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Transformation of a skyrmionium to a skyrmion through the thermal annihilation
of the inner skyrmion
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Skyrmioniums are doughnutlike topological spin textures in chiral magnets, which are able to move with zero
skyrmion Hall effect. The annihilation of a skyrmionium involves the topological transition through singularity
formation at the continuum level. Here we analytically and numerically study a type of thermal annihilation
of a skyrmionium under the framework of micromagnetism. The skyrmionium initially exists in an ultrathin
ferromagnetic film in the exchange-dominated regime and is stabilized under a uniform perpendicular magnetic
field. The thermal annihilation of the “skyrmion” inside the skyrmionium results in the transformation of the
skyrmionium to a skyrmion. We derive an analytical formula in the Arrhenius form describing the annihilation
rate of this process. We find that the analytical solutions agree well with the micromagnetic simulation results.
Besides, from the large deviation point of view, we derive the dynamical path for the collapse of a skyrmionium.
Our results are useful for understanding the thermal stability of skyrmioniums and may lead to spintronic
applications based on the thermal manipulation of skyrmioniums.
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I. INTRODUCTION

Magnetic skyrmions, as shown in Fig. 1, are topolog-
ically protected nanoscale spin solitions [1–7]. Skyrmions
have many good properties including low threshold current
and high mobility, which suggests a promising future for
skyrmions in information storage and processing [6–22].
However, due to their nonzero topological charge, skyrmions
experience topology-dependent Magnus forces that occur un-
der certain external stimulus; for instance, spin-polarized
currents may lead to the deflection of a skyrmion during its
motion. This effect is known as the skyrmion Hall effect,
which may affect the performance of some applications based
on the in-line motion of skyrmions [21–24].

Skyrmionium, or 2π twisted skyrmion, is another stable
solution in certain parameter regions [2,25–33]. A skyrmion-
ium, as shown in Fig. 1, can be considered as a combination
of two skyrmions with opposite topological charges. The
total topological charge of a skyrmionium is zero. Hence,
skyrmioniums could show zero skyrmion Hall effect, which
has been confirmed experimentally [34]. However, under
certain conditions, skyrmioniums may exhibit the skyrmion
Hall effect, suggesting their additional potential in sensing
applications [35,36]. In addition, skyrmioniums could have
other advantages like an even higher mobility than skyrmions
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under certain conditions [36–39]. Therefore, many stud-
ies have suggested skyrmioniums as an alternative candi-
date building block for spintronic applications [34,36–46].
Skyrmioniums can be distinguished from the ferromagnetic
state under nonvanishing Dzyaloshinskii-Moriya interactions
[47]. Hence, their annihilation involves topological change,
as confirmed by several simulation and experimental studies
[26,27,36–38,41,43,48–50].

The stability of skyrmioniums is essential for the appli-
cations of skyrmioniums as a nonvolatile information carrier
and as a sensor in spintronic information storage and pro-
cessing devices [34,36–46]. With the assistance of thermal
noise, topologically protected nanoscale magnetic structures
like skyrmions and skyrmioniums can generate, evolve in
Brownian particlelike dynamics driven by thermal fluctua-
tions, respond to external stimulus like spin waves, and anni-
hilate through topological transition under various conditions
[8–14,26,50–62]. Especially, the stability of skyrmioniums
has been studied through the geodesic nudged elastic band
(GNEB) method based atomic spin simulation and extension
of harmonic transition state theory of skyrmions [26,50,59].
In this work, we focus on the annihilation process from a
skyrmionium to a skyrmion by annihilating the inner circular
domain wall of a skyrmionium (i.e., the inner one of the two
skyrmions that construct a skyrmionium), which is a type of
annihilation of a skyrmionium. For other definitions of the
annihilation transitions from a skyrmionium to the ferromag-
netic state, they could be a combination of our studied case
and the annihilation of a single isolated skyrmion. The latter
has been studied in Ref. [63].

In this paper, we employ the method developed
by Bernand-Mantel, Muratov, and Slastikov [63] and
get a coarse-grained description on the annihilation of
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FIG. 1. Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1 and Bext = 0 T. Figures are
colored with respect to the standard hue, saturation, and luminance (HSL) color space. HSL color wheel is given at the top right corner of
panels (a). The length scale remains identical within the same figure. The reference frame is indicated with red arrows. (a) Vertical view for
a skyrmionium. (b) Side view for a skyrmionium. (c) Vertical view for a skyrmion. (d) Side view for a skyrmion. The black lines indicate the
radius ρSk.

skyrmioniums. We first use the stochastic Landau-Lifshitz-
Gilbert (sLLG) equation to derive some integral identities
with respect to the fundamental continuous symmetry groups
of the exchange energy. In the exchange-dominated regime,
we apply the reduced description of skyrmionium and conduct
finite-dimensional reduction of the stochastic skyrmionium
dynamics. Consequently, we get a system of stochastic or-
dinary differential equations for parameters of the magnetic
profile of the skyrmionium. By interpreting the skyrmionium
annihilation events as “capture by an attractor” at microscale
[63], we derive an analytical equation describing a type of
thermal annihilation of the skyrmionium and the dynamical
path for the collapse from a skyrmionium into a skyrmion.
Our method requires low computational cost and few micro-
scopic details to get a satisfying approximation for a type of
annihilation of skyrmioniums by offering a reasonable ansatz.
Our results could be useful for the thermal manipulation of
skyrmioniums in spintronic applications.

