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Experimental demonstration of a high-fidelity virtual two-qubit gate
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We experimentally demonstrate a virtual two-qubit gate and characterize it using quantum process tomography
(QPT). The virtual two-qubit gate decomposes an actual two-qubit gate into single-qubit unitary gates and
projection gates in quantum circuits for expectation-value estimation. We implement projection gates via midcir-
cuit measurements. The deterministic sampling scheme reduces the number of experimental circuit evaluations
required for decomposing a virtual two-qubit gate. We also apply quantum error mitigation to suppress the
effect of measurement errors and improve the average gate fidelity of a virtual controlled-Z (CZ) gate to
fav = 0.9938 ± 0.0002. Our results highlight a practical approach to implement virtual two-qubit gates with
high fidelities, which are useful for simulating quantum circuits using fewer qubits and implementing two-qubit
gates on a distant pair of qubits.
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I. INTRODUCTION

Quantum computing research is progressing on a promis-
ing yet challenging path to realize a scalable fault-tolerant
quantum computer, which is expected to have the capabil-
ities to solve many problems intractable for their classical
counterparts. However, current quantum devices with lim-
ited coherence times, low scalability, and non-negligible
noises, termed as noisy intermediate scale quantum, or NISQ
devices [1], are still far from being a full-fledged quan-
tum computer. Nevertheless, they are still proving to be
the testbeds for many promising quantum algorithms and
quantum applications [2–8]. The recent experimental demon-
strations of quantum computation with over 50 qubits [9–12]
have motivated the practical interest in solving large problems
using smaller quantum devices, despite the tradeoff of utiliz-
ing more classical resources.

To maximize the capabilities of a limited-sized NISQ
quantum processor, various techniques for simulating large
quantum circuits with smaller quantum devices have been
proposed and demonstrated [13–20]. These techniques are
useful for the expectation value estimation of a large quan-
tum circuit, as they can reduce the hardware requirement by
“cutting” the circuit, albeit with some overhead cost. Mitarai
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and Fujii [21] proposed the “virtual two-qubit gate” technique,
a general decomposition scheme for a two-qubit gate. The
virtual two-qubit gate allows us to simulate a two-qubit gate
from a quasiprobability decomposition of local single-qubit
operations in the quantum circuits used for the expectation
value estimation for observables. The virtual two-qubit gate
scheme has been experimentally utilized on a distant pair of
superconducting qubits to reduce the number of SWAP oper-
ations required and thus reducing the two-qubit errors [22].
However, the characterization of the virtual two-qubit gate
was not performed, thereby limiting the ability to evaluate its
quality.

In this work, we experimentally demonstrate a virtual
two-qubit gate taking the example of a controlled-Z (CZ)
gate and characterize it through the quantum process to-
mography (QPT) [23]. The virtual two-qubit gate requires
the implementation of projection gates, which are nonuni-
tary. We implement the projection gates through midcircuit
measurements. However, this limits the fidelity of the virtual
two-qubit gate since measurement errors are typically higher
than single-qubit gate errors. We thus formulate the quantum
error mitigation for midcircuit measurements and apply it to
improve the average gate fidelity of the virtual two-qubit gate.

The rest of the paper is organized as follows: In Sec. II,
we review the virtual two-qubit gate decomposition technique,
and present our approach for its experimental implementation.
We then discuss combining the quantum error mitigation with
the virtual two-qubit gate. Sec. III provides details on the
experimental device, gate implementation, and the charac-
terization of the virtual CZ gate. We also demonstrate the
improved average gate fidelity of the virtual CZ gate after
incorporating the quantum error mitigation. Lastly, in Sec. IV
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we summarize our work and discuss potential directions for
future work.

II. METHODS

A. Gate Decomposition

We can break down any two-qubit gate expressed in the
form eiθA⊗B into six local single-qubit operations, where A2 =
B2 = I , and I is an identity matrix. We use the tilde (∼)
symbol to represent a superoperator Ũ corresponding to an
operator U whose action on a density matrix ρ is defined as
Ũρ = UρU †.

The decomposition of a CZ gate is written as
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where α1, α2 ∈ {−1,+1}. R̃Z (±θ ) and �̃±Z are superoper-
ators corresponding to the operators RZ (±θ ) = e±iZθ/2 and
�±Z = (I ± Z )/2, respectively. �±Z are the (nondestructive)
projection gates, which project the quantum state onto the
respective eigenbasis and are nonunitary [21].

