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Unfolding system-environment correlation in open quantum systems:
Revisiting master equations and the Born approximation
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Understanding system-environment correlations in open quantum systems is vital for various quantum infor-
mation and technology applications. However, these correlations are often overlooked or hidden in derivations
of open-quantum-system master equations, especially when applying the Born approximation. To address
this issue, given a microscopic model, we demonstrate how to retain system-environment correlation within
commonly used master equations, such as the Markovian Lindblad, Redfield, second-order time convolutionless,
second-order Nakajima-Zwanzig, and second-order universal Lindblad-like equations. We show that each master
equation corresponds to a particular approximation on the system-environment correlation operator. In partic-
ular, our analysis exposes the form of the hidden system-environment correlation in the Markovian Lindblad
equation derived using the Born approximation. We also identify that the processes leading to the Redfield
equation yield an inaccurate initial-time system-environment correlation approximation. By fixing this problem,
we propose a corrected Redfield equation with an improved prediction for early stages of the time evolution.
We further illustrate our results in two examples, which imply that the second-order universal Lindblad-like
equation captures correlation more accurately than the other standard master equations.
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I. INTRODUCTION

Correlation in quantum systems is both a central con-
cept in quantum information science and a vital resource
for various quantum technology applications [1–8], such
as teleportation, dense coding, cryptography, tomography,
metrology, simulation, and computation [8–27]. In addition
to technological applications, correlation provides new per-
spectives and methods for dealing with various fundamental
problems in quantum physics. Studying quantum phase tran-
sitions [28–30], explaining the emergence of time in quantum
mechanics [31,32], understanding thermalization of quantum
systems [33], and mechanisms of energy exchange between
two quantum systems [34–38] are examples of such problems.

Dealing with most of these problems involves studying
dynamics of open quantum systems, where keeping track of
system-environment correlations during the course of dynam-
ics is crucial. These correlations have diverse nature—they
can be purely classical, quantum (with different forms such
as entanglement and discord), or both [1,3]. Given such a
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diversity of correlations, discerning roles of each type of cor-
relation in dynamics or other properties of an open system
is not straightforward. Nevertheless, one can still represent
system-environment correlations faithfully with a single cor-
relation operator χ , defined as the difference between the total
system-environment state �SB and the uncorrelated product of
the states of the system �S and the environment �B, i.e.,

χ = �SB − �S ⊗ �B. (1)

This operator encompasses all types of correlations and is thus
the most relevant quantity to investigate as the “correlation.”
It has already been shown that this operator plays an essential
role in dynamical properties of open systems [39,40].

Much progress in the theory of open quantum systems
has been made and various approximate techniques have
been developed. However, in most of the existing techniques,
approximations fold or mask the information of system-
environment correlations into the master equation of the
system. As a result, reduced system master equations are
basically meant to provide dynamical properties of the system
only. For example, in the standard weak-coupling Lindblad
and Redfield master equations, the explicit dependence of the
dynamics on the correlation is discarded in the derivation
with the Born approximation. This approximation projects
the correlated state of the total system to the uncorrelated
product state of the system and the environment [41,42].
However, further investigations have shown that correlation
can exist between the system and environment even when the
Born approximation has been applied [43,44]. This implies
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that correlation is somehow masked even in Markovian mas-
ter equations. In other techniques, such as the second-order
Nakajima-Zwanzig equation (NZ2) and the second-order
time-convolutionless master equations (TCL2), the approxi-
mation is based on expanding the exact dynamics in terms of
the system-environment coupling [41,42,45–50]. Although in
NZ2 and TCL2 there are no strong approximations such as the
Born one, correlation becomes inconspicuous in the resulting
master equations. Despite many efforts to take into account
correlation beyond traditional approximations [51–53], the
exact form and role of system-environment correlation in
open-system master equations have remained mostly elusive.
Recently, by introducing a universal Lindblad-like (ULL) dy-
namical master equation [39] it has been possible to treat the
system-environment correlation operator explicitly, which en-
ables approximations of correlation to different orders of the
interaction Hamiltonian. Retaining correlation to first order
gives the ULL2 master equation (or a Markovian reduction
thereof, referred to as MLL). However, an important open
question persists: What is the explicit form of the approximate
correlation in the commonly used master equations and how
does it affect their domain of validity? Note that this question
goes beyond investigating how initial correlations may affect
the dynamics [54–61].

Here, we address this fundamental question and show that
there is more to the master equations: We can recast their
derivations such that—within a given microscopic model for
the system and the environment—the role of correlation and
how it is approximated become unfolded. This offers an al-
ternative approach to the derivation of master equations and
the role of the Born approximation therein. It also enables one
to monitor how an approximation of the system-environment
correlation (as embedded in each reduced master equation)
develops when the system evolves. We emphasise that here we
do not describe how the correlation should be approximated
to obtain an accurate master equation (as done in Ref. [39]).
Rather, we shall focus on the information and mathemati-
cal form of the system-environment correlation contained in
many standard master equations that have been widely used
in the literature.

The key observation is rewriting an exact dynamical
equation of the reduced system S in a form in which
correlation appears explicitly. Comparing each master equa-
tion obtained from approximate techniques with the exact
dynamics—where correlation is explicit—we unravel how the
system-environment correlation operator has been approxi-
mated in the Lindblad, Redfield, TCL2, and NZ2 techniques.
We then compare accuracy of these approximate correlations
in an example. We demonstrate that the ULL2 correlation is
closer to the exact result as compared to the other techniques
here. Furthermore, deriving correlation in the Redfield equa-
tion reveals that its dynamics is afflicted with an inconsistency
in the initial system-environment correlation, which makes it
nonzero despite that the initial condition implies otherwise.
We then introduce a corrected version of the Redfield equa-
tion by resolving this problem and show that the corrected
equation captures the initial dynamics better than Redfield.
In this respect, our approach may be complementary to the
version of the Redfield equation with “slippage” of initial
conditions [62].

II. CORRELATION IN OPEN-QUANTUM
SYSTEM DYNAMICS

We assume that we have a known microscopic model in
which the system (with the Hamiltonian HS) interacts with
a given environment (with the Hamiltonian HB), which is
initially in a known state �B(0), through the interaction Hamil-
tonian HI, such that for the total system we have HSB =
HS + HB + HI. To see how correlation appears in the master
equation of the system, we start from the Schrödinger equa-
tion of the total system �̇SB(τ ) = −i[HSB, �SB(τ )], where dot
denotes time derivative d/dτ and we work in dimensionless
units where h̄ ≡ kB ≡ 1. By inserting �SB(τ ) in terms of χ (τ ),
we obtain

�̇S(τ ) = −i
[
TrB[H I(τ )�B(τ )], �S(τ )

] − iTrB[H I(τ ),χ(τ )],

(2)

where the boldface notation O ≡ ei(HS+HB )τ O e−i(HS+HB )τ de-
notes the interaction picture for any arbitrary operator O. See
Appendix A for derivation of Eq. (2).

