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Elastic precursor softening in proper ferroelastic materials: A molecular dynamics study
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Precursor elastic effects are investigated in a displacive anharmonic spring model and shown to extend
greatly into the paraelastic phase. Weak precursor effects can be detected near 2Ttr , where Ttr is the ferroelastic
transition temperature. The precursor effects become strong at T < 1.7Ttr . Two effects were identified in our
two-dimensional model: the symmetry-breaking strain e3 (εxy ) leads to softening of the elastic modulus C33,
while the nonsymmetry-breaking strain e1 + e2 (εxx + εyy) leads to hardening of C11. The strain e3 is proportional
to the order parameter and scales as |e1 + e2| ∼ e2

3. The temperature evolutions of the elastic moduli are
surprisingly well described by power laws and Vogel-Fulcher equations. The power-law exponents are ∼−0.5
for �C33 and ∼−1 for �C11, �(C11 + C12) and �(C11 − C12). The Vogel-Fulcher temperatures are very similar,
while the Vogel-Fulcher energies differ between the excess elastic moduli. The origin of the precursor effect is
the evolution of short-range order in the paraelastic phase which gives rise to a characteristic local nanostructure.
In the case of the symmetry-breaking strain, this microstructure resembles dynamical twinning patterns corre-
sponding to the ferroelastic nanostructure, which weakens the material. In the case of the nonsymmetry-breaking
strain, we find density fluctuations which make the material harder.
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I. INTRODUCTION

Most structural phase transitions show coupling between
the order parameter and strain. The strain is directly propor-
tional to the order parameter in some cases; in others, the
relationship is described by coupling of various degrees of
complexity [1–6]. Ferroelastic materials play a special role
because the strain leads to the movement of domain bound-
aries and, thus, to the change of domain patterns [4]. They
commonly display particularly large elastic anomalies during
structural phase transitions [1], although the structural anoma-
lies are also widely observed in nonferroic materials [7–11]
and coelastic quartz [12]. Typical examples for structural col-
lapses, which lead to an almost total reduction of the effective
elastic moduli, are proper ferroelastics such as in LaNbO4

and LaP5O14 [13–15]. In the case of improper ferroelastics,
such as ferroelectric BaTiO3 and antiferrodistortive SrTiO3,
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a linear coupling between the acoustic soft mode and the
elastic moduli is symmetry forbidden, while elastic softening
still reduces the values by 20–50% [16]. In ferroelectrics, the
intrinsic softening of the low-temperature phase with respect
to the paraelectric phase is due to the combined direct and
converse piezoelectric effects [17,18]. Additional softening
in the low-temperature phases may be due to mobile twin
boundaries near the transition point, which vanishes if the twin
walls are strongly pinned [19–21]. Thick domain walls were
shown to be less prone to such pinning effects [22–24], and
many examples of highly mobile wall movements during the
softening process have been reported [25–30]. In a seminal
paper, Cordero et al. [31] emphasized that elastic softening
is not restricted to ferroic phases but that precursor elastic
softening at temperatures well above the transition point is an
indication of unexpected symmetry breaking at T � Tc. This
softening has nothing to do with order parameter fluctuations
and occurs outside any conceivable Ginzburg interval [32,33].
A typical example of a large precursor softening effect is
the archetypical ferroelastic material Pb3(PO4)2 [28,34]. The
transition temperature in this slightly first-order transition is
453.6 K, while specific heat and strain precursors extend to
550 K. This is well above the transition point at 1.22Ttr in
this displacive transition. The interval increases greatly to
1.5Ttr when order-disorder components are added by doping.
Here, we find even greater precursor intervals in a carefully
controlled displacive system.
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FIG. 1. Interatomic potential for a generic ferroelastic model.
The model consists of nearest-neighbor (black springs), next-nearest-
neighbor (red springs), third-nearest-neighbor (blue arrow), and
fourth-nearest-neighbor (green arrow). The red springs are Landau
springs with a double well potential so that the energy has a minimum
value when the structure is sheared with respect to the cubic unit cell
[52–58].