II. MODEL

A. Energy

We first give the energy in the continuum magnetization
framework in SI units [3,64,65]:

E = A

M2
s

∫
�×(0,d )

|∇M|2dV + Ku

M2
s

∫
�×(0,d )

|Mplane|2dV

+ μ0

8π

∫
R3

∫
R3

∇ · M(r)∇ · M(r′)
|r − r′| dV dV ′

+ Dd

M2
s

∫
�

(Mz∇ · Mplane − Mplane · ∇Mz)dS

+ Bext

∫
�×(0,d )

(Ms − Mz)dV, (1)

where the terms in the right-hand side of Eq. (1) are the
exchange energy, the magnetocrystalline anisotropy energy,
the magnetostatic energy, the interfacial Dzyaloshinskii-
Moriya interaction (DMI) energy, and the Zeeman energy,
respectively [66,67]. � ⊆ R2 is a two-dimensional domain
describing the thin film of thickness d in the plane. M(r) :
� × (0, d ) �→ R3 is the magnetization vector at position r
which has fixed length Ms. M = (Mplane, Mz) is extended by
zero to whole R3 in the definition of the stray field energy.
M = (Mplane,Mz) is the magnetization vector at one of the
surfaces. A, Ku, D, μ0, and Bext are the exchange stiffness,
the perpendicular magnetocrystalline anisotropy constant, the
interfacial DMI coefficient, the vacuum permeability, and the
perpendicular magnetic field. The energy reference is the sin-
gle domain state of Mz = Ms.

In the following, we consider a sufficiently large two-
dimensional film for simplicity. Then � = R2, M is uniform
in thickness direction, and the magnetostatic energy can be
included by correcting Ku into the effective anisotropy con-

stant Keff = Ku − μ0M2
s

2 [68]. To simplify the calculation, the

exchange length lex =
√

2A
μ0M2

s
is used as the length unit [69],

E0 = 2Ad is used as the energy unit, and m = M
Ms

, Q =
2Ku

μ0M2
s
, and κ =

√
2D2

μ0M2
s A are defined. From the definition, it is

trivial that Q > 1 is concerned. ε = kBT
2Ad is defined with the

Boltzmann constant kB and the temperature T . Equation (1)
becomes

E (m) =1

2

∫
R2

[
|∇m|2 + (Q − 1)|mplane|2

− 2κmplane · ∇mz + 2Bext

μ0Ms
(1 − mz)

]
dS. (2)

In this work, we use the stochastic sLLG equation to de-
scribe the continous magnetization dynamics in the ultrathin
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ferromagnetic film at finite temperature [64,70–72]:
∂m
∂t

= −m × heff + α

(
m × ∂m

∂t

)
, (3)

where α is the dimensionless Gilbert damping parameter
and τ0 = 1

γμ0Ms
is used as the time unit, with γ being the

gyromagnetic ratio. The effective field is heff = − δE (m)
δm +√

2αεξ, where ξ(r, t ) is a suitable regularization of a
three-dimensional delta-correlated spatiotemporal white noise
[70,73].

For convenience, we introduce the polar coordinates so that
m = [sinθcosφ, sinθsinφ, cosθ ]. Then the partial derivative of
m over time mt can be completely described by superposition
of two other coordinates p = [−sinφ, cosφ, 0] = [pplane, 0]
and [cosθcosφ, cosθsinφ,−sinθ ] forming an orthonomal set
with m. Considering the sLLG equation in those directions,
we have[

α −1
1 α

][
θt

sin(θ )φt

]

=
[∇2θ − sin(2θ )

2 (|∇φ|2 + Q − 1)
sin(θ )∇2φ + 2cos(θ )∇θ · ∇φ

]

+
[
− Bext

μ0Ms
sin(θ ) + κsin2(θ )∇φ · pplane + √

2αεη

−κsin(θ )∇θ · pplane + √
2αεζ

]
,

(4)

where η and ζ are two independent and delta-correlated spa-
tiotemporal white noises in two space dimensions.

B. Integral identities

Here, we derive several integral identities in an exchange-
dominated regime from sLLG equations in polar form with
respect to symmetry groups.

Consider rotations by multiplying Eq. (4) by [0, sinθ ] and
integrate over space. Since the small thermal noise regime is
concerned, we can neglect the Itô corrections and consider the
Itô formulation and the Stratonovich formulation equally [74].
Subsequently, the integral identity becomes

∫
R2

[sin(θ )θt + αsin2(θ )φt + κsin2(θ )∇θ · pplane]dS

=
∫
R2

(
√

2αεsin(θ )ζ )dS

=
√

2αε

(∫
R2

sin2(θ )dS

) 1
2

Ẇ1(t ), (5)

where W1(t ) is a Wiener process, and Ẇ1(t ) = ∂W1
∂t [75].

Similarly, considering dilations by multiplying Eq. (4) by
{∇θ · [r − r0(t )], sin(θ )∇φ · [r − r0(t )]}, and integrating over
space yields the following equation:

∫
R2

{∇θ · (r − r0)[αθt − sin(θ )φ]}dS +
∫
R2

{∇φ · (r − r0)
[
αsin2(θ )φt + sin(θ )θt

]}
dS

=
∫
R2

{
∇θ · (r − r0)

[
(1 − Q)

sin(2θ )

2
− Bextsinθ

μ0Ms

]}
dS +

∫
R2

[∇θ · (r − r0)κsin2(θ )∇φ · pplane]dS

−
∫
R2

[sin2(θ )∇φ · (r − r0)κ∇θ · pplane]dS +
√∫

R2
[|∇θ · (r − r0)|2 + |sin(θ )∇φ · (r − r0)|2]dS

√
2αεẆ2(t ), (6)

where W2(t ) is another Wiener process. Here r0(t ) can take an arbitrary form and will be specified later.
Similarly, considering translations by multiplying Eq. (4) by [θx, sin(θ )φx] and [θy, sin(θ )φy], where subscripts x and y

represent partial derivatives over those coordinates, respectively, and integrating over space yields