In principle, each technique for deriving a master equa-
tion (with its own set of assumptions or approximations)
constructs a basic form of a dynamical equation in which
the elements of the microscopic model are present and dis-
cernible. The universality and exactness of Eq. (2) indicate
that master equations can also be reformatted and brought
into a form almost similar to this exact form. Thus, by
comparing the reformatted forms with the right-hand side of
Eq. (2) we identify the factors appearing in the second term
TrB[H I(τ ), ·] and thereby read off some specific ansatzes for
approximate χ(τ )s—Secs. II A–II F. We then confirm these
specific ansatzes as reasonable candidates for (approximate)
correlation through an alternative approach to deriving master
equations by directly applying relevant approximations on
the exact correlation operator obtained from the Schrödinger
equation of the total system. This direct approach, which is de-
lineated in Appendix B, indicates that the Born approximation
plays a special role in obtaining legitimate approximations of
the correlation operator for master equations. Table I summa-
rizes the results for the approximated correlation for several
standard master equations. We should also remark that, simi-
lar to the common practice in derivation of master equations,
two assumptions have been applied throughout our analysis,
namely that χ (0) = 0 and TrB[H I(τ )�B(0)] = 0.

A. System-environment correlation in NZ2

We start from the second-order approximation of the NZ
equation given by [39,41,42]

�̇S(τ ) = −TrB

[
H I(τ ),

∫ τ

0
ds [H I(s), �S(s) ⊗ �B(0)]

]
. (3)

Comparing the NZ2 equation with the exact dynamics of
Eq. (2), it can be seen that in the first term �B(τ ) has
been approximated by �B(0), which now by the initial en-
vironment condition cancels this term, and from the second
term one may read a candidate X (τ ) for the correlation as∫ τ

0 ds [H I(s), �S(s) ⊗ �B(0)]. However, this candidate does
not yet satisfy the vanishing partial trace condition on the
system part for the correlation operator—while its partial trace
on the environment part is zero due to the environment initial
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TABLE I. Approximate correlation operator χ(τ ) in various master equations. All results have been written by assuming that the initial
system-environment state is uncorrelated (χ(0) = 0) and that the initial state of the environment satisfies the condition TrB[H I (τ )�B(0)] = 0.

Technique Correlation operator χ(τ )

NZ2 −i
∫ τ

0 ds ([H I (s), �S(s) ⊗ �B(0)] − �S(0) ⊗ TrS[H I (s), �S(s) ⊗ �B(0)]])
TCL2 −i

∫ τ

0 ds ([H I (s), �S(τ ) ⊗ �B(0)] − �S(0) ⊗ TrS[H I (s), �S(τ ) ⊗ �B(0)])
Redfield −i

∫ ∞
0 ds ([H I (τ − s), �S(τ ) ⊗ �B(0)] − �S(0) ⊗ TrS[H I (τ − s), �S(τ ) ⊗ �B(0)]) =: χR(τ )

Corrected Redfield χR(τ ) − χR(0)
Lindblad {χω(τ ) = −i

∫ ∞
0 ds ([H I (−ω; τ − s), �S(τ ) ⊗ �B(0)] − �S(0) ⊗ TrS[H I (−ω; τ − s), �S(τ ) ⊗ �B(0)])}ω∈�

ULL2 −i
∫ τ

0 ds [H̃ I (s), �S(s) ⊗ �B(s)]
MLL −iτ [H̃ I (τ ), �S(τ ) ⊗ �B(τ )]

condition. To remedy this problem, we replace X with the
modified form χ = X − A ⊗ TrS[X ], for some Hermitian A.
The condition TrB[χ] = 0 is now met, for any A, simply by the
initial environment condition and that X is a commutator. The
condition TrS[χ] = 0 requires that TrS[A] = 1. We note that
there is no unique choice for A, but a natural one is A = �S(0).
Thus, we propose the ansatz

χNZ2(τ ) = − i
∫ τ

0
ds ([H I(s), �S(s) ⊗ �B(0)]

− �S(0) ⊗ TrS[H I(s), �S(s) ⊗ �B(0)]). (4)

Note that the extra term in χNZ2(τ ) has no impact on the system
dynamics because of the cyclicity of TrB over the Hilbert
space of the environment. Comparing this form with the direct
calculations of Appendix B verifies that this χNZ2(τ ) is indeed
correct.

B. System-environment correlation in TCL2

The TCL2 dynamical equation is the time-local version of
the NZ2 equation, and it is obtained by changing �S(s) in the
integrand of Eq. (3) to �S(τ ) [41,42],

�̇S(τ ) = −TrB

[
H I(τ ),

∫ τ

0
ds [H I(s), �S(τ ) ⊗ �B(0)]

]
, (5)

which again has been obtained under the environment initial
condition assumption. It is evident then that the above χTCL2(τ )
can also be obtained by applying the same change on χNZ2(τ ).
Similarly to the NZ2 case, the added term in χTCL2(τ ) does
not change the dynamical equation of the system. In addition,
Appendix B verifies that this is the correct correlation.

C. System-environment correlation in Redfield

The Redfield (R) equation under the environment initial
condition assumption and before the Markov approximation
is equivalent to TCL2 [41,42]. However, after applying the
Markov approximation—replacing the upper limit of the inte-
gral in Eq. (5) with ∞ and changing s → τ − s in H I(s)—this
gives

�̇S(τ ) = −TrB

[
H I(τ ),

∫ ∞

0
ds [H I(τ − s), �S(τ ) ⊗ �B(0)]

]
,

(6)

which often is referred to as the time-independent Redfield
equation [63–66] (for a rigorous analysis of the Redfield equa-

tion and alternative derivation of the Lindblad equation from
it, see Ref. [67]). Reading a candidate correlation X (τ ) yields
an issue similar to the one in the NZ2 case; that is, the partial
trace of this operator on the environment does not vanish.
Following a similar recipe as in NZ2 to remove this (which
is also justified in Appendix B), we read the ansatz

χR(τ ) = − i
∫ ∞

0
ds ([H I(τ − s), �S(τ ) ⊗ �B(0)]

− �S(τ ) ⊗ TrS[H I(τ − s), �S(τ ) ⊗ �B(0)]). (7)

Replacing this χR(τ ) in the Redfield equation does not modify
the system dynamics. Correctness of this particular ansatz for
χR(τ ) is again verified by comparing it with the approximated
form of correlation obtained directly from the Schrödinger
equation of the total system—Appendix B.

