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Variational wave function Ansätze are an invaluable tool to study the properties of strongly correlated systems.
We propose such a wave function, based on the theory of auxiliary fields and combining aspects of auxiliary-field
quantum Monte Carlo and modern variational optimization techniques including automatic differentiation. The
resulting Ansatz, consisting of several slices of optimized projectors, is highly expressive and systematically
improvable. We benchmark this form on the two-dimensional Hubbard model, using both cylindrical and
large, fully periodic supercells. The computed ground-state energies are competitive with the best variational
results. Moreover, the optimized wave functions predict the correct ground-state order with near full symmetry
restoration (i.e., translation invariance) despite initial states with incorrect orders. The Ansatz can become a tool
for local order prediction, leading to a new paradigm for variational studies of bulk systems. It can also be
viewed as an approach to produce accurate and systematically improvable wave functions in a convenient form
of nonorthogonal Slater determinants (e.g., for quantum chemistry) at polynomial computational cost.
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I. INTRODUCTION

Understanding the ground-state properties of strongly cor-
related systems has been an important goal in the study of
electronic systems. There has been much success in utilizing
variational methods, such as variational Monte Carlo (VMC)
[1,2] and density matrix renormalization group (DMRG)
[3–5], however, each has drawbacks. Tensor network meth-
ods, while having incredible variational power, often have
challenges of converging large width cylinders or periodic
boundary conditions with finite resources [6]. In order to
understand these large bulk systems, quantum Monte Carlo
(QMC) methods [7,8] are invaluable, however, interesting
regimes can be plagued with a sign problem, which renders
many variational calculations exponentially difficult. Miti-
gation of this problem, for example using constrained path
auxiliary field QMC (CP-AFQMC) [9], can provide accurate
local energies but require more sophisticated methods, such
as back propagation, to measure observables that do not com-
mute with the Hamiltonian.

In VMC, a parameterized wave function Ansatz |ψ〉 is
optimized against the variational energy expectation 〈E〉 =
〈ψ |Ĥ |ψ〉/〈ψ |ψ〉. For many common Ansätze, this evaluation
takes place by stochastic sampling via Monte Carlo in an
occupation basis. The key to this approach is the interplay
between expressivity of the Ansatz, and the ability to optimize
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it to a global minimum. Often the limiting factor has been that
the commonly used forms for fermionic systems lack suffi-
cient expressivity to capture different quantum phases under
the same wave function Ansatz, thereby making it difficult to
detect orders in an unbiased manner.

Recently there has been a number of fermionic wave
functions parametrizations introduced that are inspired from
machine learning algorithms [10–13]. These are generally
systematically improvable and have been shown to obtain
very close agreement with the true ground state in small to
medium-sized systems. However, in order to optimize vast
numbers of parameters, the state may need to be constrained
to certain physics, e.g., superconductivity or the wavelength of
a charge density wave [12,14]. Furthermore, a wave function
Ansatz with many parameters can make it more challenging
to connect with the underlying physics. In strongly correlated
systems with competing orders being separated by small en-
ergy differences, the variational energy can cease being an
effective signal for detection of different phases. An Ansatz
with a smaller number of parameters and a simpler, more
physically inspired construction can be advantageous. We
present a variational wave functions Ansatz based on the the-
ory of auxiliary fields, which aims to have O(N2) or less
optimizable variational parameters and yields a simple form
of the wave function that is straightforward to systematically
improve. The Ansatz builds on a form originally introduced
in Ref. [15] by Sorella, as a modified version of auxiliary
field quantum Monte Carlo (AFQMC), and given the name
variational AFQMC, or VAFQMC. We introduce a further
generalized variational form, which defines a framework with
which the expressivity can be easily expanded. An extension
was recently presented to treat molecules in Ref. [16], with a
different form than what we consider. We benchmark our vari-
ational wave function in the Hubbard model against existing
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FIG. 1. (a) Illustration of standard AFQMC where random walks are taken with many small steps of size τ , following a predefined
projector, to reach an imaginary time of β. (b) Illustration of VAFQMC random walk, where a number of potentially large steps are taken,
following an effective projector that is variationally optimized, to reach the equivalent imaginary time of β. Each dot represents a projector slice
and is a function of optimizable parameters α. (c) Staggered magnetization measurement for the third column of a 10 × 10 U = 4 Hubbard
model with n = 0.8 density. The first pane shows the initial unrestricted Hartree-Fock (UHF) solution, and subsequent panes show VAFQMC
slowly projecting out the incorrect initial order to create a spatially uniform ground state. (d) Staggered magnetization for a 20 × 4 Hubbard
model at U = 4 and n = 0.9 density, with magnetic pinning fields applied at the edges. Starting from a qualitatively incorrect RHF initial state
and optimizing the projection can uncover the correct ground-state local order.