Similar precursor symmetry breaking was found by mea-
suring the piezoelectric effect in nominally nonpiezoelectric
phases [35] and by computer simulations of polymorphous
local configurations in a broad range of materials [36–38]. It
is the purpose of this paper to show by molecular dynamics
(MD) calculations of a simple anharmonic spring model that
elastic softening in addition to order parameter softening ex-
ists even in proper ferroelastic materials. Our model is purely
displacive, while conceptually, this effect is best visualized
when materials are disordered by extrinsic forces such as
radioactive bombardment. Consider a single crystal without
any domain boundaries which is disordered by the radioactive
decay of radiogenic impurities. This situation is encountered
in so-called metamict materials such as zircon [39] and ti-
tanite [40], where the reduction in bulk and shear modulus
is >50%, while their crystallographic average structure is
still unchanged. Structural disorder of the paraelastic phase
and significant short-range order are thus expected to lead
to elastic softening and piezoelectricity in nominally cubic
materials [35,38,41–43], although the structural reason for the
elastic softening is often subtle [38]. We show that precursor
softening is not limited to order-disorder systems but also
appears in displacive systems [44–51].

II. THE MODEL

Ferroelastic materials and related precursor elastic effects
induced by the presence of local dynamic ferroelastic nanos-
tructures above the Curie temperature are described by a
Landau-type double-well potential on the interatomic interac-
tions, as schematically shown in Fig. 1. The potential energy
U(r) contains four terms: the harmonic first-nearest atomic
interactions:

U (r) = 0.1(r − 1)2 (black springs), (1)

the anharmonic second-nearest Landau-type double-well in-
teractions:

U (r) = −0.05(r −
√

2)
2 + 40(r −

√
2)

4
(red springs),

(2)

along diagonals in the lattice unit, the fourth-order third-
nearest interactions:

U (r) = 0.04(r − 2)4 (blue arrow), (3)

and another anharmonic fourth-nearest Landau-type double-
well interaction:

U (r) = −0.05(r −
√

5)
2 + 25.5(r −

√
5)

4
(green arrow),

(4)

where r is the distance between atoms. The first- and third-
nearest interactions are related to the elastic interactions
and constitute the elastic background in ferroelastic mate-
rials. An equilibrium shear angle of 2° is maintained by
the second-nearest interactions, while the additional fourth-
nearest Landau-type interactions help to obtain a reasonable
domain wall thickness and stability [27,59]. The model pa-
rameters were inspired by the well-known second-order phase
transition of SrTiO3 with a typical ferroelastic shear angle of
2° [60]. The simulated microstructures are fairly robust with
respect to the parameters in Eqs. (1)–(4). The parameters were
optimized to reproduce a weakly first-order transition where
the temperature evolution of the order parameter is smooth
in the ferroelastic phase and shows a step at the transition
temperature. Similar potential forms have been developed to
successfully investigate internal frictions accompanying the
dynamic motions of ferroelastic domains [21,52], the interac-
tions of fine microstructures inside the domain walls [53,54],
piezoelectricity [55,56], ferroelectricity [57], and magnetism
[58] emerging from the static and dynamic polar ferroelastic
domain walls (often simple twin walls) [61,62]. Ferroelastic
domain patterns and stress-field-induced strains were obtained
by extracting structural snapshots every 10 MD steps (0.01 ps)
in the last 1.5 × 106 MD steps. All simulations are performed
using the LAMMPS code [63]. Visualizations are performed
using the OVITO software [64].

A formal treatment of the symmetry properties of the
model is presented in the Appendix. In its high-symmetry
state, the spring model has symmetry which conforms to plane
group p4mm. The distorted structure shown in Fig. 1 has the
symmetry of one of the subgroups of this, namely, c2mm. The
Appendix also identifies symmetry-adapted combinations of
spontaneous strains and elastic moduli for the model, in Voigt
notation.

