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Electric-field control of magnetic anisotropies: Applications to Kitaev spin liquids
and topological spin textures
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Magnetic anisotropies often originate from the spin-orbit coupling and determine magnetic ordering patterns.
We develop a microscopic theory for dc electric-field controls of magnetic anisotropies in magnetic Mott
insulators and discuss its applications to Kitaev materials and topological spin textures. Throughout this paper,
we take a microscopic approach based on Hubbard-type lattice models, tight-binding models with onsite
interactions. We derive a low-energy spin Hamiltonian from a fourth-order perturbation expansion of the
Hubbard-type model. We show in the presence of a strong intra-atomic spin-orbit coupling that dc electric fields
add non-Kitaev interactions such as a Dzyaloshinskii-Moriya interaction and an off-diagonal �′ interaction to
the Kitaev-Heisenberg model and can induce a topological quantum phase transition between Majorana Chern
insulating phases. We also investigate the interatomic Rashba spin-orbit coupling and its effects on topological
spin textures. dc electric fields turn out to create and annihilate magnetic skyrmions, hedgehogs, and chiral
solitons. We propose several methods of creating topological spin textures with external electromagnetic fields.
Our theory clarifies that the strong but feasible electric field can control Kitaev spin liquids and topological spin
textures.
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I. INTRODUCTION

The spin-orbit coupling (SOC) is of significance to topo-
logical electronic states of matters [1–6]. Recently, magnetic
anisotropies, a direct descendent of SOC in quantum spin
systems, has enjoyed renewed theoretical and experimental
interests for their essential roles in topological states of mag-
netic materials such as topological spin textures [7,8] and
Kitaev spin liquids [9–16].

In general, the SOC violates a part of the symmetry that the
system would a priori possess. Should the SOC be absent, the
spin rotation symmetry would be independent of the spatial
rotation symmetry. However, since the SOC is always present
in real materials, the spatial symmetry cannot be unrelated
to the spin symmetry no matter how small the SOC is in
that material. Note that the SOC is a source of the magnetic
anisotropy. Here, we call the magnetic anisotropy as terms in
the spin Hamiltonian that break the spin rotational symmetry.1
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1The Dzyaloshinskii-Moriya interaction and the Kitaev interaction
dealt with in this paper are thus deemed magnetic anisotropies in this
sense.

An important symmetry that the SOC potentially breaks
is a spatial inversion symmetry. Violating the inversion sym-
metry, the SOC gives rise to an antisymmetric magnetic
anisotropy known as the Dzyaloshinskii-Moriya interaction
(DMI) [17,18]. The competition between the DMI and fer-
romagnetic exchange interactions yields topological spin
textures such as magnetic skyrmions [Fig. 1(a)] [19–23],
chiral solitons [Fig. 1(b)] [24–26], and magnetic hedgehog
[Fig. 1(c)] [27–30]. The topological spin texture carries a
nonzero topological index. The nonzero topological index
makes the topological spin textures robust against distur-
bances and prevents them from decaying into topologically
trivial spin patterns such as the ferromagnetically ordered
state. The topological spin texture is thus promising for device
applications [7,8,31].

The SOC can also give rise to inversion-symmetric mag-
netic anisotropies such as Ising interactions (e.g., Sz

i Sz
j), where

Sz
j denotes the z component of a localized spin S j at the site

j. This symmetric magnetic anisotropy renders the Kitaev
material intriguing [9–14,34–40]. The Kitaev material, the Ki-
taev model and its derivatives, has drawn intensive attraction
quite some time for their significance to fundamental physics
and relevance for quantum computation [9,10,12,34–39]. In
light of scientific interests and engineering applications, con-
trolling methods of these SOC-driven topological states of
magnetic materials are currently one of the central issues
in condensed-matter physics, quantum physics, and applied
physics [41–47].
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FIG. 1. Representative topological spin textures. (a) Néel-type
magnetic skyrmion. (b) Chiral soliton lattice (CSL) in spin chain.
(c) Magnetic hedgehog.

The dc electric field holds promise for external controls
of topological states of magnetic materials. Historically, elec-
tric controls of magnetic systems have been discussed in
the context of multiferroics [48] and spintronics [49]. For
instance, noncollinear magnetic orders induce the electric po-
larization through a cross-correlation effect of the multiferroic
material, that is, a magnetoelectric effect [48,50–56]. For
device applications, however, electric controls of the micro-
scopic Hamiltonian is called for. Figures 2(a) and 2(b) show
schematic ground-state phase diagrams related to topological

FIG. 2. (a) Schematic ground-state phase diagram of square-
lattice classical Heisenberg ferromagnetic model with DMI [see
Eq. (58)], including helical (HL), skyrmion-crystal (SkX), and ferro-
magnetic (FM) phases [19–21,32,33]. The vertical axis denotes the
dc magnetic field h and the horizontal axis denotes the strength of the
DMI, D(E ), as a function of the dc electric field E. (b) Schematic
ground-state phase diagram of classical Heisenberg ferromagnetic
chain with DMI [see Eq. (59)], including CSL and FM phases
[24–26].

spin textures, which we will discuss later in Sec. IV. If we
can increase the strength of the DMI D(E ) by the external
electric field E, we will be able to generate topological spin
textures by, for example, inducing the phase transition from
the ferromagnetic phase to the the skyrmion-lattice phase. To
discuss such interesting phase transitions, we need a micro-
scopic theory that gives us the strength of the DMI D(E ) as a
function of the dc electric field at the Hamiltonian level.

In addition, recent technological advances such as electric
double-layer transistors [57,58], ferroelectric devices [59,60],
and interfacial engineering [43,61–63] make strong dc elec-
tric fields of ∼1–10 MV/cm available. Scanning tunneling
microscopes (STMs) can also yield dc electric fields of
∼10 MV/cm locally [64,65]. It is natural to expect that
stronger electric fields change microscopic Hamiltonian more
drastically. Previously, the authors showed how the dc elec-
tric field quantitatively affects the microscopic superexchange
coupling in magnetic Mott insulators [66,67]. References
[66,67] focus on magnetically isotropic cases.

On the other hand, concerning electric-field effects on
magnetically anisotropic interactions, there are many previ-
ous theoretical and experimental studies [35,51,52,54,68,69].
However, to the best of our knowledge, no microscopic theory
explicitly takes into account the geometrical configuration of
ligand ions between magnetic ones to discuss electric-field
effects on magnetic anisotropies. Note that most of magnetic
compounds have ligand ions between magnetic ions. The
ligand ion plays a crucial role in the exchange interaction
between magnetic ions. Hence, it is important to develop the
microscopic theory that clarifies the role of ligand ions in dc
electric-field controls of magnetic anisotropies.

This paper provides the general theoretical foundation
to dc electric-field controls of magnetic anisotropy in Mott
insulators by explicitly taking into account the ligand ion
[41–43,49,70–75]. Such a microscopic theory takes on a
growing importance with ongoing advances in strong dc
electric-field source [41,42,57,58], including a single-cycle
terahertz laser pulse [76–81] (see Sec. IV C). We consider
two important cases: the Kitaev material and the magnetic
Mott insulator with the Rashba SOC. The former has the
intra-atomic SOC that defines the most relevant orbitals to
the quantum magnetism. The latter has the interatomic SOC
that will be generated on the interface of the target material to
another one. Our theory clarifies that the strong but feasible
electric field can control Kitaev spin liquids and topological
spin textures.

This paper is organized as follows. We present a generic
theoretical framework of our theory in Sec. II. We then apply
our theoretical framework to two specific cases. The first
case is the Kitaev spin liquid (Sec. III). The second case is
topological spin textures (Sec. IV). We summarize this paper
and give discussions in Sec. V.

II. FRAMEWORK

The spin Hamiltonian determining magnetic properties of
Mott insulators crucially depends on virtual hopping pro-
cesses of electrons under strong interactions. These hopping
processes are well described by Hubbard-type tight-binding
models [18,35,67,69,82–84]. Considering the locality of vir-
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tual hopping processes in the Mott insulating phase, we derive
a quantum spin system from the Hubbard-type model in two
stages. First, we consider a few-body electron system that con-
tains two magnetic-ion sites (M1 and M2) with half-occupied
d orbitals and a ligand site (L) with fully occupied p orbitals.
This three-site model contains enough ingredients to yield
low-energy spin-spin interactions between two neighboring
magnetic-ion sites M1 and M2 unless further-neighbor elec-
tron hoppings become dominant. Generally, the positional
relation of the magnetic and ligand sites (such as an angle
formed by M1, M2, and L) plays a critical role when determin-
ing the spin Hamiltonian under electric fields. In this paper,
we focus on the isosceles triangle of Fig. 5(b). Second, we
build the many-body quantum spin model by combining many
small blocks of the three-site model. In this paper, we limit
ourselves to S = 1

2 quantum spin systems with superexchange
interactions mediated by p orbitals for simplicity. Note that
we can treat the S = 1

2 spin and a pseudospin with the spin
quantum number 1

2 on equal footings in our framework. In
Sec. III, we consider a spin-orbit-entangled pseudospin, the
Jeff = 1

2 doublet [35,85–90].
This paper deals with microscopic Hubbard-type models

with the following generic Hamiltonian:

H = HU (E ) + Ht (E ), (1)

where HU (E ) and Ht (E ) are intra-atomic and interatomic
terms under electric fields E, respectively. Typically, the for-
mer contains onsite Coulomb repulsions and the latter does
interatomic electron hoppings. At zero electric fields, Ht (0)
denotes the intrinsic electron hoppings and the difference,

δHt (E ) := Ht (E ) − Ht (0), (2)

contains extrinsic E-induced hoppings. We construct the
Hubbard-type model (1) so that it effectively describes low-
energy physics of the target material under dc electric fields.
The field E may contain both the external electric field gen-
erated by the experimental instrument and an effective field
generated on the interface of another material. The detailed
information of the material is encoded in operators and pa-

rameters of the model (1), as we will see in the next sections.
For example, the SOC and a crystal-electric field lift the
orbital degeneracy and define orbitals relevant to low-energy
quantum spin systems. The model (1) contains the informa-
tion of relevant orbitals through the definition of the creation
and annihilation operators in the second-quantized form. The
SOC also affects parameters included in the Hamiltonian (1).
The SOC can generate spin-flipping electron hoppings in-
trinsically or otherwise extrinsically in collaboration with the
dc electric field E. Spin-flipping hoppings lead to magnetic
anisotropies [18].

