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Dynamic mass generation and topological order in overscreened Kondo lattices
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Multichannel Kondo lattice models are examples of strongly correlated electronic systems that exhibit non-
Fermi-liquid behavior due to the presence of a continuous channel symmetry. Mean-field analyses have predicted
that these systems undergo channel symmetry breaking at low temperature. We use the dynamical large-N
technique to study temporal and spatial fluctuations of the multichannel Kondo model on a honeycomb lattice
and find that this prediction is not generally true. Rather, we find a (2 + 1)-dimensional conformally invariant
fixed point, governed by critical exponents that are found numerically. When we break time-reversal symmetry
by adding a Haldane mass to the conduction electrons, three phases, separated by continuous transitions, are
discernible: one characterized by dynamic mass generation and spontaneous breaking of the channel symmetry,
one where topological defects restore channel symmetry but preserve the gap, and one with a Kondo-coupled
chiral spin liquid. We argue that the last phase is a fractional Chern insulator with anyonic excitations.
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I. INTRODUCTION

The interplay between interaction and topology has
emerged as a captivating field of study within condensed-
matter physics. Strong correlations can lead to new ground
states which are endowed with exotic topological properties.
Of particular significance is the realization of topologi-
cal order [1], i.e., gapped insulating states with point-like
excitations that have mutual non-Abelian statistics. Such non-
Abelian anyons hold immense potential for applications in
topological quantum computation [2,3]. Notable examples
are non-Abelian fractional quantum Hall states [4–6], quan-
tum spin liquids [7,8] and topological superconductors [9].
However, the unequivocal detection and precise control over
these anyons have proven to be challenging. Consequently,
the search for new platforms that can accommodate and ma-
nipulate topological order holds paramount importance, both
from the fundamental understanding and practical application
perspectives.

A corner stone of strongly correlated electronic systems is
the Kondo effect, in which conduction electrons scatter off
and screen a local magnetic moment. When several channels
compete to screen the moment in the so-called multichannel
Kondo model, a non-Fermi-liquid state arises [10] featuring
fractional residual entropy at zero temperature, which is gen-
erally believed to arise from decoupled anyons [11–14] and
can potentially be used for topological quantum computation
[15–17].

While the case of a single impurity is well understood,
much less is known about Kondo lattices where a lattice
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of spins is screened by conduction electrons. In the Kondo-
dominated regime of a single-channel Kondo lattice, electrons
form the familiar Fermi liquid but with a large Fermi surface
(FS) [19] and may even be driven to an insulating phase
[20–22]. In the more complex case of a multichannel Kondo
lattice, the continuous channel symmetry naturally leads to
new patterns of entanglement which are potentially respon-
sible for the non-Fermi-liquid physics [23,24], symmetry
breaking, and fractionalized order parameters [25].

FIG. 1. Kondo lattice and the two-channel phase diagram.
(a) Sketch of the honeycomb Kondo lattice studied in this paper,
which has two sublattice sites per unit cell. An example of Kondo
flux, threading in-between conduction electrons and Abrikosov
fermions (spinons) is illustrated. (b) The phase diagram previously
proposed for two-channel Kondo lattice as a function of temperature
T and g ∼ TK/JH [18]. (c) Self-energies from Kondo interaction for
all the fields in the self-consistent equations. Each interaction vertex
carries a 1/

√
N factor. While the internal sum over SU(N ) spin or

SU(K ) channel indices brings �b, f to O(1), �c remains O(1/N ).

2643-1564/2024/6(1)/013247(17) 013247-1 Published by the American Physical Society

https://orcid.org/0000-0003-4866-5899
https://orcid.org/0000-0002-5439-9964
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013247&domain=pdf&date_stamp=2024-03-06
https://doi.org/10.1103/PhysRevResearch.6.013247
https://creativecommons.org/licenses/by/4.0/


YANG GE AND YASHAR KOMIJANI PHYSICAL REVIEW RESEARCH 6, 013247 (2024)

The channel symmetry breaking in a multichannel Kondo
lattice (MCKL) [26] has been the focus of a number of re-
cent studies. When the symmetry breaks spontaneously, the
system becomes effectively a single-channel Kondo lattice
since all but one channels decouple entirely. Such symmetry
broken states are relevant to experiments and real materials,
as the MCKL, and in particular the two-channel Kondo lattice
(2CKL), seem to be appropriate models for several heavy-
fermion compounds, e.g., the family of PrTr2Zn20 (Tr = Ir,
Rh) [27,28]. Moreover, due to the natural frustration of the
channel degree of freedom, one can speculate that certain
deformations of the MCKL may realize a topological order [1]
with anyonic excitations. One of the simplest deformations is
inducing a topology via the conduction electrons. Motivated
to explore exotic phases as a result of such deformation, we
plunge into a detailed study of the phase diagram of the multi-
channel Kondo lattice model on a honeycomb lattice with and
without time-reversal symmetry.

The MCKL model is described by the Hamiltonian

H = Hc + JH

∑
〈i j〉

�Si · �S j + JK

∑
j

�S j · c†
jaα �σαβc jaβ, (1)

where Hc = ∑
i j (−t i j

c c†
iaαc jaα + H.c.) is the Hamiltonian of

the conduction electrons, the JH term describes antiferromag-
netic Heisenberg interaction between the nearest-neighbor
(NN) spins, the JK term describes the Kondo interaction, and
the Einstein summation convention over spin α, β = 1, . . . , N
and channel a, b = 1, . . . , K indices is assumed. This is
schematically represented in Fig. 1(a). The model has SU(N )
spin and SU(K ) channel symmetries, and we are interested
in the possible spontaneous channel symmetry breaking with
an order parameter �O j ≡ (�S j · c†

jaα �σαβc jbβ )�τab where �τ act as
SU(K ) generators in the channel space [29].

A direct solution of the model (1) is in general impossible
due to the strongly correlated nature of the problem, and previ-
ous attempts have led to conflicting results. In a strong Kondo-
coupling limit the model is described by the effective Hamil-
tonian Heff = λ

∑
〈i j〉 �Oi · �O j , favoring a channel antiferro-

magnet when λ > 0 [30,31]. On the other hand, mean-field
studies based on the large-N limit predict a variety of channel
ferromagnetic and channel antiferromagnetic solutions de-
pending on the conduction filling [18,32,33]. Early single-site
dynamical mean-field theory (DMFT) studies predicted non-
Fermi-liquid physics but could not go to low temperatures
[23,24]. However, more recent studies provided evidence for
a channel-symmetry-broken phase [29,34]. Interestingly, this
has not been confirmed in recent cluster DMFT studies [35].
They found that, as the polarizing field goes to zero, the order
parameter goes to zero as well. Clearly, spatial fluctuations are
playing a role in destabilizing the ordered phase.

The effective theory of fluctuations in 2CKL was studied
in Ref. [18] in the large-N limit. It can be formulated as L =
LNLσM + Lfermions where

LNLσM = (∂μ�n)2

g
+ 	

(
Aex

μ − Ain
μ − 
z

μ

)2
. (2)

The first term is the usual nonlinear sigma model (NLσM)
governing the fluctuations of the order parameter �n ∼ �O. The
second term in (2) is a Higgs term with stiffness 	 that tends

to lock the internal U(1) gauge field of f electrons Ain
μ with

the external electromagnetic gauge potential Aex
μ up to 
z

μ.
At low temperatures, the NLσM has an ordered phase where
channel symmetry is spontaneously broken [Fig. 1(b)], and
a quantum paramagnet phase in which the symmetry is re-
stored by topological defects (channel skyrmions). Here 
z

μ is
the gauge-dependent disorder potential, whose curl gives the
density of defects 4εμνλ∂ν


z
λ = εμνλ�n · (∂ν �n × ∂λ�n). In the or-

dered phase, defects are expelled and the internal and external
gauge fields are locked, leading to a large FS, whereas in the
quantum paramagnet phase the defects proliferate destroying
the coherent phase locking [18,36].

However, since the winning channel has a larger FS [18,25]
and the order parameter �O is strongly dissipated by coupling
to fermionic degrees of freedom, Lfermions, the ground state
is expected to be more complicated, at least in two or three
spatial dimensions. This is reminiscent of the spin-fermion
model where the gapless fermionic modes need to be explic-
itly treated in the renormalization group (RG) study [37–54].
Thus, an unbiased and more systematic approach is needed to
uncover the physics of the MCKL.

Encouraged by recent successes of the large-N approach to
Kondo lattices as cross-checked by tensor network [55] and
Quantum Monte Carlo [56] methods, we conduct a large-N
study of the MCKL. In a previous study [31], we applied
the dynamical large-N approach to both one-dimensional
(1D) and infinite-dimensional (∞D) MCKLs with Schwinger
boson representation of spins and showed that spatial fluc-
tuations are fully captured by including the momentum
dependence of the self-energy.

In this paper, we use this state-of-the-art technique to shed
light on the issue of the symmetry breaking in the MCKL
in (2 + 1) dimensions [(2 + 1)D], which lies between upper
and lower critical dimensions. By focusing on a honeycomb
lattice we show that the channel symmetry is unbroken and
the ground state is a channel-symmetry-preserving (2 + 1)D
conformal fixed point. We then probe the fate of this state
under the breaking of time-reversal symmetry which induces
a topological gap. Remarkably this leads to three different
states, two of which resemble the phases in the NLσM picture
above, i.e., a spontaneous channel symmetry broken state and
a gapless quantum paramagnet. In addition, we show that
there is a third gapped phase with fractional edge states that
has topological order.

While the formalism used is that of Ref. [31], there are sev-
eral differences. In this paper we use the Abrikosov fermion
representation of the spin instead of the Schwinger boson
representation. The previous paper discussed (1 + 1)D and
(∞ + 1)D cases, whereas the current paper focuses on (2 +
1)D. Finally, Ref. [31] was more concerned about breaking the
continuous channel symmetry, whereas here we break time-
reversal symmetry using the Haldane fluxes in the honeycomb
lattice, and (in one of phases) the channel symmetry breaks
spontaneously as a result.