VMC results, as well as DMRG and two projector QMC meth-
ods: AFQMC [9,17] and fixed-node diffusion Monte Carlo
[14,18].

The rest of the paper is organized as follows. In Sec. II,
we introduce our variational formulation and describe the im-
plementation details. Then in Sec. III we benchmark against
state-of-the-art VMC, projector QMC, and tensor network
methods, showing competitive variational energies and pre-
dictive power of local observables. Finally in Sec. IV we
conclude and discuss the outlook of VAFQMC in conjunction
with other methods.

II. METHODS

We consider a variational form modeled after the projector
method [19] such that the ground state |ψ0〉 of a Hamiltonian
H can be obtained via

|ψ0〉 = lim
N→∞

(e−τH )N |ψT 〉, (1)

for some trial state |ψT 〉, which has nonzero overlap with
the ground state. Traditionally, as in AFQMC, a stochastic
random walk is formulated to project the trial wave function
into the ground state via a Monte Carlo routine. A cartoon
representation of this process is depicted in Fig. 1(a). Instead,
by fixing the number of projection steps and optimizing the
projectors as a wave function Ansatz, we can produce an inte-
gral representation of the variational state shown in Fig. 1(b).

Our formalism will apply to all Hamiltonians containing
general one-body and two-body terms. For concreteness we
will use the Hubbard model [20] in this work to both describe
our approach and perform benchmark tests. The Hubbard

model is given by

Ĥ = T̂ + V̂ = −t
∑
〈i j〉σ

c†
iσ c jσ + H.c. + U

∑
i

n↑in↓i, (2)

where 〈i j〉 denotes nearest-neighbor hopping, U/t is the
strength of the on-site interaction. We restrict the model to
two dimensions such that i = (ix, iy), and consider lattices of
size Nx × Ny. Our focus is on describing ground-state order
and approaching the two-dimensional (2D) limit. For this we
study both cylindrical geometry, with open boundary condi-
tion along x and periodic boundary condition (PBC) along
y, and square lattices with fully PBCs along both direction.
The cylindrical cells allow us to perform systematic bench-
marks on the description of spin and charge density waves,
the primary order in the ground state of this model. The fully
periodic supercells allow us to test the quality of the wave
function, including symmetry restoration, and scaling as we
approach the 2D bulk limit.

To apply the projection operator exp(−τ Ĥ ) to the trial
wave function, in AFQMC the propagator is split up into a
kinetic and potential part exp(−τ Ĥ ) ≈ exp(−τ T̂ ) exp(−τV̂ ).
This step incurs an error of O(τ ) and must be corrected, but
this is not of concern here due to the variational nature of
our wave function as discussed below. The kinetic term can
be applied to the trial wave function as a transformation of
the Slater determinant, via Thouless theorem [21]. For the
potential term, a Hubbard-Stratonovich (HS) decomposition
can be applied [22,23], for example the discrete version

e−τUn↑in↓i ∝
∑

xi=±1

exp[λixi(n↑i − n↓i )], (3)

where cosh λi = exp(Uτ ).
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The form of our variational wave function can be thought
of as a sum over auxiliary fields:

|ψ〉 =
∑

xl

N�∏
l

e
∑

i λixl
i (n↑i−n↓i )e− ∑

σ τ l
σ T l

σ |φ0〉, (4)

where T l
σ = t lσ

i j c†
σ icσ j and constant terms are ignored.

This can be recast into an effective Hamiltonian form as

|ψ〉 =
N�∏
l

e−τlĤl |φ0〉, (5)

where Ĥl is determined by optimizable parameters T l
σ , τl , as

well as the form of the HS, all of which can be different from
that of the actual Hamiltonian H . In other words, we consider
variational wave functions of the form

|ψ〉 =
∫ N�∏

l

Bl (xl ) dxl |φ0〉 =
∑
{x}

|x〉, (6)

where Bl (xl ) is a one-body propagator of the form Bl (xl ; α) =
exp[

∑
i j

∑
σσ ′ hl

iσ ; jσ ′ (xl
i j ; {α})c†

i,σ c j,σ ′ ], with i denoting lattice
sites (or basis functions), |x〉 is the resulting application of∏

Bl (x)|φ0〉, and σ (σ ′) denoting spins. The effective one-
body Hamiltonian in the exponent in Bl contains optimization
parameters, denoted by α. For the Hubbard model example we
consider here, Bl (xl ) is of the simpler, product form in Eq. (4),
with α consisting of α = {λi, τ

l
σ , t lσ

i j }. Here we have separated
hl in the one-body auxiliary-field-independent term into an
overall scaling factor τ l and the hopping terms T l

iσ ; jσ , so that
no overall scaling factor is involved in the optimization of the
latter. These parameters are unconstrained: λi is repeated for
each projector slice l but can be nonuniform over sites i; τ l

σ is
now distinct from λi and is allowed to be positive or negative;
and T l is no longer constrained to be Hermitian. In practice
the values of these parameters are optimized directly. Most of
these parameters are in T l

σ , with O(N� · N2) parameters. This
general variational Ansatz, which is restricted to one-body
terms, can also be related to shadow wave functions where
a kernel of both physical and auxiliary degrees of freedom
is parameterized and auxiliary variables are integrated out
[24,25]. Shadow wave functions, however, have historically
been used in a particle configuration basis unlike Eq. (6).

