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Chiral Meissner state in time-reversal invariant Weyl superconductors
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Weyl semimetals have nodes in their electronic structure at which electrons attain a definite chirality. Due
to the chiral anomaly, the nonconservation of charges with given chirality, the axion term appears in their
effective electromagnetic action. We determine how this affects the properties of time-reversal invariant Weyl
superconductors (SCs) in the London regime. For type II SCs the axion coupling generates magnetic B fields
transverse to vortices, which become unstable at a critical coupling so that a transition into type I SC ensues. In
this regime an applied B field not only decays inside the SC within the London penetration depth, but the axion
coupling generates an additional perpendicular field. Consequently, when penetrating into the bulk the B field
starts to steadily rotate away from the applied field. At a critical coupling the screening of the magnetic field
breaks down. The novel chiral superconducting state that emerges has a periodically divergent susceptibility that
separates onsets of chiral Meissner regimes. The chiral anomaly thus leaves very crisp experimental signatures
in structurally chiral Weyl SCs with an axion response.

DOI: 10.1103/PhysRevResearch.6.013240

I. INTRODUCTION

Experimentally, superconductivity has been reported in a
number of Weyl semimetals, both at ambient [1–6] and high
pressures [7,8]. The topological nature of Weyl semimet-
als [9–15] gives hope that Majorana zero modes bounded
to vortices [16,17] may be detected in the future. Another
recent experimental development in the field is the observa-
tion of superconductivity in the time-reversal invariant (TRI)
Weyl semimetal PtBi2 [5,6,18], where superconductivity is
observed to be confined to the surface of the material.

Since the presence of Weyl nodes modifies electromagnetic
properties of a superconducting system, we will explore here
the Meissner and magnetic vortex states of Weyl supercon-
ductors (SCs) in the London limit. The low-energy effective
theory of Weyl semimetals is governed by the axion action
[9–15], Sa = α

4π2

∫
dt

∫
d3rϑ (t, r)E · B, where α is the fine-

structure constant and the axion field is assumed to have the
explicit form ϑ (t, r) = b · r − b0t . Here b and b0 represent
the separation between Weyl nodes in momentum and energy,
respectively [14,15]. Specifically, we will be interested in the
case where time-reversal invariance holds, which leads to a net
b = 0 due to the presence of time-reversed Weyl node pairs.
In the normal state at equilibrium Weyl nodes of opposite
chirality cancel out the axion action term proportional to b0

[19–21]. This is not necessarily so in Weyl SCs, in particular
when Weyl cones of one particular chirality are gapped out
due to the superconducting pairing [22,23], as in this case the
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remaining gapless Weyl nodes of opposite chirality induce ax-
ion electrodynamics. This scenario is relevant in cases where
the normal ground-state Weyl nodes of opposite chirality have
different energies. In a TRI crystal this requires the absence
of any mirror symmetry and, as inversion must be broken to
produce Weyl nodes in the first place, thus a chiral crystal
structure [24,25]. Superconductivity in such chiral crystals
permits gapping out of Weyl nodes of a single chirality in
equilibrium so that the axion action term proportional to b0

appears in the effective electromagnetic response.
In such cases the London electrodynamics of TRI Weyl

SCs is captured by the following Lagrangian,

L = ε

8π
E2 − 1

8π
B2 + ρs

2
[(∂tθ + qφ)2 − (∇θ − qA)2]

− q2b0

16π2
A · B, (1)

where ρs is the superconducting stiffness, q = 2e the charge, θ
the phase of the order parameter, φ and A are electric and vec-
tor potentials, respectively. We use units such that h̄ = c = 1.
As we are interested in the static regime, we obtain the follow-
ing generalized London equation from the Lagrangian above,

∇ × B = 4πqρs(∇θ − qA) − aB, (2)

where from Eq. (1) we identify the axion coupling constant as
given by a = q2b0/(2π ).

Within the London theory the superconducting current
is given by jSC = qρs(∇θ − qA), while a typical physical
consequence of the axion response is the chiral magnetic
effect (CME) [26–28], which implies that the current density
contains a contribution jCME = −aB/(4π ). Therefore, in a
Weyl superconductor with time-reversal invariance the total
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current density is given by j = jSC + jCME, which is reflected
in Eq. (2). Here we uncover a number of novel electrody-
namic features that follow from the interplay between the
axion CME and superconductivity in chiral Weyl semimetallic
materials.