Similar to the other techniques, the Redfield equa-
tion has been obtained by assuming that the initial system-
environment state is uncorrelated. However, it can be seen
from Eq. (7) that χR(0) is not necessarily zero. This discrep-
ancy is the manifestation of the fact that time-independent
Redfield equation cannot capture the short-time dynamics
correctly [62,68,69]. An elementary way to alleviate this de-
ficiency is to redefine the correlation as χCR(τ ) = χR(τ ) −
χR(0), which vanishes at the initial time. However, subtracting
χR(0) leads to a modification of the time-independent Red-
field equation and we call this the corrected Redfield (CR)
equation, given by �̇S(τ ) = −iTrB[H I(τ ),χCR(τ )]. We show
later through examples that the CR equation indeed represents
the short-time behavior of the dynamics more accurately. The
CR approach can be interpreted as a “slippage” of the initial
correlation (rather than the initial state of the system) and
modifying the master equation in order to fix the slippage
problem of the Redfield equation [62,68].

D. System-environment correlation in Lindblad

By applying the rotating-wave approximation (RWA) on
the Redfield equation we end up with the Lindblad (L) mas-
ter equation [41]. However, since the nature of the RWA is
such that it mixes the elements in the nested commutators
in the correlation part of the Redfield equation, it becomes
impossible to read correlation by comparing the final form of
the Lindblad equation and the exact dynamics. To overcome
this issue, we need to delve into the details of the derivation
of the Lindblad equation. To apply the RWA, we note that
any operator O(τ ) (with support on the system-environment
Hilbert space) can be decomposed in the eigenprojector basis
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{�E } of the system Hamiltonian as O(τ ) = ∑
ω∈�O(ω; τ )

such that O(ω; τ ) ≡ ∑
E ′,E |E ′−E=ω �E ⊗ IB O(τ ) �E ′ ⊗ IB,

where � ≡ {E − E ′|E , E ′ are eigenvalues of HS} is the set
of the energy gaps of the system Hamiltonian. It should
be noted that O(ω; τ ) is not necessarily Hermitian; in
fact, O†(ω; τ ) = O(−ω; τ ). Applying this decomposition on
the interaction Hamiltonian HI = ∑

k Sk ⊗ Bk , we obtain
in the interaction picture H I(τ ) = ∑

ω∈� H I(ω; τ ), where
H I(ω; τ ) = ∑

ke−iωτ Sk (ω) ⊗ Bk (τ ). Replacing this expan-
sion into Eq. (6), and applying the RWA, which eliminates
the terms with ω + ω′ �= 0, we get

�̇S(τ ) = −
∑

ω

TrB

[
H I(ω; τ ),

∫ ∞

0
ds

× [H I(−ω; τ − s), �S(τ ) ⊗ �B(0)]

]
. (8)

This is the Lindblad equation. To recast it in the well-known
Lindblad form one only needs to expand each term and cal-
culate the partial trace [41]. Defining (the mode or frequency
component)

χω(τ ) ≡ − i
∫ ∞

0
ds([H I(−ω; τ − s), �S(τ ) ⊗ �B(0)]

− �S(0) ⊗ TrS[H I(−ω; τ − s), �S(τ ) ⊗ �B(0)]),

where the second term has been added to satisfy the vanishing
partial trace conditions, and noting that

�̇S(τ ) =
∑
ω∈�

�̇S(ω; τ ), (9)

Eq. (8) can be decomposed into a set of coupled equations

�̇S(ω; τ ) = −i TrB[H I(ω; τ ), χω(τ )], ω ∈ �. (10)

From this we can conclude that the Lindblad equation treats
the system-environment correlation through a set of corre-
lations {χω(τ )}ω∈� between each energy-gap mode of the
system and the environment. Note that the total Lindblad cor-
relation χL(τ ) �= ∑

ω∈� χω(τ ). In fact, it is not evident (if not
impossible) how to obtain a single total system-environment
correlation for the Lindblad equation. This is the complication
imposed by the RWA and the very nature of the approxima-
tions in the Lindblad equation.

E. System-environment correlation in ULL2

The ULL2 dynamical equation has been introduced in
Ref. [39]. This equation has been obtained based on an iter-
ative solution of the dynamics of correlation up to first order
(in H I) and it includes correlation explicitly, given by

χULL2(τ ) = −i
∫ τ

0
ds [H̃ I(s), �S(s) ⊗ �B(s)], (11)

where

H̃ I(τ ) = H I(τ ) − TrB[H I(τ )�B(τ )] − TrS[H I(τ )�S(τ )].

(12)

The ULL2 equation is given by Eq. (2) with χ(τ ) → χULL2(τ ).
An equation similar to Eq. (2), with S ↔ B, also holds for
�B(τ ) and should be included for a full description. For an in-
dependent but relatively similar technique, see also Ref. [40].

F. System-environment correlation in MLL

A Markovian reduction of the ULL2 equation has been also
worked out in Ref. [39], dubbed as the MLL equation,

�̇S(τ ) = − i[TrB[H I(τ )�B(τ )], �S(τ )]

− τ TrB[H I(τ ), [H̃ I(τ ), �S(τ ) ⊗ �B(τ )]]. (13)

This equation can be recast in the form of a Lindblad equa-
tion with positive quantum jump rates [39]. Note that this
equation approximates the ULL2 correlation at short times as

χMLL(τ ) = −iτ [H̃ I(τ ), �S(τ ) ⊗ �B(0)], (14)

where �B(τ ) has been replaced by �B(0) to remove the de-
pendence of the system master equation on �B(τ ). In the
following we do not discuss the MLL equation as it is basi-
cally an approximation of the more accurate ULL2 equation.

III. EXAMPLE: QUBIT IN AN ENVIRONMENT OF QUBITS

We consider a qubit interacting with an environment of
qubits with the total Hamiltonian

HSB = ω0σ+σ− +
M∑

k=1

ωk	
k
+	k

− +
M∑

k=1

gk (σ−	k
+ + σ+	k

−),

(15)

where σ± = (σx ± iσy)/2 are the raising and lowering oper-
ators of the system qubit, with σx and σy being the Pauli
operators. Similarly, 	k

± are the raising and lowering op-
erators associated with the kth qubit of the environment.
This model is important in the context of quantum com-
putation applications as it can model the environment in
some experimental setups for realization of a qubit [70–72].
The effect of the environment on the dynamics of the
system is usually encompassed in the spectral density func-
tion J (ω) = ∑

kg2
kδ(ω − ωk ). The conventional choices of

spectral densities are in the continuum limit, requiring an
infinite environment assumption. Assuming a given spec-
tral density, to obtain consistent coupling constants needed
for numerical simulation of the dynamics, we choose gk =√

J (ωk )�ω, where ωk = k�ω and the parameter �ω is de-
termined by the condition

∫ ωmax

0 dω J (ω) ≈ ∑M
k g2

k , where
ωmax = M�ω [43].

