, POON, AND ZENG PHYSICAL REVIEW RESEARCH 6, 013249 (2024)

where λmin denotes the smallest eigenvalue and �λ are the Gell-
Mann matrices.

Boundary of the PPT set βPPT. The smallest eigenvalue of
the partial transposed density matrix is zero

λmin(ρ0 + βPPTσ̂ · �λ� ) = 0

where �λ� is short for the partial transpose of the Gell-Mann
matrices with respect to one partite.

Boundary of the CHA βCHA. The set is characterized by
the convex hull approximation (CHA) of a series of pure
separable state |ψ (i)

A/B〉. To find the boundary, the following
linear programming is required to solve

maximize
λi

β

s.t. ρ0 + βσ̂ · �λ =
N∑

i=1

λi

∣∣ψ (i)
A

〉〈
ψ

(i)
A

∣∣ ⊗ ∣∣ψ (i)
B

〉〈
ψ

(i)
B

∣∣,
λi � 0,

N∑
i=1

λi = 1

with the pure states |ψ (i)
A/B〉 updated according to an itera-

tive strategy introduced in the previous research [11,12]. The
number of pure states is chosen to be N = 2d2

Ad2
B in our

calculation.
Boundary of PureB-ext βPureB. When the density matrix ρ

moves from the maximally mixed state ρ0 to the boundary
of the density matrix set, we notice that there is a sharp and
clear boundary where the relative entropy of entanglement ER

given by the PureB-ext goes from zero to some nonzero value
as shown in the Fig. 3. With such an observation, we choose
the density matrix with ER = 10−7 as the signal of the PureB-
ext’s boundary. To find the boundary βPureB, we applied the
binary search algorithm with the initial upper bound βDM and
the initial lower bound β = 0.

APPENDIX B: CHALLENGING SCENARIOS
FOR PUREB-EXT

Here, we consider the higher dimension where there exists
bound entanglement. Bound entanglement is a suitable testing
ground to verify our method’s validity. One hundred sam-
ples are randomly generated from the six-parameter family in
3 ⊗ 3 [35], which gives special directions in the density ma-
trix space. The lengths of the associated boundary states ||�σ ||2
for different approaches are calculated, including CHA, PPT,
and PureB-ext in Fig. 6. We rearrange the samples according
to the values calculated by CHA. The values obtained by PPT
are identical due to the special property of the six-parameter
family. So you can observe a straight line in the figure below.
Meanwhile, our method PureB-ext gives satisfactory values
among the most samples. As expected, we can get more ac-
curate results to approximate the separable set by increasing
the number of extensions. However, there are some overlaps
among the different PureB-ext. These directions might be the
degenerate cases, where we cannot find a pure pre-image for
the boundary state of �̄k (or due to some convergence prob-
lems from numerical instability, which we cannot confirm). So
there might be a quasi-inclusion relation between PureB(k)

FIG. 6. ||�σ ||2 given by different PureB-ext, CHA, and PPT for
randomly generated 100 samples from the six-parameter family. The
horizontal axis is the index of the samples sorted by the values given
by CHA.

and PureB(k + 1) instead of a strict inclusion relation. In
practice, we only observed the “bad” directions in some bound
entangled corners where the gap between PPT and CHA is
small. For generic directions, PureB-ext is still effective and
efficient.

APPENDIX C: HYBRID QUANTUM-CLASSICAL
ALGORITHM

Although PureB-ext only requires pure states with a much
smaller dimension than density matrices, the calculation for
larger dimensions could be time-consuming and inefficient
for classical computers. Here, we consider a symmetric vari-
ational quantum circuit to produce a pure bosonic state, as
shown below.

We introduce two kinds of quantum gates for qudit:
Single-qudit gate. Weyl group generators X and Z are used

to parametrize the unitary matrix for qudit

U (�α, �β ) =
∏

i

X αi Zβi ,

and any unitary matrices can be approximated by a long
enough sequence �α, �β [41].

Double-qudit CNOT gate. A generalized version of CNOT
for qudit is defined as

˜CX |x〉|y〉 = |x〉|(y − x)%dB〉.
To add the interaction between system A and symmetric sys-
tem B, a series of CNOT gates are applied on every pair of
control qudit A and target qudit Bi as below,

k⊗
i=1

˜CX
(ABi )|x〉∣∣Dk

w0,w1,··· ,wd−1

〉

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|x〉∣∣Dk
w0,w1,··· ,wd−1

〉
x = 0

|x〉∣∣Dk
w1,··· ,wd−1,w0

〉
x = 1

|x〉∣∣Dk
w2,··· ,wd−1,w0,w1

〉
x = 2

...

