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Calculation of screened Coulomb interaction parameters
for the charge-disproportionated insulator CaFeO3
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We calculate the screened electron-electron interaction for the charge-disproportionated insulator CaFeO3

using the constrained random-phase approximation (cRPA). While in many correlated materials the formation
of a Mott-insulating state is driven by a large local Coulomb repulsion, represented by the Hubbard U ,
several cases have been identified more recently in which U is strongly screened and instead the Hund’s
interaction J dominates the physics. Our results confirm a strong screening of the local Coulomb repulsion
U in CaFeO3, whereas J is much less screened and can thus stabilize a charge-disproportionated insulating state.
This is consistent with the case of the rare-earth nickelates, where similar behavior has been demonstrated. In
addition, we validate some common assumptions used for parametrizing the local electron-electron interaction
in first-principles calculations based on density-functional theory (DFT), we assess the dependence of the
interaction on the choice of correlated orbitals, and we discuss the use of the calculated interaction parameters
in DFT+U calculations of CaFeO3. Our work also highlights certain limitations for the direct use of cRPA
results in DFT-based first-principles calculations, in particular for systems with strong entanglement between
the correlated and uncorrelated bands.
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I. INTRODUCTION

Strongly correlated materials exhibit many interesting
physical phenomena, such as high-temperature supercon-
ductivity, colossal magnetoresistance, and metal-insulator
transitions [1–3], which makes them also very attractive
candidates for a variety of technological applications, such
as, e.g., Mott transistors [4–7]. Here, the idea is to exploit
metal-insulator transitions for achieving higher carrier densi-
ties, larger on-off ratios, lower switching voltage, and faster
switching times. The emergence of a metal-insulator transi-
tion in strongly correlated materials is typically associated
with a large on-site Coulomb repulsion, represented by the
Hubbard parameter U , which forces the electrons to localize
and thereby produces an insulating state. A metal-insulator
transition can then be triggered by variations in temperature,
strain, doping, applied voltage, etc.

However, for certain transition-metal oxides exhibiting
metal-insulator transitions, it was suggested that their basic
physics can be explained within a minimal model where
the Hubbard U is in fact strongly screened and therefore
rather small, and instead the metal-insulator transition is con-
trolled by the strength of the Hund’s interaction J [8–12].
In these cases, the metal-insulator transition is accompa-
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nied by a charge disproportionation of the transition-metal
cations, resulting in crystallographically inequivalent sites and
a breathing distortion of the surrounding oxygen polyhedra
(see Fig. 1).

Such strong screening of the Coulomb repulsion between
the transition-metal d electrons can be caused by the O-p
electrons, and it is more efficient the closer in energy the
O-p states are to the correlated d states. This makes materials
with a small or even negative charge-transfer energy good
candidates for this type of behavior [8,13], such as oxides con-
taining late transition-metal cations with high oxidation states.
Indeed, rare-earth nickelates [14–16] and certain ferrites
[17–19] have been identified as charge-disproportionated in-
sulators. For the case of the well-studied rare-earth nickelates,
RNiO3, the strong screening of the local Coulomb repulsion
was confirmed by ab initio calculations of the screened inter-
action parameters [20,21].

Long before the relevance of charge disproportionation for
the metal-insulator transition in the rare-earth nickelates was
recognized, a metal-insulator transition around room temper-
ature involving charge disproportionation was reported for
paramagnetic CaFeO3 [17,23]. Here, the Fe cation has a
nominal average oxidation state of 4+ and disproportionates
according to 2d4 → d3 + d5, with a high-spin d5 configura-
tion at ambient pressure [24]. The charge disproportionation
in CaFeO3 also couples to a breathing distortion of the
FeO6 octahedra [22,25,26], resulting in a symmetry lowering
from Pbnm to P21/n and a transition from metal to insula-
tor [23,27]. The low-temperature P21/n crystal structure of
CaFeO3 is depicted in Fig. 1.

Several computational studies based on density-functional
theory (DFT) have addressed the charge disproportionation
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FIG. 1. Experimental crystal structure of CaFeO3 below the
metal-insulator transition [22]. The breathing distortion creates long-
bond (light orange) and short-bond (dark orange) FeO6 octahedra,
which are rotated and tilted by other distortions.

and metal-insulator transition in CaFeO3 in order to clarify
the underlying physics [28–36]. Thereby, to obtain a realistic
description of the insulating state, the local electron-electron
interaction is typically explicitly treated within DFT+U [37]
or DFT+dynamical mean-field theory (DMFT) [38,39]. Dif-
ferent empirically chosen interaction parameters have been
used in these calculations, ranging from U = 3 eV to more
than 7 eV for the Hubbard parameter, and from J = 0 eV to as
much as 2 eV for the Hund’s interaction. A first-principles-
based calculation of screened interaction parameters using
the constrained random-phase approximation (cRPA) can also
give insights on whether these choices are physically rea-
sonable. In our recent tight-binding+DMFT study [12], we
found a very rich phase diagram for paramagnetic CaFeO3 as
a function of U and J , which shows that using suitable in-
teraction parameters is crucial for obtaining the correct phase.
However, we also note that different studies often use different
definitions of the correlated local Fe-d orbitals, which ham-
pers a systematic comparison of the corresponding interaction
parameters.

Here, we calculate screened interaction parameters for
CaFeO3 using the cRPA [40–42]. Our results confirm a strong
screening of the Hubbard parameter U , while the Hund’s
interaction J is less affected by the screening. We also
compare different choices of the correlated d orbitals, corre-
sponding either to an atomic-orbital-like basis, as commonly
used in DFT+U , or to more molecular-orbital-like hybridized
Fe-d/O-p frontier orbitals, which closely resemble the nom-
inal oxidation states and are more commonly used in model
Hamiltonian or DFT+DMFT studies. Furthermore, we assess
the validity of the typically used spherical approximation for
the local electron-electron interaction, and we discuss the
applicability of the calculated screened interaction parameters
in DFT+U and DFT+DMFT calculations of CaFeO3. To
that end, we also revisit the U (and J) dependence of the
relaxed high- and low-temperature structure of CaFeO3 within
DFT+U , and we compare the interaction parameters used
for these structural relaxations with the ones obtained within
cRPA.

II. METHODS

In this section, we introduce the interaction Hamiltonian
acting on the correlated subspace of Fe-d electrons, and we
discuss the determination of the corresponding screened inter-
action parameters using cRPA. Then, we describe the details
and all parameters used in our DFT(+U ) calculations and in
the construction of the Wannier basis representing the corre-
lated orbitals.