In the following, we study the dynamics and correlation
of the model in Eq. (15) with the Ohmic and Lorentzian
spectral density functions. We assume that the environ-
ment is initially at zero temperature, i.e., �B(0) = (|0〉〈0|)⊗M

and �S(0) = |ψ〉〈ψ |, where |ψ〉 = (|0〉 + |1〉)/
√

2. To ob-
tain the exact dynamics, we use the symmetry property
[σ+σ− + ∑M

k=1	
k
+	k

−, HSB] = 0 for the initial environment
state �B(0) = (|0〉〈0|)⊗M . This property reduces the problem
to a single-excitation subspace of the Hilbert space of the
total system Hamiltonian and yields a M + 1 subspace for
the environment. Further, we have used the forward Euler
discretization method [73] to compute integrals and solve
dynamical differential equations for the system and the en-
vironment with a time step δτ as given in the captions of
the figures. It should also be noted that all types of master
equations that we are studying here are of second order in
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FIG. 1. Qubit in an Ohmic environment of qubits. (a) Dynamics of the excited-state population �S,11 and (b) norm of the correlation
operator in the exact dynamics (“Exact” & “EX”), ULL2, NZ2, TCL2, Redfield (“R”), which is equivalent to the Lindblad, and corrected
Redfield (“CR”) techniques. (c) Errors in capturing the dynamics of the system state and (d) the correlation vs time. Here M = 255, ωc/ω0 =
10, η/ω0 = 1 (setting ω0 = 1), �ω = 0.1, δτ = 0.0005, and the initial state of the system is (|0〉 + |1〉)/

√
2. All quantities are in natural units

where h̄ ≡ kB ≡ 1.

the norm of the interaction Hamiltonian under a time inte-
gral. Due to this, we can estimate the time duration of the
validity of these equations for predicting the open-system
dynamics as τ � 1/‖HI‖2 and plot all the figures up this
time for the purpose of comparison of the different master
equations.

We have used the Hilbert-Schmidt norm of the correlation
operator ‖χ a‖HS to characterize the system-environment cor-
relation. However, it is important to note that the norm of the
correlation operator cannot capture all features of correlation
as it measures only one feature of an operator, i.e., its am-
plitude. It has already been discussed in Ref. [74] that scalar
measures of correlation, such as mutual information and the
norm of the correlation operator, cannot be relied upon as
comprehensive measures of correlations.

We compare different techniques by studying their
ability to capture the system-environment correlation. To
this end, we use the accumulative error in correlation
given by

∫ τ

0 ds DHS(χ a(s), χEX(s)), where DHS(χ a, χEX) =√
Tr[(χ a − χEX)2] is the Hilbert-Schmidt distance of the exact

correlation χEX and χ a, with a ∈ {ULL2, NZ2, TCL2, R,
CR, L}. To further analyze how the approximated correlation
affects the accuracy of the dynamical equation in each case
we also compare different techniques through error in captur-
ing the system state defined by

∫ τ

0 ds D(�a(s), �EX(s)), where
D(�a, �EX) = (1/2)Tr[|�a − �EX|] is the trace distance of the
density matrix in each technique �a from the exact one �EX

(with |X | =
√

X †X ) [75].

Details of this example can be found in Appendix C.
In Appendix D, we also provide another example with the
Jaynes-Cummings model.

A. Ohmic environment

Assume the Ohmic spectral density

J (ω) = (η/π )ωe−ω/ωc , (16)

where ωc is cutoff frequency and η controls the coupling
strength. Figure 1(a) depicts the dynamics of the excited-state
population and (b) the norm of the correlation obtained by
exact numerical simulations (from ULL), ULL2, TCL2, NZ2,
Redfield, and CR approximations. It should be noted that since
HS has only one energy gap, the Lindblad and the Redfield
equations are equivalent here. The initial decay for τ � 0.1
of the excited-state population is accurately captured by the
ULL2, NZ2, and TCL2 methods. Interestingly, the initial dy-
namics of the norm shows an increasing trend, indicating the
growing strength of the correlation, which leads to the initial
decay dynamics. This demonstrates the role of correlation
in short-time dynamics. Furthermore, it is observed that the
Redfield equations provide an erroneous estimate of the initial
correlation [see the inset in Fig. 1(b)], resulting in inaccu-
rate short-time dynamics. However, the corrected correlation
and the resulting Redfield equation accurately replicate the
short-time dynamics. In the later part of the dynamics (for
τ > 0.2), the norm of the exact correlation is almost constant,
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FIG. 2. Qubit in a Lorentzian environment of qubits. (a) Dynamics of the excited-state population �S,11, and (b) norm of the correlation
operator in the exact dynamics (“Exact” & “EX”), ULL2, NZ2, TCL2, Redfield (“R”), which is equivalent to the Lindblad, and corrected
Redfield (“CR”) techniques. (c) Error in the dynamics of the system density matrix, and (d) error in capturing dynamics of the correlation
vs time. The values of the parameters are M = 255, λ = 1, � = 5 (λ/� = 0.2), �ω = 0.05, and δτ = 0.0005, and the initial state of the
system is (|0〉 + |1〉)/

√
2. In this case, NZ2, and CR give unphysical results and thus are not plotted. All quantities are in natural units where

h̄ ≡ kB ≡ 1.

and the population dynamics exhibits a plateau. Although
all approximative results show deviations in this time scale,
ULL2 remains more accurate than the other techniques.

In Figs. 1(c) and 1(d), we show the accumulated error
in the dynamics of the state of the system and the system-
environment correlation obtained by the ULL2, TCL2, NZ2,
Redfield, and CR approximations. It is observed from the plots
that the ULL2 equation captures the dynamics of the sys-
tem more accurately than the other techniques—for the given
parameter set. In addition, the ULL2 technique outperforms
the other techniques in capturing the system-environment cor-
relation, as can be justified by comparing the distance of
the approximated correlation operators from the exact one,
DHS(χ a, χEX). Note that this distance takes into account fea-
tures of the correlation operator and is a more faithful measure
than the norm, which only assigns a single number to the oper-
ator, in demonstrating which technique works relatively better.

B. Lorentzian environment

Next we consider the Lorentzian spectral density

J (ω) = �λ2

2π (ω2 + λ2)
, (17)

where � is the coupling strength and 1/λ determines the
environment correlation time [49]. It has been discussed in
Ref. [76] that when λ/� < 1 one can expect some non-

Markovian characteristics at a reasonably small timescale. In
Fig. 2, we analyze the different equations for this spectral
density by studying the same quantities as in Fig. 1. In this
case, NZ2 and CR give unphysical negative populations, and
hence we did not plot them in Fig. 2.