Reference [21] has quantified the decomposition cost in
terms of quasiprobability simulation where the decomposition
operators in Eq. (1) are sampled with probabilities propor-
tional to their coefficients [24]. The set of these decomposition
operators can also be written as
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In this work, we employ deterministic sampling for the de-
composition operators, which means that we perform uniform
experiments with each operator from Eq. (2) in a deterministic
manner. Unlike the quasiprobability approach, we uniformly
sample the decomposition operators with a probability of
unity, regardless of their coefficients. We do that because
of the following two reasons. First, by implementing deter-
ministic sampling, we can reduce the total number of circuit
evaluations for each subcircuit from six to five. It is explained
in detail later in this section. Second, apart from the virtual
two-qubit gate implementation, we also perform its character-
ization. To obtain the process matrix for the virtual CZ gate,
we need process matrices of all the decomposition operators
Di

j (see Sec. III B). Thus, we implement each decomposition
operation deterministically.

Figure 1(a) illustrates the circuit decomposition for a vir-
tual CZ gate in terms of experimental implementation. We
consider a simple two-qubit quantum circuit consisting of
single-qubit gates and a CZ gate. The aim here is to do the

expectation value estimation for this two-qubit circuit using
only one qubit by replacing an actual CZ gate with a virtual
CZ gate. For the virtual two-qubit gate decomposition, we
cut the CZ gate and consider the remaining circuit consist-
ing of two one-qubit subcircuits A and B. Each subcircuit
consists of the initial state ρ i, set of single-qubit gates im-
plemented before and after the CZ gates denoted by U i

pre and
U i

post, respectively, and the measurement of observable k, Mi
k ,

where the superscript i ∈ {A, B} refers to the subcircuit they
belong to. In order to do the expectation value estimation
using a virtual two-qubit gate, we do five different circuit
evaluations, labeled as “Decomposition circuits” in Fig. 1(a),
where we replace the actual CZ gate with local decomposi-
tion operators Di

j on both control and target qubits shown
on the right hand side of Fig. 1(a). In Di

j , i ∈ {A, B} and
j ∈ {1, 2, 3, 4, 5} refer to the indices of the subcircuits and the
decomposition circuits, respectively. Single-qubit unitary op-
erations Di

j=1,2,4,5 ∈ {RZ (π/2),RZ (−π/2), I, Z} are shown
in the yellow boxes, while projection gates Di

j=3 = {�±Z} are
shown in the green boxes. For the expectation value estimation
using the virtual two-qubit gate, we substitute the expecta-
tion values ν i

j obtained from decomposition circuits 1–5 in
Eq. (1) and get the final expectation value. This calculation
is illustrated in Fig. 1(b), which is a graphical representation
of Eq. (1), where the ten pairs of boxes correspond to the ten
terms in Eq. (1).

Note that the utilization of the virtual two-qubit gate can
allow us to decompose a quantum circuit U into two com-
pletely separate quantum circuits each acting only on qubits
in subcircuits A and B, as considered in Fig. 1(a). We take
input to the circuit as a separable state ρ = ρA ⊗ ρB. As an
output, we wish to obtain expectation value P = PA ⊗ PB,
where PA and PB are Pauli operators acting on groups A and
B, respectively. For example, if we define two superoperators
Ũ1 and Ũ2 then their tensor product is expressed as

(Ũ1 ⊗ Ũ1)ρ = (U1 ⊗ U2)ρ(U †
1 ⊗ U †

2 ). (3)

Using Eq. (3), U , as shown in Fig. 1(a), can be decomposed
as

Ũ =
∑

j

(
Ũ A

post ⊗ Ũ B
post

)(
D̃A

j ⊗ D̃B
j

)(
Ũ A

pre ⊗ Ũ B
pre

)
. (4)

The desired expectation value can be written as

Tr(PŨρ) =
∑

j

[
Tr

(
PAŨ A

postD̃A
j Ũ A

preρA
)

× Tr
(
PBŨ B

postD̃B
j Ũ B

preρB
)]

. (5)