Unlike Ref. [15], our variational form has no fixed pro-
jection time βN� = ∑N�

l (τ l
↑ + τ l

↓)/2. This allows the Ansatz
to grow as needed in projection time, to potentially reach
the ground state with few effective projector steps N�. In
fact, completely decoupling τ l from λi allows for not only
cooling, i.e., β l+1 = β l + τ , but intermediate heating, i.e.,
β l+1 = β l − τ . We show below that the optimized results
indeed takes advantage of this structure.

Given a variational form of Eq. (4) or generally Eq. (6), we
can evaluate the energy via a double integral

〈E〉 = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 (7)

=
∑

xx′ ρ(x, x′)EL(x, x′)S(x, x′)∑
xx′ ρ(x, x′)S(x, x′)

(8)

= 〈ELS〉ρ
〈S〉ρ , (9)

where each x (or x′) is a field configuration that produces
a Slater determinant |x〉 (|x′〉), EL(x, x′) = 〈x′|Ĥ |x〉/〈x′|x〉,
which is similar to a local energy, S(x, x′) = 〈x′|x〉/|〈x′|x〉| is
the phase or sign of the configuration, and ρ(x, x′) = |〈x′|x〉|.
The probability distribution |〈x′|x〉| can be sampled using
Markov chain Monte Carlo (MCMC) through conventional
Metropolis algorithm methods [8] where each state is a config-
uration of fields (x, x′). This procedure is distinctly different
from VMC, however, and is instead closer to the evaluation of
a N�-slice path integral in imaginary time. Note that because
〈x′|x〉 is not necessarily positive semidefinite a sign problem
can occur. However, for the problems we consider, the number
of slices, Nl , is modest and the average 〈S〉 remains positive
as further discussed below.

Energy optimization is carried out through gradient de-
scent. The derivation of the derivative is provided in Ref. [15],
which we repeat here for convenience. The derivative of of
parameter α is given by

∂〈Ĥ〉ρ
∂α

=
〈
S
(

∂EL
∂α

+ (EL − 〈Ĥ〉)O
)〉

ρ

〈S〉ρ
, (10)

where O = ∂ ln(Sρ)
∂α

. Both ∂EL
∂α

and O can be easily evaluated
using automatic differentiation. By sampling ρ and accumu-
lating the values in Eq. (10), optimization of the wave function
can be performed. This optimization procedure of VAFQMC
is therefore dominated by both matrix multiplication (the
projection of |φ0〉) and determinant calculations for the local
energy, which implies VAFQMC scales as ≈ O(N� · N3). We
note that standard practices in AFQMC, for example, compact
decomposition of long-range interaction (or Jastrow), the use
of force bias [26] or other update schemes, stabilization, low-
rank decomposition, fast computations of local energy, etc.
[27], can all be applied to this method.

A. Implementation details

We consider the standard Hubbard model with only
nearest-neighbor hopping. Two types of calculations are
considered, using two different boundary conditions: fully
periodic (PBC) and cylindrical boundary conditions (CBC).
When using cylindrical boundaries, we apply a weak edge
pinning field Hpin = ∑

i∈edge(−1)ix+iy hŜz
i where Ŝz

i = (n̂↑i −
n̂↓i )/2 to induce a local antiferromagnetic order, where h
controls the strength of pinning and is chosen as h = 1/2
unless otherwise specified. When pinning is present, energies
are reported including the contribution from the additional
field, consistent with other publications [28].

Our implementation utilizes Jax [29] to perform automatic
differentiation and sampling, alongside the OPTAX package
[30] for optimization. The matrix exponential is computed ap-
proximately using a k = 3 product formula [31]. Optimization
generally uses around 180 optimization steps with varying and
decaying step size (see Appendix); gradients are accumulated
with 189 000 samples and parameters are updated using a
random step with the computed sign [11].

This work focuses on the case of N� = 4, which gives
substantial improvement over, e.g., N� = 2 or a single slice.
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FIG. 2. Variational energy 〈Ĥ〉 and variance per site (〈Ĥ2〉 −
〈Ĥ〉2

)/N (inset) during optimization of a 4 × 4 Hubbard model at
U = 6 and n = 0.625 using VAFQMC with N� = 4. The ground
state from exact diagonalization is shown in a black dashed line.
Fluctuations are due to the limited sampling during optimization.