We regard hoppings Ht (E ) as a perturbation to HU (E )
because we are focused on the Mott-insulating phase induced
by the onsite interaction HU (E ). Performing the fourth-order
perturbation expansion, we obtain the effective spin Hamilto-
nian [67]

Hspin = PHU P + PHt

(
1

Eg − HU
QHt

)3

P, (3)

where P is the projection operator to the Mott-insulating
ground states of HU (E ) with the eigenenergy Eg and Q =
1 − P is to its complementary space. The zeroth-order term
PHU (E )P is mostly irrelevant but gives the uniform Zeeman
energy,

PHU P = −
∑

a=x,y,z

∑
j

haSa
j , (4)

with h = gB for the magnetic field B = μ0H [67], where g is
the electron’s g tensor. Hereafter, we call h the magnetic field
for simplicity. Sa

j is the a component of the spin or pseudospin
operator S j = (Sx

j , Sy
j , Sz

j ) for a = x, y, z. For details about the
pseudospin, refer to Appendix A. The second term of Eq. (3)
gives the ligand-mediated superexchange interaction.

The perturbation Ht (E ) contains the O(|E|0) term Ht (0)
and the O(|E|) term δHt (E ). It is reasonable to assume that
the coupling constants in δHt (E ) are much smaller than those
in Ht (0) even under strong electric fields ∼1–10 MV/cm
[67]. Hence, we approximate the effective spin Hamiltonian
(3) as follows:

Hspin ≈ PHU P + PHt (0)

(
1

Eg − HU
QHt (0)

)3

P + PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P

+ PHt (0)
1

Eg − HU
QδHt (E )

(
1

Eg − HU
QHt (0)

)2

P + PHt (0)
1

Eg − HU
QHt (0)

1

Eg − HU

× QδHt (E )
1

Eg − HU
QHt (0)P + PHt (0)

(
1

Eg − HU
QHt (0)

)2 1

Eg − HU
QδHt (E )P. (5)

The first term of Eq. (5) represents the zeroth-order term (4)
of Ht (E ) and the other terms represent fourth-order terms of
Ht (E ). Each fourth-order term contains one δHt (E ) at most
since δHt (E ) is proportional to |E|.

Figure 3 shows a diagrammatic representation of these
fourth-order processes in Eq. (5). The black, blue, and red
arrows represent the total hoppings Ht (E ), the intrinsic ones
Ht (0), and the E-induced ones δHt (E ), respectively. The

intrinsic O(|E|0) diagram typically contains the Heisenberg
superexchange interaction [67,82]. Hopping amplitudes of
the E-induced hoppings are O(|E|) because they arise from
a distortion of electron orbitals’ wave functions. Note that
our generic formalism deals with such distortions of wave
functions in nonmagnetic ions as well as magnetic ones, as
we will see later (e.g., see Sec. III C). Importantly, the electric
field can break a reflection symmetry. We may rephrase the
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FIG. 3. Diagrammatic representation of spin Hamiltonian (3)
with zeroth-order term omitted. The black solid, blue solid, and
red dashed arrows denote the total hoppings Ht (E ), the intrinsic
hoppings Ht (0), and the E-induced hoppings δHt , respectively.

reflection-symmetry-breaking distortion as a locally gener-
ated E-driven electric polarization. The atomic-scale electric
polarization triggers intrinsically forbidden hopping processes
δHt (E ). We obtain the O(|E|) correction to the spin Hamilto-
nian following the diagram.

The typical O(|E|) correction to the spin Hamiltonian is the
DMI that breaks the inversion symmetry. The E-induced DMI
has been discussed in various contexts such as multiferroics
[48,50–56]. If the DMI is absent under zero electric fields, the
coupling constant D(E ) of the E-induced DMI D(E ) · Si × S j

shows the following field dependence Da(E ) ≈ gabEb + · · ·
with constant coefficients gab for a, b = x, y, z. Among many
theoretical studies of the electric-field induction of magnetic
interactions including the DMI, some studies adopt phe-
nomenological symmetry arguments without deeply going
into microscopic details [52,54,68] and some others adopt
second-order perturbation theory similar to ours [35,51,69].
As we briefly mentioned in Sec. I, this paper adopts the
fourth-order perturbation theory that explicitly takes into ac-
count the ligand ion and electron hoppings from and to the
ligand site. The explicit inclusion of the ligand site is
the most characteristic point of this paper and makes it possi-
ble to clarify the microscopic origin of the coefficients gab of
the E-induced DMI [see, e.g., Eq (34)]. Besides, our argument
is not limited to the DMI but also applicable to many other
magnetic anisotropies. We will show that the electric field can
also yield the �′ interaction [see, e.g., Eq. (40)].

III. KITAEV-HEISENBERG MODEL

A. Introduction

This section is devoted to the application of the generic
theory to Kitaev materials [10–12]. The Kitaev model is an
S = 1

2 quantum spin system on the honeycomb lattice with
the Hamiltonian

HK =
∑

a=x,y,z

Ka
∑
〈i, j〉a

Sa
i Sa

j , (6)

where 〈i, j〉a for a = x, y, z denotes the aa bond depicted
in Fig. 4. Sa

j denotes the a component of the S = 1
2 spin

operator S j at the jth site. The Hamiltonian (6) contains
the Ising interaction KaSa

i Sa
j whose direction depends on the

FIG. 4. Kitaev interaction on honeycomb lattice. The blue (xx),
green (yy), and red (zz) bonds denote the 〈i, j〉a bond in Eq. (6) for
a = x, y, z, respectively.

bond 〈i, j〉a. The Kitaev model (6) has drawn much attention
in the last decade for two reasons. First, its ground state is
exactly available and a spin liquid [9]. Second, Jackeli and
Khaliulin showed possible realizations of the Kitaev model in
spin-orbit-coupled Mott insulators [35]. Real materials have
spin-spin interactions other than the Kitaev interactions (e.g.,
the Heisenberg interaction) however small they are. There is
a family of materials whose spin Hamiltonian contains the
dominant Kitaev interaction and other subleading spin-spin
interactions. We call this family Kitaev materials in this paper.
For instance, the Kitaev-Heisenberg model

HKH = HK + J
∑
〈i, j〉

Si · S j (7)

has often been discussed as a representative model of the
Kitaev material, which may be more realistic than the Kitaev
model (6). We can consider many other variants such as the
Kitaev-Heisenberg-�′ model,

HKH�′ = HKH + �′ ∑
a=x,y,z

∑
b,c �=a

∑
〈i, j〉a

(
Sb

i Sc
j + Sc

i Sb
j

)
, (8)

which we discuss later in this section. This paper also deals
with a variant of the Kitaev model that contains the electric-
field-induced DMI.

In the rest of this section, we derive the Kitaev-Heisenberg
model in the absence of the electric field and discuss how
the electric field changes the model by adding extra spin-spin
interactions. We show that the electric field can yield the �′
interaction �′(Sa

i Sb
j + Sb

i Sa
j ) and the DMI.

B. Without electric fields

1. Few-body system

Based on the generic framework, we discuss Kitaev mate-
rials. Here, we focus on a low-spin d5 electron configuration
under the octahedral crystal electric field and the strong SOC
[35], where the Jeff = 1

2 doublet hosts a spin-orbit-entangled
(pseudo)spin [Fig. 5(a)]. The Jz

eff = 1
2 state is a superposition

of t2g states, |↑, lz = 0〉 = |dxy,↑〉 and |↓, lz = ±1〉 =
(|dzx,↓〉 ± i|dyz,↓〉)/

√
2 [35,85–90]. Let us denote the
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FIG. 5. (a) Jeff = 1
2 model’s electron configurations in �7+ or-

bitals and px,y,z orbitals at Mj and L sites ( j = 1, 2). The Jeff = 1
2

orbital is half-occupied while the Jeff = 3
2 orbitals at the Mj sites

and the p orbitals at the L site are fully occupied. (b) Geometrical
configuration of three sites, M1,2 and L. �M1LM2 forms a right-angle
isosceles triangle. (c) Electron hopping between dxy orbital at M1 and
py orbital at L. (d) Electron hopping between dxy orbital at M2 and px

orbital at L. The hopping between dxy at M1 (M2) and px (py) orbital
at L is forbidden by symmetries.