To avoid surface effects in our two-dimensional (2D)
model, periodic boundary conditions were adopted in both
x and y directions. We set the equilibrium lattice parameters
along the x and y directions before relaxation to a = 1 Å =
1 lattice unit (l.u.) for the sample size of 500 × 500 l.u.
The atomic mass is M = 100 amu. At each temperature
step, the related structure was relaxed for 3 × 106 MD steps
(3 × 103 ps) to allow enough time for the potential nucleation
and relaxation of local precursor ferroelastic domains. The
sample temperature and pressure were controlled by using the
Nosé-Hoover thermostat method [65,66], known as the NPT
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ensemble, which allows the sample shape and size to change
freely under external stresses. Shear and tensile stresses (σ3

and σ1, σ2) were then applied to the sample. The stress-field-
induced strains e3 and e1, e2 under each well-defined applied
stress were calculated by averaging the box length and shear
angle. Elastic moduli Cik (i, k = 1,2,3) were then determined
by linear fittings. We have simulated the elastic stiffness con-
stant matrix of the paraelastic phase [Eq. (1)] at a temperature
of T = 2.625Ttr , where Ttr is the phase transition temperature
of the 2D model:

⎛
⎜⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎟⎠ =

⎛
⎜⎝

72.88 22.80 0.05
22.79 72.72 0.14
0.04 0.09 23.24

⎞
⎟⎠Gpa.

(5)

The symmetry of this elastic constant matrix is, within
computational uncertainty, that expected for a structure in
p4mm (see Appendix). This confirms the square symmetry of
the paraelastic phase described by the model.

III. RESULTS

The transition behavior of our 2D spring model was first
characterized. The simulation started from an initial single
ferroelastic domain state with a shear angle of 2°, i.e., with a
spontaneous shear strain e3 = 0.035. This was then followed
by a continuous heating process from 0.027Ttr to 2.625Ttr ,
where Ttr is ∼0.362 K in the model. The transition temper-
ature is very low because the displacive limit of the model is
0 K [67]. Renormalization of the phonon branches increases
Ttr slightly. To use scale-independent temperatures, we mea-
sured all temperatures in this model in units of Ttr . To capture
the elastic precursor softening, we cooled stepwise the high-
temperature paraelastic phase from 2.625Ttr [A in Fig. 2(a)]
into the low-temperature ferroelastic phase at 0.027Ttr [B in
Fig. 2(a)]. Figure 2(a) shows the temperature evolution of
the potential energy with a step at Ttr . The deviation from
the displacive limits originates from the spontaneous forma-
tion of nanostructures which drive the system from harmonic
soft modes to anharmonic excitations. The microstructures
of high-symmetry paraelastic and low-symmetry ferroelastic
phases are shown in Figs. 2(b) and 2(c). Uniform zero strain
exist at A in Fig. 2(b) and typical ferroelastic stripe domains
at B in Fig. 2(c).

The change of relevant strain parameters as a function
of temperature is shown in Fig. 3(a) with the branch of the
positive shear strain +e3 and negative shear strain −e3, the
averaged shear strain 〈e3〉. The shear strain e3 is the symmetry-
breaking strain of the sample which would cancel in an infinite
sample with an equal number of domains with positive and
negative shear. However, since the symmetry of our simula-
tion box is not perfect, there is a slight asymmetry between
negative and positive shear strains and a small but finite av-
eraged shear strain 〈e3〉. Figure 3(b) shows the evolution of
the smaller, nonsymmetry-breaking area strain e1 + e2 as a
function of temperature with a step at Ttr . Because the positive
and negative shear strains are not symmetrical, a small area
anomaly at Ttr has been obtained, as shown in Fig. 3(c). The

FIG. 2. Potential energy change upon decreasing the system tem-
perature (a). The ferroelastic phase transition temperature is Ttr .
(b) Microstructure of the paraelastic phase at A. (c) Microstructure of
the ferroelastic phase at B. The colors are coded by the atomic-level
shear strain (e3).

correlation between e3 and e1 + e2 is e2
3 ∼ e1 + e2 [Fig. 3(d)].