The exact population dynamics displays an oscillatory
behavior and the corresponding norm of the correlation op-
erator exhibits a revival of correlation. This revival may be
attributed to the non-Markovian nature of the bath. Similar
to the previous case, we observe that the excited-state pop-
ulation dynamic is accurate in the ULL2 and TCL2 results
in short times for τ < 0.5 [see Fig. 2(a)]. The dynamics of
the ULL2 and TCL2 correlations closely follow the norm of
the exact correlation at short times, as depicted in Fig. 2(b).
However, for later times τ > 0.5, the norm of the correlation
and the excited-state population dynamics calculated using
ULL2 and TCL2 start to deviate, which is expected due to
the approximate nature of the associated correlation oper-
ators. Nonetheless, ULL2 partially captures the oscillatory
dynamics of the excited-state population and the revival of
the correlation. It is also seen from the inset in Fig. 2(b) that
the Redfield equation has a nonzero initial correlation and
significantly deviates from the exact correlation. Furthermore,
Figs. 2(c) and 2(d) illustrate the accumulated errors in the
dynamics and the correlation. These results demonstrate that
ULL2 is capable of capturing the system-environment corre-
lation better.
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IV. SUMMARY AND CONCLUSIONS

We have obtained the system-environment correlation
associated with the approximate description of reduced
dynamics of open quantum systems by writing reduced dy-
namics in a universal form wherein the system-environment
correlation operator is present. This has enabled us to read
off the approximate system-environment correlation from
the reduced dynamics of the system and the environment
within a given system-environment model. This way, we
have demonstrate how to retain system-environment correla-
tion within commonly used master equations, including the
Markovian Lindblad, Redfield, second-order time convolu-
tionless, second-order Nakajima-Zwanzig, and second-order
universal Lindblad-like equations. We have shown that each
master equation is indeed associated with a particular ap-
proximation of the system-environment correlation operator.
This correlation-based analysis has offered an explanation
for the inconsistency of the Redfield equation at initial or
short times and a remedy for that. This can be a comple-
ment to the initial-condition slippage rectification of this
master equation. Moreover, we have noted that in the Lind-
blad equation system-environment correlations come into a
system-gap decomposed structure, which has been induced by
the rotating-wave approximation. We have illustrated our find-
ings in two examples by demonstrating that ULL2 predicts the
dynamics of the system-bath correlation and dynamics of the
system and the bath more accurately than other approximate
standard master equations.

ACKNOWLEDGMENTS

This work was supported in part by the Research Council
of Finland QTF Center of Excellence program (Project No.
312298) and Sharif University of Technology’s Office of Vice
President for Research and Technology.

APPENDIX A: DERIVATION OF THE EXACT DYNAMICS

To see how correlation appears in the dynamical master
equation of the system, we start from the Schrödinger equa-
tion of the total system �̇SB(τ ) = −i[HSB, �SB(τ )]. By in-
serting �SB(τ ) = �S(τ ) ⊗ �B(τ ) + χ (τ ) into the Schrödinger
equation, we obtain

�̇SB(τ ) = −i[HSB, �S(τ ) ⊗ �B(τ )] − i[HSB, χ (τ )]. (A1)

The exact dynamical equation of the system is obtained by
tracing over the environmental degrees of freedom as

�̇S(τ ) = −i[H̃S(τ ), �S(τ )] − i TrB[HI, χ (τ )], (A2)

where H̃S(τ ) = HS + TrB[HI�B(τ )]. In derivation of the
above equation we have used the identity TrB[HI, �S(τ ) ⊗
�B(τ )] = [TrB[HI�B(τ )], �S(τ )], TrB[HB, χ ] = 0, and
TrB[HS, χ ] = [HS, TrB[χ ]] = 0. Since working in the
interaction picture is more convenient and the interaction-
picture version of the approximate equations are more
common, we also rewrite Eq. (A2) in the interaction picture,
which leads to

�̇S(τ ) = −i[TrB[H I(τ )�B(τ )], �S(τ )] − iTrB[H I(τ ),χ(τ )].
(A3)

This is a universal form of the dynamical equation where the
correlation operator χ is present. This is Eq. (2) of the main
text.

APPENDIX B: DERIVATION OF THE APPROXIMATED
CORRELATION FROM THE EXACT CORRELATION

Here we derive the approximated correlation and corre-
sponding master equations from the exact dynamics. Consider
the exact dynamical equation in the interaction picture

�̇SB(τ ) = −i[H I(τ ), �SB(τ )]. (B1)

The formal solution to this equation can be written as

�SB(τ ) = �SB(0) − i
∫ τ

0
ds [H I(s), �SB(s)]. (B2)

Similarly, one can also calculate the formal solution for the
environment and system density operators by tracing over the
system and environment degrees of freedom, respectively,

�S(τ ) = �S(0) − i
∫ τ

0
ds TrB[H I(s), �SB(s)], (B3)

�B(τ ) = �B(0) − i
∫ τ

0
ds TrS[H I(s), �SB(s)]. (B4)

Substituting these formal solutions into the interaction-picture
form of Eq. (1) in the main text gives the exact equation

χ(τ ) =χ(0) − i
∫ τ

0
ds

(
[H I(s), �SB(s)] − �S(0)

⊗ TrS[H I(s), �SB(s)] − TrB[H I(s), �SB(s)] ⊗ �B(0)
)

−
∫ τ

0
ds TrB[H I(s), �SB(s)]

⊗
∫ τ

0
ds TrS[H I(s), �SB(s)]. (B5)

If we set the initial condition set χ(0) = �SB(0) − �S(0) ⊗
�B(0) = 0 and consider a weak-coupling limit by neglecting
the last term, which is of second order in ‖H I‖, we obtain the
approximated correlation as

χ(τ ) ≈ −i
∫ τ

0
ds

(
[H I(s), �SB(s)] − �S(0)

⊗ TrS[H I(s), �SB(s)] − TrB[H I(s), �SB(s)] ⊗ �B(0)
)
.

(B6)

Now we show that this correlation operator can be taken as an
alternative basis for derivation of some of the standard master
equations.

(i) If we apply the Born approximation �SB(s) ≈ �S(s) ⊗
�B(0) inside the integral, we obtain

χNZ2(τ ) ≈ −i
∫ τ

0
ds

(
[H I(s), �S(s) ⊗ �B(0)] − �S(0)

⊗ TrS[H I(s), �S(s) ⊗ �B(0)]
)
, (B7)

where we have used TrB[H I(s), �B(0)] = TrB[HI, �B(0)] =
0. Substituting χNZ2(τ ) in Eq. (2) of the main text yields the
NZ2 equation.
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(ii) In addition, if we also apply the Markov approxima-
tion by replacing �S(s) with �S(τ ), we arrive at

χTCL2(τ ) ≈ −i
∫ τ

0
ds

(
[H I(s), �S(τ ) ⊗ �B(0)] − �S(0)

⊗ TrS[H I(s), �S(τ ) ⊗ �B(0)]
)
. (B8)

We can recover the TCL2 equation by substituting χTCL2(τ ) in
Eq. (2).

(iii) Similarly, we can obtain the approximated correlation
corresponding to the Redfield equation by setting the upper
limit of the integral in Eq. (B6) to be infinity and changing s
to τ − s,

χR(τ ) ≈ −i
∫ ∞

0
ds ([H I(τ − s), �S(τ ) ⊗ �B(0)] − �S(0)

⊗ TrS[H I(τ − s), �S(τ ) ⊗ �B(0)]). (B9)

As a final remark, we note that the neglected term in
Eq. (B6) is not the only term of second order in H I in Eq. (B5).
For a rigorous analysis of χ order by order is provided through
the ULL technique [39]. This is, however, beyond the scope
of this paper and the current approximation (B6) suffices for
the purpose of reading approximate expressions for χ.