A. Interaction Hamiltonian and constrained
random-phase approximation

The general local two-particle interaction Hamiltonian can
be written as follows (see, e.g., [43]):

Hint = 1

2

∑
mm′m′′m′′′

σσ ′

Umm′m′′m′′′c†
mσ c†

m′σ ′cm′′′σ ′cm′′σ , (1)

where cmσ is the annihilation operator of an electron with spin
σ in orbital m, and the matrix elements Umm′m′′m′′′ are defined
through

Umm′m′′m′′′ =
∫

drdr′[φ∗
m(r)φ∗

m′ (r′)v(r, r′)φm′′′ (r′)φm′′ (r)].

(2)

Here, φm(r) are the orbitals and v(r, r′) is the interaction
between these orbitals, which in the following can be either
the bare or the screened Coulomb interaction.

For practical calculations, the full four-index form of
Umm′m′′m′′′ is sometimes reduced to a two-index form accord-
ing to Umm′ = Umm′mm′ and Jmm′ = Umm′m′m. These two-index
terms are assumed to dominate the interaction. The third
possible two-index matrix Imm′ = Ummm′m′ equals Jmm′ if the
orbitals φm(r) are real-valued, which can be directly seen
from Eq. (2). In the following, we always use real-valued,
maximally localized Wannier functions [44], and thus we only
discuss Umm′ and Jmm′ .

The interpretation of these two-index terms becomes clear
when considering only the density-density terms of the Hamil-
tonian

Hint = 1

2

∑
mm′,σ

Umm′nmσ nm′σ̄ + 1

2

∑
m �=m′,σ

(Umm′ −Jmm′ )nmσ nm′σ ,

(3)

with the density operators nmσ = c†
mσ cmσ and the convention

σ̄ = −σ . Here, Umm′ = U σ σ̄
mm′ represents the interaction be-

tween electrons with opposite spins and Umm′ − Jmm′ = U σσ
mm′

the interaction between electrons with the same spin.
To obtain screened interaction parameters within cRPA

[40–42,45], the Hilbert space is divided into the correlated
subspace, represented by the orbitals φm(r) for which Hint

is defined, and the rest. Then, the bare electron-electron in-
teraction v(r, r′) = |r − r′|−1 is screened by the polarization
function Prest including all electronic transitions that involve
the rest of the Hilbert space, but not those purely within the
correlated subspace itself. The screened Coulomb interaction
U is then given by U = [1 − vPrest]−1v [40].
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Typically, Prest is calculated as Ptotal − Pcorr, where Ptotal is
the total polarization, which can easily be calculated from
the Kohn-Sham wave functions, and Pcorr is the polarization
only within the correlated subspace. If the correlated bands
are not entangled with the rest, Pcorr is well-defined and can
also be calculated from the Kohn-Sham wave functions of
the corresponding bands. If there is entanglement between
the correlated and uncorrelated subspace, different approaches
have been introduced to calculate the polarization function.

One option is to neglect the hybridization between the
correlated subspace and the rest subspace in the Hamiltonian,
and diagonalize these two subspaces individually. This leads
to two independent sets of wave functions and eigenenergies,
which for small hybridization differ only slightly from the
original Kohn-Sham bands. The polarizations Ptotal and Pcorr

can then be calculated from these new wave functions and
eigenenergies [41]. This method is called the “disentangle-
ment method” in the following.

Alternatively, Ref. [42] suggested to obtain Pcorr by as-
signing weights to each transition in the polarization function
that measure the probability of an electron residing in the
correlated subspace both before and after the transition. These
weights are based on the projections of the Bloch functions
onto the correlated orbitals. We refer to this method as the
“weighted method.”

Finally, Ref. [45] proposed a slightly different expression
for Pcorr, derived from the general Kubo-Nakano formula for
the response function corresponding to density fluctuations
within the correlated subspace. We call this the “projector
method” in the remainder of this work. It is also the default op-
tion implemented in the Vienna Ab-initio Simulation Package
(VASP) [46,47] and is used throughout this work, except in
Sec. III C 3, where we present an explicit comparison between
all three methods for obtaining the polarization function.

B. Spherical parametrization and symmetrization
of the interaction

For DFT+U and DFT+DMFT calculations, the inter-
action matrix Umm′m′′m′′′ is typically constructed assuming
spherical symmetry, i.e., v(r, r′) = v(|r − r′|) and atomic-like
orbitals φm(r), where m is the magnetic quantum number
corresponding to an electronic shell with well-defined orbital
momentum l . This allows us to expand the interaction v in
terms of complex spherical harmonics Ykq and to arrive at a
unique parametrization of the interaction matrix in terms of
l + 1 independent parameters, the Slater integrals Fk , where k
is an even integer with 0 � k � 2l (see, e.g., [43,48,49]). The
resulting interaction matrix in the basis of complex spherical
harmonics is

Umm′m′′m′′′ =
2l∑

k=0

Fkα
(k)
mm′m′′m′′′ (4)

with

α
(k)
mm′m′′m′′′ = 4π

2k + 1

k∑
q=−k

〈lm|Y ∗
kq|lm′′〉〈lm′|Ykq|lm′′′〉

= (2l + 1)2

(
l k l
0 0 0

)2

(−1)m+m′′′

×
(

l k l
−m m − m′′ m′′

)

×
(

l k l
−m′ m′ − m′′′ m′′′

)
δm′′−m,m′−m′′′ , (5)

where the “2×3 matrices” are Wigner 3- j symbols.
The Slater integrals are in principle defined as the radial

integrals appearing in this expansion. Conversely, they can be
extracted from the interaction matrix by inverting Eq. (4) and
using the orthogonality relation of the α tensor as specified in
Eq. (A1):

Fk = c−1
lk

∑
mm′m′′m′′′

Umm′m′′m′′′α
(k)
mm′m′′m′′′ ,

clk = (2l + 1)4

2k + 1

(
l k l
0 0 0

)4

. (6)

Equation (6) allows us to reduce any interaction matrix, e.g.,
one obtained from cRPA to a set of Slater parameters, which
can then be used in Eq. (4) to construct a spherically sym-
metrized interaction matrix.1 Note that while these formulas
are specified on the basis of complex spherical harmonics, in
Sec. III we represent the interaction matrices on the basis of
real cubic harmonics. These two types of functions are related
by a simple linear transformation.

