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Electron beams traversing spherical nanoparticles: Analytic and numerical treatment
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We present an analytic, Mie theory-based solution for the energy loss and the photon-emission probabilities
in the interaction of spherical nanoparticles with electrons passing nearby and through them, in both cathodolu-
minescence and electron energy-loss spectroscopies. In particular, we focus on the case of penetrating electron
trajectories, for which the complete fully electrodynamic and relativistic formalism has not been reported as
yet. We exhibit the efficiency of this method in describing collective excitations in matter through calculations
for a dispersive and lossy system, namely a sphere described by a Drude permittivity. Subsequently, we use
the analytic solution to corroborate the implementation of electron-beam sources in a state-of-the-art numerical
method for problems in electrodynamics, the discontinuous Galerkin time-domain (DGTD) method. We show
that the two approaches produce spectra in good mutual agreement, and demonstrate the versatility of DGTD
via simulations of spherical nanoparticles characterized by surface roughness. The possibility of simultaneously
employing both kinds of calculations (analytic and numerical) facilitates a better understanding of the rich optical
response of nanophotonic architectures excited by fast electron beams.
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I. INTRODUCTION

In recent decades, electron-beam spectroscopy has
emerged as a revolutionary tool for the optical characteriza-
tion of materials. Swift electrons passing in close proximity
or through a specimen undergo energy loss owing to energy
transfer to the optical modes sustained in the material [1].
From localized and propagating surface plasmons in metallic
structures [2–5], to Mie resonances in dielectric resonators
[6–8] and phonon polaritons in polar crystals [9–11], electron-
beam spectroscopy has proven quintessential for mapping
collective excitations in a broad spectral range that spans from
ultraviolet to far-infrared frequencies.

With the diffraction limit ultimately being controlled by the
de Broglie wavelength, highly energetic electrons are excel-
lent probes to study the optical properties of truly nanoscale
structures, with atomic spatial resolution and sub-meV en-
ergy resolution [12,13]. In electron energy-loss spectroscopy
(EELS), the sample is excited by a high-energy electron beam
(30−300 keV), and the energy lost to the interaction is mea-
sured in a transmission electron microscope (TEM) setup
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[14,15]. EELS allows, thereby, the detection of both radia-
tive and dark modes, including longitudinal bulk plasmons
(BPs) [16], breathing modes [17], or antibonding modes in
nanoparticle (NP) dimers [18]. Optical excitations in thick
samples can be imaged in cathodoluminescence (CL) spec-
troscopy, performed in scanning electron microscopes (SEMs)
at intermediate beam energies (1−50 keV) [19,20]. In CL
measurements, the signal collected is the result of far-field
photon emission from the sample, originating from the ra-
diative decay of the excited modes. Recent advances in
instrumentation have even added temporal resolution in EEL
and CL spectra, introducing the field of ultrafast electron
microscopy (UEM) [21,22].

Considering the recent progress in electron spectroscopy
techniques, robust analytic and computational tools are ev-
idently required to interpret the plethora of experimental
data. While first theoretical efforts were performed within the
nonretarded approximation for the description of plasmons
in thin films [3], the theory was gradually generalized to
account for collective excitations in diverse media and ge-
ometries [23,24], also considering retardation effects [25,26].
Quantum approaches [27,28] and analytic solutions including
relativistic effects for simple geometries were later developed
[29,30], allowing the combination of high-velocity electron
beams with both common and less conventional materials,
including dielectric media, polar crystals, graphene, and other
two-dimensional (2D) materials [8,11,31,32]. Most theoret-
ical relativistic descriptions have focused on aloof electron
trajectories, that do not penetrate the specimen, in contrast to
experimental practices, where the electron beam is typically
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scanned over the entire sample area [14]. However, aloof
electron trajectories oftentimes fail to capture intriguing phe-
nomena associated with bulk properties, such as BPs and bulk
phonons [9,18], and other sources of electron-induced photon
emission, like Cherenkov or transition radiation [29,33–35].

Despite the undeniable advantage of analytic solutions in
data analysis, their applicability is limited to a handful of
highly symmetric geometries. Over the years, different numer-
ical schemes have been consolidated to complement analytic
approaches in simulating the electromagnetic properties of
nanophotonic systems [36,37]. These include the boundary
element method (BEM) [38,39], the finite-element method
(FEM) [40,41], or the finite-difference frequency-domain
(FDFD) and finite-difference time-domain (FDTD) methods
[42–44], many of which have been employed successfully
for CL and EELS simulations [38,45–47]. An alternative
route is offered by the discontinuous Galerkin time-domain
(DGTD) method, which employs the Galerkin scheme to
solve Maxwell’s equations in the time domain [48–52]. This
method combines the flexible space discretization of finite
elements, with the memory efficiency and the ability to in-
clude nonlinearities, characteristic of time-domain methods.
As a consequence, DGTD offers great versatility in simulating
objects of complex geometry and nonlinear response.

In this paper, we present and compare an analytic approach
and the DGTD method for the study of spherical nanos-
tructures excited by aloof and penetrating electron beams.
Following the work of García de Abajo for aloof electron
beams [30], we derive analytic formulas for the energy loss
and photon emission probability, generalized here to account
for penetrating trajectories. We then validate the implementa-
tion of electron-beam excitation of nanostructures in DGTD
[49] by comparing the EEL and CL spectra produced by the
two methods for a perfectly spherical plasmonic NP featuring
localized surface plasmons (LSPs) and BPs. Finally, we apply
the numerical method to study the optical response of a NP
with surface roughness, showcasing the ability of the DGTD
method to emulate scenarios aligned with realistic experimen-
tal conditions that involve imperfect structures [53–55].

II. METHODS

A. Analytic approach

As a first step to examine the agreement and complemen-
tarity of analytic and numerical tools, we outline the modeling
of the physical system and the assumptions made in each
method. As a testbed, we consider a perfectly spherical metal
NP of radius R embedded in air. The NP is characterized
by a unity relative permeability (μ = 1), while its relative
permittivity depends on the angular frequency ω as described
by the Drude model

ε(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (1)

with plasma frequency ωp and damping rate τ−1.
In the analytic calculation, the electron beam is mod-

eled as a single elementary point charge −e, with kinetic
energy on the order of keV. Since the energy transferred
to plasmon resonances is typically a few eV, we invoke

FIG. 1. Schematic illustration of the geometry under study. A
metallic NP of radius R = 75 nm, and permittivity described by the
Drude model of Eq. (1), is excited by an electron beam passing with
velocity v at impact parameter b with respect to its center. The color
dots correspond to the selection of impact parameters examined in
our study. Labels I and II indicate the region inside the NP and the
surrounding medium (air), respectively.

the nonrecoil approximation [1], and assume that the elec-
tron travels with constant velocity v, say along the z axis.
Therefore, it follows a straight trajectory re = r0 + vt , where
r0 = (b, φ0, z0 = −∞) is its initial position in cylindrical
coordinates. The impact parameter b indicates the distance
between the electron trajectory and the center of the sphere,
as shown in the schematics of Fig. 1. In passing, we mention
that the angular coordinate φ0 need not be specified, as it does
not enter the calculation, due to the symmetry of the problem.