∫
R2

{θx[αθt − sin(θ )φt ] + φ[αsin2(θ )φt + sin(θ )θt ]}dS

=
∫
R2

{
θx

[
(1 − Q)

sin(2θ )

2
− Bextsin(θ )

μ0Ms

]}
dS +

∫
R2

[
θxκsin2(θ )∇φ · pplane − sin2(θ )κφx∇θ · pplane

]
dS

+
√∫

R2
[|θx|2 + |sin(θ )φx|2]dS ×

√
2αεẆ3(t ); (7)∫

R2
{θy[αθt − sin(θ )φt ] + φy[αsin2(θ )φt + sin(θ )θt ]}dS

=
∫
R2

{
θy

[
(1 − Q)

sin(2θ )

2
− Bextsin(θ )

μ0Ms

]}
dS +

∫
R2

[
θyκsin2(θ )∇φ · pplane − sin2(θ )κφy∇θ · pplane

]
dS

+
√∫

R2
[|θy|2 + |sin(θ )φy|2]dS ×

√
2αεẆ4(t ), (8)

where W3(t ) and W4(t ) are two other Wiener processes.
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C. Reduced profile

Here we are examining the profile of a skyrmionium. We
noted that the associated Euler-Lagrange equation of micro-
magnetic energy for skyrmioniums has the same form as that
for skyrmions. The only difference is the boundary conditions:
θ (0) = 0(π ) and θ (∞) = π (0) for skyrmions, and θ (0) =
0(2π ) and θ (∞) = 2π (0) for skyrmioniums. We propose a
reduced profile of skyrmioniums from the approximation of
the skyrmion profile with the 2π domain wall profile, which
has been verified to a satisfying accuracy both by simulations
and by experiments [76–78]. The 2π domain wall profile de-
rived by Braun can be considered as a superposition of twisted
π domain wall pairs [79]. Similarly we could verify that the
4π domain wall profile can be considered as a superposition
of twisted 2π domain wall pairs, which has the form

θ4π (z) = θ2π

(
− z

δb
+ Rb

)
+ θ2π

(
− z

δb
− Rb

)
, (9)

where δb and Rb are coefficients that can be identified later.
Following the analogy, we approximate the skyrmionium pro-
file with the 4π domain wall profile. Furthermore, we stick
with the approximate equivalence between the skyrmion pro-
file and the 2π domain wall profile. Then the skyrmionium
profile can be considered as a superposition of the skyrmion
profile pair approximately.

For simplicity, we choose the Belavin-Polyakov profile as
the skyrmion profile θSk at the core [80,81]:

θSk(r) � 2arctan

(
r

ρSk

)
, (10)

where ρSk is the radius of the skyrmion.
Without loss of generality, we can set ρSk = 1 and vary

the parameters δSk and RSk to get all possible profiles. Define

A = δSk(1+R2
Sk )

2 and B = 1
2δSk

, the profile becomes

θ (r) � θSk

(
− r

δSk
+ RSk

)
+ θSk

(
− r

δSk
− RSk

)

� 2arctan

(
r

A − Br2

)
+ 2πn, (11)

where n ∈ Z are some integers that make the curve smooth.
While at the tail, the Euler-Lagrange equation can be ap-

proximately linearized, yielding an exponentially decaying

profile on the scale of Ls = (
√

Q − 1 + Bext
μ0Ms

)−1 (in lex) [82]:

[2π − θ (r)] ∝ K1

(
r

Ls

)
, (12)

where K1(z) is the modified Bessel function of the second
kind, which is approximately K1( r

Ls
) ≈ e− r

Ls r− 1
2 .

It is expected that the profile would approximately stablize
on the timescale τcore � A2 at the core and τtail � L2

s at the tail
[63]. Hence, on the timescale τtail � τcore, we may consider the
dynamical profile approximately as the profile at the core.

For convenience, we consider the center of the skyrmion-
ium to be r0(t ), and we consider the polar coordinates with
respect to the center [r, ψ] to be r = r0 + [rcosψ, rsinψ].
Both at the core and at the tail, we have

φ(r, t ) = arg[r − r0(t )] + ϕ(t ) − π, (13)

where ϕ(t ) is some fixed angle with respect to the structure,
which can be interpreted as the rotation angle of the skyrmio-
nium here.

To check the accuracy of the approximation, we calculate
the energy and compare it with that calculated from the profile
of the direct numerical solution of the Euler-Lagrange equa-
tion associated with the micromagnetic energy by the shooting
method [83]. For convenience, we use an alternative object
in the comparison, the energy of the skyrmionium calculated
by MUMAX3 with the Bogacki-Shampine method [84,85]. We
first use the radius where θ = π , which corresponds to rπ =√

A
B , to calibrate the parameters. We then identify δSk and RSk

directly by calculating the energy and identifying the energy
minima under the contraint of rπ . Note that here we use the
core profile to as far as 2rπ to better characterize skyrmion-
iums, and we choose a suitable tail profile for the rest area
so the profile remains continuous. We varied the parameters
and confirmed in Appendix B that the energy difference is
within 26% in the selected parameter space. In comparison
with the 17% energy difference limit for the Belavin-Polyakov
profile by Bernand-Mantel et al. [63], we have verified our
approximation.