Often, the parametrization of the interaction is further sim-
plified to only two parameters U and J , which are defined in
terms of the two-index matrices:

U = 1

(2l + 1)2

∑
mm′

Umm′ ,

U − J = 1

2l (2l + 1)

∑
mm′

(Umm′ − Jmm′ ). (7)

From Eqs. (6) and (7), it follows directly that F0 ≡ U and,
for l = 2, J ≡ (F2 + F4)/14. [The general relation between
Slater integrals and J for all l is given in Eq. (A2)]. However,
the inverse operation of obtaining the interaction matrix from
only U and J is underdefined for l � 2 since this requires
knowledge of all l + 1 Slater integrals. Therefore, a fixed
ratio of F4/F2 ≈ 0.63 is usually assumed for d electrons (see,
e.g., [43]), which is based on calculations of the unscreened
interaction using atomic-orbital-like orbitals [50,51].

Within cRPA, it is straightforward to calculate the local
elements of the interaction matrix not only between orbitals on
the same site but also between orbitals on different sites in the
same unit cell. For practical purposes, it is often assumed that
the intersite terms are not strongly orbitally dependent [52].
Therefore, we only discuss the orbitally averaged nearest-

1Note that our definition of the Slater integrals in Eq. (6) differs
from Eq. (B3) of Ref. [48] due to the appearance of the Kronecker
δm′′−m,m′−m′′′ in Eq. (5). Both forms are equivalent if the matrix
Umm′m′′m′′′ is already spherically symmetric, but for a general inter-
action, e.g., one obtained from cRPA, only Eq. (6) corresponds to the
correct inversion of Eq. (4).
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TABLE I. Lattice parameters and distortion mode amplitudes (with respect to the cubic Pm3̄m high symmetry reference structure) obtained
from DFT+U structural relaxations within Pbnm and P21/n symmetries. The third line corresponds to a calculation where lattice parameters
are fixed to those obtained from DFT+U and only the atomic positions are relaxed using spin-degenerate DFT without a “+U” correction.
The last two lines correspond to experimental data from Ref. [22] obtained at 15 K (P21/n) and 300 K (Pbnm). The M+

5 , R+
1 , and R+

3 modes
are not allowed in Pbnm symmetry.

Unit cell Mode amplitudes (Å)

a (Å) b (Å) c (Å) β (deg) M+
2 M+

3 R+
4 R+

5 X +
5 M+

5 R+
1 R+

3

DFT+U P21/n 5.29 5.33 7.43 89.85 0.01 0.75 1.12 0.09 0.45 0.01 0.16 0.05
DFT+U Pbnm 5.27 5.41 7.38 90.00 0.24 0.79 1.13 0.10 0.52
bare DFT Pbnm fixed to DFT+U Pbnm results 0.03 0.89 1.10 0.12 0.53
Expt. P21/n [22] 5.31 5.35 7.52 90.07 0.04 0.82 1.05 0.11 0.40 0.01 0.18 0.05
Expt. Pbnm [22] 5.33 5.35 7.54 90.00 0.01 0.77 0.99 0.05 0.36

neighbor (NN) interaction

VNN = 1

(2l + 1)2

∑
mm′

Umm′ ,

JNN = 1

(2l + 1)2

∑
mm′

Jmm′ , (8)

where now m and m′ are on NN sites.

C. DFT calculations and Wannier orbitals

For all calculations, we use the VASP code (version 6.3.0)
[46,47] in combination with the PBEsol exchange-correlation
functional [53]. We use standard projector augmented wave
(PAW) potentials [54,55] with valence states 3s23p64s2 for
Ca, 3s23p63d74s1 for Fe, and 2s22p4 for O. We treat CaFeO3

in a 20-atom unit cell, which allows us to describe both the
Pbnm and P21/n structures, using a 7×7×5 k-point mesh, a
plane-wave energy cutoff of 600 eV, and an energy tolerance
of 10−8 eV between electronic steps, which leads to good
convergence.

Structural relaxations are performed up to an energy toler-
ance of 10−7 eV between ionic steps. Except where explicitly
noted, relaxations of the unit cell and atomic positions are
done using DFT+U [56] with U = 4 eV and J = 1 eV,
similar to previous studies [29,32,34], but we also present
results where we systematically vary U over a wider range.
For the structural relaxation, we emulate the complex low-
temperature helical magnetic order in CaFeO3 [22,57] with
the much simpler A-type antiferromagnetic ordering, which
has the lowest energy out of A-, C-, and G-type orderings
in our calculations. For the high-temperature Pbnm structure,
we also perform calculations where we relax only the atomic
positions using spin-degenerate DFT without +U correction,
which we call “bare DFT” here.

We compare the relaxed to the experimental structures
using the mode-decomposition tool ISODISTORT [58,59]. All
amplitudes are normalized to the 20-atom unit cell, and the
symmetry-labeling convention uses a cubic perovskite parent
cell with Fe at the origin. The most important modes are the
R+

1 breathing mode in the P21/n structure, which splits the
Fe into two inequivalent sites, and the M+

2 Jahn-Teller mode
in the Pbnm structure, which locally splits the Fe-eg orbitals
but experimentally is not relevant in CaFeO3. Also present

in Pbnm are the modes related to octahedral rotations and
tilting, M+

3 , R+
4 , and X +

5 , which mainly decrease the hopping
and therefore the bandwidth [29]. Additionally, there are three
more symmetry-allowed modes with very small amplitudes:
R+

5 (Pbnm), R+
3 , and M+

5 (both P21/n).
We use WANNIER90 (version 3.1.0) [60] to construct

the Wannier orbitals defining the correlated subspace for
our cRPA calculations. We start with initial projections
corresponding to d-shell cubic harmonics defined in a lo-
cal coordinate system aligned along the Fe-Fe distances.
Thereby, we employ a disentanglement (outer) window from
−10 eV to 5 eV relative to the Fermi energy, which is chosen
to be large enough to encompass all 56 O-p and Fe-d de-
rived bands, and, optionally, a frozen (inner) window from
−1.1 eV to 5 eV. We always first perform the disentangle-
ment, where convergence is defined as a relative change of less
than 10−9 of the gauge-invariant part of the spread, and then
the localization (Wannierization) down to an absolute change
of less than 10−9 Å2 of the total spread. Note that the resulting
Wannier functions still resemble the cubic harmonics, which
is required to map the cRPA results onto Eq. (6).