Jz
eff = ± 1

2 state on the jth magnetic ion as |±〉 j . These
pseudospin- 1

2 states are written as

|+〉 j = 1√
3

(|d j,xy,↑〉 + |d j,yz,↓〉 + i|d j,zx,↓〉), (9)

|−〉 j = 1√
3

(|d j,xy,↓〉 − |d j,yz,↑〉 + i|d j,zx,↑〉). (10)

We consider an electric configuration shown in Fig. 5(a). One
of |±〉 j is occupied on the Mj site and all the p orbitals are
occupied in the L site.

Let us consider a situation where the two magnetic ions
M1 and M2 and the one nonmagnetic ion L2 form an isosce-
les right triangle �M1LM2 on the xy plane [Fig. 5(b)].
Figures 5(c) and 5(d) show examples of possible hoppings
between p and d orbitals. The Jeff = 1

2 doublet is the super-
position of t2g orbitals, as Eqs. (9) and (10) show. We first
consider electron hoppings between p and t2g orbitals and
then rewrite the hoppings in terms of the Jeff = 1

2 doublet by
projecting the t2g orbitals to the doublet.

It is straightforward to write the intrinsic hoppings Ht (0) in
terms of t2g-orbital operators. As Figs. 5(c) and 5(d) show, the

2Let us make a brief comment on the term “ion” in our context.
Generally speaking, none of the M1, M2, or L sites needs to be
ions. Practically, however, they are often ions that can release or
receive electrons as assumed in the generic framework of Sec. II.
Even though they could be other than ions, we call those sites are
referred to as “ions” in this paper for notational simplicity.

electron in the py orbital can hop directly to the dxy orbital at
M1 but cannot hop directly to that at M2 because the dxy orbital
has the odd parity about a reflection (x, y, z) → (x,−y, z) but
the py orbital has the even parity. Likewise, the electron in the
px orbital can hop directly to the dxy orbital at M2 but cannot to
that at M1 because of the difference in the parity about another
reflection (x, y, z) → (−x, y, z). Such crystalline symmetries
permit the following intrinsic hoppings at E = 0:

Ht (0) = t
∑
σ=±

(p†
y,σ d1,xy,σ + p†

z,σ d1,zx,σ

+ p†
x,σ d2,xy,σ + p†

z,σ d2,zx,σ + H.c.). (11)

The hopping amplitude t represents a matrix element of a
single-electron Hamiltonian,

H1 = p2

2m
+ V (x), (12)

where V (x) is the potential that the electron feels, typically, a
crystalline electric field. For example, the hopping amplitude
t is given by

t = 〈py,σ |H1|d1,xy,σ 〉. (13)

Note that t is independent of the index σ because H1 of
Eq. (12) has no σ dependence. In this section, we only con-
sider the intra-atomic SOC and do not include any SOC in
H1. When H1 is independent of the electron spin σ , t is
independent of σ . Other spatial symmetries of the triangle
�M1LM2 also remove the orbital dependence of t in Eq. (11).

The Jeff = 1
2 doublet [Eqs. (9) and (10)] is the superposi-

tion of dxy, dyz, and dzx orbitals. If we discard the d orbitals
other than the Jeff = 1

2 one, we can rewrite creation and anni-
hilations operators of those d orbitals are replaceable by those
of Jeff = 1

2 ones d†
j,�7+,σ and d j,�7+,σ (see Appendix A 1):

Ht (0) = t√
3

∑
σ=±

[(p†
y,σ + ip†

z,−σ )d1,�7+,σ

+ (p†
x,σ + σ p†

y,−σ )d2,�7+,σ + H.c.]. (14)

Here, �7+ labels the irreducible representation of the Jeff = 1
2

doublet [85,87].
We are now ready to write the full Hamiltonian

H = HU + Ht (0) (15)

of the this three-site model at zero electric fields. The intrinsic
hoppings and the intra-atomic interactions HU are given by
Eq. (14) and

HU = Ud

∑
j=1,2

n j,�7+,+n j,�7+,− + Up

∑
μ=x,y,z

npμ,+npμ,−

+
∑
j=1,2

Vj

∑
σ=±

n j,σ + Vp

∑
σ=±

∑
μ=x,y,z

npμ,σ

− JH

∑
μ �=μ′

sμ · sμ′ −
∑
j=1,2

∑
a=x,y,z

haSa
j , (16)

respectively. Here, n j,�7+,σ := d†
j,�7+,σ d j,�7+,σ and npμ,σ :=

p†
μ,σ pμ,σ are the electron number operators in the Jeff = 1

2
doublet at the Mj site and pμ orbital at the L site, respectively.
Ud and Up denote the intraband Coulomb repulsions for the d
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FIG. 6. (a) Second-order process to yield Kitaev model discussed in Refs. [35,40,90]. (b) Fourth-order process to yield Kitaev-Heisenberg
model discussed in this paper. The arrows depict electron hoppings between proximate orbitals.

and p orbitals, Vj and Vp are the onsite potentials at Mj and
L, and −JH < 0 is the ferromagnetic direct exchange between
spins sμ in the pμ orbitals.

Based on the generic framework of Fig. 3, we obtain the
following spin Hamiltonian from the intrinsic hoppings (14)
and the intra-atomic interactions:

Hspin(0) = JFS1 · S2 + KSz
1Sz

2 −
∑

a=x,y,z

∑
j=1,2

haSa
j (17)

with the exchange coupling

JF = −8

3
t4

(
1

Ud − Up + �d p

)2

× 1

2(Ud − Up + �d p) − JH
, (18)

and the antiferromagnetic Kitaev coupling K = −2JF > 0.
Here, S j is the Jeff = 1

2 pseudospin (see Appendix A for its
definition) and �d p = Ed − Ep is the difference of (Jeff =
1
2 )-orbital eigenenergy (Ed ) and the p-orbital one (Ep). The
coupling JF is not necessarily ferromagnetic. In this paper, we
use parameters that yield the ferromagnetic coupling JF < 0,
which is a typical case in accordance with the Goodenough-
Kanamori rule [91–93]. Note also that the Kitaev coupling K
is independent of the SOC because we discarded the Jeff = 3

2
levels in the derivation of Eq. (17) [Fig. 6(b)]. Inclusion of the
Jeff = 3

2 levels improves the quantitative aspect of the model,
making K depend on the SOC [94,95]. We discarded Jeff = 3

2
orbitals in this paper to keep the model as simple as possible.
By contrast, the explicit inclusion of the p orbitals in our
model is essential in order to discuss the electric-field effect
microscopically [67].

2. Many-body systems

We can build the Kitaev-Heisenberg model

HKH =
∑

a=x,y,z

∑
〈i, j〉a

(
KSa

i Sa
j + JFSi · S j

) −
∑

j

h · S j (19)

on the honeycomb lattice from the spin Hamiltonian (17).
Let us put two triangles �M1L1M2 and �M1L2M2 on the
xy plane as shown in Fig. 7(a). Both the two triangles lead
to the spin Hamiltonian (17). The M1-M2 bond in this spin
Hamiltonian corresponds to the zz bond (the red bond) of
Fig. 4. The other bonds a = x, y are derived similarly. Let us
consider the xx bond (the blue bond) of Fig. 7(b). We consider
a local x′y′z′ coordinate system and put triangles �M3L3M4

and �M3L4M4 on the x′y′ plane and derive the effective spin
Hamiltonian

Hspin = P

⎡
⎣KSz′

3 Sz′
4 + JFS3 · S4 −

∑
j=3,4

h · S j

⎤
⎦P. (20)

To combine the octahedra of Figs. 7(a) and 7(b) so as to make
them share an edge and form the green M2-M3 bond, the xyz
and x′y′z′ coordinates should satisfy

(x′, y′, z′) = (y, z, x), (21)

turning Eq. (20) into

Hspin = P

⎡
⎣KSx

3Sx
4 + JFS3 · S4 −

∑
j=3,4

h · S j

⎤
⎦P. (22)

In fact, we can easily confirm the relation (21) by overlapping
the xy and x′y′ planes with a single octahedron [Fig. 7(c)].
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FIG. 7. (a) zz bond (red line) of Kitaev-Heisenberg model
on xy plane (light blue xx plane). (b) xx bond (blue line) of
Kitaev-Heisenberg model on x′y′ = yz plane (light yellow plane).
(c) Relative positions of the two planes (a) and (b).

Repeating the same procedure, we obtain the Kitaev-
Heisenberg model (19) on the honeycomb lattice of Fig. 4.
We may regard that the honeycomb lattice is put on the (111)
plane [35].

C. With in-plane electric fields

We go back to the three-site model on the xy plane (i.e.,
z = 0) and now give our attention to E-induced interactions
that are to be added to the spin Hamiltonian (17). Let us apply
the in-plane electric field E = Exex + Eyey to our three-site
model on �M1LM2. The in-plane electric field breaks the re-
flection symmetry (x, y, z) → (y, x, z) about the x = y plane.
The other reflection symmetry (x, y, z) → (x, y,−z) about the
z = 0 plane remains intact. The in-plane electric field per-
mits hoppings that were intrinsically forbidden. Lowering the
spatial symmetry of the system, the in-plane dc electric field
induces the following hoppings between p orbitals and t2g

orbitals:

δHt (E ) = −I
∑
σ=±

[Ey(p†
z,σ d1,yz,σ + p†

x,σ d1,xy,σ )

+ Ex(p†
z,σ d2,yz,σ + p†

y,σ d2,xy,σ ) + H.c.], (23)

where −IEy is the matrix element of the −EyPy term in the
single-electron Hamiltonian

−IEy = 〈px,σ |(−EyPy)|d1,xy,σ 〉

= −eEy
∫

dr〈px,σ |r〉 y 〈r|d j,xy,σ 〉. (24)

FIG. 8. (a) Proximate dxy and px orbitals with zero overlap in-
tegral. (b) dxy orbital distorted by electric field E along the vertical
direction. This distortion makes the overlap of the two proximate
orbitals nonzero, yielding the E-induced hopping δHt (E ).