Therefore, in this case, we can estimate all of the values
of Tr(PAŨ A

postD̃A
j Ũ A

preρA) and Tr(PBŨ B
postD̃B

j Ũ B
preρB) separately

for j = 1, . . . , 5 [as shown in Fig. 1(a)] and then combine
them according to Eqs. (1) and (5) to obtain the result for U .
We note that for quasiprobability sampling of the decomposi-
tion operations, Eq. (1) needs six different circuit evaluations
because there are six distinct operations [see Eq. (2)] involved
in Eq. (1). However, by comparing Eqs. (1), (2), and (5),
we see that if we sample the decomposition operators Di

j
deterministically then we can reduce the total number of cir-
cuit evaluations for each subcircuit from six to five. This can
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FIG. 1. Decomposition of a CZ gate and quantum error mitigation. (a) Decomposition of a simple two-qubit quantum circuit with a single
CZ gate and other one-qubit gates. See text for the explanation. (b) Calculation of the final expectation value using the expectation values ν i

j

obtained in the respective decomposition circuits in (a). (c) Measurement error mitigation for a single-qubit unitary operation. (d) Quantum
error mitigation for a projection gate and a measurement.

be done since, by implementing the projection gates through
midcircuit measurements, we obtain both expectation values
of the projection operators (�±Z in case of a CZ gate) in a
single experiment [νA,B

±3 in Fig. 1(a)].

B. Combining quantum error mitigation
with the virtual two-qubit gate

We use midcircuit measurements to implement the pro-
jection gates. The measurement errors become the dominant
contributor to the average gate infidelity of the virtual two-
qubit gate since the measurement errors (3.9%) are much
larger than the initialization errors (∼1%) and single-qubit
errors (<0.05%) in our device. The details of the device are
presented in Sec. III A. In order to mitigate the measurement
errors, we perform quantum error mitigation (QEM) with the
probabilistic error cancellation (PEC) method [20,25]. In this
method, we define a set of modified circuits for the original
circuit in which we wish to mitigate the errors. Then, the
original circuit is replaced randomly by a selected set of
modified circuits, where the probabilities to select the random
circuits are calculated before running the quantum circuits.
The mitigated result is obtained by taking the average of the

modified circuits. Here, we apply this error mitigation tech-
nique both to the midcircuit measurements for the projection
gates and to the final measurements. Fig. 1(c) illustrates the
measurement error mitigation circuit for single-qubit unitary
operations where G = D j={1,2,4,5}, and instead of the measure-
ment of the desired observable k, Mk , we measure the set of
Pauli operators denoted as MP = M{I,X,Y,Z}. In the experi-
ments, measurements on the X and Y basis are implemented
by applying RY (π/2) and RX (π/2) gates, respectively, just
before the usual Z-basis measurement. For measurement in
the I basis, we always consider the expectation value of op-
erator I to be unity. In case of the projection gates D j=3, we
apply the probabilistic quantum error mitigation sequentially
[25], first for the projection gate � j , implemented through
midcircuit measurement, and then on the final measurement
Mk as shown in Fig. 1(d). See Appendix A for the details.

III. EXPERIMENT

A. System details

Local single-qubit operations can be classified into two
categories: unitary and nonunitary/projection gates. To im-
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TABLE I. Parameters of the superconducting transmon qubit
used in the experiments: the qubit frequency ωq, anharmonicity α,
energy relaxation time T1, and Ramsey dephasing time T ∗

2 .

ωq/2π α/2π T1 T ∗
2

Qubit 8.403 GHz −416 MHz 20.2 µs 3.1 µs

plement a virtual CZ gate experimentally, we use a fixed-
frequency superconducting transmon qubit [26]. The qubit is
a part of a 16-qubit device [27]. The parameters of the qubit
are summarized in Table I.

In experiments, the quantum gates and measurements are
noisy, and thus we do not have perfect implementations of
the above gates as mentioned in Eq. (1). Thus, hereafter we
use the superscript “exp” to denote a quantum operation real-
ized in the experiments and hence containing the errors. Let
noisy quantum channels that correspond to Z , RZ (±θ ), and
�±Z be Zexp, Rexp

Z (±θ ), and �
exp
±Z , respectively. To implement

Rexp
Z (±θ ) and Zexp, we use the efficient Z-gate technique [28],

in which the rotation around the Z axis can be executed
by adjusting the relative phase of the subsequent X and Y
qubit drive pulses, which is controlled through the classical
hardware and software and can be implemented almost per-
fectly. The Rexp

X (π/2),Rexp
Y (π/2) gates are implemented with

the shaped microwave pulses [29]. For suppressing leakage,
we use the DRAG pulsing technique [30,31]. To reduce the
unitary control errors, we use the ORBIT technique [32].
The average gate fidelity of the single-qubit Clifford gates is
0.9992 ± 0.0004 via randomized benchmarking [33–35].