The log-log scale in Fig. 3(e) confirms the exponent of 2.
The evolution of the shear (C33) and tensile (C11) elastic

moduli under decreasing temperature is shown in Fig. 4. Each
data point was determined by calculating the slopes of the
Hooke’s law linear correlations of applied stresses and in-
duced strains. Figures 4(a) and 4(c) show the dependences of
C33 and C11 on temperature over the full temperature range,
while Figs. 4(b) and 4(d) are magnifications of the elastic
moduli between 1.0Ttr and 1.9Ttr , as indicated by A and B
in Fig. 4. The overall temperature dependence is that of a
proper ferroelastic material [1] with the linear temperature
dependence at T � Ttr showing the softening of the acous-
tic phonon branch. This classic softening is superimposed
by additional softening of C33 and hardening of C11 when
approaching the transition temperature. The softening visibly
extends in the graphs to ∼1.7Ttr and shows an asymptotic
convergence toward the background linear temperature de-
pendence at higher temperatures. We do not observe any
singularity which could be understood as a typical Burns tem-
perature [68], in agreement with several recent experimental
observations [18].

Based on the data in Fig. 4, we calculated deviations
of the elastic moduli from the linearly fitted values (repre-
sented by red lines in Fig. 4) [ �C11,�C33,�(C11 + C12) and
�(C11 − C12) ], which corresponds to the additional soften-
ing and hardening of related elastic moduli induced by the
presence of precursor domains as approaching the transition
temperature. The evolution of �C11,�C33,�(C11 + C12) and
�(C11 − C12) as a function of temperature is shown in Fig. 5.
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FIG. 3. Primary and secondary strain order parameter evolutions as function of temperature. (a) Positive (+e3), negative (−e3). and
averaged (〈e3〉) shear strain as a function of temperature. (b) e1 and e2 as a function of temperature. (c) System volume (500×500×1 unit
cells with edge dimensions of ∼0.1 nm) as a function of temperature. (d) Parabolic scaling e1 + e2 ∼ e2

3. (e) Log-log plot for the normal strain
and positive shear strains.

FIG. 4. Temperature evolution of elastic moduli. (b), (d), (f), and (h) are the local magnifications of elastic moduli above Ttr , as indicated
by A, B, C, and D in (a), (c), (e), and (g), respectively. Elastic moduli increase linearly at T � Ttr .
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FIG. 5. Fits of precursor elastic softening and hardening for the power-law [Eq. (2)] and Vogel-Fulcher [Eq. (3)] analyses and the
parameters indicated in the legends.

Following Cordero et al. [31], we fit the evolution of the
precursor elastic effect with both a power-law function and
a Vogel-Fulcher relation. The power law is

�C = a + b

(
T

Tc
− 1

)κ

, (6)

where a, b, and κ are properties of the material of interest.
The temperature Tc is typically slightly below the transition
temperature Ttr . In some scenarios, where local disorder leads
to thermally activated dynamics, the elastic softening follows
a Vogel-Fulcher statistics with

�C = a + b exp

(
Ea/kB

T /Ttr − TV F /Ttr

)
, (7)

where a, b are the materials parameters, Ea is the activation
energy, and TVF is the Vogel-Fulcher energy.

We found, in our simulations, shear elastic constant soft-
ening (�C33), tensile elastic constant hardening (�C11), and
hardening of combinations of C11 and C12 [�(C11 + C12) and
�(C11 − C12)] can be well described by, alternatively, a power
law and Vogel-Fulcher statistics (Fig. 5). In fact, numerical
fits to either Eqs. (6) or (7) are virtually impossible to dis-
tinguish from the other (Fig. 5). The Tc in the power law
is 0.32 K, which is slighter lower than Ttr ≈ 0.362 K. As in
previous studies [32], it was found impossible to distinguish

between the two analytical forms; both give excellent results.
The precursor effect can now be followed at higher resolution
to temperature as high as ∼2.5Tc. Again, the convergence is
continuous. There is no indication of a Burns anomaly.