.
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FIG. 7. The quantum circuit for a pure four-bosonic extension.

Such a symmetric CNOT gate changes the symmetric basis
of B1...Bk according to the state of control qudit in HA.
Hopefully, any pure bosonic state |ψAB1...Bk 〉 can be generated
with enough layers using these two kinds of single-qubit and
double-qudit gates.

We will show the relative entropy of entanglement solved
by the PureB-ext on a variational quantum qubit circuit. For
qubit case, the Weyl group generators X, Z become the canon-
ical Pauli matrices and the effective length for the �α, �β in the
single-qubit gate is 1 for that the Pauli matrix σ (0)

z or σ (1)
x

is commutative with the CNOT gate. The effective number
of parameters in each layer is four for the circuit in Fig. 7,
two parameters for UA, and two for UB. Compared with the
number 4(k + 1) − 1 of parameters in the classical version of
the PureB-ext, where 4 counts both real and imaginary parts
and −1 is for the normalization constraint, a direct conjecture
is that the minimum number of layers for the quantum version
of PureB-ext is (k + 1).

FIG. 8. The numerical simulation of PureB-ext on a symmetric
variational quantum circuit. Each PureB(k) has k + 1 layers for op-
timization. The clear and sharp transitions near the boundaries also
emerge in the quantum version.

In Fig. 8, the relative entropy of entanglement for the
Werner-2 is solved by the PureB-ext with k = 4, 8, 12 param-
eterized on quantum circuits. We could see that the variational
quantum circuits also give a sharp and clear boundary where
the entropy changes from zero to some nonzero value. As
k increases, the boundary of the PureB-ext approaches the
analytical boundary α = 0.5.

APPENDIX D: DATA AVAILABILITY

Both the code and data for our project have been made pub-
licly available. Our open-source repository can be accessed at
[42].

[1] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777 (1935).

[2] A. K. Ekert, Quantum cryptography based on Bell’s theorem,
Phys. Rev. Lett. 67, 661 (1991).

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters, Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels,
Phys. Rev. Lett. 70, 1895 (1993).

[4] R. Raussendorf and H. J. Briegel, A one-way quantum com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[5] L. Gurvits, Classical deterministic complexity of Edmonds’
problem and quantum entanglement, in Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’03 (ACM Press, New York, 2003),
pp. 10–19.

[6] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model, Phys. Rev. A
40, 4277 (1989).

[7] V. Vedral, The role of relative entropy in quantum information
theory, Rev. Mod. Phys. 74, 197 (2002).

[8] A. Miranowicz and A. Grudka, A comparative study of relative
entropy of entanglement, concurrence and negativity, J. Opt. B:
Quantum Semiclassical Opt. 6, 542 (2004).

[9] H. Fawzi and O. Fawzi, Efficient optimization of the quantum
relative entropy, J. Phys. A: Math. Theor. 51, 154003 (2018).

[10] M. W. Girard, G. Gour, and S. Friedland, On convex optimiza-
tion problems in quantum information theory, J. Phys. A: Math.
Theor. 47, 505302 (2014).

[11] S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen,
D. Zhou, and B. Zeng, Separability-entanglement classifier via
machine learning, Phys. Rev. A 98, 012315 (2018).

[12] S.-Y. Hou, C. Cao, D. L. Zhou, and B. Zeng, Upper bounds
for relative entropy of entanglement based on active learning,
Quantum Sci. Technol. 5, 045019 (2020).

[13] L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev. 38, 49 (1996).

[14] A. Peres, Separability criterion for density matrices, Phys. Rev.
Lett. 77, 1413 (1996).

[15] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of
mixed states: Necessary and sufficient conditions, Phys. Lett. A
223, 1 (1996).

013249-9

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1088/1464-4266/6/12/009
https://doi.org/10.1088/1751-8121/aab285
https://doi.org/10.1088/1751-8113/47/50/505302
https://doi.org/10.1103/PhysRevA.98.012315
https://doi.org/10.1088/2058-9565/abb412
https://doi.org/10.1137/1038003
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2


ZHU, ZHANG, CAO, LI, POON, AND ZENG PHYSICAL REVIEW RESEARCH 6, 013249 (2024)

[16] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state
entanglement and distillation: Is there a “bound” entanglement
in nature? Phys. Rev. Lett. 80, 5239 (1998).

[17] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Distinguish-
ing separable and entangled states, Phys. Rev. Lett. 88, 187904
(2002).

[18] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Com-
plete family of separability criteria, Phys. Rev. A 69, 022308
(2004).

[19] M. Navascués, M. Owari, and M. B. Plenio, Power of sym-
metric extensions for entanglement detection, Phys. Rev. A 80,
052306 (2009).