D. Finite-dimensional reduction

Here we substitute the profile into the integral identities
and introduce L as the cutoff length in integrals with logarith-
mic divergences. We also checked that the Wiener processes
are mutually independent to leading order via the correlators.
Then, we define the rotated Wiener processes W̃1 = −αW1−W2√

1+α2 ,

W̃2 = −W1+αW2√
1+α2 , W̃3 = −αW3+W4√

1+α2 , and W̃4 = −αW4−W3√
1+α2 , which

are also mutually independent. After some approximations,
we have

d

dt

[
lnA
ϕ

]
=
√

αε

4πD2(1 + α2)ln
(L
C
)
[

˙̃W1
˙̃W2

]

− 1

1 + α2

[−1 α

α 1

]

×
⎡
⎣ Dκsinϕ

2C2ln( L
C )∣∣ 1+2AB

1−2AB
∣∣(Q − 1) − Bext

μ0Ms
− Dκcosϕ

2C2ln( L
C )

⎤
⎦,

(14)

where C2 = A2

1−2AB and D = A
1−2AB are defined forconve-

nience. Note that Eq. (14) only applies to the case with D > 0,
or with L limited so some integrals remain convergent:

d

dt

[
x0

y0

]
=
√

αεC2

2π (1 + α2)D2

[
˙̃W3
˙̃W4

]
, (15)

where r0 = (x0, y0). Note that the translational degree of free-
dom decouples from the structural degree of freedom, yielding
a diffusivity coefficient, Deff = αεC2

4π (1+α2 )D2 .
Practically, a reflecting boundary condition at some L0 <

L is applied, and we set ln(LC ) to a constant �, taking its lead-
ing order. In addition, we introduce [x̄, ȳ] = A[cosϕ, sinϕ].
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Without loss of generality, we denote the suitably rotated
Wiener processes as W1 and W2. Equation (14) becomes

dx̄ =
ακ
2�

− Qαx̄ + Qȳ

1 + α2
dt +

√
αε̄

4π (1 + α2)�
dW1, (16)

dȳ =
κ

2�
− Qx̄ − αQȳ

1 + α2
dt +

√
αε̄

4π (1 + α2)�
dW2, (17)

where Q = (Q − 1)| 1+2AB
1−2AB | − Bext

μ0Ms
and ε̄ = A2

D2 ε. Hence, the
associated Fokker-Planck equation is

(1 + α2)pt =
[

p
(
− ακ

2�
+ Qαx̄ − Qȳ

)]
x̄

+
[

p
(
− κ

2�
+ Qx̄ + αQȳ

)]
ȳ

+ αε̄

8π�
(px̄x̄ + pȳȳ). (18)

E. Annihilation time

While more sophisticated results can be found by deter-
mining rπ with respect to each different A, for simplicity we
assume the change of RSk is negligible during the annihilation,
which corresponds to the regime where RSk is small. Then we

may approximately use A = Erπ with E =
√

1+R2
Sk

2 consid-
ered to be a constant. Introducing [x̃, ỹ] = rπ [cosϕ, sinϕ] to
Eq. (18) yields the associated Fokker-Planck equation directly
regarding the size of the skyrmionium:

(1 + α2)pt =
[

p

(
− ακ̃

2�
+ Qαx̃ − Qỹ

)]
x̃

+
[

p

(
− κ̃

2�
+ Qx̃ + αQỹ

)]
ỹ

+ αε̃

8π�
(px̃x̃ + pỹỹ), (19)

where κ̃ = κ
E and ε̃ = A2

D2E2 ε. Introducing complex z̃ = x̃ +
iỹ, we have the equilibrium measure

peq(z̃) = 4�Q
ε̃

exp

(
−H (z̃)

ε̃

)
, (20)

where H (z̃) = 4π�Q|z̃ − z̃0|2 and z̃0 = κ̃
2�Q . The probabil-

ity of its solution starting at z̃ = z̃0 to reach z̃ = 0 is zero,
which agrees with the topological stability of the structure.
Therefore, we interpret the annihilation event implicitly. Since
topological singularity occurs and continuity breaks down
when the size of the structure is small enough [86], we in-
troduce an absorber at |z̃| = δ [63]. In atomically thin films,
δ is on the order of the film size d . Since the consequential
transition without topological protection is spontaneous, we
may consider that the energy barrier has been passed during
the occurrence of topological rupture.

Then we consider a stationary process in which a particle
following Eq. (19) is reinjected into the neighborhood of z̃0

with the probability g̃(z̃)dx̃dỹ whenever it hits the absorber,
where g̃(z̃) is a positive function whose support contains a
small neighborhood of z̃0 [87]. For small ε̃ cases, the exact
form of g̃ is of no concern, since the solution will differ from
peq only around the point closest to z̃0 on the absorber. For

convenience, we introduce q = p
peq

to the equation describing
the stationary process, yielding

−Cε̃ g̃

peq
=
(
Qx − κ̃

2�

)
(αqx̃ + qỹ) + Qy(−qx̃ + αqỹ)

+ αε̃

8π�
(qx̃x̃ + qỹỹ), (21)

where x and y are considered independent of x̃ and ỹ, Cε̃ is an
arbitrary small suitable constant so that the solution integrates
to unity over |z̃| > δ.

Since the closest point is (δ, 0) [or possibly (−δ, 0), de-
pending on the sign of Q], q is approximately independent of y
and approaches unity for x̃ � ε̃. Then consider the following
equation in the neighborhood of the closest point, here we
consider (δ, 0) first(

Qδ − κ̃

2�

)
qx̃ + ε̃

8π�
qx̃x̃ ≈ 0. (22)

With the boundary conditions of q(δ) = 0 and q(∞) = 1,
the solution in x̃ ∈ (δ,∞) is q(x̃) ≈ 1 − exp{− 8π�

ε̃
[Qδ −

κ̃
2�

](x̃ − δ)}. When ε̃ � κ̃δ, the annihilation rate is approxi-
mately

Jδ ≈ αε̃

8π�(1 + α2)

∫
|z̃|=δ

peq|∇q|ds

≈ α�Q
1 + α2

[
κ̃

2�
− Qδ

](
8δ

ε̃κ̃

) 1
2

exp

(
−H (δ)

ε̃

)
. (23)

In small δ cases as ε̃ → 0, we can further approximate the
solution above into

Jδ ≈ αQAδ

1 + α2

(
2κ̃δ

ε̃

) 1
2

exp

(
− πκ̃2

ε̃�Q

)
, (24)

where Aδ corresponds to the reduction in barrier height after
introducing the absorber,

Aδ = exp

[
4πκ̃δ

ε̃

(
1 − �Qδ

κ̃

)]
. (25)

Now we consider the (−δ, 0) case, since it corresponds to
Q < 0, we can verify, after altering the sign of both Q and δ,
the final result is the same.