IV. DISCUSSION

The phase transition is characterized by a symmetry-
breaking shear instability e3 and nonsymmetry-breaking
components e1 and e2. The softening of the elastic moduli
is described by a power-law softening or by a Vogel-
Fulcher temperature dependence. The Vogel-Fulcher tem-
peratures are almost identical (TVF = 0.7Ttr), while the
Vogel-Fulcher energies differ with the smaller energy for the
symmetry-breaking component (EVF = 0.3kB) and the higher
Vogel-Fulcher energy for the nonsymmetry breaking strain
(EVF = 0.7kB ∼ 0.9kB). The power-law exponents are κ =
−0.52 for the symmetry-breaking strain (e3) and κ ≈ −1.0
for the nonsymmetry-breaking components [κ ≈ −1.05 for
�C11, κ ≈ −1.13 for �(C11 + C12) and κ ≈ −0.91 for
�(C11 − C12), see Figs. 5(b), 5(d), 5(f), and 5(h)].

We can now correlate the precursor effect with the struc-
tural changes in the high-temperature phase. The e3 strain
softens because a local, fluctuating nanostructure develops
near the onset of softening ∼1.8Ttr and becomes dominant at
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FIG. 6. Temperature evolution of domain structures coded by the primary symmetry-breaking shear strain (e3).

T < 1.2Ttr . These nanostructures are very similar to the stable
nanostructure in the ferroelastic phase, as shown by the tem-
perature sequences of the domain structures in Fig. 6, which
reveal the typical tweedlike ferroelastic patches clearly show-
ing up as the temperature approaches 1.016Ttr [Fig. 6(d)].
Such tweed appears as an inwoven, fine-scale domain struc-
ture, as described in great detail in Refs. [69,70]. The stable
nanostructure (the stripe structure) in the ferroelastic phase
remains temperature independent once the phase transition
has occurred [Figs. 6(g) and 6(h)]. By correlating our fitted
results in Figs. 4 and 5 with the temperature evolution of
ferroelastic nanostructures in Fig. 6, we can confirm that
symmetry-breaking nanostructures soften the elastic moduli
in the precursor regime.

We further correlate the precursor hardening of tensile
elastic constant �C22 with the structural changes in the
high-temperature phase, as shown by the domain structure
evolution coded by atomic-level normal strain e2 in Fig. 7.
The nonsymmetry-breaking strain patterns show very weak
structural changes which consist mainly of local density fluc-
tuations, as indicated in Fig. 7 by the local strain patches
when the temperature is approaching 1.016Ttr from above.
When the temperature is below Ttr , the same secondary strain
fluctuations are visible in the ferroelastic phase [Figs. 7(g)
and 7(h)], where they are superimposed by the typical strain
coupling inside the domain walls that are generated by e3.

An upper stability point of the precursor effect is now esti-
mated from the structure factor of the total strain deformation

or the diffuse scattering Bragg patterns (Fig. 8). Diffraction
patterns were calculated from [71]

I(k) =
∣∣∣∣∣

N∑
i=1

fi exp (−ik · ri )

∣∣∣∣∣
2

, (8)

where I is the diffracted intensity, fi is the scattering factor
of atom i, k is the wave vector, and ri is the position of atom
i. There is only one atom per unit cell in our model, so the
scattering factor fi is uniformly unity. The relevant diffuse
scattering Bragg patterns are shown in Figs. 8 and 9. Simi-
lar diffuse scattering Bragg patterns have been calculated by
Wang et al. [72] to investigate the dynamical tweed structure
in a defect-free ferroelastic system.

Very weak inhomogeneities can be observed at 2.6Ttr

[Fig. 8(a)], while the effect increases dramatically when Ttr is
approached [Fig. 8(e)]. The high-resolution structure factors
of the (220)* Bragg reflection in Fig. 9 show a similar picture,
where a very weak deformation is seen at 2.6Ttr , while the
deformation at 1.37Ttr is already very strong. These results
coincide with the power-law fit and Vogel-Fulcher analysis
but do not depend on any fitting procedure to determine the
temperature scale. We are confident, therefore, that the pre-
cursor effect in this simple toy model extends to temperatures
as high as ∼2Ttr and becomes clearly visible (say in resonant
ultrasound spectroscopy experiments) <1.3Ttr .