The fast electron drives plasmon oscillations in the metal,
generating an induced electric and magnetic field, Eind and
Hind respectively, eventually resulting in the emission of ra-
diation to the environment (labeled as region II in Fig. 1).
Following the basic steps of Mie theory [56], one can decom-
pose the induced electromagnetic field into transverse electric
(TE) and transverse magnetic (TM) components. In region II
the induced fields take the general form of outgoing spherical
waves [57]

EII
ind(r, ω) =

∞∑
�=1

+�∑
m=−�

{
bII

�mh+
� (k0r)X�m(θ, φ)

+ i

k0
aII

�m∇ × h+
� (k0r)X�m(θ, φ)

}
, (2a)

HII
ind(r, ω) = 1

Z0

∞∑
�=1

+�∑
m=−�

{
aII

�mh+
� (k0r)X�m(θ, φ)

− i

k0
bII

�m∇ × h+
� (k0r)X�m(θ, φ)

}
, (2b)

where �, m are the angular momentum quantum numbers,
and aII

�m/bII
�m are the expansion coefficients of the TE/TM
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components corresponding to modes of electric/magnetic
multipole character (see Appendix C for the full derivation).
Furthermore, in Eqs. (2) h+

� is the spherical Hankel function
of the first kind, X�m are the vector spherical harmonics of
Eq. (A6), k0 = ω/c is the wave number in free space, c =
1/

√
ε0μ0 the speed of light in vacuum, where ε0 and μ0

denote the vacuum permittivity and permeability, respectively,
and Z0 = √

μ0/ε0 is the impedance in free space.
The energy radiated in the far field can be found by in-

tegrating the Poynting flux at a spherical surface of radius
r → ∞, in the normal direction r̂. Then the (CL) probability
of collecting a photon of energy h̄ω is given by

�CL(ω) = r2

π h̄ω

∫
d
 Re

{
EII

ind(r, ω) × HII∗
ind(r, ω)

} · r̂, (3)

where d
 denotes the infinitesimal solid angle. By inserting
Eqs. (2) into Eq. (3), and evaluating the result in the far field
(k0r → ∞), we find

�CL(ω) = 1

π h̄ωZ0k2
0

∞∑
�=1

+�∑
m=−�

{∣∣bII
�m

∣∣2 + ∣∣aII
�m

∣∣2}
, (4)

where aII
�m and bII

�m are given by Eqs. (D8) in Appendix D.
Apart from the emission of radiation, part of the energy

transferred to the optical modes of the NP dissipates non-
radiatively, owing to the intrinsic losses within the material.
The total energy lost can be calculated by the work done by
the electron against the induced field along the entire electron
trajectory. Then the (EEL) probability of the electron losing
energy h̄ω is given by

�EEL(ω) = e

π h̄ω

∫
dt Re

{
e−iωt v · Eind(re, ω)

}
. (5)

The integral in Eq. (5) can be decomposed into three terms
(see details in Appendix D)

�EEL(ω) = �bulk (ω) + �surf (ω) + �Begr (ω). (6)

Here, �bulk is related to the bulk modes of the unbound
medium, reduced by the Begrenzung term �Begr that accounts
for the presence of a boundary [58]. The �surf term contains
the contribution from modes excited by the part of the electron
trajectory lying externally to the NP, and is, thus, associated
with the excitation of LSPs. The terms entering Eq. (6) are
given by the following formulas:

�bulk (ω) = e2ze

2π2ε0 h̄v2
Im

{
1

γ 2
0

ln

([
qcγ0v

ω

]2

+ 1

)
− 1

γ 2ε
ln

([
qcγ v

ω

]2

+ 1

)}
, (7a)

�surf (ω) = e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

{
Km(ωb/[vγ0])

ik0
√

�(� + 1)

[
mbII

�mM∗
�m − aII

�m

N ∗
�m

βγ0

]

−
∫ ze

−ze

dz
e−iωz/v

√
�(� + 1)

[
mbII

�mh+
� (k0r)Y m

� (θ, 0) − aII
�m

k0b

{
H+

�m(k0z) + H−
�m(k0z)

}]}
, (7b)

and

�Begr (ω) = e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

∫ ze

−ze

dz
e−iωz/v

√
�(� + 1)

[
mbI

�m j�(kr)Y m
� (θ, 0) − aI

�m

kb

{
J +

�m(kz) + J −
�m(kz)

}]
. (7c)

Here, 2ze = 2
√

R2 − b2 is the length of the electron path
inside the NP, and γ = 1/[1 − εβ2]1/2 with β = v/c are the
Lorentz kinematic factors (γ0 is evaluated in free space).
In Eqs. (7b) and (7c) Km is the modified Bessel function
of the second kind and Y m

� are the spherical harmonics. In
addition, we have set r = √

b2 + z2, and θ = arccos(z/r),
while analytic expressions for coefficients aI

�m, bI
�m, M�m,

N�m, H±
�m, and J ±

�m can be found in Appendixes A, C,
and D.

It is important to note here that the aforementioned de-
composition of the EEL spectra introduces a free parameter;
assuming that upon losing energy h̄ω the electron transfers a
transverse (with respect to the electron trajectory) momentum
q to excite an optical mode, qc is the maximum transverse
momentum collected. In an experiment, the momentum cutoff
is determined by the half-aperture collection angle ϕ of the

microscope spectrometer, as

h̄qc ≈
√

(mevϕ)2 + (h̄ω/v)2, (8)

where me is the electron mass. We may freely choose the value
for this momentum cutoff, making sure that it aligns with
the typical values for the collection angle in scanning TEM
(STEM) setups, which are on the order of a few mrad. Natu-
rally, this introduces a level of arbitrariness in the EEL spectra,
as different values of qc lead to different peak intensities at the
BP energy.

B. DGTD simulation

We complement our analytical study with numerical sim-
ulations of the electromagnetic problem of a NP excited by a
moving Gaussian charge distribution. To this end, we employ
the DGTD method (see details in Sec. S.I of the Supplemental
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(a) (b) (c)

FIG. 2. (a) Scattering cross section, normalized to the geometrical cross section πR2, of the metallic NP of Fig. 1 under plane-wave
excitation (gray-shaded area). The spectrum is decomposed into the contributions from the first three multipoles (blue, red, and green curves,
for � = 1, 2, 3 respectively). In panels (b) and (c) we consider an electron traveling with velocity v = 0.33c (kinetic energy ≈30 keV) passing
through the NP of Fig. 1 at impact parameter b = 35 nm. (b) CL probability (yellow-shaded area) and multipole decomposition (blue, red,
green, and violet curves). (c) EEL probability (yellow-shaded area) decomposed into the surface, bulk, and Begrenzung contributions (green,
pink, and blue curves), with the inset focusing on the energy window 1 − 4 eV. The bulk term is given by Eq. (7a) for qc = 0.71 nm−1, and the
surface and Begrenzung terms are obtained by Eqs. (7b) and (7c) for multipole order cutoff �max = 63.

Material, SM [59]), which combines a piecewise polynomial
spatial interpolation on an unstructured tetrahedral mesh with
a Runge-Kutta time integrator to obtain a high-order accurate
explicit solver for Maxwell’s equations in time domain

∂t H(r, t ) = −μ−1
0 μ−1(r) ∇ × E(r, t ), (9a)

∂t E(r, t ) = ε−1
0 ε−1(r) [∇ × H(r, t ) − j(r, t )]. (9b)

Here, j is the total current density that encompasses both
any current associated with the excitation source, as well
as dispersive polarization currents. The resulting method is
memory-efficient compared to traditional finite elements and
especially well suited for the calculation of wide-band spectra.

One key difference between the Mie-based theory and the
DGTD simulations, that can potentially lead to deviations
between the two approaches, is the implementation of the
excitation source. In the numerical treatment, we model the
electron beam with a Gaussian charge distribution of the form

ρ(r) = − e

σ 3
e

√
π3

e−r2/σ 2
e , (10)

with width σe = 5 nm. This choice essentially prevents nu-
merical artifacts that would arise in a point-charge particle
modeling, while also being compatible with the typical spot
size in CL experiments [8]. Thereby, we introduce an addi-
tional spatial scale, which needs to be considered when it is
comparable to the mesh element size and the characteristic
lengths of the physical system, e.g., the radius of the NP and
the impact parameter. For very large distances between the
electron and the NP (i.e., b − R � σe), the source resembles
a point charge, and we thus expect an excellent agreement
with analytic results. However, in the opposite scenario, the
finite width of the electron beam becomes important, and the
corresponding fields do not accurately match those of a point
charge.