For the cRPA calculations, we first converge a nonmag-
netic DFT calculation with 512 bands and otherwise the
same parameters as listed above. Then we perform one exact-
diagonalization step in DFT to obtain the Kohn-Sham band
energies. We perform cRPA calculations only for the zero
frequency component of the screened interaction and with the
correlated subspace defined by the Wannier orbitals.

III. RESULTS

A. Structural relaxations

We first perform full structural relaxations of CaFeO3

within both Pbnm and P21/n symmetries using DFT+U and
A-type antiferromagnetic order, as described in Sec. II C. The
corresponding results are listed in Table I, together with ex-
perimental data from Ref. [22].

It can be seen that the lattice parameters obtained for the
Pbnm and P21/n structures differ only very little, with only a
small deviation from β = 90◦ in the monoclinic case. Further-
more, the agreement with the experimental lattice parameters
is very good (there is only a slight underestimation of the c
lattice parameter by 2.1 % and the monoclinic distortion is
slightly lower than 90◦ rather than larger).
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FIG. 2. (a) R+
1 breathing mode amplitude and (b) local mag-

netic moments of the two inequivalent Fe sites obtained from full
structural relaxation within P21/n symmetry as a function of U at
J = 1 eV.

The calculated mode amplitudes also agree very well
with the experimental data, except for the M+

2 Jahn-Teller
mode in the Pbnm case, which is essentially zero in the
room-temperature structure of Ref. [22], whereas a notice-
able Jahn-Teller distortion develops in the zero temperature
DFT+U A-type antiferromagnetic case. This is due to the
nominally Jahn-Teller-active d4 electron configuration of the
Fe4+ cation, and has also been found with a very similar
amplitude of 0.26 Å in a previous DFT+U study of CaFeO3

if the symmetry is constrained to Pbnm [35].
In the P21/n structure, which is about 11 meV per formula

unit lower in energy than the Pbnm structure, the M+
2 mode

nearly vanishes and instead the R+
1 breathing mode appears

with a magnitude of 0.16 Å, in very good agreement with the
experimental data. Furthermore, it can be seen that the modes
related to octahedral tilts and rotations, R+

4 and M+
3 (and also

X +
5 ), do not change significantly between Pbnm and P21/n,

and also agree well with the experimental data.
Figure 2 shows the evolution of the relaxed R+

1 breathing
mode amplitude and the local magnetic moments of the two
inequivalent Fe sites as a function of the Hubbard U param-
eter for fixed J = 1 eV in the P21/n structure. We note that
within the DFT+U method, U and J refer to rather localized
atomiclike orbitals (similar to what we refer to as the localized
basis in Sec. III B). This basis does not correspond to the
minimal models for charge disproportionation discussed, e.g.,
in Refs. [8–12], where the Hund’s interaction drives the transi-
tion to the charge-disproportionated insulating state. Instead,
as seen in Fig. 2, the Hubbard U remains the main control
parameter in these DFT+U calculations. The R+

1 amplitude
becomes nonzero for U � 2 eV and is accompanied by a
sizable difference in the local magnetic moments, indicating
the disproportionation of the Fe sites into nominal d3 and d5

valences. For 4 � U � 7 eV, the system is insulating and the
R+

1 amplitude stays nearly constant. For larger U > 7 eV, the
breathing mode amplitude decreases and the system becomes
metallic again. This is similar to what has been observed
for the rare-earth nickelates in Ref. [61], where a large U
shifts the transition-metal d levels below the O-p states in
energy, which then disfavors the charge disproportionation.
Thus, even though a small or maybe even slightly negative

charge-transfer energy seems to be necessary for this type
of charge disproportionation, it appears unfavorable if the
charge-transfer energy becomes too negative.

Overall, our results show that structural parameters in good
agreement with available experimental data can be obtained
within DFT+U using interaction parameters of U = 4 eV and
J = 1 eV and an appropriate magnetic order, consistent with
previous work [32,34].

Finally, to assess the effect of the imposed A-type magnetic
order on the high-temperature Pbnm structure, we perform
an additional relaxation for the spin-degenerate case using
U = 0 eV, where we fix the lattice parameters to the ones
obtained from the Pbnm DFT+U relaxation and then relax
only the internal atomic positions. We note that fixing the
lattice parameters to the DFT+U values is necessary, since
the spin-degenerate DFT calculation leads to a low-spin state
of the Fe cation which would in turn lead to a significantly
lower unit cell volume. Table I shows that, in this case, the
M+

2 Jahn-Teller mode disappears almost completely, while
all other mode amplitudes are rather similar to the magnetic
DFT+U calculation. This shows that the Jahn-Teller mode is
indeed stabilized by the +U correction in combination with
the magnetic order, while the octahedral rotation modes are
unaffected by this. Throughout the remainder of this work, we
use the so-obtained structure as the high-temperature Pbnm
structure unless otherwise noted.

B. Band structure and the correlated subspace

Next, we discuss the electronic structure obtained from
spin-degenerate DFT calculations without a +U correction
in the Pbnm structure. Figures 3(a) and 3(b) show the total
density of states (DOS), its projection on different atoms
and orbitals, as well as the band structure around the Fermi
level. The DOS shows three (partially overlapping) groups of
bands with mixed atomic/orbital character due to hybridiza-
tion. Bands with predominant Fe-eg character above 0.5 eV
are separated from lower-lying bands with predominant Fe-
t2g character between about −1 and 0.5 eV due to a strong
octahedral crystal field splitting. The Fe-t2g dominated bands
overlap slightly with O-p dominated bands below −1 eV.
The fact that the Fe-d dominated bands are higher in energy
than the O-p dominated ones but also overlap slightly indeed
indicates a small positive but nearly vanishing charge-transfer
energy within the classification scheme according to Zaanen,
Sawatzky, and Allen [62].

We now construct two different sets of Wannier orbitals,
starting from initial projections on Fe-centered d orbitals. The
first set represents a so-called frontier basis that describes
only the Fe-d dominated bands in the energy range above
approximately −1 eV and directly maps on minimal mod-
els describing the basic physics of charge disproportionation
[9,11,12,63]. The second set corresponds to a localized ba-
sis, resembling an atomic-orbital-like basis similar to what is
typically used to define the correlated orbitals within DFT+U
calculations.