While any given calculation can always be reoptimized with
additional slices, by fixing N� we can observe the limits of this
form.

We can additionally add a term to optimize the sign sim-
ilar to Ref. [16], however, in the applications presented here
the average sign is almost always very large 〈S〉 � 0.93. For
U = 8, the sign can get as low as 〈S〉 ≈ 0.74 but this is suf-
ficiently large to resolve observables and derivatives without
needing any further constraint in the optimization. We renor-
malize (i.e., clip) both the sign term derivative and the energy
derivative term to be on the same order. An example of the
optimization is shown in Fig. 2.

After optimization, parameters are selected based on the
lowest observed average energy. Using this parameter set,
observables such as the local energy and electron occupation
are measured with approximately 106 samples with a ther-
malization of 103 sweeps. In order to properly treat the 1/〈S〉
term, error bars are reported from a jackknife estimate [8].

DMRG results were computed using the ITENSOR li-
brary [32,33] with a maximum bond dimension of m =
15360. Constrained-path AFQMC results are obtained using

protocols similar to those in Refs. [28,34–36] including self-
consistently optimized constraints [37].

III. RESULTS

A. Energetic benchmarks

To test the variational Ansatz, we first benchmark against
doped large square Hubbard models with PBC as shown in
Table I. Some systems at intermediate doping have a reference
value from AFQMC [17], which is often effectively exact;
we compare to AFQMC the following systems: 6 × 6 with
n = 2/3, 8 × 8 with n = 0.6875, and 10 × 10 with n = 0.8
at U/t = 4. The VAFQMC Ansatz is able to obtain an en-
ergy error that is O(10−3) with an energy variance per site
(〈H2〉 − 〈H〉2)/N of less than 1, which improves over tradi-
tional variational approaches in such systems.

For systems without exact energies, we compare with sev-
eral state-of-the-art methods, projector and also variational
QMC methods. Note that of the projector methods, AFQMC
and fixed-node projector diffusion Monte Carlo (DMC) with
a VMC optimized trial wave function, only fixed node is
variational. Then we compare with VMC energy and energy
variance. Additionally note that the fixed-node DMC energies
of Ref. [14] are higher than those of Ref. [18]; we report the
lowest energy available.

Overall, the variational energy of the VAFQC Ansatz is
competitive or improves upon those from state-of-the-art
VMC under the standard formalism of Slater determinants
(or antisymmetrized germinal powers), backflow, and Jastrow
factors. For the 8 × 8 periodic system, at U = 4, VAFQMC
is lower in energy across densities and, at U = 8, E/N from
VAFQMC is approximately 0.004t lower at n = 0.78125 and
0.01t higher at n = 0.875. More impressively, at n = 0.78125
we obtain nearly the same energies for U = 4 and U = 8
(with U = 8 having worse performance) to a very sophis-
ticated VMC wave function, enforcing symmetries such as
SU(2) and k = 0 momentum projection, augmented by addi-
tional Lanczos steps. Likewise when comparing to fixed-node
DMC energies across system sizes and densities, we find

TABLE I. Energy comparison between AFQMC [17,18], fixed-node DMC [18], VMC [14], and VAFQMC (this work), on a PBC square
Hubbard model with density n and interaction strength U (in units of t). Energies with a * are effectively exact from release constraint
calculations of AFQMC [17], and energies with † include SU(2) and momentum projection augmented with a Lanczos step [14]. Additionally
shown is the variance σ 2 = 〈H2〉 − 〈H〉2 of the energy, which can be computed more conveniently in variational methods and which vanishes
(σ 2 = 0) for a true eigenstate of the Hamiltonian. VAFQMC results are optimized with N� = 4 projector slices.

Nx × Ny 6 × 6 8 × 8 10 × 10
n 2/3 0.6875 0.78125 0.875 0.8

U 4 4 4 8 4 8 4 8

Projector Methods
EAFQMC/N −1.18525(4)* −1.1858(2)* −1.13253(3) −0.9252(1) −1.01923(6) −0.7616(1) −1.1135(2)* −0.8960(1)
EFN/N −1.128396(9) −0.913753(9) −1.01153(1) −0.74941(2) −1.10934(1) −0.88291(1)
Variational Methods
EVMC/N −1.12683(1)/ −0.91011(2)/ −1.00579(1) −0.74220(3)