III. RESULTS AND DISCUSSION

A. EEL and CL spectroscopy of perfectly spherical NPs

In what follows, we analyze the response of a metal-
lic NP excited by a fast electron beam, as predicted by
both the analytic and the numerical approach. We consider
a smooth sphere of radius R = 75 nm with plasma energy
h̄ωp = 5 eV and damping rate τ−1 corresponding to an energy
of h̄τ−1 = 50 meV. The parameters mimic typical plasmonic
metals and are chosen for the purpose of illustration, while
the particular values have no consequences for our general
conclusions. Figure 2 shows the scattering spectrum (panel
a) under plane-wave illumination, and the CL and EEL prob-
ability [panels (b) and (c), respectively] calculated for a low
electron velocity v = 0.33c (kinetic energy ≈30 keV) inter-
secting the NP at b = 35 nm from its center. Equation (4)
suggests that the total photon emission probability can be
decomposed into contributions of pairwise orthogonal electric
and magnetic multipoles of order �. Figure 2(b) reveals that
the CL spectrum is composed of the contributions of the first
four (� = 1, 2, 3, 4) electric-type modes, appearing at approx-
imately 2, 2.8, 3.1, and 3.2 eV, associated with the excitation
of LSP resonances, while higher-order (� > 4) multipoles
contribute negligibly to the spectrum. In comparison with the
scattering cross section of the NP shown in Fig. 2(a) (calcu-
lated using Mie theory [60]), the CL spectrum provides very
similar information. This is somewhat expected, since both
calculations are based on the collection of far-field radiation.
We observe, nonetheless, two notably distinct features in the
CL spectrum of Fig. 2(b). Firstly, the electron source excites
more efficiently the � = 2 and 3 modes, whereas in the scat-
tering spectrum of Fig. 2(a) the dipolar mode peak features
the highest intensity. The relative peak intensities in the CL
and EEL spectra depend strongly on the impact parameter,
which determines the arrangement of the polarization charges
in the material [61]. Secondly, we observe a small redshift of
the dipolar (� = 1) mode in CL due to retardation, stemming
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FIG. 3. (a) CL and (b) EEL probability in the interaction between the metallic NP of Fig. 1 and an electron traveling with velocity v = 0.33c
(kinetic energy ≈30 keV) considering five different impact parameters, as denoted in the labels and illustrated in the insets of each panel. The
shaded areas correspond to results of the analytic Mie-type calculation, whereas the solid lines show the corresponding DGTD simulations.
The vertical-gray dotted and dashed lines in the three leftmost panels of (b) trace the energy of the SPP (h̄ωspp ≈ 3.5 eV) and the BP mode
(h̄ωbp ≈ 5 eV), respectively. In the two leftmost panels of (b) we use qc = 0.71 nm−1, while �max = 63 in all panels

from the fact that the speed of the electron is only a fraction
of the speed of light.

In Fig. 2(c) we present the EEL spectrum, decomposed as
described in Eq. (6). In the zoom-in area of the figure we
observe the excitation of numerous higher-order multipoles,
appearing as sharp peaks at energies up to 3.5 eV. With in-
creasing multipole order, the wavelength of the corresponding
mode reduces, and higher-order modes experience the curved
surface of the NP as increasingly more flat. As a result, they
accumulate at the energy corresponding to that of a surface
plasmon polariton (SPP) at a planar interface, at h̄ωspp =
h̄ωp/

√
2 ≈ 3.5 eV. Above the SPP energy, the spectrum ex-

hibits a pronounced peak at the BP energy h̄ωbp ≈ h̄ωp = 5
eV, pertaining to the excitation of BPs in the volume of the
NP. Since BPs are longitudinal modes, they do not couple
to far-field radiation and, therefore, can be detected only in
EELS. At the same energy, we observe the expected negative
peak related to the Begrenzung term, reducing the BP peak in
the total EEL probability [58].

Having a clear picture of the origin of all spectral fea-
tures, in Figs. 3(a) and 3(b) we compare the CL and EEL
probability, respectively, of the same metal NP, as calculated
employing the analytic (Mie) and the DGTD method. We test
the agreement between the two calculations probing various
impact parameters, that range from b = 125 nm to 10 nm,
corresponding to aloof electron trajectories (violet and blue
spectra), grazing (green), and penetrating (yellow and red).
Overall, the DGTD method reproduces the positions of the
LSP modes and the corresponding CL probabilities of the Mie
calculations. In the CL spectra of Fig. 3(a) we find an excellent
agreement, with a relative error {as given by Eq. (S.11) within
the SM [59]}of around 1% for aloof and penetrating electron
trajectories, according to Table I. The highest error is acquired
when the electron grazes the surface of the NP, passing exactly
at b = R [middle panel in Fig. 3(a)]. This point reflects an
important limit in the capabilities of the DGTD method; in the

grazing trajectory, due to the finite width of the electron beam,
half of the Gaussian charge density distribution lies inside
the NP, while the other half lies outside, leading to numerical
inconsistencies. One may avoid this point, which is inevitably
difficult to resolve, by slightly adjusting the impact parameter
by half the Gaussian width.

Regarding compatibility of the EEL spectra, the two right-
most panels in Fig. 3(b) reveal an excellent agreement for
aloof electron trajectories. We consistently find a higher er-
ror for grazing trajectories [middle panel in Fig. 3(b)]; here,
the EEL spectrum calculated with DGTD exhibits a numer-
ical artifact at the BP energy (gray-dashed line), resulting
once again from the fact that just a fraction of the electron
charge density distribution penetrates the NP, exciting only
partially the bulk mode. A substantial deviation between the
two methods is found in the EEL spectra for both grazing
and penetrating electron trajectories [three leftmost panels in
Fig. 3(b)] between the SPP and the BP energy, denoted by the
gray-dotted and dashed lines, respectively. The disagreement
is, naturally, reflected in the large relative errors presented in
Table I accordingly. At these impact parameters, the condition
b − R � σe is not fulfilled, hence the field of the electron
deviates considerably from that of a point charge. Moreover,
the beam width σe becomes important compared to the mesh

TABLE I. Relative error between the analytic and the DGTD
calculations of �CL and �EEL for varying b.

b (nm) �CL (%) �EEL (%)

10 1.26 9.75
35 1.06 6.17
75 8.23 28.87
100 1.06 1.02
125 1.07 1.93
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element size, since the surface of the NP is more finely dis-
cretized than the surrounding medium (see Fig. S.3 in the SM
[59]). Finally, there exists an additional source of error in the
evaluation of the BP contribution, that stems from the rather
arbitrary choice of the transverse momentum cutoff qc in the
analytic approach. In contrast, in the DGTD implementation
there is a respective internal limit, associated with σe. As a
result, we consistently find higher relative errors in EELS in
comparison with CL, and for grazing and penetrating electron
trajectories as compared to aloof. This is evident for both
low-energy electron beams as in Fig. 3, as well as higher
energies that are more realistic for EEL measurements (see
Fig. S.6 within the SM [59] for CL and EEL spectra at energy
200 keV).

Admittedly, the accumulation point of high-order multi-
poles at h̄ωspp is hard to resolve in both methods. On the one
hand, the analytic Mie calculation assumes a moving point
charge, which can, in principle, excite an infinite number of
multipoles, resulting in a sharp high-intensity peak at energy
h̄ωspp. On the other hand, the finite mesh size and beam width
implemented in DGTD imposes a limitation to the number
of multipoles that can be resolved for a given discretization,
since high-order multipoles associated with field variation
shorter than the mesh element size at the surface cannot be
captured without the use of very high-order polynomials. In
EELS and CL experiments, there exists an analogous limi-
tation, associated with the finite width of the electron beam
employed, as well as the geometric imperfections of the NP.
The versatility of DGTD allows us not only to adjust the
electron beam width according to the experimental setup, but
also to mimic NPs with surface roughness, as we discuss in
Sec. III B. In the analytic approach, the smearing of higher-
order modes and the overall quenching of the sharp peak at the
accumulation point can too be reproduced, once we consider
the nonlocal response of the material; this can be done par-
ticularly easily within Mie theory [62–64]. Nonlocal effects
manifest as increased damping and uneven energy shifts of
high-order modes, and, therefore, lead to the suppression of
the individual modes, as well as the reduction of their overlap
at h̄ωspp [65].

The difficulty in resolving the high-order multipoles even
in the analytic calculation is clear in the convergence study
presented in Figs. 4 and 5. Due to multipole orthogonality,
the sole contribution of increasing �max is to amplify the peak
at h̄ωspp. This suggests monitoring the total EEL spectrum
integrated over energy (area under the curve) as a proxy for
convergence. For aloof trajectories, the asymptotics of the
Hankel functions suggest exponential convergence, which is
in agreement with Figs. 4(a) and 4(b); the EEL probability
converges at �max = 10. In contrast, Fig. 4(c) shows that in
the case of the grazing trajectory the convergence order breaks
down to a square root law. By extrapolation (magenta line)
we can conclude that even for �max = 63 the analytic result is
still converged only up to about 15%. Figure 4(d) corroborates
that the area missing from the converged value corresponds to
the higher-order modes piling up at the SPP energy. Finally,
we note that Fig. 4(a) exhibits the same square root con-
vergence before the curve flattens off. The exact value of
�max where this transition happens increases as the impact
parameter approaches R.