As will be shown, while the magnetic field expulsion from
a superconductor is ensured by its current having a term pro-
portional to A, the CME contribution, which is linear in B,
leads to a rotation of the screened magnetic field. The latter
behavior may be understood by first considering the non-
superconducting phase. In this case ∇ × B = −aB and we see
that ∇2B + a2B = 0, which yields spatially rotating magnetic
field profiles. When the system becomes superconducting, the
screening of the magnetic field twists as a response to the
rotation induced by the CME, and the chiral Meissner state
ensues.

We find that the electromagnetic response of Weyl SCs
differs drastically depending on whether the axion coupling
a is above or below a critical value ac, which is related to the
superconducting stiffness. Investigating the vortex properties
of type II Weyl SCs, one observes that for a < ac a component
of the magnetic induction transverse to the vortex line is gen-
erated in addition to the one directed along the vortex line. The
rotation of the magnetic induction around the vortex results in
a screening current directed not only around but also along
the vortex line. However, due to the competition between the
axion term and superconductivity with the increase of the ratio
a/ac, a transition occurs at ac from the chiral vortex state to a
Meissner state without vortices.

For type I Weyl SCs we show that the chiral Meissner state
present for a < ac breaks at a = ac and the system enters a
new state with no magnetic field screening. Instead of de-
caying, the magnetic field rotates inside the sample for a �
ac. Nevertheless, in this regime the magnetic susceptibility
χ = −1/(4π ) at quantized values of a implying diamagnetic
behavior.

II. VORTEX IN TRI WEYL SC

To understand the electromagnetic response of a Weyl SC,
we first focus on the fate of a single magnetic vortex. The
analysis here differs significantly from previous discussions
of axion electrodynamics based on the Witten effect [29],
where the field of the vortex induces a fractional charge at
the interface between a SC and a topological insulator [30],
as well as a fractional angular momentum [31,32]. The vortex
axion physics discussed below does not involve the electric
field and is intrinsic to TRI Weyl SCs, so proximity to a
topological material need not be assumed. Taking the curl of
Eq. (2) we obtain,

−∇2B + a∇ × B + M2B = M2�0

2π
�, (3)

where M2 = 4πq2ρs represents the inverse square of the Lon-
don penetration depth λ, �0 = 2π/q is the elementary flux
quantum, and � = ∇ × ∇θ is the vorticity (recall that the curl
of a gradient vanishes everywhere, except where topological
defects such as vortices exist [33]).

We consider an infinite system with a single vortex line
directed along the z axis and with the origin located at r = 0.

This vortex configuration leads to the vorticity taking a simple
form, � = 2πδ2(r)ẑ. The exact solution to Eq. (3) is obtained
by performing a Fourier transform, which leads to

Bi(p) = 2πM2�0δ(pz )(p2 + M2)

(p2 + M2)2 − a2 p2

(
δiz + i

aεizk pk

p2 + M2

)
, (4)

and yields in real space B(r) = Bϕ (r)ϕ̂ + Bz(r)ẑ, with

Bϕ (r) = M2�0

2π
√

a2 − a2
c

∑
σ=±

σMσ K1(Mσ r), (5)

Bz(r) = M2�0

2π
√

a2
c − a2

∑
σ=±

Mσ K0(Mσ r), (6)

where Kα (x) are modified Bessel functions of the second kind,
and

2M± =
√

a2
c − a2 ± ia, (7)

where ac = 2M. Note that despite the complex values of M±,
the components of the magnetic induction in Eqs. (5) and
(6) are real. These solutions are only valid for a < ac. When
a � ac, M± become purely imaginary resulting in poles in
Eq. (4) and the integrals leading to B(r) are no longer de-
fined.1 Consequently, there is no vortex solution for a � ac

and one has to consider Eq. (3) with a trivial vorticity (� = 0).
Therefore, the only solution for the infinite system in this
case is B = 0, a perfect diamagnetic response. Interestingly,
expressions similar to Eqs. (3)–(6) have arisen in the context
of noncentrosymmetric superconductors [34–36].