Then we consider the case where δ → 0. In this case, the
solution for Eq. (21) only differs from unity in the diffusive
boundary layer around the absorber. Since the advection field
is approximately fixed near a small absorber, in a neighbor-
hood of the absorber, after suitable rotation, we approximately
have

qx̃x̃ + qỹỹ + 4πκ̃
√

1 + α2

αε̃
qx̃ = 0. (26)

For simplicity, we introduce u where q = 1 −
uexp(− 2πκ̃

√
1+α2

αε̃
x̃). Equation (26) becomes

ux̃x̃ + uỹỹ =
(

2πκ̃
√

1 + α2

αε̃

)2

u. (27)

With the boundary conditions q(δ) = 0 and q(∞) = 1, when
δ � 1 and κ̃δ � ε̃, the equation above has an approximate so-
lution, q(z̃) ≈ ln( |z̃0|

δ
)/ln( αε̃exp(−γ0 )

πδκ̃
√

1+α2 ) ≈ ln( |z̃0|
δ

)/ln( αε̃c̄
δκ̃

√
1+α2 ),
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FIG. 2. Annihilation: Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext = 0 T,
and T = 300 K. Figures are colored with respect to the standard HSL color space. The length scale remains identical within the same figure.
The times from panels (a) to (d) are t = 0, 5.0, 10.0, and 15.0 ps. The skyrmionium turns into a skyrmion by annihilating the “inner skyrmion”,
which is confirmed later after the relaxation by topological charge calculation. The red circles highlight the “inner skyrmion.” The magnified
views of the areas in the circles are given at the top right corner respectively.

where γ0 ≈ 0.5772 is the Euler-Mascheroni constant and
c̄ ≈ 0.179 is a constant [88]. Hence, the annihilation rate is
approximately

Jδ ≈ αQ
(1 + α2)ln

(
αε̃c̄

δκ̃
√

1+α2

)exp

(
− πκ̃2

ε̃�Q

)
. (28)

Similarly we can check that the negative value cases have the
same form.

F. Annihilation path

We can obtain the path of skyrmionium annihilation in
a small noise regime by minimizing the large deviation

action [89]

S = 2π�(1 + α2)

α

∫ T

0

∣∣∣∣˙̄z + α + i

1 + α2

[
Qz̄ − κ

2�

]∣∣∣∣
2

dt . (29)

Noted that for simplicity, here we stick with the approxima-
tion that z̄ = E z̃. With z̃(0) = z̃0, and z̃(T ) = δ given, let T →
∞, we have the approximated optimal path of the following
form when δ � 1:

z̃opt ≈ z̃0

{
1 − exp

[
α − i

1 + α2
Q(t − T )

]}
. (30)

FIG. 3. Transition close-up: Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext =
0 T and T = 300 K. Figures are colored with respect to the standard HSL color space. The length scale remains identical within the same
figure. The times from panels (a) to (f) are t = 11.1, 11.2, 11.3, 11.4, 11.5, and 11.6 ps. The red circles highlight the inner skyrmion. The
magnified views of the areas in the circles are given at the top right corner. Notice that while the inner skyrmion has been annihilated and
topological change has happened during the process, there are still some minor residual fluctuations inside which will be further mitigated
later.
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FIG. 4. Parameters are set to A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, and Ms = 0.58 MA m−1 for both cases. (a) Annihila-
tion time versus temperature for Bext = 0 T. (b) Annihilation time versus temperature for Bext = 0.005 D2

2MsA .

III. RESULTS AND DISCUSSION

A. Annihilation time

We acquire approximate formulas for the annihilation rate
of skyrmioniums as in Eqs. (24) and (28):

Jδ ≈

⎧⎪⎪⎨
⎪⎪⎩

αQ
1+α2 e

4πκ̃δ
ε̃ (1− �Qδ

κ̃ )( 2κ̃δ
ε̃

) 1
2 e− πκ̃2

ε̃�Q , ε̃ � κ̃δ

αQ
(1+α2 )ln

(
αε̃c̄

δκ̃

√
1+α2

)e− πκ̃2

ε̃�Q , δ � 1, κ̃δ � ε̃

⎫⎪⎪⎬
⎪⎪⎭. (31)

We compare the micromagnetic simulation results such as
Figs. 2 and 3 with the approximate annihilation time τ0

Jδ
under

a series of parameters. We first calibrate the � and confirm
that it is reasonable by checking the corresponding cutoff
length. Then we vary the temperature and compare our results
with micromagnetic simulation results. Our approximation
has described not only the dominated exponential dependence
but also the deviation from variation of annihilation rate
prefactor. Therefore, our approximation decays slower with
increasing temperature and is closer to the simulation results
than the simple Arrhenius approximation in the temperature
regime higher than the calibration temperature as in Figs. 4(a)
and 4(b).

Here we can also draw a phase diagram (Fig. 5) with
respect to Bext and T in a small regime where the change for
parameters is negligible. The general trend is that the annihi-
lation time increases with respect to Bext and decreases with
respect to temperature. While the temperature dependence of
the annihilation time is explicitly due to the intensity of ther-
mal noise, its relation to Bext results from both the dynamical
effects of Bext and the change of initial size of the skyrmio-
nium. We have simulated the initial magnetization profile
under different Bext. The simulations are shown in Fig. 6,
which agrees with the results in Ref. [36]. The size of the
skyrmionium gradually increases with respect to Bext. When
Bext is negative enough, the skyrmionium will annihilate into
a skyrmion that follows the same size relation to Bext in the
absence of thermal noise. We have also simulated cases where

Bext makes Q turn negative. The result is not considered be-
cause, under this set of parameters, the skyrmioniums cannot
stabilize and will annihilate into skyrmions in the absence of
thermal noise.