APPENDIX C: DETAILS OF THE EXAMPLE

We consider a qubit interacting with an environment of
qubits through the following Hamiltonian (in the interaction
picture):

H I(τ ) =
M∑

k=1

gk
(
σ−	k

+e−i(ω0−ωk )τ + σ+	k
−ei(ω0−ωk )τ ), (C1)

where we have used the following relations for the operators
in the interaction picture:

σ±(τ ) = σ±e±iω0τ , (C2)

�k
±(τ ) = 	k

±e±iωkτ . (C3)

1. Derivation of the Redfield equation

Consider the Redfield equation in the interaction picture,

�̇S(τ ) = −
∫ ∞

0
ds TrB[H I(τ ), [H I(τ − s), �S(τ ) ⊗ �B(0)]]

≡ L [�S(τ )]. (C4)

To find the commutator in the integral, we evaluate each terms
in the commutator separately. First,

TrB[H I(τ )H I(τ − s)�S(τ ) ⊗ �B(0)] =
M∑

k′=1

M∑
k=1

gkg′
k (σ+(τ )σ+(τ − s)�S(τ )TrB[�k′

−(τ )�k
−(τ − s)�B(0)]

+ σ−(τ )σ−(τ − s)�S(τ )TrB[�k′
+(τ )�k

+(τ − s)�B(0)]

+ σ+(τ )σ−(τ − s)�S(τ )TrB[�k′
−(τ )�k

+(τ − s)�B(0)]

+ σ−(τ )σ+(τ − s)�S(τ )TrB[�k′
+(τ )�k

−(τ − s)�B(0)]). (C5)

We further simplify the above relation using TrB[�k′
−(τ )�k

−(τ − s)�B(0)] = TrB[�k′
+(τ )�k

+(τ − s)�B(0)] = 0 and obtain

TrB[H I(τ )H I(τ − s)�S(τ ) ⊗ �B(0)] =
M∑

k′=1

M∑
k=1

gkg′
k

(
σ+(τ )σ−(τ − s)�S(τ )TrB[�k′

−(τ )�k
+(τ − s)�B(0)]

+ σ−(τ )σ+(τ − s)�S(τ )TrB[�k′
+(τ )�k

−(τ − s)�B(0)]
)

=
M∑

k′=1

M∑
k=1

gkg′
k

(
σ+σ−eiω0s�S(τ )TrB[	k′

−	k
+�B(0)]e−i(ωk′ τ−ωk (τ−s))

+ σ−σ+e−iω0(s)�S(τ )TrB[	k′
+	k

−�B(0)]ei(ωk′ τ−ωk (τ−s))
)
. (C6)

We assume that the environment is initially in the pure state |0〉⊗M
B , from which

TrB[H I(τ )H I(τ − s)�S(τ ) ⊗ �B(0)] =
M∑

k=1

g2
kσ+σ−�S(τ )ei(ω0−ωk )s = L(s) σ+σ−�S(τ ), (C7)

where

L(s) ≡
M∑

k=1

g2
kei(ω0−ωk )s. (C8)

Similarly one can calculate other terms in the integral as
TrB[H I(τ )�S(τ ) ⊗ �B(0)H I(τ − s)]

=
M∑

k=1

g2
kσ−�S(τ )σ+e−i(ω0−ωk )s = L(−s) σ−�S(τ )σ+,

(C9)

TrB[H I(τ − s)�S(τ ) ⊗ �B(0)H I(τ )]

=
M∑

k=1

g2
kσ−�S(τ )σ+ei(ω0−ωk )s = L(s) σ−�S(τ )σ+, (C10)

TrB[�S(τ ) ⊗ �B(0)H I(τ − s)H I(τ )]

=
M∑

k=1

g2
k�S(τ )σ+σ−e−i(ω0−ωk )(τ−s) = L(−s) �S(τ )σ+σ−.

(C11)
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Thus,

�̇S(τ ) = −
∫ ∞

0
ds (L(s)σ+σ−�S(τ ) − L(−s)σ−�S(τ )σ+

− L(s)σ−�S(τ )σ+ + L(−s)�S(τ )σ+σ−). (C12)

We write
∫ ∞

0 ds L(±s) = γ R ± iεR, where γ R =
Re(

∫ ∞
0 ds L(s)) and εR = Im(

∫ ∞
0 ds L(s)). Then we can

write the master equation as

�̇S(τ ) = − iεR[σ+σ−, �S(τ )] + γ R[2σ−�S(τ )σ+
− {σ+σ−, �S(τ )}]. (C13)

After transforming back to the Schrödinger picture, we obtain

�̇S(τ ) = − i(ω0 + εR)[σ+σ−, �S(τ )] + γ R[2σ−�S(τ )σ+
− {σ+σ−, �S(τ )}] = L [�S(τ )]. (C14)

To find the exact expression for the rates, we first consider∫ ∞

0
ds L(±s) =

∫ ∞

0
ds

M∑
k=1

g2
kei(ω0−ωk )s. (C15)

Using the spectral density

J (ω) =
∑

k

g2
kδ(ω − ωk ) (C16)

and the integral identity∫ ∞

0
dx eixy = πδ(y) + i/y, (C17)

we obtain∫ ∞

0
ds L(±s) =

∫ ∞

0
ds

∫ ∞

0
dω J (ω) ei(ω0−ω)s

= π

∫ ∞

0
dω J (ω) δ(ω0 − ω)

+ i
∫ ∞

0
dω J (ω)/(ω0 − ω). (C18)

From this we can read the rates as

γ R = πJ (ω0), (C19)

εR =
∫ ∞

0
dω J (ω)/(ω0 − ω). (C20)

2. Derivation of the system-environment correlation
in the Redfield equation

Consider the correlation operator

χR(τ ) = − i
∫ ∞

0
ds ([H I(τ − s), �S(τ ) ⊗ �B(0)] − �S(0)

⊗ TrS[H I(τ − s), �S(τ ) ⊗ �B(0)]). (C21)

First, we evaluate the integral K (τ ) ≡ ∫ ∞
0 ds H I(τ − s).