Due to the axion, a ϕ component of the magnetic field is
generated and, as a consequence, a component of the current
parallel to the vortex is induced. The total current screening
the vortex is thus encircling it in a helical manner, with a
handedness/chirality determined by the sign of a. Figure 1
displays the magnetic induction components corresponding to
the vortex solution of Eqs. (5) and (6) for different values of a.
Note that the fields start to develop more spatial structure with
increasing a, so the Meissner screening is spatially oscillating.
For a closer to ac the oscillations are progressively enhanced,
see Figs. 1(c)–1(d).

Since at a � ac the vortex solution breaks down, the sys-
tem transitions into a superconducting phase without vortices.
As at the SC phase transition the penetration depth λ diverges
and subsequently M tends to zero, for any finite (and possibly
small) intrinsic a, the regime a � ac is always realized close
to the SC phase transition. Moreover, if the case a � ac is
reached at any temperature, the Weyl SC only features a
regime where no vortices are present—a behavior character-
istic of a type I SC. Such a perfect diamagnetic character is
also observed for a vortex solution in a finite slab of thick-
ness L, with the vortex line perpendicular to the surface, see
Appendix A. There too the vortex solution does not exist in
the case of a � ac leading to a type I London response.

1Recall that unlike the Bessel functions Jα (z), Kα (z) is only defined
for Re z > 0.
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FIG. 1. Magnetic induction profiles for different values of the
axion coupling a [(a) and (b) for the field components Bϕ and Bz,
respectively]. Fields are plotted in units of M2�0/(2π ) against the
radial coordinate r in units of M. (c) and (d) correspond to a situation
where a is very close to the critical value ac = 2M for which the
vortex solution ceases to exist. We note that as a approaches ac from
below the field profiles start to become more oscillatory. The onset of
these spatial oscillations is illustrated by the three-dimensional plots
for Bz in (e) and (f).

III. MEISSNER STATE

Having discussed vortex solutions, we consider now a su-
perconducting state without vortices. Here we find a crucial
difference relative to the usual London electrodynamics: the
Meissner screening works differently, since application of an
external magnetic field generates an additional component of
the magnetic induction due to the axion term. As a first exam-
ple, let us consider a semi-infinite superconductor located in
the region x > 0 in the presence of an applied magnetic field
Bap = Bapŷ parallel to the surface. For this simple geometry
one obtains from Eq. (3),

−∂2
x By + M2By − a∂xBz = 0, (8)

−∂2
x Bz + M2Bz + a∂xBy = 0, (9)

with the boundary conditions, By(x = 0) = Bap, By(x → ∞) =
0, Bz(x = 0) = 0, Bz(x → ∞) = 0. As with the vor-
tex solution, there are two distinct regimes to con-
sider: a < ac and a � ac. The former yields the solution

FIG. 2. (a) and (b) Magnetic field components of a semi-infinite
superconductor located at x > 0 and in the presence of an applied
magnetic field, Bap = Bapŷ. The chiral magnetic screening occurs for
a < ac (a) and is absent for a � ac (b). (c)–(f) Magnetic field profiles
in a finite TRI Weyl SC. At (c)–(e) we have a < ac, corresponding
to a = 0.4ac, a = 0.75ac, and a = 0.95ac, respectively. We can see
once more the onset of spatial oscillations in the magnetic induction
as a increases. In (f) a = 1.1ac leading to the case where the axion
coupling completely dominates over Meissner screening.

B(x) = Bape−(x/2)
√

a2
c−a2

û(x) in terms of the unit vector,

û(x) = cos (ax/2)ŷ + sin (ax/2)ẑ, (10)

and one observes that the field inside the SC rotates with
respect to the applied one; a chiral oscillatory feature we
found in the vortex as well, for instance, illustrated in Fig. 1.
Thus, applying a magnetic field in the y direction does not
only lead to a Meissner state with an exponentially decaying y
component of the field, but also generates a similarly decaying
field along the z direction as a consequence of the axion cou-
pling. The corresponding field profile is depicted in Fig. 2(a)
for an exemplary value of a below ac. Note that the axion leads
to a larger penetration depth, λ̃ = 1/

√
M2 − a2/4, compared

to the one in the non-Weyl SC, λ = 1/M.
For a � ac there is no solution that fulfills the bound-

ary conditions By(x → ∞) = 0 and Bz(x → ∞) = 0. Hence,
instead of demanding the magnetic field to vanish inside
the sample, we only enforce the boundary conditions at the
surface By(x = 0) = Bap, Bz(x = 0) = 0, and require the so-
lutions to be real, which yields

B(x) = Bap cos
(√

a2 − a2
c x/2

)
û(x). (11)
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Remarkably, the magnetic field inside of the Weyl SC exhibits
a purely oscillatory behavior illustrated in Fig. 2(b) for a =
2.5ac. There is no magnetic field screening inside the bulk of
the SC for a � ac. Instead, it rotates around the surface normal
while penetrating all the way into the bulk.