In both cases, we use an outer energy window compris-
ing all bands shown in Figs. 3(a) and 3(b). For the frontier
basis, we use an additional inner (frozen) energy window
for the disentanglement procedure which comprises all of the
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FIG. 3. (a) Total and projected density of states (DOS) and
(b) band structure along high symmetry lines of the orthorhombic
Brillouin zone of CaFeO3, obtained from the spin-degenerate DFT
calculation for the Pbnm structure. The green shaded region in (b) in-
dicates the frozen energy window used to construct the frontier-type
Wannier orbitals, which result in the dispersion shown by the green
lines. (c,d) Isosurfaces of the (x2 − y2)-type Wannier orbital (c) in
the frontier basis and (d) in the localized basis. Brown (red) spheres
indicate Fe (O) atoms.

Fe-eg dominated bands as well as the upper part of the Fe-t2g

dominated bands down to −1.1 eV, as indicated in Fig. 3(b)
by the green shading. We note that since this inner energy
window encompasses most of the Fe-d dominated bands,
except for the narrow overlapping region immediately below
−1 eV, the specific choice of the outer energy window does
not have a strong influence on the resulting Wannier functions.
The corresponding Wannier bands [green lines in Fig. 3(b)]
remain restricted to the energy range of the Fe-d dominated
bands, and perfectly reproduce the DFT bands [black lines
in Fig. 3(b)] within the inner energy window. Since this in-
ner energy window contains the Fermi level and there is no
entanglement with higher-lying bands, the Wannier orbitals
recover an occupation of exactly four electrons per Fe site,
corresponding to the nominal valence of the Fe4+ cation.

The resulting Wannier orbitals are centered on the Fe sites
but also exhibit strong “tails” on the surrounding oxygen
ligands, representing the strongly hybridized character of the
corresponding bands. Figure 3(c) depicts the (x2 − y2)-type
Wannier function as an example. One can recognize the an-
tibonding character of the underlying hybridization between
Fe-d and O-p orbitals. Such frontier orbitals are often used in

DFT plus dynamical mean-field theory calculations or other
more model-based approaches that consider only the effective
d bands (see, e.g., [12]).

For the construction of the localized basis, we do not use
a frozen inner window during the disentanglement. This re-
sults in more localized orbitals that closely resemble atomic
orbitals and, as already mentioned, are similar to the orbitals
used for the projected DOS shown in Fig. 3(a) and for the +U
correction applied in the VASP code [54]. Figure 3(d) shows
the resulting (x2 − y2)-type Wannier function, which does not
exhibit the pronounced p-like tails on the surrounding oxygen
ligands (small s-like tails remain, due to a corresponding
weak hybridization and the orthogonalization between Wan-
nier functions centered on different sites).

We note that the additional structural distortions in the
low-temperature P21/n structure do not lead to substantial
changes of the band structure around the lower bound of
the frozen energy window, so that we can use the same en-
ergy window relative to the Fermi energy for both crystal
structures.

C. Screened-interaction parameters from cRPA

1. Spherical symmetrization and effective interaction parameters

We first discuss the effect of the spherical symmetriza-
tion of the interaction parameters by comparing the matrix
elements obtained directly from cRPA with their spherically
averaged form, i.e., by using Eqs. (6) and (4). Thereby, we
focus on the two-index interaction matrices U σ σ̄

mm′ and U σσ
mm′

between electrons with opposite and same spins, respectively.
We note that the largest interaction that is not contained in the
two-index matrices is Uyz,z2,yz,x2−y2 = 0.19 eV (and equivalent
matrix elements) in the frontier basis, and Uyz,z2,yz,x2−y2 =
0.29 eV in the localized basis, which is clearly smaller than the
dominant components of the two-index matrices (see below).

In the frontier basis, the two-index matrices obtained di-
rectly from cRPA are

U σσ
cRPA =

⎛
⎜⎜⎜⎜⎝

0.00 1.09 1.01 1.10 1.61
1.09 0.00 1.47 1.12 1.15
1.01 1.47 0.00 1.47 1.01
1.10 1.12 1.47 0.00 1.16
1.61 1.15 1.01 1.16 0.00

⎞
⎟⎟⎟⎟⎠eV,

U σ σ̄
cRPA =

⎛
⎜⎜⎜⎜⎝

2.28 1.47 1.45 1.48 1.87
1.47 2.29 1.78 1.49 1.54
1.45 1.78 2.54 1.78 1.51
1.48 1.49 1.78 2.30 1.55
1.87 1.54 1.51 1.55 2.51

⎞
⎟⎟⎟⎟⎠eV, (9)

and their spherically symmetrized forms are

U σσ
symm =

⎛
⎜⎜⎜⎜⎝

0.00 1.14 0.99 1.14 1.60
1.14 0.00 1.44 1.14 1.14
0.99 1.44 0.00 1.44 0.99
1.14 1.14 1.44 0.00 1.14
1.60 1.14 0.99 1.14 0.00

⎞
⎟⎟⎟⎟⎠eV,

U σ σ̄
symm =

⎛
⎜⎜⎜⎜⎝

2.36 1.55 1.45 1.55 1.85
1.55 2.36 1.75 1.55 1.55
1.45 1.75 2.36 1.75 1.45
1.55 1.55 1.75 2.36 1.55
1.85 1.55 1.45 1.55 2.36

⎞
⎟⎟⎟⎟⎠eV. (10)
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The order of the orbitals in these matrices is xy, yz, z2, xz, and
x2 − y2.

It can be seen that there is a noticeable difference of around
0.21–0.26 eV between the intraorbital terms (on the diagonal
of U σ σ̄

cRPA) corresponding to the t2g-like orbitals and that of
the eg-like orbitals. However, this orbital dependence of the
intraorbital interaction is weaker than what has been found
for other materials [48,64]. The deviations of the various
(off-diagonal) interorbital terms from the symmetrized form
are all smaller than 0.1 eV and even slightly smaller for the
same-spin case.