−1.13037(1)† −0.91482(1)†

EVAFQMC/N −1.1834(1) −1.18419(7) −1.13048(8) −0.9148(1) −1.01391(8) −0.7469(2) −1.11097(6) −0.8819(1)
σ 2

VMC 1.43/0.59(2)† 3.46 / 2.58(1)† 2.79 6.62
σ 2

VAFQMC 0.2(1) 0.3(3) 0.5(3) 2.4(4) 0.6(3) 3.5(5) 0.8(6) 3.9(8)
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FIG. 3. Comparison of staggered Sz 〈(−1)ix+iy Sz(ix, iy )〉 (top) and hole density 〈1 − n(ix, iy )〉 (bottom) between DMRG, VAFQMC, and
AFQMC for a Hubbard model on a cylinder with edge pinning at a series of interaction strengths U = 2, 4, 6, 8 and n = 0.8 density. Results
have been averaged over the width-4 column direction. VAFQMC results are with N� = 4 projector slices.

similar or slightly lower energies for U = 4 and compet-
itive energies for U = 8. This is particularly favorable as
VAFQMC can conveniently compute both local and nonlocal
observables and correlation functions, which can be challeng-
ing or inaccessible within fixed-node DMC and which require
back propagation [9] in AFQMC.

We also note for the, e.g., 10 × 10 U = 4 point, the local
magnetization 〈Sz〉 is <10−2 on each site, recovering an un-
polarized spin solution despite the initial parameters breaking
spin symmetry explicitly. This result comes at a small cost,
however, and lower-energy results can be obtained when start-
ing from a UHF trial wave function [e.g., Fig. 1(c)]. Using a
UHF initial state |φ0〉 with UUHF = 0.5 (the same as used by
AFQMC for its trial wave function), the local magnetization
is 〈Sz

i 〉 ∼ O(10−2) but about 0.05t lower in energy. This is not
unique to VAFQMC but rather to variational wave functions
generally, where local minima of symmetry broken states can
be hard to optimize away. In VAFQMC this manifests as
requiring more projector slices N� to modify a strong local
magnetization or density in the trial state, compared to a
spin-restricted initial Ansatz, and thus we suggest utilizing the
restricted form to minimize total parameters.

B. Local order prediction and automatic symmetry restoration

As a proxy for phase diagram exploration, we use
VAFQMC to explore the local order of cylindrical Hubbard
models with antiferromagnetic edge pinning. This model was

used to study the stripe behavior of the ground state [28,38].
In Ref. [28], the stability of the stripe state was determined by
comparing the staggered spin and hole densities at different
interaction strength U and electron density n as a function
of system size. We perform calculations similar to those, but
first with small enough system sizes that DMRG can provide
quasiexact reference results. We vary the electron density n, or
equivalently hole doping of δ ≡ 1 − n, and consider cylinders
of width r/δ × Ny for some integer r.

With different interaction strengths and system sizes, we
find remarkable agreement in the magnetic order between
VAFQMC, DMRG, and AFQMC in the top of Fig. 3. The
variational Ansatz for VAFQMC is completely unconstrained
by symmetries, yet can nearly recover both translational sym-
metry in the y direction and symmetry across the middle of
the cylinder. The corresponding hole densities are shown in
bottom of Fig. 3. We again see almost complete recovery
of the symmetry of the system. There is small disagreement
between DMRG and AFQMC as to the hole densities at
large U . As DMRG is expected to be nearly exact in these
width-4 systems, the discrepancy is likely an indication of
small residual bias from the constraint in AFQMC [37]. Re-
markably our VAFQMC results are nearly indistinguishable
from the DMRG results. This extends to other dopings across
similar values of U as well (see Appendix), and illustrates the
predictive power of the VAFQMC method. At larger values
of U , the variational energy from VAFQMC is 1–2% higher
than DMRG and AFQMC. These results are a reminder that

013237-5



LEVY, MORALES, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013237 (2024)

FIG. 4. Comparison of staggered Sz 〈(−1)ix+iy Sz(ix, iy )〉 (top) and hole density 〈1 − n(ix, iy )〉 (bottom) between VAFQMC and AFQMC
for a 12 × 8 Hubbard model on a cylinder with edge pinning at a series of interaction strengths U = 2, 4, 6, 8 and n = 5/6 density. Results
have been averaged over the width-8 column direction. VAFQMC results are with N� = 4 projector slices.

the total energy, while very important for a variational Ansatz,
should not be unduly emphasized, and order parameters and
correlation functions often provide a more stringent measure
of the predictive power of an Ansatz.

We next move beyond width-4 cylinders and consider
wider systems, which are important [28,34] to access the
thermodynamic limit. In Fig. 4 a comparison of staggered Sz

and hole density between AFQMC and VAFQMC is shown
for a 12 × 8 cylinder with n = 5/6 density and U = 2, 4, 6, 8.
Exceptionally, VAFQMC continues to obtain the correct order
and stripe wavelength, with reasonable quantitative agree-
ment with AFQMC. Combined the results for larger periodic
cells discussed in the previous section, these results show the
promise of the VAFQMC Ansatz as a predictive approach for
extended two-dimensional systems and beyond.