While the solution above corresponds to the instance where
the external magnetic field is applied parallel to the surface,
the Weyl SC response to the field perpendicular to the surface
is rather simple. For Bap = Bapx̂ continuity of the normal com-
ponent implies that the CME current vanishes, in which case
the usual London equation follows. Therefore, the magnetic
induction inside the semi-infinite slab has the conven-
tional London form, B = Bape−Mxx̂. This angle dependence
of the chiral magnetic field screening is quantifiable through
the magnetic helicity, H = ∫

dxA · B, which is a measure
for the twistedness of the B field. For an arbitrary directed
external field, Bap = Bap(cos θ ê⊥ + sin θ ê‖) (where ê⊥ and
ê‖ are unit vectors perpendicular and parallel to the surface,
respectively) the helicity per area has a sinusoidal dependence
on θ , where θ is the angle between the applied field and
the surface normal of a Weyl SC. Hence, the conventional
exponential decay for Bap perpendicular to the surface corre-
sponds to vanishing helicity, while for the semi-infinite slab
in a parallel field and a < ac the helicity per unit area is
finite, H /B2

ap = − 2a

a2
c

√
a2

c−a2
, and diverges at ac. This brings

to the fore once more the important role of the critical axion
coupling ac in modifying the nature of the Meissner state.

To explore further regimes below and above ac, we con-
sider a finite slab geometry, where the TRI Weyl SC is
between two surfaces such that |x| � L/2 = L̄. This geometry
additionally allows to compute the magnetic susceptibility, as
this requires us to determine the average magnetic induction
over the system, which cannot be done easily in a convergent
manner in a semi-infinite system. Having applied the bound-
ary conditions that require B(x = ±L̄) = Bap, we obtain,

B(x) = Bap

sin
(
L̄
√

a2 − a2
c

) ∑
σ=±

σ sin

[√
a2 − a2

c

2
(x + σ L̄)

]
× û(x − σ L̄). (12)

The expression above holds for any value of a. Figures 2(c)–
2(f) show the magnetic induction profiles corresponding to
Eq. (12) for increasing values of a up to slightly above ac.
Similarly to the findings above, the slab solution features
two distinct regimes for a < ac and a � ac. The magnetic
induction inside the SC rotates for any a, but for a < ac it
is screened, while for a � ac the field penetrates into the
whole slab. Remarkably, in the latter regime the oscillation
amplitude can get larger than the applied field. This exotic
behavior in a system with a nonzero superconducting order
parameter may raise a question whether the energy of such
a state is bounded below. To check that the solutions for
a � ac are physically valid, one must go beyond the linearized
London theory and consider the Ginzburg-Landau energy in
the London approximation (see Appendix B).

We determine the diamagnetic susceptibility χ via the
spatial average of the magnetic induction. It is clear that
axion-induced field component Bz averages to zero for

any a. Hence, the susceptibility

χ =
√

a2 − a2
c

[
cos

(
L̄
√

a2 − a2
c

) − cos(aL̄)
]

LM2 sin
(
L̄
√

a2 − a2
c

) − 1

4π
(13)

is determined by the field component parallel to the applied
field. Considering the case of a large slab thickness compared
to the London penetration depth, ML � 1, one finds that
χ = −1/(4π ) for all a � ac, as can be seen from the form
of χ = 2

M2L2 [1 − cos(ML)] − 1/(4π ) for a → ac specifically.
This implies a perfect diamagnetic response of the bulk super-
conductor.