The matrix element (24) represents a reflection-symmetry-
breaking distortion of the wave functions of d1,xy,σ and
px,σ orbitals caused by the electric field. The perturbation
V = −E · P gives rise to the following perturbation correction
to |d1,xy,σ 〉:

|d1,xy,σ 〉 → |d1,xy,σ 〉 − 〈px,σ |V |d1,xy,σ 〉
Ep − Ed

|px,σ 〉 + · · · .

(25)

The similar expansion holds for |px,σ 〉. The matrix element
〈px,σ |V |d1,xy,σ 〉 = −IEy gives a measure of how much the
proximate dxy and px orbitals mix with each other. Their
mixture results in the distortion of orbital probability clouds
along the direction of E [from Fig. 8(a) to 8(b)]. The dis-
tortion of the orbitals affects the spin Hamiltonian as the
addition of the E-induced hoppings δHt (E ). The additional
hoppings keep the reflection symmetry about the z = 0 plane
in accordance with the direction of the in-plane electric
field. This reflection symmetry permits the DMI with the
nonzero z component and with zero x and y components
[Fig. 9(a)].

To derive the E-induced DMI, we first rewrite the hoppings
δHt (E ) similarly to the intrinsic hoppings Ht (0):

δHt (E ) = − I√
3

∑
σ=±

[Ey(σ p†
z,−σ + p†

x,σ )d1,�7+,σ

+ Ex(σ p†
z,−σ + p†

y,σ )d2,�7+,σ + H.c.], (26)

where spin-dependent hoppings (e.g., p†
z,−σ d1,�7+,σ ) emerged

because the Jeff = 1
2 doublets (9) and (10) contain spin-up

and -down states of t2g orbitals. For example, |+〉 j con-
tains |d j,xy,↑〉 and |d j,zx,↓〉. Straightforward calculations of
Eq. (5) show that the in-plane electric field adds the following
DMI:

DF · S1 × S2 = Dz
F(S1 × S2)z, (27)

with

Dz
F

JF
= −4I

t

(Ex + Ey)(Ud − Up + �d p) + (Ex − Ey)JH

2(Ud − Up) + JH
,

(28)
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FIG. 9. (a) Out-of-plane DMI in Jeff = 1
2 model induced by in-

plane E. (b) Combining two triangles �M1LM2 and �M1L′M2 into
a rectangle M1LM2L′, we obtain the DMI Dz

Fez and D′z
F ez, respec-

tively. The resultant DMI on the M1-M2 bond of the rectangle is
(Dz

F + D′z
F )ez. If L and L′ are equivalent, D′z

F = −Dz
F follows from

the reflection M1 ↔ M2 about the x = y plane.

to the Kitaev-Heisenberg Hamiltonian (17), which is in ac-
cordance with the reflection symmetry (x, y, z) → (x, y,−z)
that the in-plane electric field respects. As we did in the
previous subsection, we combine �M1LM2 and �M1L′M2

into the rectangle M1LM2L′ [Fig. 9(b)]. Let us suppose that
the DMI generated by the in-plane E on these triangles are
Dz

F(S1 × S2)z and D′z
F (S1 × S2)z as shown in Fig. 9(b). The

DMI on the M1-M2 bond on the rectangle M1LM2L′ is their
superposition, (Dz

F + D′z
F )(S1 × S2)z. Note that if L and L′ are

completely equivalent, D′z
F = −Dz

F follows from the equiva-
lence. The DMI is then absent in the rectangle and eventually
in the honeycomb lattice (Fig. 4). The DM vector DF of the E-
induced DMI (27) is perpendicular to �M1LM2. Note that this
direction of the DM vector perfectly accords with Moriya’s
symmetry argument [18] about the direction of the DM vector.
The in-plane electric field keeps the inversion symmetry about
the xy plane: (x, y, z) → (x, y,−z). This inversion forbids
the x and y components of the DMI. Indeed, the inver-
sion transforms the DM vector as (Dx

F(E ), Dy
F(E ), Dz

F(E )) →
(−DF(E ), −DF(E ), DF(E )), where E is the in-plane electric
field. The inversion symmetry about the xy plane thus leads to
Dx

F = Dy
F = 0, in accordance with the microscopically derived

result (27).

D. With out-of-plane electric fields

Let us apply an out-of-plane electric field E = Ezez to
the triangle �M1LM2 on the z = 0 plane. The out-of-plane
electric field violates the reflection symmetry about the z = 0
plane but keeps a discrete rotational symmetry, a π -rotational
one about a perpendicular bisector � of the triangle � M1LM2.
Note that the red-fringe arrow of Fig. 10(a) is on the line �.
The line � is defined as � = {(x, y, z)| y = x, z = 0}. The π

rotation around � changes (x, y, z) → (y, x,−z). Let us denote
the E-induced DM vector due to E = Ezez as DF(Ez ). The π

FIG. 10. (a) In-plane DMI in Jeff = 1
2 model induced by out-of-

plane E. The DMI has the DM vector Dx
Fex + Dy

Fey with Dx
F = Dy

F =:
D‖

F. (b) Combining two triangles �M1LM2 and �M1L′M2 into a rect-
angle M1LM2L′, we obtain the DMI D‖

F(ex + ey ) and D′‖
F (ex + ey ),

respectively. The resultant DMI on the M1-M2 bond of the rectangle
is (D‖

F + D′‖
F )(ex + ey ). If L and L′ are equivalent, D′‖

F = −D‖
F follows

from the reflection M1 ↔ M2 about the x = y plane.

rotation (x, y, z) → (y, x,−z) affects the DMI as follows:

(Dx(Ez ), Dy(Ez ), Dz(Ez ))

→ (−Dy(−Ez ), −Dx(−Ez ), Dz(−Ez )). (29)

As we did in the previous subsection, we evaluate the DMI
perturbatively. If we consider the linear effect of E only, the
DM vector is approximately an odd function of the out-of-
plane field Ez: DF(−Ez ) = −DF(Ez ). Therefore, Eq. (29) is
approximated as

(Dx(Ez ), Dy(Ez ), Dz(Ez ))

→ (Dy(Ez ), Dx(Ez ), −Dz(Ez )). (30)

Equation (30) implies that the E-induced DMI shows Dx
F =

Dy
F and Dz

F = 0 with the linear order of E.
Let us derive the DMI microscopically without relying

on the symmetry argument. The out-of-plane electric field
induces the following hopping:

δHt (E ) = −IEz
∑
σ=±

∑
j=1,2

[p†
y,σ d j,yz,σ + p†

x,σ d j,zx,σ + H.c.]

= − IEz

√
3

∑
σ, j

[(σ p†
y,−σ + ip†

x,−σ )d j,�7+,σ + H.c.].

(31)

Repeating the same procedure as the one in the previous
subsection, we straightforwardly obtain

Hspin = JFS1 · S2 + KSz
1Sz

2 −
∑

a=x,y,z

∑
j=1,2

haSa
j

+ DF · (S1 × S2) + �′[(Sx
1 + Sy

1

)
Sz

2 + Sz
1

(
Sx

2 + Sy
2

)]
,

(32)
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with

DF = D‖
F(ex + ey), (33)

D‖
F = 16t3

3
EzI

(
1

Ud − Up + �d p

)2

× JH

4(Ud − Up + �d p)2 − JH
2 , (34)

�′ = 32t3

9
EzI

(
1

Ud − Up + �d p

)2

× Ud − Up + �d p

4(Ud − Up + �d p)2 − JH
2 . (35)

The out-of-plane electric field gives the DMI and the
inversion-symmetric off-diagonal magnetic anisotropy
�′(Sy

1Sz
2 + Sz

1Sy
2), known as the �′ interaction [96,97] in

the context of Kitaev materials. Both the DMI and the �′
interaction accord with the reflection symmetry about the
x = y plane.

When we combine two triangles �M1LM2 and �M1L′M2

into the rectangle M1LL′M2 in analogy with the in-plane
E case, we face the same cancellation of the DMI again.
If L and L′ are equivalent, D‖

F1 of �M1LM2 and D‖
F2 of

�M1L′M2 have the same magnitude and the opposite sign:
D‖

F1 = −D‖
F2 [Fig. 10(b)]. Hence, the M1-M2 bond of the

rectangle M1LL′M2 has then no DMI after all. The relation
D‖

F1 = −D‖
F2 directly comes from the fact that the DMI is

antisymmetric under the reflection about the x = y plane. By
contrast, the �′ interaction is symmetric under that reflection.
Therefore, the �′ interaction is present on the M1-M2 bond of
the combined rectangle.