In the localized basis, the corresponding interaction matri-
ces are

U σσ
cRPA =

⎛
⎜⎜⎜⎜⎝

0.00 0.26 −0.06 0.26 0.93
0.26 0.00 0.69 0.26 0.19

−0.06 0.69 0.00 0.69 −0.12
0.26 0.26 0.69 0.00 0.19
0.93 0.19 −0.12 0.19 0.00

⎞
⎟⎟⎟⎟⎠eV,

U σ σ̄
cRPA =

⎛
⎜⎜⎜⎜⎝

2.30 0.93 0.73 0.93 1.39
0.93 2.30 1.22 0.94 0.89
0.73 1.22 2.33 1.22 0.69
0.93 0.94 1.22 2.29 0.89
1.39 0.89 0.69 0.89 2.32

⎞
⎟⎟⎟⎟⎠eV (11)

and

U σσ
symm =

⎛
⎜⎜⎜⎜⎝

0.00 0.21 −0.04 0.21 0.94
0.21 0.00 0.69 0.21 0.21

−0.04 0.69 0.00 0.69 −0.04
0.21 0.21 0.69 0.00 0.21
0.94 0.21 −0.04 0.21 0.00

⎞
⎟⎟⎟⎟⎠eV,

U σ σ̄
symm =

⎛
⎜⎜⎜⎜⎝

2.30 0.90 0.74 0.90 1.39
0.90 2.30 1.23 0.90 0.90
0.74 1.23 2.30 1.23 0.74
0.90 0.90 1.23 2.30 0.90
1.39 0.90 0.74 0.90 2.30

⎞
⎟⎟⎟⎟⎠eV. (12)

Here, there is almost no orbital dependence of the intraorbital
entries in the cRPA matrices, and also the deviations of the
interorbital matrix elements from their symmetrized form are
rather small. Notably, the interaction for parallel spins has
some relatively small but negative interorbital entries, both
before and after symmetrization. This could be a sign of
overscreening, which is discussed further below.

To better quantify the deviations between the unsym-
metrized and symmetrized two-index matrices, we determine
the maximum absolute deviation of a single matrix element,
�max, and we also compute the Frobenius norm

�Frob =
(∑

mm′

∣∣U cRPA
mm′ − U symm

mm′
∣∣2

)1/2

. (13)

These deviations are summarized in Table II. Additionally, we
also quantify the deviation between the cRPA values and an al-
ternative spherically symmetrized interaction matrix, which is
obtained by first calculating parameters U and J according to
Eq. (7) and then assuming F4/F2 = 0.63 to reconstruct the in-
teraction matrix, as done in many DFT+U and DFT+DMFT
implementations.

TABLE II. Deviations in eV between the cRPA matrices and
the spherically symmetrized two-index interaction matrices for same
spin (σσ ) and opposite spin (σ σ̄ ), both for the frontier and the
localized basis. The symmetrization is performed either without or
with the additional assumption F4/F2 = 0.63.

�max �Frob

Basis F4/F2 = 0.63 σσ σ σ̄ σσ σ σ̄

Frontier no 0.05 0.17 0.12 0.33
yes 0.07 0.17 0.18 0.33

Localized no 0.08 0.05 0.18 0.11
yes 0.18 0.12 0.42 0.28

For the frontier basis, both �max and �Frob are noticeably
larger for the opposite-spin interaction than for the same-spin
case, due to the larger variations of the intraorbital entries,
as already discussed above. In the localized basis, the devi-
ations from spherical symmetry are less pronounced for the
opposite-spin interaction, and even slightly smaller than for
the same-spin case. On the other hand, assuming F4/F2 =
0.63 in the symmetrization has a stronger effect in the local-
ized basis, while in the frontier basis this barely increases the
overall deviation from spherical symmetry. The effect of the
F4/F2 ratio is discussed further in Sec. III C 2.

Compared to the interaction matrices reported in Ref. [64]
for LaFeAsO, the deviations from spherical symmetry are less
pronounced in CaFeO3. This could be due to the different
structure or coordination of the Fe cation in both systems
(octahedral in CaFeO3 versus tetrahedral in LaFeAsO), or also
due to different degrees of covalency in the two systems. All in
all, a spherical approximation of the local interaction appears
to be relatively unproblematic for CaFeO3.

Next, we discuss the effective parameters obtained for
the screened and unscreened interaction, which are listed in
Table III. We focus on the Hubbard U and Hund J obtained
directly by averaging according to Eq. (7) and start the dis-
cussion with the values for the frontier basis. The comparison
of screened and unscreened values shows that U is strongly
screened to U = 1.75 eV, which corresponds to only 12 % of
its unscreened value, while J , as expected, is less screened
to J = 0.53 eV, i.e., 78 % of its unscreened value. The rather
strong screening of U in CaFeO3 is indeed comparable to what
has been found in cRPA calculations for rare-earth nickelates
[20,21], and it can be explained by the close vicinity between
the correlated bands and the screening bands, which even
overlap slightly [see Fig. 3(b)].

A systematic comparison with literature data is hampered
by the use of different types of correlated subspaces (full
d-shell versus t2g- or eg-only models, frontier versus local-
ized orbitals) or different parametrizations of the interaction
Hamiltonian. The values obtained in Ref. [21] for LuNiO3, if
transformed from the eg-only Kanamori parametrization used
in [21] to the Slater parametrization used here, correspond
to U = 1.3 eV and J = 0.5 eV, i.e., an even smaller U than
in CaFeO3 and a fairly similar J . Note that, due to the use
of an eg-only correlated subspace in [21], the t2g bands will
also contribute to the screening. In cRPA calculations for
other transition-metal oxides, U is typically reduced to around
15-25 % of its bare value [48,65,66]. The overall magnitude of
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TABLE III. Screened and unscreened interaction parameters obtained within cRPA for the two different basis sets. The orbitally averaged
nearest-neighbor Fe-Fe intersite interactions VNN and JNN are also listed.

F0 ≡ U (eV) F2 (eV) F4 (eV) (F2 + F4)/14 ≡ J (eV) F4/F2 VNN (eV) JNN (eV)

Frontier basis screened 1.75 4.25 3.21 0.53 0.76 0.59 0.01
unscreened 14.82 5.91 3.60 0.68 0.61 3.83 0.02
ratio (%) 12 72 89 78 16 33

Localized basis screened 1.25 7.16 5.73 0.92 0.80 0.03 0.00
unscreened 23.34 10.57 6.21 1.20 0.59 3.87 0.00
ratio (%) 5 68 92 77 1 47

the screened U and J in CaFeO3 is also comparable to values
obtained for Fe in LaFeAsO, with J = 0.59 eV, almost equal
to CaFeO3, and a slightly larger U = 2.14 eV [64].