For a > ac, on the other hand, the situation is more del-
icate and interesting. From the numerator of the first term
in Eq. (13), one observes that χ = −1/(4π ) is reached for
values of a given by

amin(n) = πn

L̄
+ a2

c L̄

4πn
with n ∈ N. (14)

Interestingly, for any amin(n) the magnetic induction inside
the slab satisfies a force-free equation characteristic of a TRI
Weyl semimetal (see Appendix C). Thus, in this case the Weyl
superconductor with M 
= 0 has exactly the same magnetic
induction as a normal M = 0 Weyl semimetal. On the other
hand, the susceptibility diverges for

a2
max(m) = a2

c +
(

πm

L̄

)2

with m ∈ N. (15)

Consequently, at quantized values of the axion coupling the
system becomes unstable. Exactly at this progression of crit-
ical couplings, the magnetic helicity of the slab diverges as
well; see Appendix D. The two sets of relations characterize
two distinct behaviors of the electromagnetic response to the
external magnetic field. When a takes the values amin(n), the
susceptibility χ → −1/(4π ) irrespective of the slab thick-
ness L in contrast to the conventional Meissner effect, where
χ → −1/(4π ) only for sufficiently thick samples. The values
amax(m) separate transitions between these different onsets of
chiral Meissner regimes, and occur due to poles present in
the Green’s function of the operator (−∇2 + M2 + a∇×) in
the slab geometry. Hence the regime for a > ac exhibits a
helimagnetic behavior, since the Green’s function in this case
features poles at nonzero momenta.

IV. CONCLUSIONS AND OUTLOOK

As the axion term affects the properties of time-reversal
invariant Weyl superconductors in a quite nontrivial man-
ner, several distinct experimentally testable predictions follow
from our results. In the vortex state the currents parallel to
magnetic vortices are induced by the axion coupling. In future
work it will be interesting to establish how this affects the
vortex lattice and its stability. Additionally, the rotating B field
causes vortices close to the surface to cant with respect to the
applied field, which results in magnetic stray fields outside
the Weyl SC [37]. This is a rather intricate consequence of
the emergent field components transverse to the flux line, as
simple addition of a mirror vortex cannot fulfill the boundary
conditions on the surface.

We find that the vortex becomes unstable at the critical
axion coupling implying a transition from a type II to a type I
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superconducting state. Such a transition between type I and II
SC in the same material is known as type 1.5 superconductiv-
ity for multiband systems [38,39]. As close to the SC phase
transition the London penetration depth diverges, the critical
axion coupling vanishes there. Thus for any given axion cou-
pling intrinsic to the TRI Weyl SC material, close enough to
the SC transition the system automatically enters the strong
coupling regime where the vortex state becomes unstable and
a type 1.5 regime may ensue. Interestingly, studies of chiral
effects in an astrophysical setting have established that for
vanishing critical axion coupling a chiral plasma instability
(CPI) emerges, which is strongly affected by field fluctuations
[40]. For Weyl SCs close to Tc the CPI must then be consid-
ered on the same footing as superconducting order parameter
fluctuations. The fate of this fluctuating chiral SC is an open
question for future work.

In type I SCs the axion induced magnetic field compo-
nent perpendicular to the applied field and parallel to the
surface may be explored by surface sensitive probes, e.g.,
the magneto-optic Kerr effect. For strong coupling the ax-
ion renormalization of the London penetration depth may
be probed experimentally. Also the periodically divergent
susceptibility associated with the chiral Meissner state is a
marked experimental signature.

Note added. Recently, we became aware of the work of
Stålhammar et al. [41], who report semi-infinite slab and
cylinder solutions for a < ac similar to our results.
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APPENDIX A: VORTEX SOLUTION
IN A SLAB GEOMETRY

The vortex solution for a slab defined in the region |z| <

L/2 is more easily obtained by considering the differential
equations for the vector potential. The London equation for
the vector potential reads,

−∇2A + M2A = M2�0

2π

ϕ̂

r
− a∇ × A. (A1)

Based on the infinite vortex solution, we consider the ansatz,

Ar (r, z) = a
M2�0

2π

∫
d p

J1(pr)

(p2 + M2)2 − a2 p2

∂β(p, z)

∂z
, (A2)

Aϕ (r, z) = M2�0

2π

∫
d p

J1(pr)(p2 + M2)

(p2 + M2)2 − a2 p2
β(p, z), (A3)

Az(r, z) = −a
M2�0

2π

∫
d p

pJ0(pr)

(p2 + M2)2 − a2 p2
β(p, z), (A4)

Br = −M2�0

2π

∫
d p

(p2 + M2)J1(pr)