To conclude this subsection, we note that the spin Hamil-
tonian (32) indeed accords with the π -rotational symmetry
about the line �. As Eq. (30) shows, the E-induced DMI lies
in the xy plane (i.e., Dz

F = 0) within our theoretical scheme.
Note that the out-of-plane component DF(Ez ) is not forbid-
den but a higher-order effect of the electric field, practically
negligible. The same argument applies to the �′ interaction.
Let us consider a generic �′ interaction:

�′
x(Ez )

(
Sy

1Sz
2 + Sz

1Sy
2

) + �′
y(Ez )

(
Sz

1Sx
2 + Sx

1Sz
2

)
+ �′

z(Ez )
(
Sx

1Sy
2 + Sy

1Sx
2

)
. (36)

The π rotation changes

(�′
x(Ez ), �′

y(Ez ), �′
z(Ez ))

→ (−�′
y(−Ez ), −�′

x(−Ez ), �′
z(−Ez )). (37)

If we keep the O(E ) terms only, we can approximate this
transformation as

(�′
x(Ez ), �′

y(Ez ), �′
z(Ez ))

→ (�′
y(Ez ), �′

x(Ez ), −�′
z(Ez )). (38)

In other words, the E-induced �′ interaction satisfies
�′

x(Ez ) = �′
y(Ez ) and �′

z(Ez ) = 0, as the microscopically de-
rived spin Hamiltonian (32) shows.

E. Kitaev-Heisenberg-�′ model under [111] electric field

Recall that the honeycomb lattice of Fig. 4 is put on
the (111) plane. Now we apply the electric field E[111] =
E[111](ex + ey + ez )/

√
3 so that the electric field is perpen-

dicular to the honeycomb lattice. This electric field E[111]

has both the in-plane and out-of-plane components. Within
our framework (Fig. 3) that includes the E-induced hopping
up to the linear order of |E|, the E[111]-induced magnetic
anisotropies are a simple superposition of those induced by the
in-plane field and the out-plane-plane ones. Hence, we obtain
the following spin Hamiltonian,

HKH�′ =
∑

a=x,y,z

∑
〈i, j〉a

(
KSa

i Sa
j + JFSi · S j

) −
∑

j

h · S j

+ �′(E[111])
∑

a=x,y,z

∑
b,c �=a

∑
〈i, j〉a

(
Sb

i Sc
j + Sc

i Sb
j

)
, (39)

where �′(E[111]) is proportional to E[111]:

�′ = 32t3

9

2E[111]√
3

I

(
1

Ud − Up + �d p

)2

× Ud − Up + �d p

4(Ud − Up + �d p)2 − JH
2 . (40)

We assumed that the ligand sites are all equivalent. As we
saw in the previous subsections, the DMI induced by E[111]

is completely canceled when L and L′ are equivalent in the
building blocks [Figs. 7(a) and 7(b)] of the honeycomb lattice
(Fig. 4). When the L and L′ sites are nonequivalent, the ef-
fective spin Hamiltonian (39) further acquires the DMI. The
spin Hamiltonian (39) thus contains the Kitaev interaction,
the Heisenberg interaction, the Zeeman energy, and the �′
interaction. We call it a Kitaev-Heisenberg-�′ model in this
paper.

F. Gapped quantum spin liquid

Much effort is being made to investigate effects of non-
Kitaev interactions on quantum spin-liquid states of the pure
Kitaev model in connection with Kitaev materials such as
α-RuCl3 [98–105].

Under uniform magnetic fields h = ∑
a=x,y,z haea, the Ki-

taev model can have a gapped quantum spin-liquid phase with
the Chern number C = 1 when hxhyhz �= 0 [9]. The Majorana
fermion in that phase has a mass gap m, the third-order of the
external magnetic field:

m ∝ hxhyhz

K2
. (41)

We obtain the relation (41) by regarding the Zeeman en-
ergy −∑

j h · S j as a perturbation to the Kitaev(-Heisenberg)
model. The third-order perturbation gives rise to the mass term

−h̃
∑
{i, j,k}

Sx
i Sy

j S
z
k, (42)

with h̃ ∝ m ∝ hxhyhz/K2. In the presence of the perturbative
�′ interaction and the Zeeman energy, we obtain the mass term
(42) in the second-order process of the perturbation expansion
instead of the third-order one without the electric field. For
example, let us consider the M1-M2 bond on the xy plane.
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Taking the Zeeman energy −hz
∑

j Sz
j and the �′ interaction

�′ ∑
〈i, j〉z

(Sx
i Sy

j + Sy
i Sx

j ) on that bond as perturbations to the
Kitaev-Heisenberg Hamiltonian, we obtain [96,97]

h̃ ∝ hz�′. (43)

Suppose that we have no �′ interactions in the first place (i.e.,
�′ = 0 for E = 0). Then, the Majorana mass ∝ |hxEz| is the
second order about the external electromagnetic fields. Fur-
thermore, the E-induced �′ interaction can induce topological
phase transitions between gapped quantum spin liquids with
different Chern numbers [97]. In addition to the �′ interaction,
the electric field can also induce the DMI as we saw in this
section though we need nonequivalence between ligand sites.
A recent study [106] pointed out that the DMI can also drive
topological quantum phase transitions between gapped quan-
tum spin liquids under magnetic fields. Therefore, the electric
field turns out to be capable of inducing various topological
quantum phase transitions in combination with the magnetic
field.

For α-RuCl3, we can use parameters Ud = 2.5 eV, Up =
1.5 eV, �d p = 5.5 eV, JH = 0.7 eV, and t = 0.88 eV [105].
These parameters give JF = −3 meV. As we mentioned, our
model gives antiferromagnetic K > 0 but can make it fer-
romagnetic K < 0 with slight modifications of the model.
If we ignore the E dependence of JF as we did thus far
in this paper, we find that a dc electric field 1–10 MV/cm
change |Dx

F| and |�′| only by 10−4%–10−3% of JF, which
is too much underestimated. Note that the 1–10 MV/cm dc
electric field can reduce JF by 1%–10% [67]. This reduction
enhances the change in the ratios |Dx

F/JF| and |�′/JF|. We
can further enhance the dc electric-field effect, by including
Rashba-SOC-driven hoppings besides the hitherto consid-
ered intra-atomic SOC. 1%–10% change of the SOC will
have large impact on the E-induced DMI. This estimation
within our perturbation scheme looks experimentally chal-
lenging. However, considering the fact that many multiferroic
compounds show magnetoelectric effects [48], we might be
optimistic about a chance to obtain larger changes in |�′/JF|
and |Dx

F/JF|, depending on microscopic details of compounds
not taken into account in this paper.

To conclude this section, we stress the fact that the dc
electric field yields the terms such as the DMI and the �′ inter-
action that were forbidden from symmetry in the absence of
the electric field. This emergence of the interaction is possible
because the electric field lowers the spatial symmetry.

IV. RASHBA SPIN-ORBIT COUPLING

A. Introduction

We now move on to the interatomic SOC. The Rashba
SOC will be one of the most famous forms of such SOC. We
can include the Rashba SOC into the theoretical framework
through the single-electron Hamiltonian [see Eq. (12)]. We
can effectively regard that the single-electron Hamiltonian H1

contains the Rashba SOC, namely,

−αR(σ × p) · e(r), (44)

where p is the momentum of the electron in the crystal and
e(r) = E(r)/|E(r)| is the unit vector parallel to the electric

FIG. 11. (a) d5 electron configuration of d orbitals under octa-
hedral crystal electric field and p orbitals. (b) Spatial configuration
of magnetic ions M1,2 and ligand ion L. The red arrows depict the
unit vectors d j for j = 1, 2 in Eq. (49). We emphasize that the
intra-atomic SOC is not considered here in contrast to the setup of
Fig. 5. We include the interatomic Rashba SOC (44).

field E(r). We can deem E(r) the external electric field, a
surface electric field for thin-film materials [107,108], or an
interfacial electric field for field-effect transistors [57,58]. The
coefficient αR is proportional to the strength of the local elec-
tric field:

αR ∝ |E(r)|. (45)

The Rashba SOC affects the single-electron Hamiltonian and
gives spin-flipping hoppings and eventually into the DMI.

B. Example

For demonstration, we again consider the isosceles right
triangle of Fig. 11(b). We also inherit the electron config-
uration, the low-spin d5 configuration under the octahedral
crystal electric field [Fig. 11(a)]. The only difference from
the previous Jeff = 1

2 model lies in the SOC mechanism.
In this section, we consider Rashba-SOC-driven hoppings
but ignore the d-orbital splitting due to the intra-atomic
SOC.

The Rashba SOC enters into the single-electron Hamilto-
nian H1:

H1 = p2

2m
+ V (r) − αRe(r) · σ × p, (46)

where m is the mass of the electron and V (r) is the potential
that the electron feels. The single-electron Hamiltonian keeps
the C2v symmetry [85] in the absence of the electric and
magnetic fields [i.e., E(r) = h = 0]. The last term of H1 is
nothing but the Rashba SOC. The Rashba SOC enters into the
Hubbard-type model via the hopping amplitude, the matrix
element of the single-electron Hamiltonian. The hopping am-
plitude between the px orbital at L and the da orbital at Mj is
given by

〈px,s|H1|d j,a,s′ 〉. (47)

When E(r) = 0, the hopping amplitude in our three-site
model on the isosceles right triangle is reduced to

〈px,s|H1|d j,a,s′ 〉 = tδa,xyδ j,2δs,s′ , (48)
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with a real constant t . The Rashba SOC adds another term
to the right-hand side of Eq. (48). For example, E(r) = Ezez

gives

〈px,s|[−αRe(r) · σ × p]|dj,a,s′ 〉
= −αR|k|ez[σss′ × (−id j )]

zδ j,2, (49)

where we replaced the momentum p = k by −i|k|d j with the
unit vector d j parallel to the Mj-L bond [Fig. 11(b)]. k is the
wave vector (since we set h̄ = 1). The Kronecker’s delta δ j,2

appears because the vector d j is proportional to ex for j = 1
and to ey for j = 2.