This paper is organized as follows: In Sec. II, we intro-
duce the dynamical large-N formalism utilized throughout
this study. Section III details our numerical findings for both
time-reversal symmetric gapless and time-reversal symme-
try broken gapped conduction electrons. An interpretation
of these numerical results, along with the phase diagram of
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the system, is presented in Sec. IV. The paper concludes
in Sec. V, where we offer additional remarks and highlight
some unresolved questions. The Appendixes supplement the
main text with detailed information. Appendix A provides an
overview of the (1 + 1)D results related to Ref. [31], while
Appendix B delves into the specifics of our numerical simu-
lations. Appendix C explores our conformal scaling Ansatz
in (2 + 1)D and its application to our results. Finally, Ap-
pendix D further examines the various phases encountered in
scenarios with gapped conduction electrons.

II. DYNAMICAL LARGE-N METHOD FOR
MULTICHANNEL KONDO LATTICE

We assume that the spins transform according to a fully an-
tisymmetric representation of SU(N ) given by the Abrikosov
fermions [22,57–60], so that S jαβ = f †

jα f jβ , with the con-

straint f †
jα f jα = N/2, forming a self-conjugate representation

of spins. This introduces a gauge symmetry f jα → eiϕ j f jα ,
which we track throughout the paper. We maintain the
particle-hole (p-h) symmetry for both spins and conduction
electrons, which implies that the constraint is satisfied on aver-
age. In the impurity case [61,62], the spin is overscreened for
any number of channels when K > 1. We rescale JK → JK/N
and send N, K → ∞ while keeping the ratio γ = K/N con-
stant. After a Hubbard-Stratonovich (HS) decoupling of the
Heisenberg and Kondo interaction, the Lagrangian becomes
[63,64]

L = Lc + L f + LK ,

Lc =
∑

k

∑
mn

c̄m
kaα[∂τ1 + Hc(k)]mncn

kaα,

L f =
∑

i

f̄iα∂τ fiα +
∑
〈i j〉

[
N |t i j

f |2
JH

−
(

t i j
f f̄iα f jα + H.c.

)]
,

LK =
∑

i

[
b̄iabia

JK
+ 1√

N
(c̄iaα fiα b̄ia + H.c.)

]
. (3)

Here, bia are bosonic holon fields introduced for the HS de-
coupling of the Kondo interaction, and the NN spinon hopping
t i j

f comes from the HS decoupling of the Heisenberg inter-
action. The bare Hamiltonian Hc(k) governs the conduction
electrons, which can include sublattice indices m or n, and 1
denotes the identity matrix in the sublattice space. We further
assume that t i j

f = t f is uniform [60].
The gauge symmetry f j → eiϕ j f j is preserved in (3), pro-

vided that b j → eiϕ j b j . The channel order parameter �O j in
terms of the holon fields becomes �B j ≡ b†

ja�τabb jb, as we
showed before [31].

In the overscreened case, any infinitesimal JH delocalizes
spinons due to a resonant Ruderman-Kittel-Kasuya-Yosida
(RKKY) amplification [31] and produces a finite t f (see Ap-
pendix C 2). In the rest of this paper, JH is typically chosen
to be small enough so that this emergent contribution is the
dominant source of spinon delocalization at low temperature.

In the large-N limit, this system (3) can be solved exactly
because the dynamics is dominated by noncrossing Feyn-
man diagrams [Fig. 1(c)], resulting in the imaginary-time

self-energies

� f (ri, τ ) = −γ gc(ri, τ )Gb(ri, τ ),

�b(ri, τ ) = gc(ri, τ )G f (ri, τ ), (4)

whereas �c ≈ O(1/N ). Hence, the electron propagator re-
mains bare. In terms of crystal momentum and the complex
frequency z, and in the sublattice basis, the Dyson equa-
tions read

g−1
c (k, z) = z1 − Hc(k),

G−1
f (k, z) = z1 − Hf (k) − � f (k, z),

G−1
b (k, z) = −J−1

K 1 − �b(k, z), (5)

where Hf is the spinon-hopping Hamilton due to the uniform
t f . Together with Eq. (5), they form a set of coupled integral
equations that are solved iteratively and self-consistently to
extract the thermodynamics [64,65]. To tame numerical com-
plexity, symmetries are utilized to reduce the computation
down to the fundamental domain of the Brillouin zone (see
Appendix B 2) [66,67].

III. RESULTS

In this study we focus on the (2 + 1)D MCKL on a
honeycomb lattice. The (1 + 1)D 2CKL was previously stud-
ied in Ref. [31] using a dual representation, whose ground
state is a conformally invariant fixed point. In addition to
scale and translational invariances, such fixed points exhibit
emergent Lorentz invariance and are additionally invariant
under the special conformal transformations. The spinons and
holons have critical exponents �b = γ /(γ + 2) and � f =
1
2 + 2/(γ + 2), as detailed in Appendix A.

On the honeycomb lattice, we consider the Haldane model
of conduction electrons [68]. In the A–B sublattice basis,

Hc(k) =
⎛
⎝−2|t ′

c|
∑3

j=1 sin(k · s j ) −tcei
∑3

j=1 k·d j

c.c. 2|t ′
c|

∑3
j=1 sin(k · s j )

⎞
⎠,

(6)
where d j, j = 1, 2, 3 are the displacements to the three NN
B sites of A, and s j = ε jlm(dl − dm)/2 are three of the dis-
placements to next-nearest-neighbor (NNN) sites. Here, t ′

c
are the purely imaginary NNN hoppings that generate the
Haldane mass. In general the honeycomb lattice also admits
a Semenoff mass staggering between the A and B sublattice
sites of the honeycomb, i.e., mS

c (
∑

i∈A c†
i ci − ∑

i∈B c†
i ci ). We

exclude the Semenoff mass to enforce p-h symmetry on every
site.

We define the sublattice spinors of the fields as

Caα =
(

cA
aα

cB
aα

)
, Fα =

(
f A
α

f B
α

)
, Ba =

(
bA

a

bB
a

)
, (7)

where the superscripts A, B denote the corresponding sublat-
tice sites that the fields reside on. Henceforth, we denote by
�σ ≡ (σ x, σ y, σ z ) the Pauli matrices that act in the sublattice
space. The conjugates of the spinors above are defined by

C̄aα = C†
aασ z, F̄α = F †

α σ z, B̄a = B†
a. (8)

013247-3



YANG GE AND YASHAR KOMIJANI PHYSICAL REVIEW RESEARCH 6, 013247 (2024)

Furthermore, we denote their low-energy modes at low tem-
perature by

Caα ∼ ψaα, Fα ∼ χα, Ba ∼ φa. (9)

From now on, spin and channel indices will be suppressed
when they are inessential.

A. Gapless conduction channels

First, we assume that conduction electrons have only NN
hoppings as in graphene [69], i.e., t ′

c = 0 in Hc (7). The low-
energy c electrons consist of two chiral spinors each sitting
at the two Dirac nodes, ψρ for ρ = 1, 2, located at crystal
momenta K and K′,

C(r, τ ) = e−iK·rψ1(�r) + e−iK′ ·rψ2(�r), (10)

where �r ≡ (x, y, vτ ) ≡ (r, vτ ). Furthermore, define �∇ =
(∂x, ∂y, v

−1∂τ ), �r = �σ · �r, and �∂ = �σ · �∇ for one Dirac cone,
and \r = �σ ∗ · �r and \∂ = �σ ∗ · �∇ for the other, which has oppo-
site chirality.

Numerical results indicate the presence of an intermediate
fixed point where f electrons develop Dirac dispersion at K
and K′. In this regime, only the energy scale close to the c-
and f -Dirac nodes are relevant. Although the numerical calcu-
lations are all performed on the original tight-binding model
(3), for future references we note that near this intermediate
fixed point. Euclidean Lagrangian density L′ = L′

0 + L′
int can

be expressed in terms of the low-energy modes (9),

L′
0 = ψ̄1�∂cψ1 + ψ̄2\∂cψ2 + χ̄1�∂ f χ1 + χ̄2\∂ f χ2 + mbφ̄φ,

L′
int = 1√

N
(ψ̄1aαφ̄aχ1α + ψ̄2aαφ̄aχ2α ) + H.c. (11)

Here χ1 and χ2 are the spinon counterparts to ψ1 and ψ2, also
at K and K′, respectively. On the other hand, the only low-
energy mode of the holon φ is at the 	 point. The derivatives
�∂c and �∂ f correspond to �∂ with group velocities vc and v f ,
respectively. In addition to the SU(N) spin, SU(K) channel,
internal U(1) gauge, and p-h symmetry, the low-energy action
has time-reversal (TR) symmetry i → −i and inversion (I)
symmetry (x, y) → −(x, y), which act on spinors according
to

ψ1 ↔ ψ2, ψ1 ↔ σ xψ2,

TR : and I
χ1 ↔ χ2, χ1 ↔ σ xχ2. (12)

Both symmetries leave φ unchanged. The electron Green’s
function is

gC (�r) = 1

4πr3
(e−iK·r

�r + e−iK′ ·r\r). (13)

Figures 2(a) and 2(b) show the spectral functions of spinons
and holons, respectively. At a first glance, the spectral func-
tion of Abrikosov fermions resembles that of a noninteracting
fermion: gapless at K and K′ with opposite phase windings
shown in Fig. 2(c). Furthermore, its bandwidth is resonantly
amplified, similar to the case of Schwinger bosons [31].

However, there is a crucial difference, namely, the strong
incoherent contribution inside the light cones. In fact, this
interaction-driven fixed point exhibits a (2 + 1)D criticality,
which leads to various power-law spectra at low frequencies.