To implement �
exp
±Z , we perform midcircuit measurement

followed by classical postprocessing. The midcircuit mea-
surement consists of a 90-ns-long dispersive readout pulse
followed by a resonator-reset time of 500 ns. The qubit state
is measured through an off-resonantly coupled resonator with
the dispersive readout [36] performed via the readout res-
onator at 10.310 GHz. The readout signal is amplified with an
impedance-matched Josephson parametric amplifier [37,38].
The averaged assignment fidelity for the qubit readout is
0.9609 ± 0.0037 (see more details in Appendix B).

B. Characterization and results

To represent quantum states, quantum channels, and
measurements, we use the Pauli transfer matrix (PTM) rep-
resentation. We define σk (k = 0, . . . , 3) as the kth operator in
the Pauli basis P = {I, X,Y, Z}. We define a quantum channel
corresponding to a decomposition operation D ∈ Di

j as D̃.
The PTM representation of a quantum channel D̃ can be
written as T , whose elements are given by

T (D̃)k,l = 1

d
Tr[σkD̃(σl )], (6)

where d = 2n is the dimension of the n-qubit system. For the
virtual CZ gate characterization, we perform QPT. Fig. 1(a)
also represents the circuit for virtual two-qubit gate QPT,
where we perform QPT in each subcircuit for the corre-
sponding decomposition channel D̃i=A,B

j=1,...,5. As per the QPT
procedure, we prepare d2 = 4 linearly independent states
from the basis ρ i=A,B

in = {|0〉, |1〉, |+〉, |i+〉}, each of which

is subjected to the quantum channel D̃i
j , followed by the

quantum state tomography (QST) [2], which includes mea-
surements of the {X,Y, Z} observables. Here, we have denoted
|±〉, |i±〉, and |0〉 and |1〉 as the eigenvectors of X , Y , and
Z with eigenvalues ±1, respectively. Since we are interested
in the QPT of D̃i

j , we take corresponding U i=A,B
pre,post to be the

identity gates IA and IB. These set of experiments constitute
a QPT circuit evaluation for the channel D̃i

j . After obtaining
T (D̃i

j ) for both subcircuits A and B, we use Eq. (1) to calculate
the PTM for the virtual CZ gate TV−CZ . See Appendix C.

We present the characterization results for the virtual CZ
gate and compare the cases with (PEC) and without (non-
PEC) quantum error mitigation applied for the projection
gates in Fig. 2. For each QPT circuit evaluation of D̃i

j , we
take Ns = 10 000 shots to calculate the average expectation
value for the corresponding observables Mk={X,Y,Z}. Note
that QPT assumes error-free state preparation and measure-
ment (SPAM). To mitigate initialization errors, we implement
initialization by measurement and postselection, in which a
measurement pulse is applied at the beginning of each circuit
and postselecting the shots which were prepared in the ground
state. To mitigate the measurement errors, we apply error miti-
gation to the measurements, even in experiments without PEC
for projection gates, referred to as non-PEC QPT experiments.
In contrast, PEC QPT experiments involve the implementation
of PEC for both projection gates and the measurements. For
the measurement error mitigation in non-PEC QPT exper-
iments, we replace each Mk with the measurement set of
Pauli observables Mp ∈ {MI ,MX ,MY ,MZ} as shown in
Fig. 1(c). The circuit for PEC QPT experiments is shown in
Fig. 1(d), where PEC is applied sequentially first for the pro-
jection gates and then for the measurements. See Appendix A
for the details. To get the final mitigated expectation value
with its uncertainty, we repeat each QPT circuit 100 times
and take its average. The average gate fidelity for the virtual
CZ gate without doing the quantum error mitigation for the
projection gates is fav = 0.9782 ± 0.0001, and after apply-
ing the quantum error mitigation to the projection gates it
is improved to f mit

av = 0.9938 ± 0.0002, where “mit” denotes
the fidelity after applying the PEC mitigation. The results
indicate a feasible and practical approach to experimentally
implement virtual two-qubit gates with enhanced fidelity by
employing measurement error mitigation techniques for the
projection gates performed through midcircuit measurements
and implementing high-fidelity local single-qubit gates. The
high-fidelity virtual two-qubit gates are crucial for simulat-
ing quantum circuits using fewer qubits and also to simulate
two-qubit gates on a distant pair of qubits which otherwise
would take several number of SWAP operations between
them.