(a)

(b)

(c)

(d)

FIG. 4. [(a),(c)] Area under the curve of the EEL spectra of
Fig. 3(b), (a) for the aloof electron trajectory at b = 125 nm, (c) for
the grazing trajectory at b = 75 nm, showcasing the convergence of
the EEL probability for increasing values of the multipole cutoff �max,
plotted vs 1/

√
�max. In both panels, the magenta line is fitted to the

data points marked as black bullets, while the red crosses represent
data points excluded from the fitting. The vertical gray lines serve as
guides to the eye for the position of �max = 1, 2, . . . 9. [(b),(d)] EEL
probability calculated for impact parameters (b) b = 125 nm, and (d)
b = 75 nm, and for selected values of �max, as denoted in the labels.

For the penetrating trajectories shown in Fig. 5 we find
signs of the same slow convergence around the SPP accumula-
tion point. This is masked in our convergence plots by the fact
that the BP peak diverges. The source of the divergence lies in
the decomposition of the EEL probability into two competing
contributions stemming from the bulk and the Begrenzung
terms. As illustrated in Figs. 5(a) and 5(c), the two terms
produce divergences of opposite sign; the negative Begren-
zung term diverges linearly for increasing multipole order
�max, whereas the positive bulk term diverges logarithmically
for increasing momentum cutoff qc [see Eqs. (7a) and (7c)].
As computational resources do not allow driving �max and qc

to infinity, once one of the two parameters is truncated to a
certain cutoff value, the other has to be adjusted accordingly.
Figures 5(b) and 5(d) show that the different values of �max

and qc, respectively, affect the spectra for energies above the
SPP mode.

B. EELS of NPs with surface roughness

The synthesis of metallic NPs, as the ones studied in the
present paper, is routinely done with colloidal chemistry, for
a large variety of materials and NP shapes [66,67]. How-
ever, despite being able to accurately control the NP size,
assuring a smooth surface is rather challenging. Typically the
structures exhibit protuberances on the surface, which can
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(a) (c)

(b) (d)

FIG. 5. [(a),(c)] Area under the curve of the EEL spectrum of the
leftmost panel in Fig. 3(b) (b = 10 nm), showcasing the divergence
of the EEL probability for increasing values of (a) the multipole
cutoff �max, and (c) the transverse momentum cutoff qc plotted vs
ln(qc ). The data follow a linear divergence trend with respect to
their corresponding horizontal axes. In both panels, the magenta line
is fitted to the data points marked as black bullets, while the red
crosses represent data points excluded from the fitting. [(b),(d)] EEL
probability calculated at b = 10 nm for selected values of (b) �max,
and (d) qc. In panels (a) and (b) we scan over �max, while keeping a
fixed value qc = 0.7 nm−1, whereas in (c) and (d) we scan over qc

for a fixed value �max = 63, as denoted in the labels. In panel (c) the
vertical lines correspond to the selected qc values presented in (d),
following the same color coding.

be responsible for symmetry breaking [68,69], hot spots in
dimers [70,71] and picocavities [72,73], or energy shifts of
the LSPs [74]. Within the DGTD method, surface texture
can be easily implemented on top of the perfectly spherical
mesh and incorporated in the numerical calculations. Here, we
follow the prescription presented in Ref. [55] to implement the
desired roughness. Given an initial smooth sphere of radius
R, we introduce deviations from its nominal value in both
the normal and the lateral direction, which are defined by the
root-mean squared (rms) roughness value and the correlation
length l , respectively. The rms parameter is related to the local
variations of the radius that follow a Gaussian white noise
distribution, while l describes the average distance between
neighboring bumps on the surface.

In Fig. 6 we explore the effect of surface roughness on
a spherical NP, described by the same Drude permittivity as
in the previous section, now excited by an electron beam
traveling with velocity v = 0.7c (kinetic energy ≈200 keV)
at distance b = 100 nm from its center. We probe meshes of
two degrees of surface roughness on top of the NP of nominal
radius R = 75 nm, namely rms = 2 nm and 4 nm, while the
correlation length is fixed at l = 10 nm in both cases. Since
the breaking of the spherical symmetry introduces a depen-
dence on the electron propagation direction, and on the mesh
morphology, in Fig. 6 we plot the average EEL probability,

FIG. 6. Average EEL probability in the interaction between a
spherical NP featuring surface roughness and an electron beam pass-
ing with velocity v = 0.7c (kinetic energy ≈200 keV) at distance b =
100 nm. The solid lines correspond to NPs, whose shapes deviate
from that of a perfectly smooth sphere of radius R = 75 nm (gray-
shaded area) by root-mean square roughness values rms = 2 nm
(dark-red curve), and rms = 4 nm (dark-blue curve). The average
EEL probability corresponds to the average values obtained with
DGTD for six different rough meshes characterized by the same rms.

corresponding to the average values obtained for six different
meshes. The resulting spectra for rms = 2 nm and 4 nm (dark-
red and dark-blue curves, respectively) deviate notably from
that of a smooth sphere (gray-shaded area). Firstly, we observe
an increasing redshift of the spectra with increasing degree
of roughness, in agreement with experimental observations
of corrugated plasmonic NPs [74]. The energy shift is most
evident for the dipolar mode at around 2 eV, and is the result of
the area increase of the rough NP as compared to the smooth
one. Evaluation of this area from the mesh parameters yields
an effective radius of Reff = 76.2 nm for rms = 2 nm, and
Reff = 79.6 nm for rms = 4 nm. Indeed the EEL spectra of
smooth spheres of said effective radii reproduce accurately the
position of the dipolar mode (see Appendix E).

In addition to the redshift, the spectra of the corrugated NPs
feature a large number of low-intensity peaks. These spectral
features are the result of two factors. Due to the breaking of
the spherical symmetry, the prior degenerate modes associated
with the same angular momentum � but different m number,
now exhibit a small energy difference. As a result of the lift
of the degeneracy, the sharp peaks observed in the spectrum
of the smooth NP are suppressed and, depending on the size
of this energy difference with respect to the linewidth of the
degenerate mode, they are either split or broadened. More-
over, additional spectral features may arise from hot spots,
namely protuberances of large curvature that strongly enhance
and confine the incident field [73]. It is important to note
here that, as the features become increasingly smaller, a rig-
orous description of the system requires the implementation
of nonlocal effects in the method [75,76], which effectively
introduces a cutoff in the contribution of large-wavevector
components [77,78].
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IV. CONCLUSIONS

We have presented an analytic and a numerical method
for the study of spherical structures excited by fast electron
beams. Based on Mie theory, we have derived formulas for
the calculation of the EEL and CL probability that are valid for
both aloof and penetrating electron beams, as is typically the
practice in EEL and CL measurements. Focusing on the plas-
mon oscillations of a metallic NP as a testbed, we compared
the analytic theory with numerical simulations performed us-
ing the DGTD method, and found excellent agreement. We
discussed the applicability and limitations of each method,
particularly for grazing trajectories and at energies near the
surface- and bulk-plasmon resonances. Finally, we showcased
the flexibility of the DGTD method by studying a NP with
different degrees of surface corrugation, which can lead to
resonance shifts and splittings due to the lifting of mode de-
generacy. We thus believe that both methods are essential and
complementary for exploring collective optical excitations in
matter, and for interpreting experimental observations.
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APPENDIX A: ELECTROMAGNETIC FIELD
OF A FAST ELECTRON IN FREE SPACE

The electromagnetic field of a point charge traveling in
free space can be found in most standard electrodynamics
textbooks, see for instance Ref. [57]. Here, we follow the work
of García de Abajo [1,30], in which the field is decomposed
into TE and TM waves. Without loss of generality, we assume
that the electron travels along the z axis (v = vẑ), in a straight
trajectory re(t )=r0+vt , where r0 = (b, φ0, z0 = −∞)
denotes its initial position in cylindrical coordinates. The
electron is modeled as a point particle of charge −e, and
charge density ρ(r, t ) = −eδ[r − re(t )].