FIG. 2. Low energy conformal modes of spinons and holons with
gapless conduction channels. The spectral functions of (a) spinons,
AF and (b) holons, AB, exhibit light cones with the same group veloc-
ity at low temperature (T/JK = 0.005) along the Brillouin zone cut
shown below panel (a). (c) The phase structure in the critical eigen-
states of Gf (0 + iη, k) and Gb(0 + iη, k), extracted from the angle
ϕ between the σ x,y components in a C3-symmetric reciprocal-space
gauge. The vortices and plains show a pair of critical chiral fermions
at K and K′ as well as a chiral boson at 	. The parameters used in
panels (a)–(c) are γ = 4, JK/tc = 10, and t f /tc = −0.2. (d) Critical
exponents of spinons and holons extracted from scaling analysis.

We find that Green’s functions are in good agreement with the
conformally invariant Ansätze:

GF (�r) = α f

4πr2� f +1
(e−iK·r

�r + e−iK′ ·r\r),

GB(�r) = αb

4πr2�b
Pb, (14)

where αb, f are constants, and Pb = 1
2 (1 + σ x ) is a projector to

the symmetric bonding state between the two sublattice sites.
This projection is reflected in the observation that only uni-
form (rather than sublattice-staggered) channel susceptibility
[31] can diverge at low temperature. Therefore, the low energy
spinor for the holon is φ ≡ PbB.

It is important to note that the conformal invariance of
Eqs. (14), including their Lorentz symmetry, was absent at the
UV and is an emergent property of the IR fixed point. We
should also note that such a fixed point cannot be accessed via
local approximations, like DMFT or any of its extensions.

Our numerical scaling analysis (Appendix C 2) gives the
critical exponents � f and �b as shown in Fig. 2(d). In
particular, limγ→0 �b = 0, corresponding to a constant hy-
bridization in the perfect screening case at K = 1 (see also
Appendix A 2). These exponents are governed by the confor-
mally invariant fixed point.

To summarize, the ground state of the model is governed
by a conformally invariant fixed point L∗ that preserves
the channel symmetry. This is true for any JK , in marked
contrast to large-N static mean-field theory and single-site
DMFT results. In other words, we find that, in the presence
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of TR symmetry, our large-N, K limit predicts an SUch(K)
symmetry-preserving ground state irrespective of the value of
JK and K/N . In the finite-K studies [18,33,34], the bosons
(which carry the channel quantum number) are condensed
from the onset. In the NLσM study of Ref. [18] the fluc-
tuations in the magnitude of the bosonic spinorial order
parameter is gapped, whereas its direction undergoes a spon-
taneous symmetry breaking at low temperature. In our study
the bosons evade condensation by remaining critical down to
T = 0. We attribute criticality to the coupling of the chan-
nel order parameter to the gapless conduction electrons and
speculate that this result applies to other large-K MCKLs. In
such systems symmetry breaking can be induced by asym-
metric couplings of the channels [31], but does not occur
spontaneously, in agreement with cluster DMFT results [35].
Whether or not this large-K prediction of symmetry preserva-
tion holds for a finite K number of channels, is left for future
studies.

B. Gapped conduction channels with Haldane mass

Next, we break the TR symmetry by adding purely imag-
inary NNN hoppings only in the conduction-electron layer,
setting t ′

c �= 0 in Hc in Eq. (6). This turns the c layer into a
Haldane model, where a periodic magnetic flux goes through
the honeycomb yet the flux totals to zero in each unit cell
[68]. This gaps out the conduction electrons with the Haldane
mass. Remarkably, the f spinons inherit a similar gap via the
phenomenon of resonantly enhanced dispersion we reported
before [31] [Fig. 2(a)]. The form and the nature of the gap,
however, depends on the parameter γ = K/N and various
distinct phases are discernible, as shown in Figs. 3(a) and
3(b). At large γ > 2, labeled Phase II, we find that fermionic
spinons and bosonic holons are both gapped. Their spectral
gap remain independent of temperature at low T . At smaller
γ < 2, labeled Phase I, spinons have a much different shape
of dispersion compared with Phase II while holons have a
spectral gap that depends on T . Their spectral evolution with
T in Phase I are shown in Figs. 3(c) and 3(d). As T decreases,
a gap opens in the local spectrum of spinons. On the other
hand, the gap in the holon spectrum shrinks with reducing T ,
so that as T → 0 the ground state becomes gapless.

The different behaviors of holon spectral gap in Phases I
and II lead to different temperature dependence of uniform
channel susceptibility, χch(q = 0) ∼ ∑

i〈 �Bi · �B j〉/V , as well
as free holon population, nb(ω > 0) ≡ ∫ ∞

0
dω
2π

n(ω)[AB(ω)]AA,
where n(ω) is the Bose-Einstein distribution. More impor-
tantly, they reveal that Phase I is further divided into Phases
Ia and Ib, as follows. In Phase Ia where γ � 1, the free
holon population becomes conserved, as seen in the inset of
Fig. 3(d), while χch diverges as T → 0 seen in Fig. 4(a). In
Phase Ib where 1 � γ < 2, the free holon population vanishes
by some power law T ξ , and χch is regular as T → 0. In
Phase II, the free holon population depletes by e−mb/T due to
the holon gap [inset of Fig. 3(d)], and χch stays finite. The
power-law exponent of free holon population as a function of
T displayed in Figure 4(b) most clearly shows the difference
between the three phases. In Phase Ia, the exponent is zero
as nb(ω > 0) is constant at low T . In Phase Ib, the exponent

FIG. 3. Spectral functions of (a) spinons AF and (b) holons AB

coupled to Haldane mass-gapped conduction channels. In Phase I
(γ = 1) the holon gap is vanishing, while in Phase II (γ = 5) both
spinons and holons are gapped. The arrows in panel (b) point to a
true p-h symmetric bound state φ ∼ ψ†χ in an otherwise gapped
spectrum. Spectra in panels (a) and (b) are taken at T/JK = 0.03. (c),
(d) Temperature evolution of the local spectral functions in Phase I,
of (c) spinons and (d) holons. Inset of (d) shows the populations of
free holons in the two cases, which for γ = 1 becomes conserved
at low temperature. Parameters used are JK/tc = 6, |t ′

c/tc| = 0.5, and
t f /tc = −0.2.

stays constant. In Phase II, the exponent diverges as T → 0
due to the exponential decay in 1/T (see also Appendix D 1).

Another distinct feature between Phases I and II lies in
the self-energy of conduction electrons, N�c(k, ω + iη). In
Phases I, c-electron self-energy exhibits two bands of poles
that extend throughout the Brillouin zone. In addition, around
K and K′ these poles cross zero energy as T goes down, as
plotted in Fig. 4(c). On the other hand, N�c in Phase II only
have poles at K and K′, and they remained gapped throughout
all temperatures, as plotted in Fig. 4(d) (see also Appendix D 4
for a Brillouin-zone cut of N�c). Note that no such pole
exists in the gapless TR-preserving phase, although a heavily
damped pole cannot be ruled out [70].

Finally, we note that tuning t f , hence JH , can drive similar
transitions in this system with gapped conduction channels,
which is discussed in Appendix D 3. If the Haldane mass mH

c
is replaced with a Semenoff mass mS

c spinons will also inherit
an IR-boken but TR-preserving gap under Kondo interaction.
A similar γ dependence of holon gap behavior arises as well.

IV. THE PHASE DIAGRAM AND THE INTERPRETATION

Here, we summarize the salient points of the numerical
results obtained by the dynamical large-N method. On the
honeycomb lattice, we found the following:

(1) In the presence of TR symmetry, the ground state
is a spin- and channel-symmetry-preserving gapless state,
characterized by a line of conformally invariant fixed points
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FIG. 4. Channel susceptibility, free holon population and the
conduction-electron self-energy across the phase diagram. (a) Uni-
form channel susceptibility χch(q = 0) vs T at several γ , at a fixed
t f = −0.4tc, which fixes JH at low T . Low-temperature χch diverges
in Phase Ia, signaling spontaneous channel symmetry breaking and
the formation of a channel ferromagnet. (b) Temperature dependence
of the free holon population, represented by ξ (T ) ≡ d log nb(ω >

0)/d log T . At low T , ξ (T ) vanishes in Phase Ia, diverges in Phase
II, and is a constant in Phase Ib, reflecting nb(ω > 0) ∼ T ξ . (c),
(d) Temperature evolution of the spectra of the self-energies of
conduction electrons in (c) Phases I and (d) Phase II. In Phases I
a resonance crosses zero energy, while in Phase II the self-energy is
always gapped.

parametrized by γ = K/N . Correlation functions along this
line comprise Eqs. (13) and (14).

(2) In the TR-broken regime, we found three phases, de-
noted Ia, Ib, and II. In Phase II bosonic holons are gapped
at zero temperature, while in Phases I the holon gap vanishes
as T goes to zero and the holons are gapless. In all phases,
fermionic spinons are gapped. However, the spinon spectral
dispersion is quite different in the two phases. Phase I is
further divided into Phase Ia where the holon number becomes
conserved at low T and channel susceptibility diverges, and
Phase Ib where the holon number diminishes with decreasing
temperature and channel susceptibility saturates.