We have also simulated some negative Bext cases
where |Bext| is large, where the results deviate from our
approximation. This may come from the decoupling of two
skyrmions consisting the skyrmionium when the coupling is
suppressed by Bext. In contrast, in our preliminary approxima-
tion, we allow them to decouple only to a very limited level.
As is observed in some cases in Fig. 7, the outer circular do-
main wall is even “penetrated,” and the annihilation happens
through the outer skyrmion. The outer circular domain wall
develops thin enough at some position and continuity breaks
down there. Hence, theoretically, under some smaller negative
Bext, there should exist a case where continuity breaks down
at both the inner skyrmion and the outer circular domain

FIG. 5. Annihilation time versus perpendicular magnetic field
and temperature for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku =
0.8 MJ m−3, Ms = 0.58 MA m−1, and Bd = D2

2MsA .
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FIG. 6. Magnetization profile side view for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, and Ms = 0.58 MA m−1. Figures are
colored with respect to the standard HSL color space. The length scale remains identical within the same figure. The Bext values from bottom
to top are Bext = −0.04Bd to Bext = 0.04Bd with an interval of 0.005Bd, where Bd = D2

2MsA . The skyrmioniums and skyrmions are generated by
an initial profile of mz = −1 where the radius with respect to the center of the simulation space 40 nm > rsim > 20 nm, mz = 1 for the rest
part. The size of the skyrmionium gradually increases with respect to Bext. Yellow and green lines highlight the size differences.

FIG. 7. Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext = −0.03 D2

2MsA , and
T = 300 K. Figures are colored with respect to the standard HSL color space. The length scale remains identical within the same figure. The
times from panels (a) to (d) are t = 4.0, 4.1, 4.2, and 4.3 ps. Here the Dormand-Prince solver is used to better describe the larger magnetization
dynamics due to the inhibitated coupling. The red square highlights the inner skyrmion and the “penetrating pathway.” The magnified view of
the area in the square is given at the top right corner. Note that here the inner skyrmion has not been annihilated yet.
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FIG. 8. Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext = 0 T, and T = 500 K.
Figures are colored with respect to the standard HSL color space. The length scale remains identical within the same figure. The times from
panels (a) to (c) are t = 0.0, 0.5, and 1.0 ps. Note that the Dormand-Prince solver is used in the simulation here for a better description of the
magnetization dynamics with a relatively large change of magnetization, where the coupling between the inner and outer skyrmions is reduced.
The red square highlights the inner skyrmion and the penetrating pathway. The magnified view of the area in the square is given at the top right
corner. Note that here the inner skyrmion has not been annihilated yet.

wall. Further research studies could be done to investigate the
detailed process of these annihilations with more freedom of
decoupling.

We have also conducted simulations in the high-
temperature regime; the results under this set of parameters
also deviate from our approximation. This may be because of
the same reason as in the large negative Bext cases, for similar
“penetration” events are observed as in Fig. 8. Possibly it is the
thermal noise that suppresses the coupling of two skyrmions
consisting the skyrmionium.

To confirm the outcome of the transition, we extend our
micromagnetic simulations with a relaxation process follow-
ing the previous results after the annihilation as in Fig. 9.
During the annihilation, as shown in Fig. 10, the moving time
average of topological charge Qtop in a 1-ps time window
drops from 0 to −1, the energy varies from one local min-
ima to another, which is clearer after the relaxation process.
Note that there are still some fluctuations of Qtop from the
rippling of magnetization states on the boundary edge under
thermal noise, which is also reported by Kim and Mulkers
[90]. Therefore, the specific annihilation time is vague under
the thermal noise. Moreover, the evolution time after “capture
by absorber,” which also varies depending on temperature, is
neglected in this preliminary approximation. Further efforts

could be made towards the integration of this process and a
more precise measurement of annihilation time.

B. Annihilation path

We acquired the approximate path of skyrmionium annihi-
lation in the small noise regime when δ � 1:

z̃opt ≈ z̃0

{
1 − exp

[
α − i

1 + α2
Q(t − T )

]}
, (32)

which is a spirally evolving curve on the complex plane
for α � 1. Consequently, when α � 1, the structure rotates
during the annihilation, which is similar to the annihilation
process of the skyrmion [8].

It is important to note that, in principle, the outcomes
obtained from the GNEB method should align with simulation
results.

IV. CONCLUSION

In conclusion, by considering the topological change from
the perspective of capture by absorber at microscale, we use
the stochastic Landau-Lifshitz-Gilbert equation in the contin-
uum micromagnetic framework to derive formulas describing
a type of the annihilation of skyrmioniums: the thermal anni-

FIG. 9. Relaxation. Magnetization profile for A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext = 0 T,
and T = 0 K. Figures are colored with respect to the standard HSL color space. The length scale remains identical within the same figure.
The times from panels (a) to (c) are t = 50.0, 75.0, and 100.0 ps. The structure is gradually stabilized and appears as a skyrmion, which is
confirmed by topological charge calculation.
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FIG. 10. (a) Topological charge versus time. (b) Energy versus time. Parameters: A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3,
Ms = 0.58 MA m−1, and Bext = 0 T. The temperature is T = 300 K when t < 50 ps and T = 0 K when t > 50 ps. The boundary is accentuated
with Ku = 8 MJ m−3 where the radius with respect to the center of the simulation space rsim > 60 nm. The magnetization profiles away from
the boundary as in Figs. 2, 3, and 9 comply with data in the plots with respect to time. Note that here we average the data at the center of the
averaging period, which may experience underfitting and requires extra direct observation over the 0.5-ps period at both ends. The initial value
for the topological charge is 0 and the initial value for the total energy is slightly lower than 0.