(p2 + M2)2 − a2 p2

∂β(p, z)

∂z
, (A5)

Bϕ = −aM2�0

2π

∫
d p

J1(pr)
[

p2β − ∂2β(p,z)
∂z2

]
(p2 + m2)2 − a2 p2

, (A6)

Bz = M2�0

2π

∫
d p

p(p2 + M2)J0(pr)

(p2 + M2)2 − a2 p2
β(p, z), (A7)

where the function β(p, z) is determined by application of the
boundary conditions, which imposes the continuity of A and
its derivatives with respect to z at the interfaces z = ±L/2.
With this we obtain,

β(p, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ep( L
2 −z)

[
τ1 sinh

(
Lτ1

2

)
cos

(
Lτ2

2

)
−τ2 cosh

(
Lτ1

2

)
sin

(
Lτ2

2

)]
p cosh

(
Lτ1

2

)
cos

(
Lτ2

2

)
+τ1 sinh

(
Lτ1

2

)
cos

(
Lτ2

2

)
−τ2 cosh

(
Lτ1

2

)
sin

(
Lτ2

2

)
1 − p cosh(τ1z) cos(τ2z)

p cosh
(

Lτ1
2

)
cos

(
Lτ2

2

)
+τ1 sinh

(
Lτ1

2

)
cos

(
Lτ2

2

)
−τ2 cosh

(
Lτ1

2

)
sin

(
Lτ2

2

)
ep( L

2 +z)

[
τ1 sinh

(
Lτ1

2

)
cos

(
Lτ2

2

)
−τ2 cosh

(
Lτ1

2

)
sin

(
Lτ2

2

)]
p cosh

(
Lτ1

2

)
cos

(
Lτ2

2

)
+τ1 sinh

(
Lτ1

2

)
cos

(
Lτ2

2

)
−τ2 cosh

(
Lτ1

2

)
sin

(
Lτ2

2

) ,

(A8)

where we defined,

τ 2
1 (p) = 1

2

(√
(p2 + M2)2 − a2 p2 + p2 + M2 − a2

2

)
, (A9)

τ 2
2 (p) = 1

2

[√
(p2 + M2)2 − a2 p2 −

(
p2 + M2 − a2

2

)]
.

(A10)

We note that,

τ1(0) =
√

4M2 − a2/2, τ2(0) = ia/2, (A11)

and thus we obtain the complex mass scales M± = τ1(0) ±
τ2(0) that appear in the infinite vortex solution in the main
text.

Up to linear order in a,

Bϕ = −aM2�0

2π

∫
d p

J1(pr)
[
p2β0(p, z) − ∂2β0(p,z)

∂z2

]
(p2 + M2)2

(A12)

Br = −M2�0

2π

∫
d p

J1(pr)

(p2 + M2)

∂β0(p, z)

∂z
(A13)

Bz = M2�0

2π

∫
d p

pJ0(pr)

(p2 + M2)
β0(p, z), (A14)
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where the notation β0(p, z) refers to the function β(p, z) with
a = 0,

β0(p, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τep( L
2 −z)

τ+p coth ( τL
2 ) , z > L

2

1 − p cosh (τ z)
p cosh ( τL

2 )+τ sinh ( τL
2 ) , − L

2 < z < L
2

τep( L
2 +z)

τ+p coth ( τL
2 ) , z < − L

2 ,

(A15)
τ =

√
p2 + M2.

APPENDIX B: GINZBURG-LANDAU ENERGY
IN THE LONDON APPROXIMATION

One may wonder whether the energy is bound from below
in the state without vortices for a � ac. The first thing to ob-
serve here is that the calculations in the strict London regime
have their limitations regarding this instability. This is more
easily seen by considering the energy density associated to
our London equations,

E = 1

8π
B · (B + aA) + M2

8π
A2. (B1)

This invites to rewrite the energy density in the form,

E = 1

8π

(
B + a

2
A

)2

+ 1

32π

(
a2

c − a2
)
A2. (B2)

In the form above, the energy density is not positively defined
for a > ac, and eventually the energy is not even bounded
from below. However, this is actually a limitation of the
London regime, which can be fixed by obtaining further
corrections to the London theory directly from the Ginzburg-
Landau (GL) energy functional,

E = 1

8π
(B + aA) · B + |(∇ − iqA)ψ |2 + m2|ψ |2 + u

2
|ψ |4.