A. Renormalization group analysis

The qualitative features of the phase diagram above are
present even with a small TR-breaking field. Therefore, a
renormalization group (RG) discussion of the nature of these
massive phases is in order. For γ > 2 in Phase II, � f < 3/2 as
seen in Fig. 2(d). This means that a Haldane mass term of the
form L = L∗ + mH

f (χ̄1χ1 − χ̄2χ2) is a relevant perturbation
in the RG sense. Note that a Semenoff mass mS

f (χ̄1χ1 + χ̄2χ2)
[71] is forbidden due to the assumed inversion symmetry.
Indeed, in Phase II, 〈χ̄1χ1 − χ̄2χ2〉 �= 0. The mass has dif-
ferent signs at the K and K′, which can be attributed to the

Kondo flux repulsion [Fig. 1(a)]. In fact in Phase II, � f ≈ 1
[Fig. 2(d)], and the bulk fermion constitutes a noninteracting
2D topological insulator. This characterizes a chiral spin-
liquid in which TR-breaking is induced on spinons via the
Kondo interaction.

For γ < 2 such a mass term is irrelevant and the origin of
the spinon gap is more subtle. The only relevant interaction
in this case is L = L∗ + [Va(ψ†

1,aαχ1,α + ψ
†
2,aαχ2,α ) + H.c.],

with a c-number hybridization Va which is relevant for all
γ . Indeed, the spinon dispersion in Phase I can be fitted
with a hybridization model between bare c and f electrons
(see Appendix D 2), whereas the TR-broken Haldane model
is sufficient to describe the renormalized spinon bands in
Phase II.

However, such a mass term is forbidden not only due to
SU(K ) channel symmetry, but also the internal U(1) sym-
metry χ → eiϕχ of the Lagrangian. Similar scenarios have
been discussed in the context of symmetric mass generation
[72–74] where a finite ‖V ‖ is maintained but both the phase
and direction of the V spinor are randomized.

B. Dynamic mass generation

An alternative and somewhat more transparent picture is
that spin and channel fluctuations can play the role of glue to
bind electrons and spinons. Such fluctuations can be treated by
promoting the global charge, spin and channel symmetries to
local symmetries and studying the problem of Dirac electrons
coupled to non-Abelian gauge fields. Gauging these global
symmetries also replaces the derivatives on the fields [in
Eq. (11)] by covariant derivatives: Dc = ∂ + Aex + Asp + Ach

for the electrons, D f = ∂ + Ain + Asp for the spinons, and
Db = ∂ + Ain − Ach for the holons. Microscopically, Ach and
Asp can be thought of as emerging from spatial-temporal
fluctuations of the hybridization (the channel spinor) and
magnetization, respectively, which are obtained by decoupling
the Kondo interaction in channel or magnetic sectors (see
Ref. [18]). Henceforth, these gauge symmetries will be de-
noted by Uin(1), SUsp(N ), and SUch(K ).

This enables us to invoke the existing large-N results on
(2 + 1)D quantum chromodynamics (QCD3) [75–77]. Such
theories exhibit two phase equivalent to the Banks-Zaks [78]
conformal fixed point, and a confined phase with chiral sym-
metry breaking and dynamic mass generation. The latter
happens below a critical number of flavors and typically leads
to massive particles with conserved particle number splitting
off from the continuum. In the following we invoke these
results to understand the TR symmetry-broken phase diagram,
leaving further analysis of the conformal fixed point to the
future [79].

In (2 + 1)D, Abelian gauge fields coupled with many fla-
vors of fermions get screened and are in the deconfining
phase [75]. For non-Abelian gauge fields with Nc colors
coupled to Nf flavor of fermions, in the limit of Nf � Nc,
self-interactions are negligible and they behave like Abelian
fields, i.e., are in the deconfining phase. On the other hand, in
the limit of Nc � Nf self-interactions are important and the
gauge fields essentially behave as free Yang-Mills which are
confining [75]. Since they are coupled to fermions, for Nc �
Nf there is a tendency to dynamically generate a mass. The

013247-6



DYNAMIC MASS GENERATION AND TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 6, 013247 (2024)

critical number of flavors is predicted to be at γc = Nf /Nc →
64/3π2 ≈ 2.16.

Since we can vary Nf /Nc, both limits are accessible for
us. From this discussion, we see that the Uin(1) gauge field
coupled to N fermions is always deconfining. But it can also
be Higgsed if the bosons, also carrying Uin(1) charge, con-
dense (see below). The SUsp(N ) gauge field has N colors and
K flavors. It is in the deconfining phase for γ > γc. On the
other hand, for γ < γc it is confining and therefore electrons
and spinons, which carry corresponding charges, are confined
into a bosonic bound state. The role of color and flavor inverts
for the SUch(K ) gauge field. This one is expected to be con-
fining for γ > γ ′

c ∼ γ −1
c so that the holons are glued to the

electrons. This essentially means the free spinons are Kondo
screened channel-symmetrically and the Kondo interaction
cannot be decoupled in this limit. For γ < γ ′

c the holons
and electron-spinon bound states are deconfined and free to
condense. For γ ′

c < γ < γc electron-spinon bound states have
formed, but since they carry channel quantum number, they
are confined due to SUch(K ) fluctuations. From our numerics,
we find γ ′

c ≈ 1 rather than γ −1
c ≈ 0.463 predicted by the fully

symmetric model.
The spectrum of bosons in Phase I of Fig. 3(b) contains a

sharp and fully coherent resonance [pole of GB(k, ω + iη)]
at low energies which can be attributed to a bound state
φa ∼ ψ†

aαχα between conduction electrons and spinons. The
bound state is described by Lφ ∼ φ̄[D2

b + m2
b(T )]φ, with its

mass approaching zero at zero temperature, mb(T → 0) = 0.
This also manifests as the pole in the conduction-electron
self-energy N�c discussed earlier for γ < 2.

Can the bosonic holon gap closing lead to channel sym-
metry breaking? Since these bosons are the byproduct of the
Hubbard-Stratonovich decoupling of the Kondo interaction,
naively they should not condense as there is no conservation
of boson numbers. However as discussed in the Results, the
number of free holons does become conserved in Phase Ia.
Such an emergent conservation of boson number is certainly
absent at the UV. At T = 0, these number conserved bound
states reach zero energy and condense in one of the channels,
equivalent to spontaneous breaking of the channel symmetry.
This is accompanied by the divergence of uniform channel
susceptibility in Phase Ia. As γ increases beyond γ ′

c , the free
holon number is no long conserved, and hence the channel
symmetry is restored.

C. Topological order

The transition between Phases Ia and Ib is reminiscent of
the phase diagram of the NLσM describing a channel ferro-
magnet and a quantum paramagnet with order destroyed by
topological defects. The paramagnet is a channel spin liquid,
since local moments are screened, and no local order param-
eter exists. This agreement with Fig. 1(b) is not surprising
because, in the presence of the gap, fermions can be safely
integrated out, and hence the effective interaction of Eq. (2) is
expected to be valid. These phases are depicted in the phase
diagram of Fig. 5.

Since in the presence of inversion and time-reversal sym-
metry the Dirac points in a honeycomb lattice are protected,
the only mechanism for the dynamic mass generation is an

FIG. 5. Phase diagram of overscreened Kondo lattices with a
Haldane mass in conduction channels. The channel number varies
with γ = K/N and drives deconfinement transitions of the SUsp(N )
and SUch(K ) gauge fields. Phase I has dynamic mass generation
(DMG) and by itself is divided into (Ia) a channel ferromagnet
where the holon population is conserved at low temperature, and
(Ib) a quantum paramagnet where the holon population vanishes
by a power law in temperature. Phase II is a fractional Chern in-
sulator with a gapped bulk and counterpropagating edge modes of
conduction electrons and spinons, also coupled by Kondo interaction.
Numerics suggests γc ≈ 2 and γ ′

c ≈ 1.

emergent hybridization. In the entire Phase I, the hybridization
is active and the local moments are screened, as evinced by the
resonance in the self-energy of conduction electrons �c [see
Figs. 4(c) and 4(d)]. However, while the spinons respond co-
herently to the external field due to the Higgs locking between
Ain and Aex in the ordered Phase Ia, this coherence is lost in
the quantum disordered Phase Ib.

In heavy fermion systems with a FS, the Oshikawa’s theo-
rem [19,80,81] indicates that a Fermi liquid with a small FS
can only coexist with topological order. Despite some work in
this direction [82,83] there is no equivalent theorem for our
semimetallic system. Nonetheless, heuristically at a Kondo-
dominated fixed point the small (large) FS can be associated
with inactive (active) hybridization regimes. Therefore, as an
analogy to the cases with a FS, the gapped Phase II with
inactive hybridization is the only phase with potential for
topological order [1].

The topological gap in Phase II leads to edge modes
composed of counterpropagating electrons c and noninter-
acting spinons f , on an open manifold. These two gapless
modes are still coupled via the Kondo interaction JK �J R · �SL

where J R
αβ = c†

aαcaβ and SL
αβ = f †

α fβ constitute SUK (N ) and
SU1(N ) Kac-Moody currents, respectively. The interaction is
marginally relevant and lowers the central charge of the f
edge modes from cUV/N = 1, due to the c theorem [84].

In fact, this chiral model is one-half of the (1 + 1)D 2CKL
model studied by Andrei and Orignac [85–87]. Generalizing
their SUsp(2) × SUch(K ) model to the present SUsp(N ) ×
SUch(K ) symmetry group, it is natural to expect that the IR
edge mode is governed by the chirally stabilized [88] fixed
point

LPhase II → SUK−1(N ) × SUK−1(N ) ⊗ SU1(N )

SUK(N )
, (15)
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in addition to the decoupled charge and channel sectors [31].
This means that Phase II realizes a fractional Chern insulator
(FCI) [89,90], whose edge mode is comprised of a charge
mode, an SUN (K ) channel mode and an SUK−1(N ) mag-
netic mode, as well as another anyonic mode from the coset
sector. In the large-N limit, this theory leads to a central
charge of limN→∞ cN (γ )/N = γ /(1 + γ ) in addition to fully
decoupled conduction electrons [31]. From bulk-boundary
correspondence we expect the bulk to have similar fractional-
ized description in terms of the gauged Chern-Simons theory.
A detailed computation of electric and thermal Hall con-
ductivities and investigation of other properties of FCI [91],
as well as connections to the order fractionalization [25,92]
are beyond scope of the present work and will be reported
elsewhere.