Considering an application to thin-film systems on the
z = 0 plane, we apply an out-of-plane electric field E = Ezez

along the z direction [1,2]. The Rashba SOC due to the out-

of-plane electric field gives

δHt (E ) =
∑
s,s′

[iλp†
y,s(σ

ss′ × d1)zd1,xy,s′

+ iλp†
x,σ (σss′ × d2)zd2,xy,s′ + H.c.], (50)

with a unit vector d j pointing toward the ligand site from Mj .
The hopping amplitude λ equals to αR|k|. The dc electric field
E adds this spin-dependent hopping (50) to the intrinsic spin-
independent hopping,

Ht (0) = t
∑

σ

(p†
y,σ d1,xy,σ + p†

x,σ d2,xy,σ + H.c.). (51)

The spin Hamiltonian (3) follows the diagram of Fig. 3. We
obtain the O(|E|) correction to the spin Hamiltonian by re-
placing one of the four Ht (E ) by δHt (E ) and the others by
Ht (0). Namely, we find

PHt (E )

(
1

Eg − HU
QHt (E )

)3

P ≈ PHt (0)

(
1

Eg − HU
QHt (0)

)3

P +
[

PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c.

]

+
[

PHt (0)
1

Eg − HU
QδHt (E )

(
1

Eg − HU
QHt (0)

)2

P + H.c.

]
. (52)

The spin Hamiltonian for E = 0 contains neither magnetically
anisotropic terms nor inversion-asymmetric terms because the
Hamiltonian Ht (0) + HU for E = 0 is magnetically isotropic
and inversion symmetric. The Rashba interaction (44) breaks
those spin and spatial symmetries at the same time.

Let us show results of the fourth-order perturbation ex-
pansion and give detailed derivations in Appendix B. The
superexchange interaction is again ferromagnetic: Hspin(0) =
JRS1 · S2 with [67]

JR = −8t2 JH

4(Ud − Up + �d p)2 − JH
2

(
1

Ud − Up + �d p

)2

.

(53)

The E-induced hoppings (50) yield the in-plane DMI:

Hspin(E ) = JRS1 · S2 + DR · S1 × S2 (54)

with

Dx
R = 32λt3

(
1

Ud − Up + �d p

)2 JH

4(Ud − Up + �d p)2 − JH
2 ,

(55)

Dy
R = −32λt3

(
1

Ud −Up + �d p

)2 Ud −Up +�d p

4(Ud −Up +�d p)2 − JH
2 ,

(56)

Dz
R = 0. (57)

Note that the DMI violates the inversion symmetry about the
x = y plane because the Rashba SOC −αR(σ × k)z does.

For a parameter set Ud = 3 eV, Up = 2 eV, �d p =
5 eV, JH = 1 eV, t = 0.1 eV, and λ = 0.05 eV, we

obtain |Dx
R/JR| ≈ 0.46. We used a value λ = 0.05 eV,

much smaller than λ = αR|k| ∝ |E(r)| estimated in some
materials [109,110]. Because αR is well controllable with the
electric field [110], we may expect that the external dc electric
field can control the DMI substantially both for Kitaev spin
liquids and topological spin textures.

C. Strength of external and internal electric fields

Let us estimate the required electric-field strength. Mainly,
there are two resources of the dc electric field. One is to apply
it externally using, for example, field-effect transistors. The
other is generated internally by crystal structures. We call the
former external electric fields and the latter internal ones.

Currently, we can realize the external dc field of the
strength ∼10 MV/cm using, for example, double-layer tran-
sistors [57,58]. The internal dc electric field can be even
stronger. Let us consider the octahedral crystal electric field.
The strength of the crystal electric field is typically ∼1 eV
[105]. If the ligand is ∼0.1–1 nm away from the magnetic ion,
the internal crystal electric field is ∼10–100 MV/cm. This in-
ternal crystal electric field is responsible for the Rashba SOC
generated on the interface of different materials. This is the
reason why the Rashba SOC can be strong, as we briefly saw
in the previous subsection. We can find another interesting
situation in scanning tunneling microscopes (STM) [112]. A
tip of the STM induces a dc electric field strong enough to
induce the tunneling electron current on the surface. If the
STM tip is ∼1 nm distant from the surface and the ∼1 V
voltage is applied, the surface feels the ∼10 MV/cm electric
field [42,65].

A single-cycle THz laser pulse [76–81] will also be useful
to generate strong dc electric fields. Although the laser pulse
is not exactly static, the laser pulse can effectively be deemed
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FIG. 12. (a) Edge-sharing octahedra ML4 projected to xy plane.
Magnetic ions form the square lattice (black solid lines). Intrinsic
and E-induced hoppings occur on dashed gray bonds. (b) Four-site
model for nearest-neighbor superexchange interaction of magnetic
ions. (c) One-dimensional version of square-lattice model (a), ferro-
magnetic spin chain with uniform DMI. (d) q vectors of 3q-hedgehog
state [8,30,111].

a dc electric field if the timescale of the electron dynamics
(∼10–100 fs) is much faster than the duration of the applied
THz laser pulse (∼1 ps). The strength of the laser pulse will
also reach ∼1 MV/cm [76–79]. Here we need to be careful
about the time dependence of the magnetic anisotropy induced
by the THz laser pulse. The THz laser pulse can be regarded as
a dc electric field when the electron hoppings are concerned,
as we mentioned above. Still, since the timescale of the spin
dynamics is much slower than that of electron ones, the re-
sultant magnetic anisotropy in the spin Hamiltonian generally
shows the time dependence. The spin dynamics associated
with the time-dependent spin Hamiltonian is, in principle,
observable by optical measurements such as pump-probe ex-
periments [113].

D. Applications

1. Magnetic skyrmion lattice

We can directly apply our Rashba SOC argument to
controls of magnetic skyrmion lattice [19–21,32,33]. We ex-
emplify this application by considering a two-dimensional
(2D) array of edge-sharing octahedra whose centers have
magnetic ions and vertices have ligand ions [Fig. 12(a)].
The magnetic ions form the square lattice on the xy plane.
We can build this many-body model with the small square
plaquette of Fig. 12(b) made of two isosceles right triangles
�M1L1M2 and �M1L2M2. Assuming the Rashba SOC (50)
on the Mj-Lj′ bonds, we obtain the spin Hamiltonian for
the building block of Fig. 12(b): Hspin = JRS1 · S2 + D⊥e⊥ ·
(S1 × S2) − hz

∑
j Sz

j , where we applied both the electric and

magnetic fields parallel to the z axis and e⊥ = (ex + ey)/
√

2
is the unit vector perpendicular to the M1-M2 bond. The

vector D⊥e⊥ with D⊥ = √
2(Dx

R + Dy
R) is depicted as the

red-fringe arrow in Figs. 12(a), 12(c). With many square
plaquettes of Fig. 12(b), we can build a square-lattice ferro-
magnet [Fig. 12(a)]

HSkX = −|JR|
∑

r

(Sr · Sr+ex + Sr · Sr+ey ) − hz
∑

r

Sz
r

+ D⊥(Ez )
∑

r

(Sr × Sr+ex · ey − Sr × Sr+ey · ex ).

(58)

The model (58) realizes the Néel-type magnetic skyrmion
lattice because a 90◦ rotation (Sx

r , Sy
r , Sz

r ) → (−Sy
r , Sx

r , Sz
r )

turns the model (58) into the well-known model that exhibits
the Bloch-type skyrmion lattice [32]. The out-of-plane electric
field thus controls the ratio D⊥(Ez )/JR(Ez ) and allows us
to create and annihilate the skyrmion. Figure 2(a) shows the
phase diagram of the model (58).

2. Chiral soliton lattice

Building the ML2 chain [Fig. 12(c)] with the same square
plaquette, we can construct a one-dimensional version of the
model (58) with the following Hamiltonian:

HCSL = −|JR|
∑

j

S j · S j+1 − hz
∑

j

Sz
j

+ D⊥(Ez )
∑

j

(ex · S j × S j+1). (59)

The spiral order is induced by the ferromagnetic superex-
change interaction and the uniform DMI along the spin chain
in the x direction. The transverse magnetic field hz perpen-
dicular to the DMI makes the ground state the chiral soliton
lattice (CSL) [25]. This ferromagnetic chain exhibits the CSL
phase if it is ferromagnetically coupled to proximate spin
chains in a three-dimensional crystal [26]. The ML2 chain
is typically realized for (M, L) = (Cu, O). The electric field
controls the ratio D⊥(Ez )/JR(Ez ) and turns the ferromagnetic
state into the CSL [Fig. 2(b)] [24–26].