Substituting the interaction Hamiltonian gives

K (τ ) =
M∑

k=1

gk

(
σ−	k

+

∫ ∞

0
ds e−i(ω0−ωk )(τ−s)

+ σ+	k
−

∫ ∞

0
ds ei(ω0−ωk )(τ−s)

)
. (C22)

We further simplify the above equation using the integral
relation (C17) and obtain

K (τ ) =
M∑

k=1

πgkδ(ω0 − ωk )[Fk (τ ) + F †
k (τ )]

+ i
M∑

k=1

gk

(ω0 − ωk )
[Fk (τ ) − F †

k (τ )], (C23)

where Fk ≡ σ− ⊗ (I(1) ⊗ I(2) ⊗ · · · ⊗ 	k
+ ⊗ · · · ⊗ I(M ) ). To

evaluate the correlation operator numerically, we further as-
sume an approximate form for the Dirac delta function δ(x) ≈
e−x2/b2

/(
√

π |b|), with small values of b. By inserting this
expression for K (τ ) in Eq. (C21), we obtain

χR(τ ) = [K (τ ), �S(τ ) ⊗ �B(0)] − �S(0)

⊗ TrS[K (τ ), �S(τ ) ⊗ �B(0)]. (C24)

3. Derivation of the corrected Redfield equation

Consider the Redfield equation modified with the corrected
correlation operator as

�̇S(τ ) = −
∫ ∞

0
ds

(
TrB[H I(τ ), [H I(τ − s), �S(τ ) ⊗ �B(0)]

− TrB[H I(τ ), [H I(−s), �S(0) ⊗ �B(0)]
)

≡ L [�S(τ )] − Lc[�S(0)]. (C25)

To find the dynamical equation, we first calculate the terms in the correction part Lc[�S(0)],

TrB[H I(τ ) H I(−s) �S(0) ⊗ �B(0)] =
M∑

k′=1

M∑
k=1

gkg′
k

(
σ+(τ )σ−(−s)�S(0) TrB[�k′

−(τ )�k
+(−s)�B(0)]

+ σ−(τ )σ+(−s)�S(0) TrB[�k′
+(τ )�k

−(−s)�B(0)]
)

=
M∑

k′=1

M∑
k=1

gkg′
k

(
σ+σ−eiω0(s+τ )�S(0) TrB[	k′

−	k
+�B(0)]e−i(ωk′ τ+ωks) + σ−σ+e−iω0(s+τ )

× �S(0) TrB[	k′
+	k

−�B(0)]ei(ωk′ τ+ωks)
)
. (C26)
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FIG. 3. Qubit in an Ohmic environment of qubits. (a) Dynamics of the coherence C(�S) vs time in the exact (here “Exact” & “EX” ≡
“ULL”), ULL2, NZ2, TCL2, Redfield (“R”), and corrected Redfield (“CR”) master equations. (b) Accumulative error in the approximated
state of the environment. In all techniques except ULL2 a constant state is assumed for the environment as �B(τ ) = �B(0). In these plots
M = 255, ωc/ω0 = 10, η/ω0 = 1, �ω = 0.1, and δτ = 0.0005, when the initial state of the system is (|0〉 + |1〉)/

√
2. All quantities are in

natural units where h̄ ≡ kB ≡ 1.

We assume that the environment is initially in the pure state |0〉⊗M
B and obtain

TrB[H I(τ )H I(−s)�S(0) ⊗ �B(0)] =
M∑

k=1

g2
kσ+σ−�S(0) ei(ω0−ωk )(s+τ ) = L(s + τ )σ+σ−�S(0). (C27)

Similarly,

TrB[H I(τ )�S(0) ⊗ �B(0)H I(−s)] =
M∑

k=1

g2
kσ−�S(τ )σ+e−i(ω0−ωk )(s+τ ) = L(−s − τ )σ−�S(0)σ+, (C28)

TrB[H I(−s)�S(0) ⊗ �B(0)H I(τ )] =
M∑

k=1

g2
kσ−�S(0)σ+ei(ω0−ωk )(s+τ ) = L(s + τ )σ−�S(0)σ+, (C29)

TrB[�S(0) ⊗ �B(0)H I(−s)H I(τ )] =
M∑

k=1

g2
k�S(0)σ+σ−e−i(ω0−ωk )(s+τ ) = L(−s − τ )�S(0)σ+σ−. (C30)

Putting these results together yields

Lc[�S(0)] = −
∫ ∞

0
ds

(
L(s + τ )σ+σ−�S(0) − L(−s − τ )σ−�S(0)σ+ − L(s + τ )σ−�S(0)σ+ + L(−s − τ )�S(0)σ+σ−

)
= −iεc

R(τ )[σ+σ−, �S(τ )] + γ c
R(τ )[2σ−�S(τ )σ+ − {σ+σ−, �S(τ )}], (C31)

where γ CR(τ ) = Re(
∫ ∞

0 ds L(s + τ )) and εCR(τ ) = Im(
∫ ∞

0 ds L(s + τ )). To find the rates, we evaluate the integral∫ ∞

0
ds L(s + τ ) =

∫ ∞

0
ds

∫ ∞

0
dω J (ω) ei(ω0−ω)(s+τ ) ds = π

∫ ∞

0
dω δ(ω0 − ω)J (ω)ei(ω0−ω)τ + i

∫ ∞

0
dω J (ω)ei(ω0−ω)τ /(ω0 − ω)

= πJ (ω0) −
∫ ∞

0
dω J (ω) sin[(ω0 − ω)τ ]/(ω0 − ω) + i

∫ ∞

0
dω J (ω) cos[(ω0 − ω)τ ]/(ω0 − ω),

hence

γ CR(τ ) = πJ (ω0) −
∫ ∞

0
dω J (ω) sin[(ω0 − ω)τ ]/(ω0 − ω),

(C32)

εCR(τ ) = i
∫ ∞

0
dω J (ω) cos[(ω0 − ω)τ ]/(ω0 − ω). (C33)

4. Ohmic environment

In Fig. 3 we show the dynamics of the coherence
C(�S(τ )) = |〈0|�S(τ )|1〉| [77] (where |0〉 and |1〉 form the
computational basis), and the accumulative error in the ap-

proximated state of the environment in different techniques
such as the exact dynamics, ULL2, TCL2, NZ2, Redfield, and
CR approximations. It should be noted that, in this example,
since HS consists of only one energy gap, the Lindblad equa-
tion is equivalent to the Redfield equation. It is seen from the
plots that the ULL2 equation captures both the population and
coherence, i.e., the dynamics of the system, more accurately
than the other techniques for the given parameters set. It is also
observed from Fig. 1 that the system-environment correlation
has also been captured more precisely by ULL2, compared
to the other techniques. In Fig. 3 we also show, through cal-
culation of the integrated trace distance for the environment,
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FIG. 4. Qubit in a Lorentzian environment of qubits. (a) Dynamics of the excited-state population �S,11 and (b) coherence C(�S) vs
time in the exact (here “Exact” & “EX” ≡ “ULL”), ULL2, NZ2, TCL2, Redfield (“R”), and corrected Redfield (“CR”) master equations.
Here the exact and NZ2 curves overlap, but the ULL2 value shows a relative phase difference. (c) Accumulative error in the approximated
state of the environment. In all techniques except ULL2 a constant state is assumed for the environment as �B(τ ) = �B(0). In these plots
M = 255, λ/� = 0.2, �ω = 0.05, and δτ = 0.0005, and the initial state of the qubit is (|0〉 + |1〉)/

√
2. All quantities are in natural units

where h̄ ≡ kB ≡ 1.