V. DISCUSSION

It is worth emphasizing that the only necessary ingredients
for the physics observed here are (i) broken TR symmetry to
form edge states, and (ii) their further fractionalization by the
Andrei-Orignac mechanism. Such topological order is special
to MCKL (and therefore different from the one discussed in
Ref. [93]), but it is not tied to either p-h symmetry or the
honeycomb lattice studied here. Kondo flux repulsion gener-
ically creates the opposite topology for the spinons to that
of electrons, which leads to counterpropagating edge modes
of electrons and spinons that are further fractionalized by the
multichannel Kondo effect. Remarkably, the physics does not
even depend on whether the spin transforms as symmetric or
antisymmetric representations. We have used the Schwinger
boson representation of the spin and essentially found the
same phase diagram apart from a mapping γ → γ −1, an ob-
servation that points towards universality. Lastly, the transition
can also be induced by varying TK/JH (Appendix D 3).

A remark about magnetic susceptibilities is in order. Over-
screened Kondo impurities are critical and unstable against
Zeeman splitting [12]. In Ref. [31] we showed that this in-
stability carries over to the (1 + 1)D with Schwinger bosons.
However, the channel order parameter is a spin-singlet and
our Abrikosov fermion calculation (exact in the large-N limit)
did not reveal any magnetic ground state in the phase diagram.
Fermionic and bosonic representations of the spin are two pos-
sible large-N extensions of the SU(2) spin and each capture
part of the physics. Since the spin is treated more classically in
the Schwinger boson than Abrikosov fermion representation,
it is likely that a magnetic ground state is also present, but
more simulations are needed to clarify this point.

While the validity of our large-N results for N = 2 remains
to be explored, it is fitting to speculate about experiments. The
2CKL of common spins fall at the border between Phases
Ia and Ib γ = 2 and has a chiral Majorana edge state cIR =
1/2 (without any superconductivity) at the boundary in the
topologically ordered phase. Recent experiment [94] and pro-
posals [95–97] on realizing Kondo lattices in twisted bilayer
graphene and transition-metal dichalcogenides suggest that
moiré systems might be a promising candidate for realization
of 2CKL in two spatial dimensions.

In conclusion, by including spatial fluctuations in a MCKL
in two spatial dimensions, we have shown that the channel

symmetry is preserved as opposed to the findings of single-site
DMFT and static mean-field calculations. The phase diagram
Fig. 1(b) of NLσM does not apply to a Kondo lattice below
the upper critical dimension, as the gapless fermions drive the
system toward a conformally invariant fixed point. We have
characterized this fixed point in the large-N limit by finding
the critical exponents using a scaling Ansatz. Breaking TR
symmetry with the addition of a Haldane mass to conduction
electrons gaps out spinons and holons by the resonant RKKY
amplification. In this case, however, we recover the phase dia-
gram of Fig. 1(b) so that in one phase both spinons and holons
are gapped, while in the other phase an emergent stabilization
of holon population and a temperature-dependent gap indicate
a gapless ground state for the holons and the spontaneous
breaking of channel symmetry similar to the NLσM descrip-
tion. We discussed the role of gauge fields and argued that the
gapped phase realizes a FCI, with edge modes governed by the
theory of Andrei and Orignac [85]. The fact that the same edge
theory appears in certain non-Abelian fractional quantum Hall
states, points to a deep and fascinating connection between the
latter and MCKL, which remains to be explored.
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APPENDIX A: SUMMARY OF (1 + 1)D OVERSCREENED
KONDO LATTICE RESULTS

The two-channel Kondo lattice was studied in (1 + 1)D
using the Schwinger boson representation of the spins in
Ref. [31]. In this work, we use the Abrikosov fermion repre-
sentation instead. In the large-N limit they are closely related
by a duality, discussed at the end of this section. Here we
summarize the essential results in (1 + 1)D.

We consider the same Kondo lattice model in Eq. (1) on
a simple (1 + 1)D lattice. The spins are represented by the
Abrikosov fermions, also referred to as f electrons or spinons.
The model becomes essentially identical to that in Sec. II,
without the sublattice structure:

H = Hc + Hf + HK ,

Hc =
∑

k

(−2tc cos k − μc)c†
kaα

ckaα
,

Hf =
∑

i

N |t f |2
JH

+
∑

k

(−2t f cos k − μ f ) f †
kα

fkα
,

HK =
∑

i

|b̄iabia|
JK

+ 1√
N

∑
i

(bia f †
iαciaα + H.c.). (A1)

The spin index is α = 1, . . . , N , and the channel index is
a = 1, . . . , K , with γ = K/N ≈ O(1). Note that, at UV, the
holons b, b̄ are Hubbard-Stratonovich fields with no dynam-
ics. Hence, holons have no time derivative in the action
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[Eq. (3)]. In addition, the NN hopping amplitude is conven-
tionally positive for tc, while it is negative for t f due to the
decoupling of the antiferromagnetic Heisenberg interaction.
Setting μ f = 0 gives the self-conjugate representation for the
spins, as is used for (2 + 1)D, while p-h symmetry holds if
μc = 0 as well. At large N , the system can be exactly solve to
O(1) with the self-consistent equations (4) and (5).

At low temperature, the (1 + 1)D overscreened Kondo
lattice model (A1) exhibits the emergent dispersion of f
electrons or spinons, and conformal ground states, while
the magnetic and channel susceptibilities of the system are
defined by the scaling exponents. Below we discuss these
features in detail.

1. Emergent dispersion of spinons

Even when t f = 0 at UV, an emergent dispersion for
spinons will be generated at low T via a resonant RKKY am-
plification mediated by Kondo interaction [31]. This emergent
dispersion will break the Galilean boost symmetry ( f j, b j ) →
eik j ( f j, b j ). In the numerics, this manifests as an instability
toward dispersion at t f = 0 with an arbitrary small spatial
correlation added to the spinon self-energy. This also entails
that an infinitesimal JH can lead to an amplified dispersion
at low T in the overscreened Kondo lattice. Consequently,
when t f is small, the effective bandwidth of spinon self-energy
at zero frequency can overwhelm the bare dispersion, i.e.,
max[� f (k, ω = 0)] − min[� f (k, ω = 0)] � 2|t f |. The same
effect is observed in (2 + 1)D, as shown in Figs. 9(a) and
9(b).

2. The conformal fixed point in (1 + 1)D

Due to overscreening, f and b often remains critical at
low T in the absence of spontaneous symmetry breaking.
When the Fermi momenta kF of c and f are nesting, i.e.,
nc + n f = 1, the system flows to a conformal fixed point at
low T . At this fixed point, f electrons host chiral linear modes
at ±kF , while the holon host a pair of linear dispersing modes
at k = 0 with the same group velocity v. Let z = vτ + ix,
the conformal solution in (1 + 1)D consists of the low-energy
modes at these critical momenta:

G f ,R = α f z|z|−2� f −1, G f ,L = α f z̄|z|−2� f −1,

Gb = αb|z|−2�b, (A2)

where G f ,L/R are the left- and right-propagating f modes
at ±kF , respectively. The scaling exponents � f ,b can be
extracted numerically from the scaling collapse of spectral
functions at low T . They agree with the analytical solution
obtained from substituting the conformal Ansatz into the self-
energy equations and set G(k, ω)�(k, ω) = −1. The (1 + 1)D
solutions are

� f = 1

2
+ 2

γ + 2
, �b = γ

γ + 2
, (A3)

as shown in Fig. 6.
In the limit γ → 0, the Kondo lattice becomes per-

fectly screened. This is reflected in a constant hybridization
owing to �b = 0. Meanwhile, the local spinon spectral
function vanishes by A f (ω) ∼ ω2 near zero frequency. The

FIG. 6. Scaling exponents for the (1 + 1)D overscreened Kondo
lattice using large-N Abrikosov fermion representation. Solid and
dashed curves are the conformal solution exponents.

perfect-screening limit

lim
γ→0

�b = 0 (A4)

holds for both the overscreened Kondo impurity and (1 + 1)D
Kondo lattice. We expect it to be true in all dimensions.

3. Susceptibilities

The magnetic and channel susceptibilities in the dynamical
large-N model are given by, with �r ≡ (r, τ ),

χm(�r) = G f (�r)G f (−�r), (A5)

χch(�r) = J−4
K [Gb(�r) + JKδ(�r)][Gb(−�r) + JKδ(�r)]. (A6)

In particular, χch measures the susceptibility to asymmetries
in the Kondo coupling to different channels. At the conformal
fixed point, the scaling part of χm and χch obey power laws set
by the conformal exponents, i.e., Eq. (A3).

At low T , the static χm, both the local and the uniform
susceptibilities, are nondivergent in (1 + 1)D for all γ . On
the other hand, χch(r = 0, ω = 0) is divergent for 4�b − 1 <

0, whereas χch(k = 0, ω = 0) is divergent for 4�b − 2 < 0
in (1 + 1)D. This entails that at low T , the overscreened
Kondo lattice model with the Abrikosov fermion repre-
sentation is divergently susceptible to channel asymmetry
perturbations for small γ , due to Eq. (A4) in all dimensions.
Despite the divergence, the conformal fixed point is channel
symmetric, and there is no spontaneous channel symmetry
breaking.

4. Duality between Abrikosov fermion
and Schwinger boson representations

In the dynamical large-N method, Abrikosov fermion and
Schwinger boson representation of the spins lead to the low
energy effective theories for the overscreened Kondo impurity
or lattice that are dual to each other at the conformal fixed
points. In the latter case, the spinons are Schwinger bosons,
also denoted by b, whereas the holons are fermionic fields χ

[31,64]. The duality is

f ↔ χ, b ↔ b, γ ↔ 1/γ , (A7)
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and the c electron remains unchanged.