IV. CONCLUSION AND DISCUSSION

In this work, we experimentally demonstrated a virtual
CZ gate and characterized its performance using QPT. Our
approach involved formulating probabilistic error cancellation
for the projection gates, implemented through midcircuit mea-
surements. This effectively mitigated projection gate errors.
Furthermore, incorporating measurement-error mitigation led
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FIG. 2. Quantum process tomography results for a CZ gate. (a) Ideal CZ gate in the Pauli transfer matrix representation. (b) Experimentally-
implemented virtual CZ gate without quantum error mitigation. (c) Experimentally-implemented virtual CZ gate with quantum error mitigation.

to a significant enhancement in the average gate fidelity of the
virtual CZ gate, even in the presence of higher measurement
errors compared to single-qubit gate errors. In one of the
applications of the virtual two-qubit gates, where we broke a
two-qubit circuit into two disconnected one-qubit circuits, we
reduced the number of circuit evaluations for each one-qubit
circuit from six to five.

As demonstrated in this work, through the implementa-
tion of projection gates using midcircuit measurements, we
can eliminate the need for ancilla qubits typically used for
qubit reset. This also allows us to achieve projection on all
observable eigenvectors in a single experiment. However, in
midcircuit measurements, the resonator-reset time after the
readout pulse contributes to the overall projection gate time.
To address this issue, accelerating the resonator ringdown
time has the potential to further enhance the fidelities of vir-
tual two-qubit gates [39]. This improvement is expected to be
more pronounced in scenarios involving the implementation
of multiple virtual two-qubit gates.

Decomposing a larger quantum circuit into smaller circuits
can boost the capabilities of the limited-sized NISQ devices
which can pave the way towards the goal of demonstrating
the quantum advantage. Circuit-cutting schemes, such as the
virtual two-qubit gate, offer potential benefits for NISQ al-
gorithms [3] such as VQE and QAOA [40], facilitating the
simulation of large circuits with fewer physical qubits. In
combination with quantum error mitigation, as demonstrated
in this work, the virtual two-qubit gates could potentially
improve the simulation of a large quantum circuit with less
physical qubits in certain scenarios. However, decompos-
ing a quantum circuit requires large overhead in terms of
additional number of circuit evaluations and classical post-
processing. Using the deterministic approach considered in
this work, the scaling of the required number of circuit
evaluations to cut k virtual two-qubit gates is O(5k ). An
interesting avenue for future exploration lies in developing a
general approach for optimally decomposing a quantum cir-
cuit, one that can be efficiently implemented in experimental
settings.
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APPENDIX A: QUANTUM ERROR MITIGATION

We use the probabilistic error cancellation method for
QEM [20,25]. In the PTM representation, a state ρ can be
expressed as a column vector

|ρ〉〉 = [ρ0, ρ1, · · · , ρk, · · · ]T, (A1)

whose kth element is given by

|ρ〉〉k = Tr[ρσk], (A2)

where σk is defined as the kth operator of the Pauli basis P =
{I, X,Y, Z}. Similarly, an observable Q can be expressed as a
row vector

〈〈Q| = [Q0, Q1, · · · , Qk, · · · ], (A3)

where

〈〈Q|k = Tr[Qσk]. (A4)

A quantum channel Õ corresponding to the operation O is
expressed as

Õρ = OρO†, (A5)

whose PTM representation is given in Eq. (6).
In the QPT experiments, as also mentioned in Sec. III B,

we take the initial states as ρi = {|0〉, |1〉, |+〉, |i+〉} and mea-
sure the observables Q ∈ {X,Y, Z}. We want to compute the
noise-free (mitigated) expectation values Emit = 〈〈Q|Õ|ρ〉〉,
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FIG. 3. Gram matrix and quasiprobability vectors. (a) Gram matrix for a single-qubit measurement. (b)–(d) Quasiprobability vectors for
measurement observables X , Y , and Z , respectively.