(B3)

The GL equations are,

∇2ψ + 2iqA · ∇ψ = (m2 + u|ψ |2 + q2A2)ψ, (B4)

1

4π
∇ × (B + aA) = −2q2|ψ |2A − iq(ψ∗∇ψ − ψ∇ψ∗).

(B5)

At this stage it is convenient to employ the unitary gauge
where ψ = ρeiθ /

√
2. In the absence of vortices we gauge

away the phase, A → A + ∇θ/q, to obtain Eq. (B4) rewritten
in the form,

1

κ2
∇2ρ = q2ρ2

0

2

(
−1 + ρ2

ρ2
0

+ A2

)
ρ, (B6)

where κ2 = u/q2 is the square of the GL parameter, and
ρ2

0 = −2m2/u > 0 is the mean-field order parameter squared.
We have also rescaled the vector potential as A → κρ0A/

√
2,

which does not affect Eq. (B5). Strictly speaking, the London
regime corresponds to κ → ∞ causing the left-hand side of
Eq. (B6) to vanish. Therefore,

ρ2 = ρ2
0 (1 − A2). (B7)

Substituting this back into the expression for energy in
Eq. (B3), we obtain

E = 1

8π

(
B + a

2
A

)2

+ 1

32π

(
a2

c − a2
)
A2 − ρ2

0 m2

4
(A2)2,

(B8)

where we have defined M2 = 4πq2ρ2
0 (this leads us to identify

ρs = ρ2
0 in the main text ) and ac = 2M. Comparing this to the

expression in Eq. (B2) that yields linearized field equations,
we discover a term ∝ (A2)2 that stabilizes the energy for
a > ac, since m2 < 0.

APPENDIX C: MAGNETIC INDUCTION AT amin(n)

The Weyl superconductor with M 
= 0 having the same
magnetic induction as a normal M = 0 Weyl semimetal for
any amin(n) can be seen directly by recasting the London
equation for the TRI Weyl SC in the form (curl − iM+)(curl +
iM−)B = 0 [42] with M± as defined in Eq. (7) of the main
text. It turns out that for a = amin(n) we have iM− = −2πn/L
and it follows immediately from the operator decomposition
just employed that there is a solution satisfying ∇ × B =
(2πn/L)B, which yields, Bn(x) = Bap(−1)n[cos(2πnx/L)ŷ +
sin(2πnx/L)ẑ].

APPENDIX D: HELICITY IN A FINITE SLAB

From the magnetic induction in a slab without vortices
given in Eq. (12) one can derive components of the vector
potential,

Ay(x) = Bap

2M2 sinh
(
L̄
√

a2
c − a2

) ∑
σ=±

σ

[√
a2

c − a2 sin

(
a

2
(x − σ L̄)

)
cosh

(
x + σ L̄

2

√
a2

c − a2

)

+ a cos

(
a

2
(x + σ L̄)

)
sinh

(
x − σ L̄

2

√
a2

c − a2

)]
, (D1)

Az(x) = Bap

2M2 sinh
(
L̄
√

a2
c − a2

) ∑
σ=±

σ

[√
a2

c − a2 cos

(
a

2
(x + σ L̄)

)
cosh

(
x − σ L̄

2

√
a2

c − a2

)

+ a sin

(
a

2
(x + σ L̄)

)
sinh

(
x − σ L̄

2

√
a2

c − a2

)]
. (D2)
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From the expressions for magnetic field components and the vector potential we can calculate total helicity per area by integrating
over the sample’s thickness,

H =
∫ L̄

−L̄
dxA · B = B2

ap

2M2
√

a2
c − a2 sinh2

(
L̄
√

a2
c − a2

)
× [−2aL̄

√
a2

c − a2 cos(aL̄) cosh
(
L̄
√

a2
c − a2

) + 2aL̄
√

a2
c − a2 − a sinh

(
2L̄

√
a2

c − a2
)

+[
2a cos(aL̄) + 2

(
a2 − a2

c

)
L̄ sin(aL̄)

]
sinh

(
L̄
√

a2
c − a2

)]
. (D3)

Similarly to magnetic susceptibility mentioned in the main text, the helicity is divergent for values of a that satisfy the relation
in Eq. (14) of the main text.
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