APPENDIX B: NUMERICAL METHOD FOR THE
DYNAMICAL LARGE-N KONDO LATTICE MODEL

1. Numerical self-consistent equations

The Dyson equations for spinons and holons together with
the self-energy equations in Eqs. (5) constitute a set of self-
consistent equations. In the present case of the Kondo lattice
with the large-N Abrikosov fermion representation of the
spins, they are numerically solved to O(1) by essentially the
same method applied to the Schwinger boson representations
in Ref. [31]. We derive the details of self-consistent equa-
tions below. For this discussion we do not use the spinor
notation introduced in Eq. (8). A Green’s function (Gc)mn is
associated with a field c propagating from sublattice site n to

m. They are related to the spinorial versions by gc = GCσ z,
G f = GF σ z, and Gb = GB.

The self-energies for a lattice displacement-imaginary time
�r = (i, j, τ ) are

[� f (�r)]mn = −γ [gc(�r)]mn[Gb(�r)]mn, (B1)

[�b(�r)]mn = [gc(−�r)]nm[G f (�r)]mn, (B2)

N[�c(�r)]mn = −[Gb(−�r)]nm[G f (�r)]mn. (B3)

Note the sublattice transpose for backward propagation
(−�r). These equations are solved using spectral functions of
the Green’s functions and self-energies in real frequency-
momentum space, dropping �c at O(1). Self-energies are
obtained from Hilbert transforms of A� (ω) := i�(ω + iη) −
i�(ω − iη), where η→0+. They are

[
A� f (k, ω)

]
mn = −γ

V
∑

p

∫
dν

2π
[Ac(p, ν)]mn[Ab(k − p, ω − ν)]mn[ f (ν) + nB(ν − ω)], (B4)

[
A�b (k, ω)

]
mn = 1

V
∑

p

∫
dν

2π
[Ac(p, ν)]nm[A f (k + p, ω + ν)]mn[ f (ν) − f (ω + ν)], (B5)

N
[
A�c (k, ω)

]
mn = 1

V
∑

p

∫
dν

2π
[Ab(p, ν)]nm[A f (k + p, ω + ν)]mn[ f (ω + ν) + n(ν)], (B6)

where f and n are respectively Fermi-Dirac and Bose-Einstein distributions, and V is the system size. Since c electrons remain
bare at O(1), we can use the explicit form of Ac. Denote the Pauli matrices by �σ := (σ x, σ y, σ z ). For Hc(k) = �εk · �σ − μck1,
g−1

c (k, z) = (z + μck )1 − �εk · �σ . When εk := ‖εk‖ �= 0, the spectral function of a c electron is

Ac(k, ω) = π

[(
1 + �εk · �σ

εk

)
δ(ω + μck − εk ) +

(
1 − �εk · �σ

εk

)
δ(ω + μck + εk )

]
. (B7)

When εk = 0, it reduces to Ac(k, ω) = 2πδ(ω + μck )1. Substituting Ac into Eqs. (B4) and (B5) gives

[
A� f (k, ω)

]
mn

= − γ

2V
∑

p

∑
s=±

[
1 + �εp · �σ

sεp

]
mn

[Ab(k − p, ω − sεp)]mn[ f (sεp) + nB(sεp − ω)], (B8)

[A�b (k, ω)]mn = 1

2V
∑

p

∑
s=±

[
1 + �εp · �σ

sεp

]
nm

[A f (k + p, ω + sεp)]mn[ f (sεp) − f (ω + sεp)]. (B9)

The retarded or advanced self-energies are obtained from
A� with a Hilbert transform, �(ω ± iη) = − 1

2H[A�](ω) ∓
i
2 A� (ω). Next we need the Dyson equations

G−1
f (k, z) = z1 + μ̂ f − Hf (k) − � f (k, z), (B10)

G−1
b (k, z) = −Ĵ−1

K − �b(k, z). (B11)

Here μ̂ f and ĴK are diagonal, but may not be proportional to
1, e.g., when inversion symmetry is broken. In the main text,
μ̂ f = μ f 1 and ĴK = JK1 always.

The system is solved by iterating through Eqs. (B8)–(B11).
At the end of each iteration, one needs to adjust μ f to satisfy
the constraint 2S/N = 〈 f † f 〉 on both sublattices. As outlined

in Ref. [31], we start at a high temperature, where we run
the self-consistency iterations until the Gs converge, and then
repeat at lower temperatures.

The constraint simplifies when the entire system has
particle-hole symmetry on all sublattice sites. This occurs
when the spin size is S/N = 1/2, while Hc and Hf have p-h
and inversion symmetries. Then μ f = μc = 0 always. This
condition is used unless otherwise specified.

Note that similar to the case with Schwinger bosons [31],
the diagonal part of the holon Green’s function Gb(ω ± iη)nn

is not strictly causal, i.e., [Gb(ω ± iη)]nn + 1/2{H[Ab](ω) ±
iAb(ω)}nn = −JK �= 0, and neither is � f . However, the dif-
ference is always a real constant. It will be automatically
absorbed in μ f when applying the constraint on G f .
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FIG. 7. (a) Honeycomb lattice with the unit cell A-B sublattice
sites labeled, as well as the Bravais vectors b1,2. (b) First Brillouin
zone in the (kx, ky ) coordinates. The reciprocal Bravais vectors k1

and k2 are shown. The fundamental domain is highlighted in orange.
(c) First Brillouin zone in the (k1, k2) coordinates divided into the 12
images of the fundamental domain.

2. Reducing the Brillouin zone to the fundamental domain

A full calculation throughout the first Brillouin zone (1BZ)
is expensive. We compute only k points in the fundamental
domain of our Lagrangian on the 1BZ [66,67], to which the
Green’s functions on the rest of 1BZ are related by symme-
try transformations. With full crystalline symmetries of the
honeycomb lattice C6v , the number of k points needed is
reduced by a factor of 12 in large systems. Below we discuss
this procedure in detail. In addition to the momentum-space
symmetries, we note that the computation load can be further
reduced by utilizing the p-h symmetry and any remaining
degeneracies for Eqs. (B8) and (B9).

The honeycomb lattice and its 1BZ is drawn in Fig. 7,
with unit cell defined by a pair of AB sublattice sites along
x, separated by d0 := −→

AB. Before writing down the symmetry
operators we need to pick the gauge(s) for the Bloch basis
we use. The gauge most convenient to the self-consistent
equations is the reciprocal-lattice periodic gauge,

(|uk〉A, |uk〉B) = 1√
V

∑
k

e−ik·r j (|u j〉A, |u j〉B). (B12)

Other gauges may require a twist at the boundary of 1BZ in
the sums of Eqs. (B8) and (B9). Convenient for our symmetry
discussion is another gauge choice,

(|u′
k〉A, |u′

k〉B) = 1√
V

∑
k

e−ik·r j (|u j〉A, e−ik·d0 |u j〉B). (B13)

We refer to it as the C3-invariant gauge, and denote quantities
in this gauge by the prime. Hamiltonians and one-particle
Green’s functions in these two gauges are related by the
gauge transformation �(k), expressed below in the (k1, k2)
coordinates shown in Fig. 7(c), with b being the length of a
real-space Bravais vector:

[G, H](k) = �(k)[G′, H ′](k)�†(k),

�(k) =
(

1
eik·d0

)
=

(
1

e−i(k1+k2 )b/3

)
. (B14)

A symmetry operation R is represented in reciprocal space
by unitary transformations and k mappings,

U ′
R(k)H ′(k)U ′†

R (k) = H ′(Rk). (B15)

The C6v group of the lattice has rotation symmetries C2, C3,
and C6, as well as in-plane reflection symmetries Mx and My.
They are listed in Table I along with the internal symmetries.
Note that the time-reversal symmetry T we use here does not
act on the spins. To go back to the periodic gauge, we use

UR(k) = �(Rk)U ′
R(k)�†(k). (B16)

For example, in the periodic gauge

C3 �
(

1
eik2b

)
.

The action or Hamiltonian may break some of the bare
lattice symmetries. Accordingly, we pick different set of gen-
erators for different cases.

(1) With only real NN hopping, Kondo interaction and
uniform chemical potentials, we pick {C3,C2, Mx} as gener-
ators.

(2) In the presence of the Haldane mass, Mx, My, and T
are broken. We pick {C3,C2, MyT } as generators.

(3) In the presence of sublattice staggering or the Se-
menoff mass, My and C2 are broken. We pick {C3, T , Mx} as
generators.

The fundamental domain we use is the triangle
�

	KM′ in
Fig. 7(b). The symmetry generators listed above can be used
to span the full 1BZ. Table II details the fundamental domain
and its generators for Case 1.

Note that due to Hermiticity, AAB = A∗
BA always. With only

real hopping, the system has the C2T symmetry, which does
not change k, and is represented by C2T � σ xK, where K
is the complex conjugation operator. It ensures AAA= ABB.
Together with C2, it gives [A(−k)]AA = [A(k)]BB.

Finally, with NN hopping only, there exists a subextensive
degeneracy usually present in the (k1, k2) coordinates on MM′
lines. That is, εk = |1 + eik1b + eik2b| is constant when k1b =
π or k2b = π .

APPENDIX C: OVERSCREENED KONDO CONFORMAL
FIXED POINT WITH GAPLESS CONDUCTION CHANNELS

In this section, we present further calculations and nu-
merical results to supplement the discussion about the
overscreened Kondo conformal fixed point on a Kondo honey-
comb lattice with gapless conduction electrons in Sec. III A.