By introducing the angular momentum operator
L = −ir × ∇, the electric field produced by the electron
can be decomposed into TE and TM waves in the frequency
domain, as [79]

E(r, ω) = LψM(r, ω) + i

k0
∇ × LψE(r, ω), (A1)

where k0 is the wave number in free space, and the scalar
functions ψM/E satisfy the expressions

L2ψM(r, ω) = L · E(r, ω), (A2a)

− i

k0
L2∇2ψE(r, ω) = (L × ∇) · E(r, ω). (A2b)

In the absence of charges and currents, the electric field sat-
isfies the vector wave equation (∇2 + k2

0 )E(r, ω) = 0. As a
result, the scalar functions satisfy the scalar wave equation(∇2 + k2

0

)
ψM/E(r, ω) = 0, (A3)

whose Green’s function in spherical coordinates is given by
[57]

G(r − r′) = eik0|r−r′ |

4π |r − r′| = ik0

∞∑
�=0

j�(k0r<)h+
� (k0r>)

×
�∑

m=−�

Y m
� (θ, φ)Y m

�
∗(θ ′, φ′), (A4)

where Y m
� are the scalar spherical harmonics. In Eq. (A4), we

have introduced the angular momentum quantum numbers �

and m, and r</> stands for the smaller/greater between two
points r and r′. Equation (A3) admits standing and outgoing
spherical waves as solutions, represented by the spherical
Bessel function j�, and the spherical Hankel function of the
first kind h+

� , respectively. Thus, we expand the electric field
at points r < |re| as follows:

E(r, ω) =
∞∑

�=1

+�∑
m=−�

{
b0

�m j�(k0r)X�m(θ, φ)

+ i

k0
a0

�m∇ × j�(k0r)X�m(θ, φ)

}
, (A5)

where X�m(θ, φ) are the vector spherical harmonics,
defined as

X�m(θ, φ) = 1√
�(� + 1)

LY m
� (θ, φ), (A6)

with X00 = 0. The expansion coefficients in Eq. (A5) are
given by

b0
�m = − ik2

0e

ε0ω

mM�m√
�(� + 1)

Km

(
ωb

vγ0

)
e−imφ0 , (A7a)

and

a0
�m = ik2

0e

ε0ω

1

βγ0

N�m√
�(� + 1)

Km

(
ωb

vγ0

)
e−imφ0 , (A7b)

with γ0 = 1/
√

1 − β2 and β = v/c being the Lorentz kine-
matic factors, and Km the modified Bessel function of the
second kind. In Eqs. (A7) we have set

M�m = i�+m

√
2� + 1

π

(� − m)!

(� + m)!

(2m − 1)!!

(βγ0)m
Gm+1/2

�−m

(
1

β

)
,

(A8)
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(a) (b)

FIG. 7. (a) Schematic illustration of the electron beam traveling
with velocity v = vẑ, and traversing the spherical NP of radius
R. In the illustration, we assume that the electron travels on the
x − z plane, entering at point (x = b, z = −ze) and exiting at (x = b,
z = ze). (b) Schematic illustration of an electron beam of velocity
v = vẑ traversing the bulk of an unbound medium of optical param-
eters ε and μ = 1.

which holds for m � 0, while M�−m = (−1)mM�m, and
Gm+1/2

�−m is the Gegenbauer polynomial. Furthermore, we have
set

N�m = cm
� M� m+1 − c−m

� M� m−1, (A9)

with

cm
� = 1

2

√
(� − m)(� + m + 1). (A10)

APPENDIX B: ELECTROMAGNETIC FIELD
OF A FAST ELECTRON IN THE BULK

OF AN UNBOUND MEDIUM

Consider the system illustrated in Fig. 7(b), depicting the
electron traversing the distance 2ze inside a medium of relative
permittivity ε and relative permeability μ = 1. In principle,
the field generated by the electron can be found via Eq. (A5),
with modified optical parameters. However, this expansion of
the field in spherical waves is based on the Ansatz that the
field is composed of a TE and a TM field component. While
this is a reasonable assumption for fields in free space, inside
a polarizable medium longitudinal modes can also appear. In
fact, the metallic NP studied here sustains longitudinal BPs,
which cannot be described by Eq. (A5). It is, therefore, more
convenient to avoid the field expansion in spherical waves and
follow a different route, working with fields in the Cartesian
coordinate system.

The charge density of the electron is given by
ρ(r, t ) = −eδ(x)δ(y)δ(z − vt ), or, by performing a
Fourier transform with respect to x, y and t , ρ(q, z, ω) =
−(e/v)eiωz/v . After the same Fourier transform, the vector
wave equation for the field generated by the electron takes the
form

(−q2 + k2 + ∂2
z

)
E(q, z, ω) = − ie

εε0v

(
qR̂ + ω

vγ 2
ẑ
)

eiωz/v,

(B1)

where k = √
εω/c is the wave number inside the infinite

medium, q2 = k2
x + k2

y , R̂ = x̂, ŷ, and γ = 1/
√

1 − εβ2 is the
Lorentz factor evaluated in the medium. One can then readily
derive the z component of the field, as

Ez(q, z, ω) = ie

εε0

ω

v2γ 2

eiωz/v

q2 − k2 + (ω/v)2
. (B2)

APPENDIX C: ELECTROMAGNETIC FIELD OF A
NANOSPHERE EXCITED BY A FAST ELECTRON

Here, we derive the electromagnetic field generated by a
swift electron passing through a spherical structure, taking
relativistic and retardation effects into account. Even though
in the present paper we focus on metallic NPs that sustain LSP
and BP modes, the expressions derived are general and can be
used to study the response of any linear and isotropic material
subjected to EEL and CL spectroscopy.

We consider the spherical NP of radius R investigated in
Sec. III, with relative permittivity ε and relative permeability
μ = 1. The NP is excited by an electron beam that passes
through the bulk of the material, entering at point (b, φ0,−ze)
and exiting at (b, φ0, ze) in cylindrical coordinates with re-
spect to the NP center, as illustrated in Fig. 7(a). We assume
that the recoil of the fast electron in a single scattering event
is negligible due to its high velocity, and we therefore work
within the nonrecoil approximation [58].

To compute the total electromagnetic field arising from
the interaction of a fast electron with a spherical NP, we
follow the basic steps of Mie theory [60]. According to it, the
fields inside and surrounding the NP are expanded in terms
of spherical waves of unknown expansion coefficients, which
are then found by matching the fields at the surface of the
NP according to appropriate boundary conditions. We first
express the direct field of the electron E0 in terms of spherical
waves. Clearly the electromagnetic fields generated by the
electron while moving within the NP are different to the ones
generated when it travels in the surrounding medium. The
electric field EII

0 corresponding to the external trajectory (for
R < r < |re|) is given by Eq. (A5), with modified expansion
coefficients

b0,II
�m = − ik2

0e

ε0ω

me−imφ0

√
�(� + 1)

[
M�mKm

(
ωb

vγ0

)

− ik0

∫ ze

−ze

dz eiωz/vh+
� (k0r)Y m

� (θ, 0)

]
, (C1a)

and

a0,II
�m = ik2

0e

ε0ω

e−imφ0

√
�(� + 1)

[N�m

βγ0
Km

(
ωb

vγ0

)

− i

b

∫ ze

−ze

dz eiωz/v
{
H+

�m(k0z) + H−
�m(k0z)

}]
, (C1b)
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with ze = √
R2 − b2, r = √

b2 + z2, and θ = arccos(z/r). In
Eq. (C1b) we have set

F±
�m(knz) = ∓c±m

�

{
knb2

r
f ′
�(knr)Y m±1

� (θ, 0)

± zb

r2
f�(knr)

[
c±m+1
� Y m±2

� (θ, 0) − c±m
� Y m

� (θ, 0)
]

+ (1 ± m) f�(knr)Y m±1
� (θ, 0)

}
, (C2)

that holds for any type of spherical Bessel function f�(knr)
evaluated in any medium n (the prime here and on any other
Bessel function denotes the derivative of the function with
respect to the argument). In particular, in Eq. (C1b) we have
F±

�m(knz) = H±
�m(k0z) and f� = h+

� .
The electric field generated by the fast electron while trav-

eling inside the NP (for |re| < r < R) acquires the form of
outgoing spherical waves, as

EI
0(r, ω) =

∞∑
�=1

+�∑
m=−�

{
b0,I

�mh+
� (kr)X�m(θ, φ)

+ i

k
a0,I

�m∇ × h+
� (kr)X�m(θ, φ)

}
, (C3)

where k = √
εk0 is the wave number inside the NP, and the

expansion coefficients are given by

b0,I
�m = − ik2

0e

ε0ω

me−imφ0

√
�(� + 1)

ik
∫ ze

−ze

dz eiωz/v j�(kr)Y m
� (θ, 0),

(C4a)

and

a0,I
�m = ik2

0e

ε0ω

e−imφ0

√
�(� + 1)

i

b

∫ ze

−ze

dz eiωz/v
{
J −

�m(kz) + J +
�m(kz)

}
.