[20] N. Johnston, QETLAB: A MATLAB toolbox for quantum en-
tanglement, version 0.9, http://qetlab.com (2016).

[21] J. Chen, Z. Ji, D. Kribs, N. Lütkenhaus, and B. Zeng, Sym-
metric extension of two-qubit states, Phys. Rev. A 90, 032318
(2014).

[22] Y.-K. Liu, M. Christandl, and F. Verstraete, Quantum compu-
tational complexity of the N-representability problem: QMA
complete, Phys. Rev. Lett. 98, 110503 (2007).

[23] C.-K. Li and Y.-T. Poon, Convexity of the joint numerical range,
SIAM J. Matrix Anal. Appl. 21, 668 (2000).

[24] R. A. Bertlmann and P. Krammer, Bloch vectors for qudits,
J. Phys. A: Math. Theor. 41, 235303 (2008).

[25] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum Infor-
mation Meets Quantum Matter (Springer, New York, 2019).

[26] S. Friedland and R. Loewy, Subspaces of symmetric matrices
containing matrices with a multiple first eigenvalue, Pac. J.
Math. 62, 389 (1976).

[27] H. Fawzi, J. Saunderson, and P. A. Parrilo, Semidefinite approx-
imations of the matrix logarithm, Found. Comput. Math. 19,
259 (2019).

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Systems
32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc.,
2019), pp. 8024–8035.

[29] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing
the fréchet derivative of the matrix logarithm and estimating the
condition number, SIAM J. Sci. Comput. 35, C394 (2013).

[30] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright et al., SciPy 1.0: Fundamental algorithms for scientific
computing in Python, Nat. Methods 17, 261 (2020).

[31] K. G. H. Vollbrecht and R. F. Werner, Entanglement measures
under symmetry, Phys. Rev. A 64, 062307 (2001).

[32] E. M. Rains, Bound on distillable entanglement, Phys. Rev. A
60, 179 (1999).

[33] Y. Li, S. Huang, D. Ruan, and B. Zeng, Symmetric versus
bosonic extension for bipartite states, Phys. Rev. A 99, 012332
(2019).

[34] P. D. Johnson and L. Viola, Compatible quantum correlations:
Extension problems for Werner and isotropic states, Phys. Rev.
A 88, 032323 (2013).

[35] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.
Terhal, Unextendible product bases, uncompletable product
bases and bound entanglement, Commun. Math. Phys. 238, 379
(2003).

[36] A. A. Klyachko, Quantum marginal problem and
n-representability, J. Phys.: Conf. Ser. 36, 72 (2006).

[37] G. O. Myhr, N. Lütkenhaus, A. C. Doherty, J. M. Renes, and
A. Lvovsky, Symmetric extension and its application in QKD,
AIP Conf. Proc. 1110, 359 (2009).

[38] K. Wang, Z. Song, X. Zhao, Z. Wang, and X. Wang, Detecting
and quantifying entanglement on near-term quantum devices,
npj Quantum Inf. 8, 52 (2022).

[39] D. Patel, P. J. Coles, and M. M. Wilde, Variational quantum
algorithms for semidefinite programming, arXiv:2112.08859.

[40] K. Bharti, T. Haug, V. Vedral, and L.-C. Kwek, Noisy
intermediate-scale quantum algorithm for semidefinite pro-
gramming, Phys. Rev. A 105, 052445 (2022).

[41] D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun, Quantum compu-
tation based on d-level cluster state, Phys. Rev. A 68, 062303
(2003).

[42] X. Zhu and C. Zhang, pureb-ext GitHub repository, https://
github.com/Sunny-Zhu-613/pureb-public

013249-10

https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.88.187904
https://doi.org/10.1103/PhysRevA.69.022308
https://doi.org/10.1103/PhysRevA.80.052306
http://qetlab.com
https://doi.org/10.1103/PhysRevA.90.032318
https://doi.org/10.1103/PhysRevLett.98.110503
https://doi.org/10.1137/S0895479898343516
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.2140/pjm.1976.62.389
https://doi.org/10.1007/s10208-018-9385-0
https://doi.org/10.1137/120885991
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevA.64.062307
https://doi.org/10.1103/PhysRevA.60.179
https://doi.org/10.1103/PhysRevA.99.012332
https://doi.org/10.1103/PhysRevA.88.032323
https://doi.org/10.1007/s00220-003-0877-6
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1038/s41534-022-00556-w
https://arxiv.org/abs/2112.08859
https://doi.org/10.1103/PhysRevA.105.052445
https://doi.org/10.1103/PhysRevA.68.062303
https://github.com/Sunny-Zhu-613/pureb-public