The power-law exponents in experimental studies cannot
be directly compared with our simple toy model because our
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FIG. 7. Temperature evolution of domain structures coded by the secondary nonsymmetry-breaking normal strain (e2).

model is 2D, and the interatomic interactions are limited to
central forces with one atom per unit cell. Experimental [73]
softening exponents are κ = −1.5 for SrTiO3 and κ = −0.3
for BaTiO3. Similar exponents but with smaller precursor
temperature intervals were previously observed in isostruc-
tural KMnF3 and KMnxCa1−xF3 [44,74,75] with values of
κ ranging between −0.4 and −1. In PbSc0.5Ta0.5O3 (PST),
the exponent is ∼−0.5 [76] with a smaller precursor interval,

while ∼−0.3 has recently been found for structural fluctua-
tions in cuprate superconductors [77].

In the simple theory of Carpenter and Salje [1] of the
symmetry-breaking modulus, it is argued that, if a single
branch flattens significantly as the soft mode decreases in
frequency, the result is κ = −1.5. If two branches flat-
ten while the third remains relatively steep, the result is
κ = −1. If the dispersion of all three branches in three

FIG. 8. Temperature evolution of the simulated diffuse scattering.
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FIG. 9. Temperature evolution of the simulated diffuse scattering around the (220)∗ Bragg reflection.

dimensions (3D) reduces with the softening of the soft mode,
this leads to κ = − 1

2 . In our model, we show that two soft
mode branches in 2D yield the approximate exponent κ = − 1

2
for the symmetry-breaking modulus and κ = −1 for the
nonsymmetry-breaking modulus. It is most intriguing that the
larger symmetry-breaking strain fluctuations yield a slightly
weaker softening of the related modulus �C33 than the smaller
nonsymmetry-breaking strain, which leads to hardening of
�C22. Structurally, this means that tweed and fluctuating fer-
roelastic domains in the precursor regime have a relatively
smaller effect on the elastic moduli than the weak den-
sity fluctuations which harden the structure. It also explains
why experimentally observed elastic precursor softening and

hardening follow different temperature evolutions, which
stems from the different symmetry properties of the related
lattice strains. This makes the theoretical interpretation of
the experimental results more complex. On the other hand,
all results show that the proposed power-law dependence [1]
of precursor effects is indeed correct and can be used for
quantitative analysis in all ferroic systems with, so far, no
known deviations.
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APPENDIX: SYMMETRY ANALYSIS
OF THE SPRING MODEL

The spring model presented in this paper and previously
[78] conforms in its paraelastic (square) phase to the sym-
metry of plane group p4mm. This can be seen by taking a
square version of Fig. 1, locating the symmetry elements, and
comparing with the pattern of symmetry elements shown on p.
186 of the International Tables for Crystallography [79]. Simi-
larly, the ferroelastic phase in Fig. 1 has rectangular symmetry
c2mm with unit cell based on the diagonals in that figure. The
plane group c2mm is a maximal subgroup of p4mm (Bilbao
Crystallographic Server [80]).

To facilitate the analysis of the symmetry properties of the
spontaneous strain and elastic moduli, we sought to use the
software tools (for space groups) from the Brigham Young
ISOTROPY suite [81]. To this end, we identified P4mm as the
space group proxy for plane group p4mm; this is seen by
comparing the diagram for P4mm (p. 417, Ref. [79]) with that
for p4mm (p. 186, Ref. [79]), or by noting that all Wyckoff
positions in P4mm feature the same z, and the (x, y) follow
the same pattern as in p4mm. Similarly, Cmm2 can be seen to
be the space group proxy for c2mm.

Starting then with P4mm, ISOTROPY was used to examine
strains; those with any z component were dropped. ISOSUB-
GROUP from the ISOTROPY suite was used to list subgroups (as
space groups) arising from irreducible representations (irreps)
belonging to the � point. Finally, the Wyckoff positions were
examined, using the Bilbao Server, to find the plane groups
corresponding to the space groups listed by ISOSUBGROUP (see
table 1 in Ref. [82]). The results of this analysis are given in
Table I. Readers are referred to Howard and Stokes [83] for
a more detailed explanation of how such symmetry properties
are derived in the case of conventional 3D space groups,

The equivalent point group labels of the planar subgroups
from Table I are listed in Table II. Maintaining labels that ap-
ply to relationships in 3D, there are three possible components
in the strain tensor that describe possible lattice distortions
of the p4mm parent structure, e1, e2, and e3. In symmetry-
adapted form, they are e1 + e2 (�1), e1 − e2 (�2), and e3 (�3).
Here, e1 + e2 would correspond to a volume strain (an area
strain in 2D), while e1 − e2 and e3 are shear strains. Likewise,

TABLE II. Notation for the active � point representations, their
equivalent labels in point group notation, and the resulting subgroups
of plane group p4mm.