1. Conformal Ansatz on the honeycomb lattice

Here we show detailed calculations using the conformal
Ansatz in Eqs. (14). They solve the self-consistent equa-
tions with the condition that at the Kondo fixed point, so that
GB�B = −1 in frequency-momentum space, and similarly for
the f electron at K and K′, GF,K�F,K = GF,K′�F,K′ = −1. At
the low temperature fixed point, we have equal group veloc-
ities v f = vb = v. We further assume that vc = v to simplify
our analysis, similar to the study in (1 + 1)D (Appendix A).
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TABLE I. Momentum space maps and sublattice-basis representations of the crystalline symmetries of the honeycomb lattice, and of some
internal symmetries: time-reversal T , sublattice S, and particle-hole C. Their maps R : (k1, k2) → (k′

1, k′
2) are given in the reciprocal Bravais

vector coordinate of Fig. 7. Their unitary representations U ′
R in the sublattice basis are given in the C3-invariant Bloch basis gauge choice.

These symmetries do not act on spins.

C3 C2 C6 Mx My T S C

Rk (−k2, k1 − k2) (−k1,−k2 ) (k1 − k2, k1) (k2, k1) (−k2, −k1) (−k1,−k2 ) (k1, k2) (−k1, −k2)
U ′

R 1 σ x σ x 1 σ x K σ z σ zK

Denote �r = (x, y, vτ ),

�r := riσ i =
(

vτ x − iy
x + iy −vτ

)
,

and \r := �r
∗ = �r

T. Since δ(�r ) = −∂2 1
r = −�∂�∂ 1

r = �∂
/r
r3 , the

Green’s function for c electrons in the long-wavelength limit
is

gC (�r) = 1

4πr3
(e−iKr

�r + e−iK′r \r). (C1)

We denote by bold symbols the two-dimensional (2D) (x, y)
or (kx, ky) vectors. Also note that K = −K′, up to reciprocal-
lattice translations. On the honeycomb lattice with real NN
hopping only, we use the Ansätze in Eqs. (14), up to σ z,

GF (�r) = α f

4πr2� f +1
(e−iKrU�rU † + eiKrU \rU †),

GB(�r) = αb

4πr2�b
Pb, (C2)

Here, U := exp(iσ zϑ/2), and Pb is a projection matrix in the
sublattice basis:

Pb = U
1

2

(
1 1

1 1

)
U † = 1

2

(
1 e−iϑ

eiϑ 1

)
. (C3)

The angle ϑ captures the phase offset between Dirac cones of
c and f electrons. With no loss of generality, we set ϑ = 0,
hence U = 1.

Let �q := (kx, ky, ωm/v). The Fourier transform for GB is

GB(�q) ≡ αb

4π
Pb

∫
d3r r−2�b exp(i �q · �r)

= αb

4π
Pbq2�b−3

∫ ∞

0
dxx1−2�b sin(x). (C4)

For 1/2 < �b < 3/2, the integral converges. Then,

GB(�q) = αbPb sin(π�b)	(2 − 2�b)q2�b−3. (C5)

The Fourier transform for GF (�q ) follows from the substitution
of �b → � f + 1

2 and taking derivatives −i∂/∂qμ on G. It is
useful to note that ∂μq = qμ/q, and ∂2

μqs = sqs−2[1 + (s −

TABLE II. Image generators of the fundamental domain for hon-
eycomb lattice with nearest-neighbor hopping only. 	M′ denotes line
segments between 	 and M′ excluding endpoints, �	KM′ denotes
the triangular region defined by the three points excluding edges, etc.

k region 	 K M′ 	M′ KM′ 	K �	KM′

Generators ∅ Mx C3 C3,C2 C3, Mx C3, Mx C3, Mx,C2

2)q2
μ/q2]. This gives near K,

GF,K(�q) = i2α f (1 − � f ) cos(π� f )	(1 − 2� f )q2� f −4
�q.

(C6)

We can now check these Ansätze with the self-energy
equations. To compute them, we first denote the element-wise
product by ◦, such that

M = A ◦ B ≡ Mi j = Ai jBi j . (C7)

This is also known as the Hadamard product. Then,

�B(�r) = [gC (−�r)] T ◦ GF (�r) = − 1

16π2

α f

r2� f +4
2(�r ◦ \r)

= − 1

8π2

α f

r2� f +4

(
τ 2 x2 + y2

x2 + y2 τ 2

)
. (C8)

The Fourier transform for �B is

�B(�q) = α f

2π
(2� f + 1)	(−2 − 2� f ) sin(π� f )q2� f −1

×
⎛
⎝ 1 + ω2

m
q2 (2� f − 1) 2 + q2

x +q2
y

q2 (2� f − 1)

2 + q2
x +q2

y

q2 (2� f − 1) 1 + ω2
m

q2 (2� f − 1)

⎞
⎠.

(C9)

To satisfy GB�B = −1 at the low-energy fixed point, one only
need PbGB�BPb = Pb. This is satisfied with

Pb�B(�q)Pb = α f

4π
sin(π� f )	(−2� f )q2� f −1Pb. (C10)

For �F , we first note that Pb ◦ �r = U�rU †/2, and similarly for
\r. Then, showing U explicitly,

�F (�r) = −γ gC (�r) ◦ GB(�r)

= −γαb

32π2r2�b+3
(e−iKrU�rU † + eiKrU \rU †). (C11)

We can drop the U with our choice ϑ = 0. The Fourier trans-
form then gives that near K,

�F,K(�q) = −i
αb

4π
γ�b cos(π�b)	(−1 − 2�b)q2�b−2

�q.

(C12)
Thus, we conclude that our conformal Ansatz is consistent
with the large-N equations. Similar variation of the solutions
are seen in numerics for different γ , and the conformal An-
sätze for different exponents under the constraint � f + �b =
2. Deriving exact values of the exponents is challenging due to
divergent integrals involved to switch between real and recip-
rocal space-time for the self-energy and Dyson equations at
all γ . It is left for future work.
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FIG. 8. Temperature-scaling behavior of the spectral functions of
(a), (b) trAf (k =K, ω), and (c), (d) trAb(x=0, ω)/ω for the gapless
phases at different γ . Note that T -scaling exponent changes sign
across γ . The ripples at low temperature are finite-size effects. For
both cases JK/tc = 6, and t f /tc = −0.2.

2. Scaling behaviors

Our low-temperature numerical solutions confirm our con-
formal Ansätze in Eqs. (14). Near the fixed point, the form of
the 2D Green’s function is governed by the scaling hypoth-
esis G(r, τ ; T ) ∼ T 2�h(T r, T τ ). In the presence of Lorentz
symmetry, it becomes G(�r; T ) ∼ T 2�h̆(T �r ). It follows that
the scaling of spectral functions as shown in Fig. 8 reveals
�b, f . Although conformal Ansätze would imply that h ∼ h̆
is a power law, in a UV-complete theory, the behavior at
‖�q ‖ = 0 is constrained by sum rules, e.g.,

∫
A f dω = 2π on

each sublattice. Consequently, while scaling Ansätze contain
power law divergences, they are absent in the UV-complete
numerical solutions. Indeed, inspecting Eq. (B5) reveals that
if A f is not quickly diverging, Ab|ω∼0 ∼ ω. As a result, the
bosonic holons Ab(ω)nn, odd due to p-h symmetry in our
studies, is always an extremum when divided by ω regardless
of �b. Thus, we use T -scaling behaviors at ‖�q ‖ ∼ 0 to extract
the scaling exponents plotted in Fig. 2(d). That T scaling
changes with γ from diverging to vanishing makes for a clear
anchor for the exponents.

Another important scaling behavior of the Green’s func-
tions lies in their effective energies. The low-temperature fixed
point in the overscreened Kondo system is marked by the
cancellation of bare energies, ε f and −1/JK by parts of the
self-energies �F and �B, respectively, at the critical momenta
at ω = 0 [31,63]. The remaining self-energies, δ�, constitute
the conformally invariant Green’s functions, −G−1 = δ�.
The honeycomb lattice has two orbitals per cell. This makes
room for nontrivial cancellation of the bare energies as well as
the remaining effective energies, ε f ,eff for spinons and 1/JK,eff

for holons. They are given by the real parts of the eigenvalues
λ± of −G−1.

FIG. 9. Spinon effective energies ε f extracted from real parts of
the eigenvalues λF±of − G−1

F (k, 0 + iη) at (a) γ = 1.7 and (b) γ =
4, as the temperature cools down. Only positive branches are shown.
(c) The imaginary part of the eigenvalues, λ′′

F± vs T . It is growing for
γ = 1.7 where � f > 3/2, and vanishing for γ = 4 where � f < 3/2.
(d) The eigenvalues λB± at γ = 1.7, which are both non-negative.
The lesser one gives J−1

K,eff while the greater one remains finite at
T = 0. For all data JK/tc = 6 and t f /tc = −0.2.

In the case of spinons, λF± have opposite real parts and
identical imaginary parts due to p-h symmetry, and ε f = λ′

±.
The magnitudes |λ±| can be diverging or vanishing governed
by the sign of 3 − 2� f , cf. Fig. 2(d). However, ε f (k) at
K and K′ is always zero, as seen in Figs. 9(a) and 9(b).
When � f > 3/2, this leads to an interesting k dependence
of ε f . As k approaches K or K′, ε f first tend to diverge
but plunges to zero at the critical momenta. Meanwhile, the
imaginary parts λ′′

± becomes diverging, as shown in Fig. 9(c).
The same inequality for exponents also affects whether the
spectral function is growing or vanishing as ω → 0 at the
critical momenta (Fig. 8). Finally, we note that similar to our
previous study in (1 + 1)D [31], Figs. 9(a) and 9(b) show that
spontaneous spinon dispersion and dispersion amplification at
lower T also occur in (2 + 1)D.