3. Magnetic hedgehog lattice

The Rashba SOC is appropriate to drive the chiral structure
in a certain direction by generating a uniform DMI. This
feature of the Rashba SOC will also be useful for multiple-q
states [Fig. 1(c)] [8,30,111]. Provided that a magnetic material
shows a double-q state with the two q vectors lying on the
qx-qy plane [q1 and q2 of Fig. 12(d)] and the electric field E
adds another q vector (q3). This feature of the electric field
will drive the magnetic hedgehog lattice where the triple- or
quadruple-q spin texture is required.

We can consider another interesting situation, where the
single-q state is initially realized without the electric field.
Suppose the single-q configuration along the z axis. The elec-
tric field can add a double-q spin texture on the xy plane to the
single-q state, leading to the triple-q state [114].

V. SUMMARY AND DISCUSSIONS

This paper provides the general theoretical foundation
to dc electric-field controls of magnetic Mott insulators
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[41–43,49,70–75]. Our formalism treats the electric-field ef-
fect on electron orbitals of magnetic and nonmagnetic ions
perturbatively. As Fig. 3 shows, we considered the fourth-
order perturbation expansion about the hopping amplitude
because we explicitly take into account the nonmagnetic
ligand ion. The explicit inclusion of nonmagnetic ions is es-
sential to incorporate the dc electric-field effect. In fact, the
electric field lowers the spatial symmetry and induces electron
hoppings between magnetic and nonmagnetic ions that were
forbidden from the crystalline symmetry. The symmetry re-
stricts the possible form of the spin Hamiltonian. For example,
the DMI is allowed in the presence of the dc electric field
even when it is forbidden in the absence of the electric field.
The DM vector of such a DMI is obviously dependent on the
electric field and approximately proportional to the electric
field when the field is perturbative. This phenomenon of the
electric-field-induced DMI itself has been known for years.
More specifically, the Rashba-SOC-induced DMI has been
discussed for years [62,63,110,115,116]. What we did thus far
in this paper is to derive the DMI on the microscopic basis.
Note that the symmetry argument implies the induction of
the magnetic anisotropy such as the DMI by the electric field
but does not tell how large the induced anisotropy is. We did
not rely on the symmetry argument in the derivation of the
magnetic anisotropy. The microscopic derivation is important
because it tells us how large the induced magnetic anisotropy
is and what parameters we should tune to obtain more efficient
or drastic electric-field effects.

We considered two important cases: the Kitaev material
and the magnetic Mott insulator with the Rashba SOC. In the
Kitaev material, we proposed that the electric field generates
the DMI and the off-diagonal �′ interaction that can poten-
tially induce phase transitions [e.g., Eqs. (32) and (39)]. We
also showed that the electric-field-induced Rashba SOC gives
rise to the DMI, essential to realize topological spin textures
such as the magnetic skyrmion, the CSL, and the magnetic
hedgehog [e.g., Eqs. (58) and (59)]. Here, we did not discuss
the intra-atomic SOC in the p orbital of the ligand ion because
it will be much smaller than the two SOC dealt with in this
paper.

For experiments, we propose to use (quasi-)2D systems.
We can generally apply strong enough electric fields to quasi-
2D materials with state-of-the-art techniques such as double-
layer transistors [58] and STM [64]. The above-mentioned
α-RuCl3 [117] and other Kitaev-candidate materials such
as Na2IrO3 [10,35] have a quasi-2D layered honeycomb
structure. Quasi-2D materials are compatible with the strong
dc electric-field source [41,42,57,58]. Besides, the quasi-2D
structure allows us to use the strong electric field on the
interface to another material. Generation of strong surface
electric fields were already experimentally available [57,58].
Reference [43] gives an experimental controlling method of
the DMI with the interface electric field in the SrRuO3-SrIrO3

bilayer system. We point out the possible relevance of our
study to 2D van der Waals magnets [16,118,119] since the
2D van der Waals magnets exhibit large electric-field effects.
Electric-field switching between ferromagnetic and antiferro-
magnetic states was already experimentally reported [72,73].
We hope that our paper will stimulate electric-field controls of
magnetic anisotropies in those quasi-2D magnets.
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APPENDIX A: FIELD-INDUCED MAGNETIC
ANISOTROPIES IN KITAEV-HEISENBERG MODEL

1. Effective mapping from t2g orbitals to Jeff = 1
2 doublet

The Jeff = 1
2 doublet at M j are a spin-orbit-entangled

superposition of t2g orbitals. The up state (|+〉 j) and the
down state (|−〉 j) of the (pseudo)spin at Mj are given by
[51,86,89,90]

|+〉 j = 1√
3

(|d j,xy,↑〉 + |d j,yz,↓〉 + i|d j,zx,↓〉), (A1)

|−〉 j = 1√
3

(|d j,xy,↓〉 − |d j,yz,↑〉 + i|d j,zx,↑〉), (A2)

where |d j,a,σ 〉 = d†
j,a,σ |0〉 is a spin-σ state of the da-orbital

electron at Mj and |0〉 is the vacuum of the creation opera-
tor d†

j,a,σ . This doublet is labeled as �7+ using the Bethe’s
notation of the double group [87]. Hereafter, we denote σ =
↑,↓ as σ = +,−, respectively. Note that under the strong
spin-orbit coupling (SOC), we should adopt the so-called JJ
coupling scheme instead of the LS coupling one [89,90]. Here,
J is a superposition of the angular momentum L and the
spin S [see Eq. (A4)]. Whereas the SOC enters into wave
functions of hybridized orbitals in the LS-coupling scheme,
it does not in the strongly spin-orbit-entangled states (A1) and
(A2) in the JJ-coupling scheme. This difference comes out
of a fact that the former deals with the SOC perturbatively
but the latter does nonperturbatively. In Eqs. (A1) and (A2)
formulated within the JJ-coupling scheme, the coefficients
are fully determined by the crystalline symmetry.

The creation and annihilation operators of the t2g-orbital
electrons are related to each other in the Jeff = 1

2 model be-
cause the Jeff = 1

2 doublet is their superposition. Here, we note
that the orbital angular momentum L = −ld and the spin

Sd := h̄

2

∑
a=xy,yz,zx

∑
s,s′=±

d†
j,a,sσ

ss′
d j,a,s′ (A3)

form the effective total angular momentum Jeff as follows
[88]:

Jeff = −ld + Sd . (A4)

Hereafter, we set h̄ = 1 for simplicity. Sd and L of the �7+
doublet are antiparallel to each other because electrons in
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the d5 configuration feel the strong SOC ξL · Sd with large
positive ξ [88]. We can easily confirm

Jz
eff |±〉 j = ± 1

2 |±〉 j . (A5)

Since there are few possibilities of confusions, we simply
represent this pseudospin Jeff as S j and call it a spin, as we
did in the main text. The spin operator S j is thus defined as

Sz
j = 1

2 (|+〉 j j〈+| − |−〉 j j〈−|), (A6)

S±
j = |±〉 j j〈∓|. (A7)

Our purpose in this subsection is to write the spin Hamil-
tonian in terms of this spin operator S j . For this purpose, we
represent creation and annihilation operators of the t2g orbitals
in terms of the Jeff = 1

2 doublet, d†
j,�7+,σ and d j,�7+,σ . They are

defined as

|+〉 j =: d†
j,�7+,+|0〉, |−〉 j =: d†

j,�7+,−|0〉. (A8)

An operator n j,�7+,σ = d†
j,�7+,σ d j,�7+,σ counts the number of

electrons with the σ spin in the �7+ doublet. We can relate t2g-

orbital operators d j,a,σ with a = xy, yz, zx to the �7+-orbital
operator d j,�7+,σ as follows. For example, the operator d j,xy,σ

satisfies

d j,xy,+|σ 〉 j = 1√
3
δσ,+|0〉, d j,xy,−|σ 〉 j = 1√

3
δσ,−|0〉, (A9)

where δa,b is Kronecker’s delta. These relations indicate

d j,xy,σ P = Qdj,xy,σ P = Q

(
1√
3

d j,σ

)
P (A10)

at low energies, where P = ⊗
j=1,2(|+〉 j j〈+| + |−〉 j j〈−|) is

the projection operator to the Hilbert subspace spanned by
the �7+ doublets and Q = 1 − P is the projection to its
complementary. Note a simple relation Pdj,a,σ P = 0 for a =
xy, yz, zx. Likewise, we obtain

d j,yz,σ P = Qdj,yz,σ P = Q

(
− 1√

3
σd j,−σ

)
P, (A11)

d j,zx,σ P = Qdj,zx,σ P = Q

(
i

1√
3

d j,−σ

)
P. (A12)

These relations lead to

Ht (0)P =
{

t√
3

∑
σ=±

[(p†
y,σ + ip†

z,−σ )d1,�7+,σ + (p†
x,σ + σ p†

y,−σ )d2,�7+,σ + H.c.]

}
P, (A13)

PHt (0) = P

{
t√
3

∑
σ=±

[(p†
y,σ + ip†

z,−σ )d1,�7+,σ + (p†
x,σ + σ p†

y,−σ )d2,�7+,σ + H.c.]

}
. (A14)

At low energies, we can abbreviate these relations as Eq. (14)
in the main text.