In the localized basis, the unscreened values of U and J
increase significantly compared to the frontier basis, which
reflects the higher Coulomb repulsion due to the stronger
localization of the corresponding orbitals. However, and per-
haps surprisingly, the screened value of U = 1.25 eV is
noticeably smaller than for the frontier basis and corresponds
to only 5 % of the unscreened value. In contrast, the screening
of J in the localized basis is similar (in percent) to that in the
frontier basis, resulting in a screened J = 0.92 eV, i.e., larger
than in the frontier basis.

The extremely strong screening in the localized basis in
CaFeO3 can be understood from the strong band entanglement
and hybridization. As a result, virtually every band inside
the energy window has a mixed character, with contributions
from both the correlated subspace and the screening subspace.
This results in many potential screening channels close to the
Fermi energy. To avoid this, some previous studies have used
a screening subspace similar to that for the frontier orbitals
also for the localized basis [48,64,67]. While this reduces
the screening on U , it also introduces an inconsistency be-
tween correlated and screening subspace, and thus we have
not used this approach in our work. A small decrease in the
screened U (and an increase in the screened J) in a localized
basis compared to a frontier basis has also been observed
for SrMoO3 [66]. However, in that case, the effect is much
less extreme than here. Generally, cRPA is known to have
a tendency to overscreen, which becomes more pronounced
the less the correlated and screening subspaces are separated
[68,69]. Consequently, one can expect that the overscreening
affects both basis sets, but is particularly strong in the local-
ized basis. Finally, we note that our cRPA calculations are
based on the low-spin state obtained within bare DFT, which
might also influence the degree of screening.

Since the localized basis is similar to the correlated sub-
space used in our DFT+U calculations, the corresponding
screened interaction parameters can also be compared to the
values of U = 4 eV and J = 1 eV used for our structural re-
laxations in Sec. III A. Using the cRPA value of U = 1.25 eV
in these calculations would lead to a rather poor description of
the P21/n phase with a low-spin state of the Fe cations and es-
sentially zero R+

1 mode, as shown in Fig. 2. On the other hand,
the cRPA value of J = 0.92 eV is very close to our initial
choice of J = 1 eV and (in combination with an appropriate
U value) appears quite reasonable. We further discuss this
partial mismatch between the interaction parameters obtained

from cRPA and the values required in DFT+U for a good
description of the charge-disproportionated state in CaFeO3

in Sec. IV.
Additionally, we compute the orbitally averaged nearest-

neighbor intersite interaction VNN and JNN, also shown in
Table III. VNN assumes a moderate value of 0.59 eV in the
frontier basis, screened to 16 % of its bare value, and com-
parable to LuNiO3 [20] and LaFeAsO [64]. In the localized
basis, the unscreened VNN is comparable to that of the frontier
basis, but is then completely screened, to only 1 % of the bare
value, and thus becomes negligibly small. However, it is un-
clear whether this indeed indicates a highly efficient intersite
screening, and thus a good quality of the locality assumption
for the screened interaction, or whether this value is affected
by a potential overscreening. JNN is negligible in all cases
(both screened and unscreened).

Finally, we also compute screened interaction parameters
in the frontier basis for the relaxed structure with P21/n sym-
metry, and we obtain only a negligible difference of 3 meV for
U and less than 1 meV for J compared to the Pbnm structure.

2. F4/F2 ratio in cRPA

Next, we analyze the ratio F4/F2 obtained from the spher-
ically averaged cRPA interaction parameters. Previous work
has indicated that this ratio can deviate significantly from
the value of 0.63 typically used to compute the three Slater
parameters from U and J , and can reach up to 0.86 [48]. As
shown in Table III, this also applies to the case of CaFeO3. The
unscreened F4/F2 ratios are slightly smaller than the “atomic”
value of 0.63, in particular for the localized basis, while in
the screened case this ratio is increased to 0.80 and 0.76 for
the localized and frontier basis, respectively. Thus, while a
constant ratio of F4/F2 = 0.63 still appears as a reasonable
approximation for the unscreened interaction, this is no longer
guaranteed in the presence of strong screening.

To assess whether a variation in F4/F2 can also affect phys-
ical properties, we estimate the energy difference between
the low-spin (LS) and high-spin (HS) states of the Fe4+ or
other d4 cations in the zero bandwidth limit by evaluating the
difference in the local interaction and crystal field energies
for a t4

2ge0
g and a t3

2ge1
g configuration (see also the Appendix of

Ref. [12]),

ELS − EHS = 6

49
F2 + 145

441
F4 − �CF

≈
{

2.83J − �CF for F4/F2 = 0.63,

3.00J − �CF for F4/F2 = 0.80,
(14)
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TABLE IV. Screened interaction parameters obtained with dif-
ferent band disentanglement methods for the two different basis
sets. We compare the parameters U and J , the ratio F4/F2, and the
averaged intersite interaction VNN.

Interaction params. U (eV) J (eV) F4/F2 VNN (eV)

Frontier proj. 1.75 0.53 0.76 0.59
weighted 1.74 0.53 0.76 0.60
disent. 3.12 0.55 0.73 1.35

Localized proj. 1.25 0.92 0.80 0.03
weighted 0.46 0.80 0.98 0.03
disent. 5.41 1.07 0.64 −0.07

where �CF is the local crystal-field splitting between eg and
t2g states. Thus, for the standard value of F4/F2 = 0.63, a
slightly larger J is necessary to obtain a high-spin state. For a
realistic crystal-field splitting �CF = 2.5 eV, this corresponds
to a difference of about 0.05 eV in the critical J . While this
difference does not appear very large, it could be important
for systems that are very close to a transition between the
high-spin and low-spin states.

3. Different methods for disentangling the correlated
and screening subspaces

Finally, as discussed in Sec. II A, for band structures where
the correlated bands are entangled with the rest, different
methods for calculating the corresponding cRPA polariza-
tion functions have been suggested. Here, we compare the
interaction parameters obtained from the “projector method”
[45], which is the default method in this paper, the “weighted
method” [42], and the “disentanglement method” [41], as im-
plemented in VASP. The comparison of different interaction
parameters is shown in Table IV.

In the frontier basis, the projection and weighted methods
give almost identical results for all interaction parameters,
while the disentanglement method predicts larger values,
and thus less screening, especially for the on- and intersite
Coulomb repulsion U and VNN. The former two methods
likely agree well because the Fe-dominated bands captured by
the frontier basis only slightly overlap with the O-dominated
bands. This in turn means that almost all bands clearly belong
to either the correlated or uncorrelated subspace, and only a
few bands right below the frozen window at −1.1 eV partially
belong to both subspaces. Furthermore, both methods work on
the unaltered DFT band-structure. In contrast, neglecting the
hybridization between correlated and uncorrelated subspaces
will slightly affect the band structure, in particular in the
overlapping region below −1 eV, which can explain the more
significant deviation of the disentanglement method compared
to the other two methods.