(C4b)

In Eq. (C4b) we have used expression (C2) for F±
�m(knz) =

J ±
�m(kz) and f� = j�.

The total electric field in each region consists of the direct
electron field EI/II

0 , as well as the fields due to the presence
of a boundary (the NP surface) EI/II

B , and thus is written as
EI/II

tot = EI/II
0 + EI/II

B . Similar expressions hold for the mag-
netic field H, which can be obtained from Faraday’s law
H = ∇ × E/(iωμ0). Therefore, the total fields inside (I) and
surrounding the NP (II), close to the boundary, take the form

EI
tot (r, ω) =

∞∑
�=1

+�∑
m=−�

{
bI

�m j�(kr)X�m(θ, φ) + i

k
aI

�m∇ × j�(kr)X�m(θ, φ)

+ b0,I
�mh+

� (kr)X�m(θ, φ) + i

k
a0,I

�m∇ × h+
� (kr)X�m(θ, φ)

}
, (C5a)

HI
tot (r, ω) = 1

Z

∞∑
�=1

+�∑
m=−�

{
aI

�m j�(kr)X�m(θ, φ) − i

k
bI

�m∇ × j�(kr)X�m(θ, φ)

+ a0,I
�mh+

� (kr)X�m(θ, φ) − i

k
b0,I

�m∇ × h+
� (kr)X�m(θ, φ)

}
, (C5b)

EII
tot (r, ω) =

∞∑
�=1

+�∑
m=−�

{
bII

�mh+
� (k0r)X�m(θ, φ) + i

k0
aII

�m∇ × h+
� (k0r)X�m(θ, φ)

+ b0,II
�m j�(k0r)X�m(θ, φ) + i

k0
a0,II

�m ∇ × j�(k0r)X�m(θ, φ)

}
, (C5c)

HII
tot (r, ω) = 1

Z0

∞∑
�=1

+�∑
m=−�

{
aII

�mh+
� (k0r)X�m(θ, φ) − i

k0
bII

�m∇ × h+
� (k0r)X�m(θ, φ)

+ a0,II
�m j�(k0r)X�m(θ, φ) − i

k0
b0,II

�m ∇ × j�(k0r)X�m(θ, φ)

}
, (C5d)

where Z = √
μ0/(εε0) is the impedance inside the NP.

At the interface r = R, the total fields must satisfy the boundary conditions that require the continuity of the tangential
components of the E and H field [57], leading to the following set of equations:

X∗
�m · EI

tot

∣∣
r=R = X∗

�m · EII
tot

∣∣
r=R, (C6a)

X∗
�m · HI

tot

∣∣
r=R = X∗

�m · HII
tot

∣∣
r=R, (C6b)

[r̂ × X∗
�m] · EI

tot

∣∣
r=R = [r̂ × X∗

�m] · EII
tot

∣∣
r=R, (C6c)

[r̂ × X∗
�m] · HI

tot

∣∣
r=R = [r̂ × X∗

�m] · HII
tot

∣∣
r=R. (C6d)
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Using the orthonormality relations of the vector spherical har-
monics [57], we obtain the unknown expansion coefficients

aI
�m = T 11

E� a0,I
�m + T 21

E� a0,II
�m , (C7a)

aII
�m = T 12

E� a0,I
�m + T 22

E� a0,II
�m , (C7b)

bI
�m = T 11

M�b0,I
�m + T 21

M�b0,II
�m , (C7c)

bII
�m = T 12

M�b0,I
�m + T 22

M�b0,II
�m . (C7d)

Adopting the notation of the Riccati-Bessel functions
��(x) = x j�(x) and ξ�(x) = xh+

� (x), the Mie coefficients en-
tering Eqs. (C7) are given by

T 22
E� = ε j�(kR)� ′

�(k0R) − � ′
�(kR) j�(k0R)

h+
� (k0R)� ′

�(kR) − εξ ′
�(k0R) j�(kR)

, (C8a)

T 22
M� = j�(kR)� ′

�(k0R) − � ′
�(kR) j�(k0R)

h+
� (k0R)� ′

�(kR) − ξ ′
�(k0R) j�(kR)

, (C8b)

T 21
E� = − i

√
ε/(k0R)

h+
� (k0R)� ′

�(kR) − εξ ′
�(k0R) j�(kR)

, (C8c)

T 21
M� = − i/(k0R)

h+
� (k0R)� ′

�(kR) − ξ ′
�(k0R) j�(kR)

, (C8d)

T 11
E� = εξ ′

�(k0R)h+
� (kR) − h+

� (k0R)ξ ′
�(kR)

h+
� (k0R)� ′

�(kR) − εξ ′
�(k0R) j�(kR)

, (C8e)

T 11
M� = ξ ′

�(k0R)h+
� (kR) − h+

� (k0R)ξ ′
�(kR)

h+
� (k0R)� ′

�(kR) − ξ ′
�(k0R) j�(kR)

, (C8f)

T 12
E� = − i/(k0R)

h+
� (k0R)� ′

�(kR) − εξ ′
�(k0R) j�(kR)

, (C8g)

T 12
M� = − i/(

√
εk0R)

h+
� (k0R)� ′

�(kR) − ξ ′
�(k0R) j�(kR)

. (C8h)

We now have all ingredients required to evaluate the fields of
Eqs. (C5), and calculate the EEL an CL probability.

APPENDIX D: EEL AND CL PROBABILITY

1. EEL Probability

The fast electron loses part of its kinetic energy due to
energy transfer to the optical modes sustained in the struc-
ture; here, the plasmon oscillations sustained in metals. The
probability of the electron losing energy h̄ω is related to the
work done by the electron moving against the induced field
along the electron trajectory [30], and is given by Eq. (5), or
reshaped as

�EEL(ω) = e

π h̄ω

∫ +∞

−∞
dz Re

{
e−iωz/v ẑ · Eind(re, ω)

}
. (D1)

The induced field can be found as the total field minus
the electron field Eair

0 in the absence of the structure, i.e.
Eind = Etot − Eair

0 . Eventually, in the two regions the induced
field is EII

ind = EII
B, and EI

ind = EI
0 + EI

B − Eair
0 and Eq. (D1)

yields

�EEL(ω) = e

π h̄ω
Re

[ ∫ +∞

−∞
dz e−iωz/v ẑ · EII

ind(re, ω) −
∫ ze

−ze

dz e−iωz/v ẑ · EII
ind(re, ω) +

∫ ze

−ze

dz e−iωz/v ẑ · EI
ind(re, ω)

]
, (D2)

where we have split the integral running along the electron trajectory, into the path of the electron within and outside the NP. We
further decompose the EEL probability into three terms as follows:

�EEL(ω) = e

π h̄ω
Re

[ ∫ +∞

−∞
dz e−iωz/v ẑ · EII

B(re, ω) −
∫ ze

−ze

dz e−iωz/v ẑ · EII
B(re, ω)︸ ︷︷ ︸

�surf

+
∫ ze

−ze

dz e−iωz/v ẑ · EI
B(re, ω)︸ ︷︷ ︸

�Begr

+
∫ ze

−ze

dz e−iωz/v ẑ · {
EI

0(re, ω) − Eair
0 (re, ω)

}
︸ ︷︷ ︸

�bulk

]
= �surf + �Begr + �bulk. (D3)

In the decomposition presented in Eq. (D3), the �bulk term
corresponds to the energy lost to the excitation of bulk modes
of the unbound medium modified and reduced by the Begren-
zung term �Begr, that accounts for the presence of a boundary.
The remaining terms are grouped together and referred to
as the “surface term” �surf , to indicate that they only con-
tain contributions to the EEL probability pertaining to the
excitation of LSPs [see Fig. 2(c)]. We stress, however, that
said name serves classification purposes here, and it might
not be appropriate in the study of nonplasmonic materials
that support modes of different characteristics. For high-index
dielectric nanospheres, for instance, that host Mie resonances
in their volume, the description “surface” is not appropriate.