however, in experiments we obtain E exp = 〈〈Qexp|Õexp|ρexp〉〉.
Hence, we apply PEC method to mitigate the errors. The
set of initial states can be expressed as the state preparation
matrix Aexp with its elements Aexp

k,i = 〈〈σk|ρexp
i 〉〉 and the set

of observables as the readout matrix Bexp with its elements
Bexp

k,i = 〈〈σ exp
k |σi〉〉. Since the state preparation errors are much

lower in our device, and we also perform initialization by mea-
surement and postselection, we assume the state preparation to
be almost perfect (ρexp = ρ) and take its estimate as error-free
Aexp

k,i ≈ 〈〈σk|ρi〉〉, which is a decent guess and is expressed as

Aexp ≈

⎛
⎜⎜⎝

1 1 1 1
0 0 1 0
0 0 0 1
1 −1 0 0

⎞
⎟⎟⎠. (A6)

The Gram matrix Gexp = BexpAexp, is obtained experimentally
by performing the QPT experiment for an identity gate I , as
also shown in Fig. 3(a). With this, we can obtain the readout
matrix Bexp = Gexp(Aexp)−1.

In the case of unitary decomposition gates, as shown in
Fig. 1(a), the single-qubit gates O ∈ Di=A,B

j={1,2,4,5} are imple-
mented with high fidelity, so we assume them to be error-free
(Õexp = Õ). Due to non-negligible measurement errors, we
apply QEM for the measurements, as shown in Fig. 1(c).
We can express the observables in terms of experimentally
obtained noisy observables [20,41] as

〈〈σk| =
∑

l

ql
k

〈〈
σ

exp
l

∣∣, (A7)

where k ∈ {1, 2, 3}, l ∈ {0, 1, 2, 3}, ql
k are the elements of

quasiprobability vector qk , and 〈〈σ exp
l | is the lth row of

Bexp. The quasiprobability vectors qk∈{X,Y,Z} are shown in
Figs. 3(b)–3(d), respectively, and can be computed as

qk = 〈〈σk|(Bexp)−1. (A8)

The probability with which σ
exp
l is sampled is given by

pl
k =

∣∣ql
k

∣∣∑
m

∣∣qm
k

∣∣ . (A9)

To obtain the final mitigated expectation value Emit
k , each

outcome from the experiment is multiplied by a weight factor

wl
k = sgn

(
ql

k

) ∑
m

∣∣qm
k

∣∣. (A10)

The weighted average is the mitigated expectation value for
the observable σk . Using Eqs. (A7) to (A10), it can be

written as

Emit
k =

∑
l

ql
k

〈〈
σ

exp
l

∣∣D̃i
j

∣∣ρ〉〉
,

=
∑

l

wl
k pl

k

〈〈
σ

exp
l

∣∣D̃i
j

∣∣ρ〉〉
, (A11)

where D̃i
j ∈ D̃i={A,B}

j={1,2,4,5}. In the case of 〈σ exp
0 〉 = 〈Iexp〉, we

always consider the expectation value as +1.
Now, we discuss applying PEC method on the decompo-

sition circuits containing projection gates �±Z . We perform
the PEC method sequentially first for the projection gates and
then for the measurements as shown in Fig. 1(d). Since we
implement projection gates through midcircuit measurements,
we make an approximation here, i.e., we express a projection
gate operation (�̃±Z ) as a linear combination of the basis op-
erations Bexp ∈ {Ĩ, �̃+X , �̃−X , �̃+Y , �̃−Y , �̃+Z , �̃−Z}. The
PTMs Bexp are estimated using Eq. (6) with measurement-
error mitigation. We can express the PTMs corresponding to
�Z as

�̃+Z 	
∑

u

γuBexp
u , (A12)

�̃−Z 	
∑

u

δuBexp
u , (A13)

where u ∈ {1, . . . , 7} denotes the uth element of Bexp, and
γ and δ are quasiprobability vectors, as shown in Fig. 4.
To calculate γ and δ, we minimize the Euclidean 2-norms
|| ∑

u
γuBexp

u − �̃+Z || and ||∑
u

δuBexp
u − �̃−Z ||, respectively.