hilation of the skyrmion inside the skyrmionium that leads to
the transformation of the skyrmionium into a skyrmion. The
derived formulas provide reasonably good approximations of
the skyrmionium collapse rate involving the variation of pref-
actor and collapse path, with only low computational cost and
few microscopic details required. Future atomistic approach
research studies could help to obtain further details and con-
sequentially help to improve the analytical models. Our results
could further improve the manipulation of skyrmioniums and
provide guidance in the prospective applications of skyrmion-
iums in spintronic devices.
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APPENDIX A: SIMULATION METHODS

The simulations are performed by using the open-source
micromagnetic simulator MUMAX3 [84]. Parameters have

been extracted from the simulation results for calibration
purposes. These parameters are then processed using custom-
written PYTHON codes to derive the approximate analytical
results, which are subsequently compared with the simulation
outcomes.

Considering the arbitrariness of thermal noise, here we use
the Bogaki-Shampine method for better stability and to be
consistent with the static calculations [85]. Here we choose
A = 15 pJ m−1, Ms = 0.58 MA m−1, Ku = 0.8 MJ m−3, d =
0.4 nm, and α = 0.3, which yields lex = 8.4 nm and τ0 = 7.8
ps [91]. The simulation space is a cylinder with a diameter of
320d and a height of d , and the cell size is (d, d, d ).

Here we recorded the annihilation time by looking at the
magnetization profile at the core and confirmed the annihi-
lation by checking the topological charge after a relaxation
process, which is defined as Qtop = (4π )−1

∫
R2 m · (mx ×

my)dS, where mx and my are partial derivatives of m with
respect to x and y. As is suggested by Kim and Mulkers
[90], using the function ext_topologicalchargelattice in MU-
MAX3, we follow the approach of Berg and Lüscher [92]
to mitigate the fluctuation of topological charge originated
from inaccuracies of the finite-difference approximations of
Qtop when large spatial variations of m occur under thermal
noises. To prevent the unstable local magnetization reversals
on the boundary edge under thermal noise from causing the
total topological charge to deviate, we introduce a reinforced
perpendicular anisotropy condition limited on the boundary
edge when calculating the topological charge. We confirmed
that the magnetization at the core is almost identical no matter
whether the strengthening boundary condition is applied or
not with figures like Fig. 11. Hence, topological charge calcu-
lated with the accentuated boundary condition, like in Fig. 10,
is credible for investigating the change of the core.
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FIG. 11. Magnetization profile with A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, Bext = 0 T, and T =
300 K. Figures are colored with respect to the HSL color space. The length scale remains identical within the same figure. The times are
t = 5.0, 10.0, and 15.0 ps for panels (a) to (c) and panels (d) to (f). For panels (d), (e), and (f), the boundary is accentuated with Ku = 8 MJ m−3

where the radius with respect to the center of the simulation space rsim > 60 nm. The magnetization profile at the core remains identical.

APPENDIX B: SKYRMIONIUM PROFILE

1. Energy verification

We consider the center of the skyrmionium to be r0(t ),
and we introduce the polar coordinates [r, ψ] to be r = r0 +
[rcos(ψ ), rsin(ψ )].

As is mentioned in the main text, we propose a reduced
core profile of skyrmioniums as follows:

θ (r) � θSk

(
− r

δSk
+ RSk

)
+ θSk

(
− r

δSk
− RSk

)

� 2arctan

(− r
δSk

+ RSk

ρSk

)
+ 2arctan

(− r
δSk

− RSk

ρSk

)
.

(B1)

Without loss of generality, we can set ρSk = 1 and vary the
parameters δSk and RSk to get all possible profiles. We define

A = δSk(1+R2
Sk )

2 and B = 1
2δSk

, and the core profile becomes

θ (r) � θSk

(
− r

δSk
+ RSk

)
+ θSk

(
− r

δSk
− RSk

)

� 2arctan

(
r

A − Br2

)
+ 2πn, (B2)

where n ∈ Z are some integers that make the curve smooth.
The profile at the tail is approximately

[2π − θ (r)] ∝ K1

(
r

Ls

)
, (B3)

where K1(z) is the modified Bessel function of the second
kind, which is approximately K1( r

Ls
) ≈ e− r

Ls r− 1
2 .

Both at the core and at the tail, we have

φ(r, t ) = arg[r − r0(t )] + ϕ(t ) − π, (B4)

where ϕ(t ) is some fixed angle with respect to the structure,
which can be interpreted as the rotation angle of the skyrmio-
nium here.

Then we calculate the energy and compare it with that by
MUMAX3 with the Bogacki-Shampine method to check the
accuracy of our approximation [84,85]. We first use the radius

where θ = π , which is calculated to be rπ =
√

A
B , to calibrate

the parameters. By calculating the energy of different param-
eters and identifying the energy minima under the contraint
of rπ , we find δSk and RSk. Here we use the core profile to
as far as 2rπ to better characterize the skyrmioniums, and we
choose a suitable tail profile for the rest area so the profile
remains continuous. As shown from Figs. 12–16, we varied
the parameters and confirmed that the energy difference is
within 26% in the selected parameter space.

2. Integrals

From the core profile, we have

sinθ = 2(A − Br2)r

r2 + (A − Br2)2
, (B5)

cosθ = (A − Br2)2 − r2

r2 + (A − Br2)2
. (B6)

Since we are considering the core profile, the equations ap-
proximately are

sinθ ≈ 2Ar

A2 + (1 − 2AB)r2
, (B7)
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FIG. 12. Energy versus DMI coefficient with A = 15 pJ m−1,
Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1, and Bext = 0 T.