To derive the bulk contribution to EELS, we make use of
Eq. (B2), which determines the field generated by the fast

electron traveling distance 2ze within an infinite medium of
relative permittivity ε and relative permeability μ = 1. The
corresponding EEL probability �bulk (ω) can be found via the
momentum-resolved EEL probability PEEL(q, ω),

PEEL(q, ω) = eq

2π2h̄ω
Re

∫ ze

−ze

dz e−iωz/v ẑ

· {
EI

0(q, z, ω) − Eair
0 (q, z, ω)

}
= − e2qze

π2h̄ε0v2
Im

{
1

[q2 − k2 + (ω/v)2]γ 2ε

− 1[
q2 − k2

0 + (ω/v)2
]
γ 2

0

}
. (D4)
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Then the EEL probability �EEL(ω) is obtained by

�EEL(ω) =
∫ qc

0
dq PEEL(q, ω), (D5)

leading to Eq. (7a). The isolation of the bulk term inevitably
leads to the introduction of the free parameter qc; consider-
ing that the electron transfers transverse (with respect to the
electron trajectory) momentum q upon losing energy h̄ω, we
impose a cutoff qc to the maximum transverse momentum
collected, in order to ensure finiteness of the EEL probability

[58]. Its value can be determined by the half-aperture col-
lection angle of the microscope spectrometer, according to
Eq. (8).

Inserting the fields of Eqs. (C5) in Eq. (D3) we obtain

�EEL = �M
surf + �E

surf + �M
Begr + �E

Begr + �bulk, (D6)

where we have further decomposed the surface and Be-
grenzung terms into contributions from electric (E) and
magnetic-type (M) multipoles, that take the form

�M
surf (ω) = e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

eimφ0
mbII

�m√
�(� + 1)

[M∗
�m

ik0
Km

(
ωb

vγ0

)
−

∫ ze

−ze

dz e−iωz/vh+
� (k0r)Y m

� (θ, 0)

]
, (D7a)

�E
surf (ω) = − e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

eimφ0
aII

�m√
�(� + 1)

[ N�m
∗

ik0βγ0
Km

(
ωb

vγ0

)
− 1

k0b

∫ ze

−ze

dz e−iωz/v{H+
�m(k0z) + H−

�m(k0z)}
]
, (D7b)

�M
Begr (ω) = e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

eimφ0
mbI

�m√
�(� + 1)

∫ ze

−ze

dz e−iωz/v j�(kr)Y m
� (θ, 0), (D7c)

�E
Begr (ω) = − e

π h̄ω
Re

∞∑
�=1

+�∑
m=−�

eimφ0
aI

�m√
�(� + 1)

1

kb

∫ ze

−ze

dz e−iωz/v{J +
�m(kz) + J −

�m(kz)}, (D7d)

making again use of expression (C2). We note here that the
exponential term eimφ0 in the formulas above need not be
taken into account, since it is canceled out by the term e−imφ0

included in the expansion coefficients a/b0,I/II
�m of Eqs. (C1)

and (C4).
To avoid factoring-in the direct field of the electron, we

correct the expansion coefficients of Eqs. (C7) as follows:

aI
�m = T 11

E� a0,I
�m + T 21

E� a0,II
�m − a0,II

�m , (D8a)

aII
�m = T 12

E� a0,I
�m + T 22

E� a0,II
�m − a0,I

�m|air, (D8b)

bI
�m = T 11

M�b0,I
�m + T 21

M�b0,II
�m − b0,II

�m , (D8c)

bII
�m = T 12

M�b0,I
�m + T 22

M�b0,II
�m − b0,I

�m|air, (D8d)

where the notation a/b0,I
�m|air indicates evaluation of the terms

given by Eq. (C4) in air (ε = 1, k = k0). This correction
ensures a zero probability in the absence of the structure.

For an aloof electron trajectory, we set ze = 0 and find the
expressions presented in Refs. [1,30].

2. CL probability

Upon coupling to the propagating electron, the radiative
excited modes decay by emitting radiation to the far field. The
probability �CL of emitting a photon of energy h̄ω is obtained
via the Poynting flux of Eq. (3). By inserting the induced field
EII

ind = EII
B, and letting r → ∞, we obtain

�CL(ω) = 1

π h̄ωZ0k2
0

∞∑
�=1

+�∑
m=−�

[∣∣bII
�m

∣∣2 + ∣∣aII
�m

∣∣2]
. (D9)

As in the EELS calculation, we remove the contribution of
the direct electron field by modifying coefficients aII

�m and
bII

�m according to Eqs. (D8). The final result agrees with the
expression for �CL presented in Ref. [80].

As a final comment, we mention that the EEL and CL
probabilities in Eqs. (D5), (D7), and (D9) are given in units
of seconds (s), whereas in all relevant figures in the main
text they are presented in units of inverse energy (eV)−1. To
perform the unit conversion one can simply divide by the
reduced Planck constant h̄.

(a) (b)

FIG. 8. Average EEL probability in the interaction between a
spherical NP featuring surface roughness and an electron beam pass-
ing with velocity v = 0.7c (kinetic energy ≈200 keV) at distance
b = 100 nm. The solid lines correspond to NPs, whose shapes devi-
ate from that of a perfectly smooth sphere of radius R = 75 nm by
(a) rms = 2 nm (dark-red curve) and (b) rms = 4 nm (dark-blue
curve). The pink [panel (a)] and cyan areas [panel (b)] show the
analytically derived EEL probability for a smooth sphere of effective
radius (a) Reff = 76.2 nm, and (b) Reff = 79.6 nm.
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APPENDIX E: CORRUGATED NANOSPHERES
COMPARED

TO SMOOTH ONES OF LARGER SIZE

In Fig. 6, we ascribe the redshift observed in the average
EEL spectra of NPs with surface roughness, as compared
to the smooth spheres, to the increase of the area on the
NP surface. Figures 8(a) and 8(b) present the average EEL
probability of two NPs with rms = 2 nm (dark-red curve),
and rms = 4 nm (dark-blue curve), respectively (same data as
the ones shown in Fig. 6 with the same color). By evaluating

the area from the mesh parameters we obtain an effective
radius of Reff = 76.2 nm for rms = 2 nm, and Reff = 79.6 nm
for rms = 4 nm. In order to confirm our argument, in Fig. 8
we juxtapose the EEL probability calculated analytically for
a smooth NP of radius equal to the calculated Reff in each
case. Indeed, the redshift of the lower-energy peak (electric
dipolar mode) is very well reproduced by smooth NPs of the
same area. Due to the symmetry breaking, higher-order modes
exhibit a more complex behavior; additionally to the shift,
they also feature energy splits.
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Aizpurua, Probing and steering bulk and surface phonon polari-
tons in uniaxial materials using fast electrons: Hexagonal boron
nitride, Phys. Rev. B 102, 115431 (2020).

[12] A. Polman, M. Kociak, and F. J. García de Abajo, Electron-
beam spectroscopy for nanophotonics, Nat. Mater. 18, 1158
(2019).

[13] F. J. García de Abajo and V. Di Giulio, Optical excitations with
electron beams: Challenges and opportunities, ACS Photonics
8, 945 (2021).

[14] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Elec-
tron Microscope, 3rd ed. (Springer Science+Business Media,
New York, 2011).

[15] Y. Wu, G. Li, and J. P. Camden, Probing nanoparticle plasmons
with electron energy loss spectroscopy, Chem. Rev. 118, 2994
(2018).

[16] P. E. Batson and J. Silcox, Experimental energy-loss function,
Im[−1/ε(q, ω)], for aluminum, Phys. Rev. B 27, 5224 (1983).

[17] F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F.
Hofer, and J. R. Krenn, Dark plasmonic breathing modes in
silver nanodisks, Nano Lett. 12, 5780 (2012).

[18] A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner,
P. Nordlander, S. A. Maier, and D. W. McComb, Electron
energy-loss spectroscopy (EELS) of surface plasmons in single
silver nanoparticles and dimers: Influence of beam damage and
mapping of dark modes, ACS Nano 3, 3015 (2009).

[19] M. Kociak and L. F. Zagonel, Cathodoluminescence in the scan-
ning transmission electron microscope, Ultramicroscopy 176,
112 (2017).

[20] T. Coenen and N. M. Haegel, Cathodoluminescence for the 21st
century: Learning more from light, Appl. Phys. Rev. 4, 031103
(2017).

[21] B. Barwick, H. S. Park, O.-H. Kwon, J. S. Baskin, and A. H.
Zewail, 4D imaging of transient structures and morphologies in
ultrafast electron microscopy, Science 322, 1227 (2008).

[22] B. Barwick, D. J. Flannigan, and A. H. Zewail, Photon-
induced near-field electron microscopy, Nature (London) 462,
902 (2009).

[23] T. L. Ferrell and P. M. Echenique, Generation of surface excita-
tions on dielectric spheres by an external electron beam, Phys.
Rev. Lett. 55, 1526 (1985).