As mentioned, the projection times are unconstrained as
full variational parameters in our approach. Unlike the Ansatz
in Ref. [15], a number of solutions have a negative τ l value
within one of the projector slices, as shown in the left of Fig. 5,
similar to that of higher order Trotter expansions [39,40].
As both T σ l

i j and τ l can change, we renormalize the τ l val-
ues by the average value of nearest-neighbor hopping terms
〈T σ l

〈i j〉〉, which is almost always O(−t ). By only considering
τ l values, we can see that the effect of each time slice is
not equivalent over a given U . As U increases, the value
of τ l tends to fluctuate between positive and negative. We
believe this is to effectively raise the temperature and broaden

the trial wave function in order to (in the next slice) project
into the correct manifold. For width-4 systems, τ l values are
around ≈0.13 while width-8 systems they are slightly larger
at 0.15 on average, but both width cylinders have slices l
where τ l

σ ≈ 0.25 for example. Width-4 systems also tend to
have larger negative τ l

σ , with minl,σ τ l
σ ∼ −0.2 for width-4

cylinders and minl,σ τ l
σ ∼ −0.07 for width-8. We emphasize

that while some values of τ l are quite small, the interaction
term remains O(10−1) and thus the Ansatz is still not reduced
to fewer slices.

To examine the role that the negative τ values play, in the
right of Fig. 5 we plot the 〈El〉 for the optimized four-slice
VAFQMC Ansatz truncated to l (l � 4) time slices. (This is
to be distinguished from a stand-alone l slice or N� = l wave
function. In the latter the parameters would be optimized for
l slices, while here they are optimized for the entire four-slice
wave function.) We subtract the energy of that of the |φ0〉 state
(denoted RHF) and rescale by 1/N . We see that for the first
(l = 1) and last (l = 4) slice the energy always decreases.
At intermediate values of l there may be energy values that
are significantly worse than the previous time slice, unlike
the near monotonic decrease in a QMC projector method.
For example consider the 12 × 4 system at U = 4, the en-
ergy per site at an intermediate point l = 2 → 3 jumps by

E/N ∼ +0.17, then lowers in the final slice (l = 3 → 4)
by 
E/N ∼ −0.2. The large value of τ 4 at the end of the
Ansatz appears to be linked to this substantial decrease in
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FIG. 5. Left: Optimized values for τ l maximized over spin [τ l = max(τ l
↑, τ

l
↓)] for the Hubbard model in cylindrical geometry with edge

pinning, shown for four values of U and three system sizes. Values have been renormalized by 〈T σ l
〈i j〉〉. The electron density is n = 5/6. Right:

Energy per site (relative to that from |ψRHF〉 = |φ0〉) at a given time slice l (in units of t) for the systems shown on the left. Note that the
energy at each l is evaluated with the final parameters fixed at the optimized values for l = 4. Marker size is proportional to the renormalized
τ l = max(τ l

↑, τ
l
↓) with red denoting positive (equivalent to cooling projection) and purple denoting negative (equivalent to heating projection).

Error bars are smaller than the marker size.

energy, to compensate for the heating and cooling of the
path.

For lower values of U , often a given slice may have a
very small value of τ l , suggesting that an Ansatz with fewer
N� may suffice to capture the dominant physics. This is fur-
ther suggested by the intermediate values of the energy 〈El〉,
which only occupies a range of ∼0.04/site. We conjecture that
the flexibility in {τ l} can improve the size extensivity of the
Ansatz. The Ansatz can both increase the overall effective β,
similar to Ref. [15], to produce a size extensive Ansatz, or
may be something more complex within the path. The new
Ansatz based on an effective Hamiltonian given in Eq. (5) is
the key for allowing better size consistency with a fixed N�.
More systematic studies on this will be very valuable.

IV. DISCUSSION AND SUMMARY

We presented a variational approach for many-electron
systems with an expressive Ansatz of O(N� · N2) parameters.
Although inspired by the idea of an approximate realization
of the imaginary-time projection in AFQMC, the Ansatz is
much more general. The approach shares the idea of vari-
ational optimization of a small number of projections with
AFQMC-like time slices as in Ref. [15], and we have retained
the name VAFQMC from there. However, our approach takes
a different philosophy of viewing the Ansatz as a variational
effective Hamiltonian rather than a variation projection using
the physical Hamiltonian. Instead of retaining the form of the
Hamiltonian Ĥ in the projection (e.g., keeping T̂ and the basic
form of the HS transformation dictated by V̂ ) and creating dif-
ferent orders via φ0〉, we view the Ansatz as seeking the most

effective projection (to the true ground state) via variational
optimization.