∫ τ

0 ds D(�a
B(s), �EX

B (s)), that the state of the environment devi-
ates from the constant state approximation used in the NZ2,
TCL2, Redfield, and Lindblad techniques. The environment
state also evolves to a constant state that is different from the
initial state and this causes a steady increase of the integrated
error.

5. Lorentzian environment

As seen in Fig. 4, NZ2 and CR give unphysical results.
The ULL2 technique captures the oscillatory character of the
coherence, although it shows a phase difference with the exact
solution.

APPENDIX D: EXAMPLE 2: JAYNES-CUMMINGS MODEL

We consider the Jaynes-Cummings model, a qubit interact-
ing with a single cavity mode. The Hamiltonian can be written

as

HSB = ω0σ+σ− + ωca†a + �(σ+a + σ−a†), (D1)

where a† (a) are the bosonic raising (lowering) operators
associated with the cavity mode and � determines the strength
of the interaction. Note that the calculation of the correlation
operator requires a finite environment approximation. Thus,
we truncate into the subspace spanned by N lowest energy
eigenstates of the single-mode environment. We further as-
sume that the environment is initially in the thermal state
�B(0) = e−βωca†a/Tr[e−βωca†a], where β = 1/T with T being
the temperature of the environment (assuming that the Boltz-
mann constant to be kB ≡ 1).

Consider the TCL2 equation in the interaction picture,

�̇S(τ ) = −
∫ τ

0
ds TrB[H I(τ ), [H I(s), �S(τ ) ⊗ �B(0)]], (D2)

where

H I(τ ) = �
(
σ−a†e−i(ω0−ωc )τ + σ+aei(ω0−ωc )τ

)
. (D3)

We need to evaluate each term in the integral (D2). For the first term we have

TrB[H I(τ )H I(s)�S(τ ) ⊗ �B(0)] = �2
(
σ−σ−�S(τ )e−i(ω0−ωc )(τ+s)TrB[a†a†�B(0)] + σ+σ+�S(τ )ei(ω0−ωc )(τ+s)TrB[a2�B(0)]

+ σ−σ+�S(τ )e−i(ω0−ωc )(τ−s)TrB[a†a�B(0)] + σ+σ−�S(τ )ei(ω0−ωc )(τ−s)TrB[aa†�B(0)]
)
.

(D4)

Note that TrB[aa†�B(0)] = 1 + 〈nB〉, where 〈nB〉 = TrB[a†a�B(0)], and TrB[aa�B(0)] = TrB[a†a†�B(0)] = 0 for the thermal
state of the environment. Thus,

TrB[H I(τ )H I(s)�S(τ ) ⊗ �B(0)] = �2σ−σ+�S(τ )e−i(ω0−ωc )(τ−s)〈nB〉 + �2σ+σ−�S(τ )ei(ω0−ωc )(τ−s)(1 + 〈nB〉). (D5)

Similarly, we obtain the other terms as

TrB[H I(τ )�S(τ ) ⊗ �B(0)H I(s)] = �2σ−�S(τ )σ+e−i(ω0−ωc )(τ−s)(1 + 〈nB〉) + �2σ+�S(τ )σ−ei(ω0−ωc )(τ−s)〈nB〉, (D6)

TrB[H I(s)�S(τ ) ⊗ �B(0)H I(τ )] = �2σ−�S(τ )σ+ei(ω0−ωc )(τ−s)(1 + 〈nB〉) + �2σ+�S(τ )σ−e−i(ω0−ωc )(τ−s)〈nB〉, (D7)

TrB[�S(τ ) ⊗ �B(0)H I(s)H I(τ )] = �2�S(τ )σ−σ+ei(ω0−ωc )(τ−s)〈nB〉 + �2�S(τ )σ+σ−e−i(ω0−ωc )(τ−s)(1 + 〈nB〉). (D8)
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FIG. 5. Jaynes-Cummings model. (a) Dynamics of the excited-state population �S,11 and (b) coherence C(�S) vs time in the exact (≡
ULL), ULL2, NZ2, and TCL2 techniques. (c) Accumulative error in the approximated state of the system. In (b) the exact and NZ2 curves
overlap. In all techniques except ULL2 a constant state is assumed for the environment as �B(τ ) = �B(0). The values of the parameters are
N = 128, �/ω0 = 0.1, ωc − ω0 = 0.5, β = 5, and δτ = 0.0005, and the initial state of the system is (|0〉 + |1〉)/

√
2. All quantities are in

natural units where h̄ ≡ kB ≡ 1.

Putting the above terms together yields

�̇S(τ ) = − iεTCL2[(1 + 〈nB〉)σ+σ− − 〈nB〉σ−σ+, �S(τ )]

+ (1 + 〈nB〉)γ TCL2[2σ−�S(τ )σ+ − {σ+σ−, �S(τ )}] + 〈nB〉γ TCL2[2σ+�S(τ )σ− − {σ−σ+, �S(τ )}], (D9)

where γ TCL2 = Re(
∫ τ

0 ds �2ei(ω0−ωc )(τ−s) ) and εTCL2 =
Im(

∫ τ

0 ds �2ei(ω0−ωc )(τ−s) ). The Redfield equation can be
obtained by replacing s → τ − s and setting the limit of
integration to infinity in the TCL2 equation. Thus, the rate for
the Redfield equation is

γ R = Re

(∫ ∞

0
ds �2ei(ω0−ωc )s

)
= π�2 δ(ω0 − ωc). (D10)

Note that the dissipative part of the Redfield equation is zero
for the case ω �= ω0. The Lindblad and the Redfield equa-
tions are equivalent for this example because HS has only one

FIG. 6. Jaynes-Cummings model. (a) Error in capturing the dynamics of the environment state, (b) error in capturing the dynamics of
the correlation operator, and (c) norm of the correlation operator vs time in the exact dynamics (“Exact” & “EX” ), ULL2, NZ2, and TCL2
techniques. In (b) and (c) the NZ2 and TCL2 curves overlap. The values of the parameters are N = 128, �/ω0 = 0.1, ωc − ω0 = 0.5, β = 5,
and δτ = 0.0005, and the initial state of the system is (|0〉 + |1〉)/

√
2. All quantities are in natural units where h̄ ≡ kB ≡ 1.

energy gap. In Fig. 5, we show the dynamics of the density
matrix of the system calculated with the NZ2, TCL2, ULL2,
and exact techniques. The ULL2 and NZ2 solutions follows
the actual dynamics and the coherence relatively better than
TCL2, and hence the integrated distance is also relatively
small for the ULL2 and NZ2 solutions. To evaluate how
well the approximative techniques capture correlation, we also
show the norm and the distance of the approximate correlation
operator from the exact correlation in Fig. 6. These results
again demonstrate relative advantage of ULL2 over the corre-
lation calculated with other techniques.
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