In the localized basis, the differences in interaction param-
eters, in particular U , are much more pronounced between the
different methods. Again, the disentanglement method results
in a significantly higher value of U and thus less screening.
However, also the projection and weighted methods now dif-
fer quite drastically, with a very small U = 0.46 eV obtained
from the latter. The large spread of the calculated interaction
parameters for the localized basis is most likely a result of the

strong band entanglement, such that small differences in the
way the two subspaces are separated can lead to rather large
differences in the corresponding polarization functions.

On first view, the interaction parameters obtained from the
disentanglement method appear quite reasonable and com-
patible with the values used in our DFT+U calculations
in Sec. III A. However, ignoring the hybridization between
correlated and uncorrelated subspaces in the localized basis
reduces the bandwidth of the correlated bands to only 0.6 eV
for the Fe-eg and 0.5 eV for the Fe-t2g bands, and thus leads to
severe changes compared to the DFT bands. This is very dif-
ferent from the situation for which this method was introduced
[41]. Therefore, this match of the interaction values seems
likely to be a coincidence given the strong modification of the
disentangled band structure.

The intersite terms are always negligibly small for the
localized basis.

IV. SUMMARY AND DISCUSSION

In this work, we have presented cRPA calculations
of the screened interaction parameters for the charge-
disproportionated insulator CaFeO3. Thereby, we have com-
pared results for two different types of Wannier functions used
to describe the Fe-d states. First, we considered a frontier
orbital basis, incorporating the hybridization with the oxygen
ligands, which describes only the bands immediately around
the Fermi level and maps well on simple models involving
only Fe cations with formal charge states. Second, we consid-
ered a more localized basis resembling an atomic orbital-like
basis, similar to the basis typically used in DFT+U calcula-
tions.

We have shown that cRPA predicts CaFeO3 to have a
strongly screened Hubbard U and a relatively large Hund’s
interaction J , consistent with other charge-disproportionated
insulators such as the rare-earth nickelates [20,21]. This sup-
ports the picture that the basic physics of these systems can
be described within a minimal model where the insulating
state is driven by the Hund’s interaction rather than a strong
Hubbard U [9,11,12,63]. Additionally, the DFT band struc-
ture indicates that CaFeO3 has a relatively small but positive
charge-transfer energy.

We have also tested the quality of certain approximations
typically applied to parametrize the interaction matrices in
first-principles calculations, such as the assumption of spheri-
cal symmetry and a fixed ratio between the Slater integrals F2

and F4. Indeed, the spherical approximation appears relatively
uncritical, both for the more localized and the frontier basis,
with the largest deviations from spherical symmetry observed
for the intra-orbital interactions in the frontier basis, which
vary by around 0.2–0.25 eV. The calculated F4/F2 ratio was
found to deviate noticeably from the commonly used fixed
ratio of 0.63, in agreement with previous cRPA calculations
for other transition-metal oxides [48]. This can potentially
become important when simulating a material close to a tran-
sition, e.g., between the high- and low-spin states.

In addition, we have discussed the choice of interac-
tion parameters in DFT+U calculations to obtain structural
parameters for both the high- and low-temperature struc-
tures that are in good agreement with experimental data. We
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have shown that a simple A-type antiferromagnetic order
and moderate electronic interactions suffice to reproduce the
experimentally observed low-temperature structure. By sub-
sequently neglecting the local electron-electron interactions
and magnetic order, a good description of the experimental
high-temperature structure can also be obtained.

However, our study also highlights some difficulties of
directly using interaction parameters obtained from cRPA in
Hubbard-corrected DFT-based methods such as DFT+U or
DFT+DMFT, in particular for systems with strong entangle-
ment between the correlated and the uncorrelated subspaces.
The cRPA values obtained for U in the localized basis
are clearly too small to obtain a good description of the
charge-disproportionated state of CaFeO3 in DFT+U calcu-
lations. While this apparent mismatch can, at least partially,
be attributed to the well-established tendency for overscreen-
ing within the random-phase approximation [68,69], in the
present case it is also, to a large extent, a result of the
difficulty to disentangle the electronic bands between the
correlated and uncorrelated subspaces. From our compari-
son between different methods in Sec. III C 3 it becomes
clear that, in situations with strong entanglement, the re-
sults can vary widely and none of the methods is likely to
produce interaction parameters that can reliably be used in
first-principles calculations. Furthermore, screening is funda-
mentally a frequency-dependent phenomenon, while DFT+U
(and also standard DFT+DMFT) uses constant, frequency-
independent interaction parameters. It thus remains unclear
whether using the zero-frequency value of the screened in-
teraction is necessarily the best choice to be used in such
calculations (see also Ref. [70]). The further simplifications
within the DFT+U method, i.e., the Hartree-Fock-like ap-
proximation for the local interaction and the treatment of
intersite effects only within the standard semilocal DFT ap-
proximations, can also affect the optimal choice for the
effective interaction parameters. Finally, it would be desirable
to perform cRPA calculations for CaFeO3 also in the high-

spin state, either by constraining the orbital occupations to a
t3
2ge1

g configuration or by performing cRPA calculations for a
magnetically ordered state.

While a solution of these issues goes beyond the scope
of the present work, our results can serve as a starting point
for future attempts aimed at improving the currently available
methods for calculating effective interaction parameters.

The supporting data for this article are openly available
from the Materials Cloud Archive [71].
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APPENDIX: EQUATIONS FOR THE SPHERICALLY
SYMMETRIC INTERACTION

Here, we summarize properties related to the tensors α(k)

relevant for Sec. II B. The α(k) tensors are orthogonal with the
normalization∑

mm′m′′m′′′
α

(k1 )
mm′m′′m′′′α

(k2 )
mm′m′′m′′′ = clk1δk1,k2

with clk := (2l + 1)4

2k + 1

(
l k l
0 0 0

)4

, (A1)

which directly allows us to derive Eq. (6). From Eqs. (6) and
(7), a general expression for J for all l follows as

J = 2l + 1

2l

∑
k�2

Fk

(
l k l
0 0 0

)2

, (A2)

which gives J = (F2 + F4)/14 for l = 2.
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