We have emphasized the underlying theory of optimizing a
set of effective one-body Hamiltonians or actions defined by
auxiliary fields. This wave function, even in our still rudimen-
tary implementation, is already competitive with state of the
art VMC and even fixed-node Green’s function Monte Carlo.
We have demonstrated this on large square Hubbard models,
where the approach can systematically obtain the ground-state
energy to within or better than 1–2% of the exact results.
Furthermore, it nearly restores symmetry automatically via
its optimization process and provides accurate physical ob-
servables, which allow predictive resolution of magnetic and
charge correlations and orders. Broken, e.g., SU (2) symmetry
from pinning fields can be additionally restored by hand and
used in the original model.

Historically, many VMC wave function Ansätze were built
around a specific mean-field state (for example in Ref. [15]),
or an explicit form that targets a particular type of order. Under
this approach, optimization is constrained to the fixed state
type, and prediction of the actual order is made by comparing
the relative energetic behaviors of two or more such fixed
types of states. Despite its considerable success, this approach
lacks true predictive power in many situations, either because
the order is not known, or because the different types being
compared are not well balanced in the Ansatz (e.g., one with
more variational flexibility than the other). With the onset of
neural quantum states (e.g., Refs. [11,12,41]), wave functions
are parameterized with partially or fully unconstrained varia-
tional freedom to improve expressibility. Likewise, the aim of
our VAFQMC approach is to have an Ansatz, which is simi-
larly more flexible and more expressive such that local order
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FIG. 6. Relative energy (〈E〉 − EDMRG)/EDMRG comparison for VAFQMC and CP-AFQMC compared to DMRG for various Hubbard
models of size Nx × 4 on a cylinder with edge pinning and hole doping δ.

can instead be predicted from optimization. As our exam-
ples have shown, with large optimization freedom VAFQMC
can function as a predictive Ansatz in addition to providing
good variational energies in a challenging system operating
at realistic parameters and under real-life conditions. It is also
notable that this is achieved without the use of neural networks
or tensor networks, bringing a new class of unconstrained
systemically improvable variational wave functions.

Optimization of an expressive Ansatz alone is sometimes
still not enough to resolve the hardest problems. For models
in which there are many competitive states, e.g., stripes or in-
tertwined orders, the application of pinning fields has become
a very useful and essential tool to elucidate the underlying
order. The success with which this paradigm has been used
[28,34,35,38,42], and this benchmark study of VAFQMC sug-
gests that this is a potential paradigm to better solve problems
inaccessible to 1D tensor networks. This should prove to be an
invaluable method in the toolbox of computational many-body
physics.

Despite the inexpensive Ansatz presented here with fixed
N�, we emphasize that VAFQMC can still be systematically
improved. One can continue to add more projector slices to
potentially improve the energy, but after some point compu-
tational costs will increase (and further care must be taken to
properly stabilize the long time projection of the trial state). At
N� = 4 this was functionally unnecessary for the systems we
considered. Neural networks can be added within the Ansatz,
for example as in Ref. [16], to further improve expressibility,
particularly in the strongly correlated regime where corre-
lations between auxiliary fields may be useful. Additional
considerations may be needed to improve scalability, however.
Likewise while the optimization procedure was able to regain
translation invariance and minimal local spin symmetry break-
ing, this should not be relied upon when scaling. Applying
symmetry projection [43,44], either within |φ0〉 or for each
projected |x〉 state, is a compelling future direction.

Given the promise the Ansatz has already shown at this
very early stage of development, we believe the method
presents many exciting and interesting new possibilities. In
addition to the directions discussed above, there are a number
of issues to be addressed or better understood. For example,
optimizing to machine precision is currently intractable due
to an infinite variance problem. Because the local energies do
not have a zero variance principle, sampling can be dominated

by rare events and thus are unable to reduce the statistical
noise with more samples. We have checked our results on
small systems using the methods of Ref. [45] (see Appendix),
however, there may be a better methods to be explored in
future work.
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APPENDIX A: FURTHER COMPUTATIONAL DETAILS

The step sizes during the first 79 steps of optimization is
0.01 and then is lowered to 0.001 for the remaining 100 steps.
The optimal point is selected by the lowest energy during the
optimization, normally somewhere after the first 80 steps.

Optimization was performed with 126 independent walk-
ers contributing to the total sample collection, while the
additional measurement of the optimized parameters used
120 walkers. Each measurement was collected after N · N�

Metropolis updates and values reported in the main text were
averaged over walkers and a 1000 sweep thermalization time
was used.

Finally the initial values were chosen to correspond to a
τ� = 0.1 projection of AFQMC, with a perturbation of δ ∈
[0, 10−3) for λ and T �

σ terms. Note that when there is edge
pinning, we do not include pinning terms in T �

σ and |φ0〉 but
do include the appropriate cylindrical boundary conditions.
Variance measurement was performed with an additional 10×
samples.