The probabilities of selecting Bexp
u corresponding to �̃+Z

and �̃−Z from Eqs. (A12) and (A13) can therefore be ex-
pressed as

pγ
u = |γu|∑

r

∣∣γ r
u

∣∣ , (A14a)

pδ
u = |δu|∑

s

∣∣δs
u

∣∣ , (A14b)

respectively. The respective weight factors associated with
Eqs. (A14a) and (A14b) can be written as

wγ
u = sgn(γu)

∑
r

∣∣γ r
u

∣∣, (A15a)

wδ
u = sgn(δu)

∑
s

∣∣δs
u

∣∣. (A15b)

We can express the mitigated expectation value of observables
σ ′

k as

Emit
k′ = 〈〈σk′ |D̃i

3|ρ〉〉, (A16)
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FIG. 4. Quasiprobability vectors for projection gates. (a) Quasiprobability vector γ corresponding to projection gate �̃+Z . (b) Quasiprob-
ability vector δ corresponding to projection gate �̃−Z .

where k′ = {1, 2, 3} and D̃i={A,B}
3 = �̃±Z . Using Eqs. (A7) to

(A10) and Eqs. (A12) to (A15), we can express Eq. (A16) for
�̃+Z and �̃−Z as

Emit
+Z,k′ =

∑
l

∑
u

wl
k′ pl

kw
γ
u pγ

u

〈〈
σ

exp
l

∣∣Bexp
u

∣∣ρ〉〉
, (A17a)

Emit
−Z,k′ =

∑
l

∑
u

wl
k′ pl

kw
δ
u pδ

u

〈〈
σ

exp
l

∣∣Bexp
u

∣∣ρ〉〉
, (A17b)

respectively.

APPENDIX B: QUBIT READOUT CHARACTERIZATION

To obtain the average assignment fidelity of the single-shot
readout, we apply a RX (π/2) gate on the initial ground state
|0〉 and then apply two sequential measurement pulses. The
average assignment fidelity is defined as

Fa = 1
2 (p(g|g) + p(e|e)), (B1)

where p(x|y) is the probability of assigning the measurement
outcome x when the qubit is prepared in the state y. We obtain
the assignment fidelity of 0.9609 ± 0.0037 and the ground-
state initialization fidelity Finit = p(g|g) of 0.9895 ± 0.0028.

APPENDIX C: QUANTUM PROCESS TOMOGRAPHY

We use QPT to evaluate the performance of the virtual
two-qubit gate. In general, for an n-qubit system with the di-
mension d = 2n, we can express a quantum channel Ẽ acting
on an arbitrary quantum state ρ as

Ẽ (ρ) =
d2−1∑
i, j=0

χi jBiρB†
j , (C1)

where {Bi} are the elements of the d × d matrix basis and χ is
the process matrix [2]. We define the PTM representation of a

quantum channel Ẽ as T , whose elements are expressed as

T (Ẽ )i, j = Tr[σiẼ (σ j )]. (C2)

In the PTM representation, we can express a state ρ as a
column vector |ρ〉〉 with elements |ρ〉〉k = Tr[σkρ] and an op-
erator O as a row vector 〈〈O| with elements 〈〈O|k = Tr[σkO].
In the QPT, we prepare for each qubit an initial state from the
set {|0〉, |1〉, |+〉, |i+〉}. For each initial state, we measure the
qubit along the Pauli basis, X,Y, and Z .

Using the PTM representation, we can define the quantum
channel for the two-qubit system as the tensor product of
individual PTMs. Using Eqs. (1) and (6), we can express the
PTM for the virtual CZ gate TV−CZ as

TV−CZ = 1

2

∑
i=1,2

(
T

(
D̃A

i

) ⊗ T
(
D̃B

i

))

− 1

2

∑
α1,α2,β

α1, α2
[(

T
(
D̃A

α13

) ⊗ T
(
D̃B

β

)) + (
T

(
D̃A

β

)
⊗T

(
D̃B

α23

))]
, (C3)

where α1, α2 ∈ {±1} and β ∈ {4, 5}. The average gate fidelity
in terms of PTMs is defined as

fav(Ũ , Ẽ ) = 1

d + 1

⎡
⎣ 1

d

∑
i, j

T (Ũ )i, jT (Ẽ )i, j + 1

⎤
⎦, (C4)

where d = 2n is the dimension of the n-qubit system [42].
T (Ũ ) is the PTM of the ideal target gate (TCZ for CZ gate), and
T (Ẽ ) is the PTM of experimentally implemented gate (TV−CZ

for virtual CZ gate in this case).
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