2. Evaluation of I

To evaluate the constant I , we adopt the wave functions
〈r|d j,xy,σ 〉 and 〈r|pxy,σ 〉 of the hydrogenlike atom in terms of
the the polar coordinate r = r(sin θ cos φ, sin θ sin φ, cos θ ):

〈r|d j,xy,σ 〉 ≈ Rnd (r)Yxy(θ, φ), (A15)

〈r|px,σ 〉 ≈ R2p(r)Yx(θ, φ), (A16)

R3d (r) = 4

81
√

30

(
ZM

a0

)3/2(ZM

a0
r

)2

exp

(
− ZM

3a0
r

)
,

(A17)

R4d (r) = 1

768
√

5

(
ZM

a0

)3/2(
12 − ZMr

a0

)(
ZMr

a0

)2

× exp

(
− ZMr

4a0

)
, (A18)

R2p(r) = 1

2
√

6

(
ZL

a0

)3/2 ZL

a0
r exp

(
− ZL

2a0
r

)
, (A19)

Yxy(θ, φ) =
√

15

16π
sin2 θ sin(2φ), (A20)

Yx(θ, φ) =
√

3

4π
sin θ cos φ. (A21)

Here, a0, ZM , and ZL are the Bohr radius and the atomic
numbers of Mj and L, respectively [51,85]. n = 3, 4, . . . rep-
resent the principal quantum number. For n = 3, these wave
functions lead to

I ≈ ea0
16

27
Z7/2

M Z5/2
L

(
ZM

3
+ ZL

2

)−7

. (A22)

For n = 4, it becomes

I ≈ ea0

√
3

16
Z7/2

M Z5/2
L

(
ZM

4
+ ZL

2

)−8

. (A23)

APPENDIX B: RASHBA SPIN-ORBIT INTERACTION
IN TIGHT-BINDING MODELS

To show that the Rashba SOC leads to the DMI, we con-
sider the second term

PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c. (B1)

of Eq. (52). The second line of Eq. (52) is similarly calculated.
The fourth-order perturbation processes are divided into two
classes, the processes (a) and (b) of Fig. 18 in Ref. [67].
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The process (a) gives[
PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c.

]
process (a)

= P

[
iλt

Ud − Up + �d p

t2

2(Ud − Up) + 2�d p − JH

2

Ud − Up + �d p

×
⎧⎨
⎩

∑
σ1,σ2,...,σ5=±

1

2
δσ1,−σ2

(−δσ4,σ2δσ3,σ1 − δσ4,−σ2δσ3,−σ1

)(
σσ4σ5 × d2

)z
d2,σ5 d1,σ3 d†

2,σ2
d†

1,σ1

+
∑

σ1,σ2,...,σ5

1

2
δσ1,−σ2

(
δσ4,σ2δσ3,σ1 + δσ4,−σ2δσ3,−σ1

)(
σσ4σ5 × d1

)z
d1,σ5 d2,σ3 d†

2,σ2
d†

1,σ1

⎫⎬
⎭

+ iλt

Ud − Up + �d p

t2

2(Ud − Up) + 2�d p + JH

2

Ud − Up + �d p

×
⎧⎨
⎩

∑
σ1,σ2,...,σ5=±

1

2
δσ1,−σ2

(−δσ4,σ2δσ3,σ1 + δσ4,−σ2δσ3,−σ1

)(
σσ4σ5 × d2

)z
d2,σ5 d1,σ3 d†

2,σ2
d†

1,σ1

+
∑

σ1,σ2,...,σ5=±

1

2
δσ1,−σ2

(
δσ4,σ2δσ3,σ1 − δσ4,−σ2δσ3,−σ1

)(
σσ4σ5 × d1

)z
d1,σ5 d2,σ3 d†

2,σ2
d†

1,σ1

⎫⎬
⎭

⎤
⎦P, (B2)

where we already removed the p-orbital operators by using the projection P [see, for example, Eq. (A3) of Ref. [67]]. Rewriting
the d-orbital creation and annihilation operators in terms of the spin S j ( j = 1, 2), we obtain[

PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c.

]
process (a)

= P

[ −4λt3

2(Ud − Up) + 2�d p − JH

(
1

Ud − Up + �d p

)2[
dy

2

(−Sz
1Sy

2 − Sy
1Sz

2

) + dx
2

(−Sz
1Sx

2 − Sx
1Sz

2

)

+ dy
1

(−Sz
1Sy

2 − Sy
1Sz

2

) + dx
1

(−Sz
1Sx

2 − Sx
1Sz

2

)] + −4λt3

Ud − Up + 2�d p + JH

(
1

Ud − Up + �d p

)2

× [
dy

2

(−Sz
1Sy

2 + Sy
1Sz

2

) + dx
2

(−Sz
1Sx

2 + Sx
1Sz

2

) + dy
1

(−Sz
1Sy

2 + Sy
1Sz

2

) + dx
1

(−Sz
1Sx

2 + Sx
1Sz

2

)]]
P. (B3)

The process (b) of Fig. 18 in Ref. [67] gives[
PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c.

]
process (b)

= P

[
iλt

Ud − Up + �d p

t2

2(Ud − Up) + 2�d p − JH

2

Ud − Up + �d p

×
∑

σ1,...,σ5

δσ1,σ2

(−δσ4,σ2δσ3,σ1

)(
σσ4σ5 × d2

)z
d2,σ5 d1,σ3 d†

2,σ2
d†

1,σ1

+ iλt

Ud − Up + �d p

t2

2(Ud − Up) + 2�d p − JH

2

Ud − Up + �d p

×
∑

σ1,...,σ5

δσ1,σ2

(
δσ4,σ2δσ3,σ1

)(
σσ4σ5 × d1

)z
d1,σ5 d2,σ3 d†

2,σ2
dd†

1,σ1
+ H.c.

]
P

= P

[ −8λt3

2(Ud − Up) + 2�d p − JH

(
1

Ud − Up + �d p

)2(
dy

2Sz
1Sy

2 + dx
2 Sz

1Sx
2

)

+ −8λt3

2(Ud − Up) + 2�d p − JH

(
1

Ud − Up + �d p

)2(
dy

1Sy
1Sz

2 + dx
1 Sx

1Sz
2

)]
P. (B4)
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Combining these contributions of the two processes together, we obtain

PδHt (E )

(
1

Eg − HU
QHt (0)

)3

P + H.c.

= P

[ −4λt3

2(Ud − Up) + 2�d p − JH

1

Ud − Up + �d p
[(dy

1 − dy
2 )(S1 × S2)x − (dx

1 − dx
2 )(S1 × S2)y]

+ −4λt3

2(Ud − Up) + 2�d p + JH

1

Ud − Up + �d p
[(dy

1 + dy
2 )(S1 × S2)x − (dx

1 + dx
2 )(S1 × S2)y]

]
P, (B5)

which is nothing but the DMI. The other terms

PHt (0)
1

Eg − HU
QδHt (E )

(
1

Eg − HU
QHt (0)

)2

P + H.c. (B6)

lead to the same result after repeating a similar procedure to the above one. Collecting all these contributions, we reach the final
result:

Hspin = JS0 · S1 + Dx(S1 × S2)x + Dy(S1 × S2)y, (B7)

Dx = −
[

(dy
1 − dy

2 )
16λt3

2(Ud − Up) + 2�d p − JH
+ (dy

1 + dy
2 )

16λt3

2(Ud − Up) + 2�d p + JH

](
1

Ud − Up + �d p

)2

, (B8)

Dy =
[

(dx
1 − dx

2 )
16λt3

2(Ud − Up) + 2�d p − JH
+ (dx

1 + dx
2 )

16λt3

2(Ud − Up) + 2�d p + JH

](
1

Ud − Up + �d p

)2

. (B9)

Note that d1 = ex and d2 = ey for the spatial configuration of Fig. 11(b).
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J. Chaloupka, G. Khaliullin, H. Gretarsson, and B. Keimer,
Proximate ferromagnetic state in the Kitaev model material
α-RuCl3, Nat. Commun. 12, 4512 (2021).

[106] A. Ralko and J. Merino, Novel chiral quantum spin liquids in
kitaev magnets, Phys. Rev. Lett. 124, 217203 (2020).

[107] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and
A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions
in graphene sheets, Phys. Rev. B 74, 165310 (2006).

[108] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C.
Cancellieri, and J.-M. Triscone, Tunable rashba spin-orbit in-
teraction at oxide interfaces, Phys. Rev. Lett. 104, 126803
(2010).

[109] C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D.
Pacilé, P. Bruno, K. Kern, and M. Grioni, Giant spin split-
ting through surface alloying, Phys. Rev. Lett. 98, 186807
(2007).

[110] K. V. Shanavas and S. Satpathy, Electric field tuning of the
rashba effect in the polar perovskite structures, Phys. Rev. Lett.
112, 086802 (2014).

[111] K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, Spin moiré
engineering of topological magnetism and emergent electro-
magnetic fields, Phys. Rev. B 103, 184421 (2021).

[112] C. J. Chen, Introduction to Scanning Tunneling Microscopy
(Oxford University Press, Oxford, 2007).

[113] A. Kirilyuk, A. V. Kimel, and T. Rasing, Ultrafast optical
manipulation of magnetic order, Rev. Mod. Phys. 82, 2731
(2010).

[114] T. Nakagawara, M. Kanega, S. C. Furuya, and M. Sato (un-
published).

[115] G. Yu, P. Upadhyaya, X. Li, W. Li, S. K. Kim, Y. Fan, K. L.
Wong, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Room-
temperature creation and spin-orbit torque manipulation of
skyrmions in thin films with engineered asymmetry, Nano
Lett. 16, 1981 (2016).

[116] T. Srivastava, M. Schott, R. Juge, V. Křižáková, M.
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