[24] R. Garcia-Molina, A. Gras-Marti, and R. H. Ritchie, Excitation
of edge modes in the interaction of electron beams with dielec-
tric wedges, Phys. Rev. B 31, 121 (1985).

[25] A. Rivacoba, N. Zabala, and P. M. Echenique, Theory of energy
loss in scanning transmission electron microscopy of supported
small particles, Phys. Rev. Lett. 69, 3362 (1992).

[26] N. Zabala, A. Rivacoba, and P. M. Echenique, Energy loss of
electrons travelling through cylindrical holes, Surf. Sci. 209,
465 (1989).

[27] P. M. Echenique, J. Bausells, and A. Rivacoba, Energy-loss
probability in electron microscopy, Phys. Rev. B 35, 1521
(1987).

[28] R. H. Ritchie and A. Howie, Inelastic scattering probabilities in
scanning transmission electron microscopy, Philos. Mag. A 58,
753 (1988).

[29] E. Kröger, Transition radiation, Cerenkov radiation and energy
losses of relativistic charged particles traversing thin foils at
oblique incidence: Theoretical calculations and numerical com-
putations, Z. Phys. 235, 403 (1970).

013239-13

https://doi.org/10.1103/RevModPhys.82.209
https://doi.org/10.1143/JPSJ.11.112
https://doi.org/10.1103/PhysRev.106.874
https://doi.org/10.1103/PhysRevB.64.205419
https://doi.org/10.1021/nl071480w
https://doi.org/10.1021/nn3056862
https://doi.org/10.1021/acsphotonics.9b00833
https://doi.org/10.1021/acs.nanolett.1c04754
https://doi.org/10.1038/nature21699
https://doi.org/10.1103/PhysRevLett.122.016103
https://doi.org/10.1103/PhysRevB.102.115431
https://doi.org/10.1038/s41563-019-0409-1
https://doi.org/10.1021/acsphotonics.0c01950
https://doi.org/10.1021/acs.chemrev.7b00354
https://doi.org/10.1103/PhysRevB.27.5224
https://doi.org/10.1021/nl3030938
https://doi.org/10.1021/nn900922z
https://doi.org/10.1016/j.ultramic.2017.03.014
https://doi.org/10.1063/1.4985767
https://doi.org/10.1126/science.1164000
https://doi.org/10.1038/nature08662
https://doi.org/10.1103/PhysRevLett.55.1526
https://doi.org/10.1103/PhysRevB.31.121
https://doi.org/10.1103/PhysRevLett.69.3362
https://doi.org/10.1016/0039-6028(89)90089-7
https://doi.org/10.1103/PhysRevB.35.1521
https://doi.org/10.1080/01418618808209951
https://doi.org/10.1007/BF01394931


P. ELLI STAMATOPOULOU et al. PHYSICAL REVIEW RESEARCH 6, 013239 (2024)

[30] F. J. García de Abajo, Relativistic energy loss and induced
photon emission in the interaction of a dielectric sphere
with an external electron beam, Phys. Rev. B 59, 3095
(1999).

[31] F. S. Hage, G. Radtke, D. M. Kepaptsoglou, M. Lazzeri, and
Q. M. Ramasse, Single-atom vibrational spectroscopy in the
scanning transmission electron microscope, Science 367, 1124
(2020).

[32] A. B. Yankovich, B. Munkhbat, D. G. Baranov, J. Cuadra,
E. Olsén, H. Lourenço-Martins, L. H. G. Tizei, M. Kociak,
E. Olsson, and T. Shegai, Visualizing spatial variations of
plasmon–exciton polaritons at the nanoscale using electron mi-
croscopy, Nano Lett. 19, 8171 (2019).

[33] R. Pogorzelski and C. Yeh, Diffraction radiation from a charged
particle moving through a penetrable sphere, Phys. Rev. A 8,
137 (1973).

[34] V. L. Ginzburg, Radiation by uniformly moving sources
(Vavilov–Cherenkov effect, transition radiation, and other phe-
nomena), Phys. Usp. 39, 973 (1996).

[35] N. Yamamoto, H. Sugiyama, and A. Toda, Cherenkov and
transition radiation from thin plate crystals detected in the trans-
mission electron microscope, Proc. R. Soc. London A 452, 2279
(1996).

[36] B. Gallinet, J. Butet, and O. J. F. Martin, Numerical methods for
nanophotonics: Standard problems and future challenges, Laser
Photonics Rev. 9, 577 (2015).

[37] X. Zheng, M. Kupresak, N. Verellen, V. V. Moshchalkov,
and G. A. E. Vandenbosch, A review on the application
of integral equation-based computational methods to scatter-
ing problems in plasmonics, Adv. Theory Simul. 2, 1900087
(2019).

[38] F. J. García de Abajo and A. Howie, Retarded field calculation
of electron energy loss in inhomogeneous dielectrics, Phys. Rev.
B 65, 115418 (2002).

[39] U. Hohenester and A. Trügler, MNPBEM–A Matlab toolbox
for the simulation of plasmonic nanoparticles, Comput. Phys.
Commun. 183, 370 (2012).

[40] J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, Adaptive
finite element method for simulation of optical nano structures,
Physica Status Solidi B 244, 3419 (2007).

[41] S. Burger, J. Pomplun, and F. Schmidt, Finite element methods
for computational nano-optics, in Encyclopedia of Nanotechnol-
ogy, edited by B. Bhushan (Springer Netherlands, Dordrecht,
2012) pp. 837–843.

[42] J. A. Pereda, A. Vegas, and A. Prieto, An improved compact
2D full-wave FDFD method for general guided wave structures,
Microwave Opt. Technol. Lett. 38, 331 (2003).

[43] K. Yee, Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media, IEEE Trans.
Antennas Propag. 14, 302 (1966).

[44] A. Taflove and M. E. Brodwin, Numerical solution of
steady-state electromagnetic scattering problems using the
time-dependent Maxwell’s equations, IEEE Trans. Microwave
Theory Tech. 23, 623 (1975).

[45] U. Hohenester, Simulating electron energy loss spectroscopy
with the MNPBEM toolbox, Comput. Phys. Commun. 185,
1177 (2014).

[46] P. Das, T. K. Chini, and J. Pond, Probing higher order
surface plasmon modes on individual truncated tetrahedral
gold nanoparticle using cathodoluminescence imaging and

spectroscopy combined with FDTD simulations, J. Phys. Chem.
C 116, 15610 (2012).

[47] Y. Cao, A. Manjavacas, N. Large, and P. Nordlander, Electron
energy-loss spectroscopy calculation in finite-difference time-
domain package, ACS Photonics 2, 369 (2015).

[48] J. S. Hesthaven and T. Warburton, Nodal discontinuous
Galerkin Methods: Algorithms, Analysis, and Applications
(Springer Science+Business Media, New York, 2007).

[49] C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, Com-
puting electron energy loss spectra with the discontinuous
Galerkin time-domain method, Photonics Nanostruct. Fundam.
Appl. 9, 367 (2011).

[50] K. Busch, M. König, and J. Niegemann, Discontinuous
Galerkin methods in nanophotonics, Laser Photonics Rev. 5,
773 (2011).

[51] M. Husnik, F. von Cube, S. Irsen, S. Linden, J. Niegemann, K.
Busch, and M. Wegener, Comparison of electron energy-loss
and quantitative optical spectroscopy on individual optical gold
antennas, Nanophotonics 2, 241 (2013).

[52] M. Prämassing, T. Kiel, S. Irsen, K. Busch, and S. Linden,
Electron energy loss spectroscopy on freestanding perforated
gold films, Phys. Rev. B 103, 115403 (2021).

[53] A. A. Maradudin and D. L. Mills, Scattering and absorp-
tion of electromagnetic radiation by a semi-infinite medium
in the presence of surface roughness, Phys. Rev. B 11, 1392
(1975).

[54] A. A. Maradudin and E. R. Méndez, Light scattering from
randomly rough surfaces, Sci. Prog. 90, 161 (2007).

[55] F. Loth, T. Kiel, K. Busch, and P. T. Kristensen, Surface
roughness in finite-element meshes: Application to plasmonic
nanostructures, J. Opt. Soc. Am. B 40, B1 (2023).

[56] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösungen, Ann. Phys. 330, 377 (1908).

[57] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley
& Sons, New York, 1998).
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