In the case of holons, λB± > 0 in our studies due to Bose
statistics, which requires that sgn[AB(ω)]nn = sgn(ω). How-
ever, under p-h symmetry energy of the bosons must come
in positive-negative pairs. In fact, λB± for bosons only give
the absolute values of energies, as demonstrated by a simple
example:

G(ω + iη) = 1

(ω + iη)2 − λ2

= 1

2m

(
1

ω + iη − λ
− 1

ω + iη + λ

)

= P
1

ω2 − λ2
− iπ

|λ|
ω

δ(ω2 − λ2). (C13)

Thus, the spectral weight peaks at ±λB+ and ±λB−. Nu-
merical solutions show that only the lesser eigenvalue λB−
vanishes at T = 0, as shown in Fig. 9(d). Its eigenvector is the

013247-13



YANG GE AND YASHAR KOMIJANI PHYSICAL REVIEW RESEARCH 6, 013247 (2024)

FIG. 10. (a) Temperature evolution of the spectral function of
holons in Phase I at γ = 1, at T/JK = 0.083, 0.062, 0.054, and
0.037. (b) Temperature evolution of the local spectral function of
holons in Phase II at γ = 5, corresponding to Fig. 3 in the main
text, from which the same parameters are used: γ = 5, JK/tc =
6, |t ′

c/tc| = 0.5, and t f /tc = −0.2. (c) Population of free holons
across different γ , corresponding to Fig. 4(b) in the main text, from
which the same parameters are used: JK/tc = 6, |t ′

c/tc| = 0.5, and
t f /tc = −0.4.

sublattice-bonding state (1 1)T/
√

2 in the sublattice basis.
Therefore, only sublattice-symmetric Kondo screening takes
effect at the fixed point, while the other sector is gapped.

APPENDIX D: OVERSCREENED KONDO PHASE
DIAGRAM WITH GAPPED CONDUCTION CHANNELS

In this section we present additional numerical results and
discussions for the overscreened Kondo honeycomb lattice
with Haldane mass-gapped conduction channels (Sec. III B in
the main text).

1. Free holon population and holon gap

Here we show the temperature evolution of holon spectral
function and the free holon population to supplement the
discussion in Figs. 3 and 4(b). Figure 10 shows that, as the
temperature cools down, a coherent bound state of holons
emerges from the continuum, migrates to lower energy, and
becomes gapless at 	. In Fig. 10(b), we show that the local
holon spectral function in Phase II remains gapped at low T ,
corresponding to Fig. 3 in the main text. Figure 10(c) shows
the population of free holons across different γ , correspond-
ing to Fig. 4(c) in the main text. It shows again that, at low
T , nb(ω > 0) is constant in Phase Ia, vanishes by T ξ in Phase
Ib, and depletes by exp(−mb/T ) due to the holon gap mb in
Phase II.

FIG. 11. The energy bands at A sites of the mean-field hybridiza-
tion model, together with spectral functions (AF )AA from dynamical
large-N computations, in Phase Ia at γ = 0.75. Data points for the
mean-field model energy bands are colored according to their c vs f
electron (spinon) contents. Their sizes scale with their weights on A
sites. Blue data points trace out the spinon spectral function, which
can be compared with (AF )AA. The bare spinon hopping strengths,
−t f /tc, are (a) 0.2, (b) 0.4, (c) 0.6, and (d) 1. The hybridization
amplitude used is V/tc = 1.6, uniform on all sites. Dashed lines are
the bare dispersions of c and f electrons. For all cases, |t ′

c/tc| = 0.5,
JK/tc = 6, and T/JK = 0.04.

2. Mean-field hybridization model for Phase I

In Phase I, spinons are gapped due to dynamic mass gener-
ation and the hybridization between c and f electrons, while
holons develop a coherent gapless mode at k = 	. The hy-
bridization can be modeled by a uniform coupling V c†

i fi +
H.c.. As discussed in the main text, this is the only relevant
term that may gap out f electrons. We compare the energy
bands of such a mean-field hybridization model with the dy-
namical large-N spectral functions in Fig. 11 at various t f ,
with a hybridization V/tc = 1.6. One can see the similarity be-
tween the resulting spectral functions. The value of V is cho-
sen to match the frequency centers of spinon spectral bands.

Note that the hybridization strongly modifies the f -
electron dispersion at M. This is absent in for the Haldane
mass gap in Phase II. In the Haldane model, contributions
from a purely imaginary NNN hopping vanishes along 	M,
and ε	 = 3εM always. Hence, one can easily discern a Hal-
dane mass gap from a hybridization gap.

3. Phase diagram at constant γ and varying t f

The uniform mean-field value for the bond variables t f

determines the strength of antiferromagnetic Heisenberg cou-
pling JH in the Abrikosov fermion representation of spins,
which can be derived from Eq. (3) using the saddle-point con-
dition δF/δt∗

f = 0. Results in the main text are at constant t f ,
which at low T is equivalent to a constant JH , and a constant
TK/JH when JK is constant. (Alternatively, one can fix JH and
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FIG. 12. Channel susceptibility across different t f at a constant
γ = 1.25, and with JK/tc = 6.

update t f at each T [64].) In the TR invariant regime, i.e., with
only NN hopping tc, tuning t f does not change our conformal
Ansätze nor the scaling exponents. Its only effect is to move
the system away from the local Kondo impurity fixed point
at high temperature [31,63]. A large t f will keep the spinons
dispersive at all T and eliminate any trace of this local fixed
point where both spinon and holon Green’s functions become
essentially local.

In the TR broken regime, i.e., when both tc, t ′
c are nonzero,

tuning t f has a similar effect to increasing γ in the phase
diagram, as seen in Fig. 12. Although smaller t f delays the
departure from the local Kondo fixed point at higher T when
the temperature cools down, close to zero temperature we see
that an increasing t f changes the uniform channel susceptibil-
ity from divergent to regular. The magnetic susceptibility is
always regular at low T due to the spinon gap.

4. Electron self-energy across the phase diagram

Another distinct feature across the phase diagram is the
self-energy of conduction electrons, N�c. As discussed in
the main text, only for Phase I where γ < γc ∼ 2 the
c- f hybridization is active. This results in a resonance in

FIG. 13. Conduction-electron self-energy −(N�c )′′AA in
(a) Phase I, γ = 1.5, and (b) Phase II, γ = 3. In Phase I the
self-energy has two bands of poles dispersing throughout the BZ,
indicated by black arrows in panel (a). The parameters used are
the same as in Figs. 4(c) and 4(d), JK/tc = 6, t f /tc = −0.2, and
|t ′

c/tc| = 0.5. The temperatures are at T/JK = 0.03.

the conduction-electron self-energy �c. As was shown in
Figs. 4(c) and 4(d), at K points, there are poles in N�c

crossing zero frequency as the T goes down in Phase I, which
is absent in Phase II. Momentum cuts of N�c(k, ω + iη) in
Fig. 13 further demonstrate the difference.

In Phase I, N�c has two sharp “bands” of poles throughout
the BZ at the lowest temperatures. Thus, the self-energy in
Phase I can be modeled by

N�c(k, z) ∼ V 2

z1 − H (k)
, (D1)

where H (k) describes the dispersion of these bands, and V
is the hybridization amplitude between c and f . The leading
terms in H (k), extracted from N�c(k, 0 + iη), also resembles
a Haldane model with a purely imaginary NNN hopping. Such
bands are absent in Phase II, shown in Fig. 13(b). In addition,
we find that there is a “band inversion” near K points in
Phase I as the system cools down from high temperature. This
corresponds to the zero-crossing of the pole at K in Fig. 4(c).

Finally, these divergent poles in Phase I can survive the
large-N suppression even though nominally �c ∼ O(1/N ).
On the other hand, �c in Phase II is incoherent throughout
most of the BZ.

[1] X. G. Wen, Topological orders in rigid states, Int. J. Mod. Phys.
B 04, 239 (1990).

[2] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. (NY) 303, 2 (2003).

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[4] G. Moore and N. Read, Nonabelions in the fractional quantum
Hall effect, Nucl. Phys. B 360, 362 (1991).

[5] N. Read and E. Rezayi, Beyond paired quantum Hall states:
Parafermions and incompressible states in the first excited
Landau level, Phys. Rev. B 59, 8084 (1999).

[6] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[7] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. (NY) 321, 2 (2006).

[8] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.
Norman, and T. Senthil, Quantum spin liquids, Science 367,
eaay0668 (2020).

[9] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[10] P. Nozières and A. Blandin, Kondo effect in real metals, J. Phys.
(Paris) 41, 193 (1980).

[11] N. Andrei and C. Destri, Solution of the multichannel Kondo
problem, Phys. Rev. Lett. 52, 364 (1984).

[12] I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L.
Cox, Relevance of anisotropy in the multichannel Kondo ef-
fect: Comparison of conformal field theory and numerical
renormalization-group results, Phys. Rev. B 45, 7918 (1992).

[13] V. J. Emery and S. Kivelson, Mapping of the two-channel
Kondo problem to a resonant-level model, Phys. Rev. B 46,
10812 (1992).

[14] I. Affleck and A. W. W. Ludwig, Exact conformal-field-
theory results on the multichannel Kondo effect: Single-fermion

013247-15

https://doi.org/10.1142/s0217979290000139
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1103/PhysRevLett.52.364
https://doi.org/10.1103/PhysRevB.45.7918
https://doi.org/10.1103/PhysRevB.46.10812


YANG GE AND YASHAR KOMIJANI PHYSICAL REVIEW RESEARCH 6, 013247 (2024)

Green’s function, self-energy, and resistivity, Phys. Rev. B 48,
7297 (1993).

[15] P. L. S. Lopes, I. Affleck, and E. Sela, Anyons in multichannel
Kondo systems, Phys. Rev. B 101, 085141 (2020).

[16] Y. Komijani, Isolating Kondo anyons for topological quantum
computation, Phys. Rev. B 101, 235131 (2020).
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