FIG. 13. Energy versus exchange coefficient with
D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, Ms = 0.58 MA m−1,
and Bext = 0 T.

FIG. 14. Energy versus perpendicular magnetic field strength
with A = 15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, and
Ms = 0.58 MA m−1. Bd = D2

2MsA is defined for simplicity.

FIG. 15. Energy versus anisotropy coefficient with
A = 15 pJ m−1, D = 3.115 mJ m−2, Ms = 0.58 MA m−1, and
Bext = 0 T.

cosθ ≈ A2 − (1 + 2AB)r2

A2 + (1 − 2AB)r2
. (B8)

Similarly, we have

θr = 2A + 2Br2

A2 + (1 − 2AB)r2
≈ 2A

A2 + (1 − 2AB)r2
, (B9)

θt = −θr ṙ0(cosψ, sinψ ) − 2r ∂ (A−Br2 )
∂t

A2 + (1 − 2AB)r2

≈ −θr ṙ0(cosψ, sinψ ) − 2Ȧr

A2 + (1 − 2AB)r2
, (B10)

φt = ṙ0

r
(sinψ,−cosψ ) + ϕ̇, (B11)

θx = θrcosψ, θy = θrsinψ, (B12)

FIG. 16. Energy versus saturation magnetization with A =
15 pJ m−1, D = 3.115 mJ m−2, Ku = 0.8 MJ m−3, and Bext = 0 T.
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φx = − sinψ

r
, φy = cosψ

r
. (B13)

Then we calculate the integrals, with the cutoff length L
introduced when logarithmic divergence is presented; hence,
the formula is valid even if the outer solution does not have
adequate relaxation time. Also, we introduce C2 = A2

1−2AB and

D = A
1−2AB , which yields∫

R2
sin2(θ )dS ≈ 8πD2

∫ L
C

0

z3

(1 + z2)2
dz

≈ 8πD2ln

(L
C

)
, (B14)

∫
R2

rθr
sin(2θ )

2
dS ≈

∫ L
C

0
8πD2z3 C2 − (2D2 − C2)z2

C2(1 + z2)3
dz

≈ 8πD2 C2 − 2D2

C2
ln

(L
C

)
, (B15)

∫
R2

(rθr )2dS ≈ 8πD2
∫ L

C

0

z3

(1 + z2)2
dz ≈ 8πD2ln

(L
C

)
,

(B16)

∫
R2

θrsin2(θ )dS ≈ 16πD3

C2

∫ L
C

0

z3

(1 + z2)3
dz ≈ 4πD3

C2
,

(B17)

∫
R2

rθrθt dS ≈ Ȧ
A

∫ L
C

0

−8πD2z3

(1 + z2)2
dz ≈ −8πD2 Ȧ

A ln

(L
C

)
.

(B18)

Note that the equations only apply to D > 0 cases and cases
with L limited so some integrals remain convergent.

APPENDIX C: REDUCTION INTO FINITE-DIMENSIONAL SYSTEM

We substitute the skyrmionium profile into the integral identities, which approximately yields

d

dt

[
ln(A)

ϕ

]
= − 1

1 + α2

[−1 α

α 1

]√
αε

4πD2ln
(L
C
)[Ẇ1

Ẇ2

]

− 1

1 + α2

[−1 α

α 1

]⎡⎣ Dκsinϕ

2C2ln( L
C )

| 1+2AB
1−2AB |(Q − 1) − Bext

μ0Ms
− Dκcosϕ

2C2ln( L
C )

⎤
⎦, (C1)

d

dt

[
x0

y0

]
= − 1

1 + α2

[−1 α

α 1

]√
αεC2

2πD2

[
Ẇ3

Ẇ4

]
, (C2)

where r0 = [x0, y0].
We then check the orthogonality of the Wiener processes by computing the correlators. For instance, for the first two Wiener

processes, we have〈
Ẇ1(t )Ẇ2(t ′)

〉 = 1

AW1BW1

∫
R2

∫
R2

〈sin[θ (r, t )]ζ (r, t ){r′ · ∇[θ (r′, t ′)]η(r′, t ′) + sin[θ (r′, t ′)]r′ · ∇[φ(r′, t ′)]ζ (r′, t ′)}〉d2rd2r′

= δ(t − t ′)
AW1BW1

∫
R2

sin2(θ )r · ∇φd2r � 0, (C3)

where AW1 =
√∫

R2 sin2(θ )dS and BW1 =
√∫

R2 [|∇θ · (r − r0)|2 + |sin(θ )∇φ · (r − r0)|2]dS. Similarly, other correlators can be

checked. Then we introduce another set of mutually independent Wiener processes for simplicity:

W̃1 = −αW1 − W2√
1 + α2

, W̃2 = −W1 + αW2√
1 + α2

, (C4)

W̃3 = −αW3 + W4√
1 + α2

, W̃4 = −αW4 − W3√
1 + α2

. (C5)

Then Eqs. (C1) and (C2) become

d

dt

[
ln(A)

ϕ

]
=
√

αε

4πD2(1 + α2)ln
(L
C
)
[

˙̃W1
˙̃W2

]
− 1

1 + α2

[−1 α

α 1

]⎡⎣ Dκsinϕ

2C2ln( L
C )

| 1+2AB
1−2AB |(Q − 1) − Bext

μ0Ms
− Dκcosϕ

2C2ln( L
C )

⎤
⎦, (C6)

d

dt

[
x0

y0

]
=
√

αεC2

2π (1 + α2)D2

[
˙̃W3
˙̃W4

]
. (C7)
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