APPENDIX B: ADDITIONAL HUBBARD
CYLINDER COMPARISON

We provide both additional data from the cylindrical Hub-
bard model systems with edge pinning studied above along
with data for δ = 1/10, which is shown in Ref. [28]. This data
is again compared to those from DMRG and self-consistent
CP-AFQMC in width-4 cylindrical systems.

In Fig. 6, the energy of VAFQMC and AFQMC is com-
pared to that of the obtained DMRG. Note that the DMRG
results are not extrapolated in cutoff, and thus may be slightly
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FIG. 7. Comparison of staggered Sz 〈(−1)ix+iy Sz(ix, iy )〉 (top) and hole density 〈1 − n(ix, iy )〉 (bottom) between DMRG, VAFQMC, and
AFQMC for a Hubbard model on a cylinder with edge pinning at a series of interaction strengths U = 2, 4, 6, 8 and n = 5/6 density. Results
have been averaged over the width-4 column direction. VAFQMC results are with N� = 4 projector slices.

higher in energy to the exact ground-state energy, which is
unknown. At U = 2, all methods are in agreement for the
energy within 10−4 relative difference. For larger values of U ,
AFQMC results trend lower in energy as U gets larger while
VAFQMC results trend higher. The largest discrepancies oc-
cur at U = 8 where VAFQMC is approximately 1–1.5% from
DMRG while AFQMC is <1% lower (relatively).

We show further local observables comparisons, of av-
erage staggered Sz and hole density, at n = 5/6 for 12 × 4
and 24 × 4 system sizes in Fig. 7. The VAFQMC results of
spin and hole densities mirror those at in Fig. 3 are seen to
be in excellent agreement with those from DMRG. While
staggered spin densities agree well between the three methods,
VAFQMC and DMRG agree on the magnetic order, the charge
order has slight discrepancies where VAFQMC and DMRG
more closely agree than with AFQMC.

APPENDIX C: INFINITE VARIANCE PROBLEM

The estimator of the variational energy 〈E〉 = 〈ELS〉/〈S〉
can suffer from an infinite variance problem [45], as 〈x′|x〉
approaches zero. In order to consider the effect on our re-
sults, we use the bridge link mitigation of Ref. [45]. A new
sampling probability distribution is introduced by inserting an
additional (symmetric) time slice in the center of the path, i.e.,

ρ ′(x, x′) = |〈x′|e−τH |x〉|. (C1)

The projector introduces an additional set of N auxiliary fields
to integrate over, and modifies the energy calculation to be

〈E〉 = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 (C2)

= 〈EL ρ/F 〉ρ ′

〈ρ/F 〉ρ ′
, (C3)

where F = F (τ ) = |〈x′|e−τ Ĥ |x〉| and ρ = 〈x′|x〉, which has
a sign unlike previously. The calculation of F must be done
with care, however, so as to not introduce a estimator bias (see
Ref. [46]).

In order to consider the effects of the infinite variance, we
study a closed-shell configuration (n = 0.625) of the 4 × 4
Hubbard model with PBC at various values of U . The cal-
culation of F is done exactly with a bridge link of τ = 0.005,
summing the 216 configurations for each field configuration of
x, x′. In Fig. 8 we show the energy for both the standard esti-
mator of Eq. (9) during and after VAFQMC optimization, and
with included bridge link Eq. (C3). Optimized energies are
often below the exact energy in part due to small sample sizes.
These are then raised (potentially above the ground state) with
increased measurement, and subsequently the inclusion of the
bridge link shifts the energy slightly slower but still within
error bars of the original measurement estimate.
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FIG. 8. Relative energy error (〈E〉 − E0)/E0 between VAFQMC
and the exact E0 from exact diagonalization of a 4 × 4 Hubbard
model with PBC at n = 0.625. Blue x’s (“Opt”), are the energies
reported from optimization, orange stars (“Measure”) are measured
with methods equivalent to Sec. II, and green circles (“Bridge Link”)
represent bridge link calculations where F (τ = 0.005) is summed
exactly.

APPENDIX D: ADDITIONAL τ l DATA

In Fig. 9, we present additional τ l values for square
Hubbard models with PBC. The values of τ l are also

FIG. 9. Optimized values for the maximum τ l (maximized over
spin) for 2D Hubbard models of size (top to bottom) 6 × 6, 8 × 8,
and 10 × 10 with PBC at U and n values as shown. Values have been
renormalized by 〈T σ l

〈i j〉〉.

renormalized by the optimized 〈T σ l
〈i j〉〉, which are generally

O(−t ). For closed shell systems at U = 4 (6 × 6 with n =
2/3, 8 × 8 with n = 0.6875), we see similar results to those of
cylindrical pinned systems at low U , suggesting that similar
results could be obtained with less slices N�. On average
these τ l values are around ≈0.005–0.1 and the corresponding
Hubbard-Stratonvich coupling projection time (via λi) is of
the same order, but can get as large as τ l ≈ 0.13.
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