Notation from Point group Subgroup
ISOTROPY notation of p4mm

�1 A1 p4mm
�2 B1 p2mm
�3 B2 c2mm
�4 A2 p4
�5 E pm, cm, p1

FIG. 10. Relationships between unit cells with respect to or-
thogonal reference axes x1, x2 for (a) p4mm as the plane group
for the parent structure, (b) c2mm when the order parameter has
the symmetry of �3, and (c) p2mm when the order parameter has
the symmetry of �2. In (b), solid lines show the distortion of the
primitive parent unit cell, and dashed lines show the conventional
C-face-centered cell; the shear strain is e3. In (c), solid lines show
the distorted unit cell and dotted lines the parent cell; linear strains
are e1 = δl1/l, e2 = δl2/l .

the parent structure has three nonzero elastic moduli which, in
Voigt notation, are

⎡
⎢⎣

C11 C12 0
C12 C11 0
0 0 C33

⎤
⎥⎦.
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In symmetry-adapted form, these become⎡
⎢⎣

C11+C12 0 0
0 C11−C12 0
0 0 C33

⎤
⎥⎦,

where (C11 + C12) is the bulk modulus in 2D with symmetry
of �1 (identity), while (C11 − C12) and C33 are shear constants
with symmetries of �2 and �3, respectively.

The construction of the spring model is such that there is
an in-built elastic instability which leads to a phase transition
with �3 as the active representation. The change in plane
group is p4mm → c2mm, and Figs. 10(a) and 10(b) show
the relationship between the unit cells of parent and product
structures. By analogy with phase transitions in crystals, this
would be described as true proper ferroelastic. The symmetry-
breaking shear strain is e3, and the elastic constant expected
to go to zero at the critical temperature Tc is C33. Taking e3

as the order parameter, coupling with the other two strains
would have the form λ1(e1 + e2)e2

3, and λ2(e1 − e2)2e2
3. In

the c2mm structure, the expected strain relationships are then
(e1 + e2)�e2

3 and (e1 − e2) = 0. Investigation of the spring
model has shown that there is a second elastic instability
involving weak softening of (C11 − C12). This would give a
transition p4mm → p2mm, with (e1 − e2) as the symmetry-
breaking shear strain (�2 active).

The c2mm structure has four nonzero elastic moduli C11,
C22, C12, and C33. These are defined with respect to the new
axes of the conventional C-face-centered cell, i.e., at 45°
to the axes shown in Fig. 10(b), but are not the primary
focus of interest in the current analysis. Values of sponta-
neous shear strains and elastic moduli were determined from
the response of the model to stresses applied parallel to x1

and x2. In the high-temperature structure, these give values
of C11 (= C22), C12, and C33 directly. Once the symmetry
is broken, x1 and x2 are no longer parallel to symmetry
axes of the low-temperature unit cell shown in Fig. 10(b).
Strictly speaking, stresses applied in these directions yield
responses which are some more complex combinations of
the constants of the orthorhombic structure. For this paper,
the model stresses were applied parallel and perpendicular
to one of the faces of the unit cell of the distorted structure.
However, the shear strain e3 remains small so that the resulting
values of constants obtained remain close to C11, C22, and
C33 of the c2mm structure in its unconventional (primitive)
setting. This treatment does not permit analysis of subtle
changes of the linear elastic moduli due to coupling with the
order parameter, but it does allow focus on the difference in
elastic properties parallel and perpendicular to the ferroelas-
tic twin walls that develop as a consequence of the phase
transition.
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