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Entropy and chirality in sphinx tilings
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As a toy model of chiral interactions in crowded spaces, we consider sphinx tilings in finite regions of the
triangular lattice. The sphinx tiles, hexiamonds composed of six equilateral triangles in the shape of a stylized
sphinx, come in left and right enantiomorphs. Regions scaled up from the unit sphinx by an integer factor
(Sphinx frames) require tiles of both chiral forms to produce tilings, including crystalline, quasicrystalline, and
fully disordered tilings. For frames up to order 13, we describe methods that permit exact enumeration and
computation of partition functions using accelerated backtracking, seam, and dangler algorithms. For larger
frames, we introduce a Monte Carlo method to sample typical tilings. The key to the latter is the identification
of fundamental shapes (polyads) that admit multiple tilings and which allow a rejection-free MC simulation.
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I. INTRODUCTION

Chiral interactions in crowded spaces are important to a
number of subjects [1] but remain poorly understood. As an
extreme case of a highly packed and geometrically frustrated
system, one may consider tilings. Within statistical mechan-
ics, the study of tilings has been a fundamental and fertile
subfield since at least 1937 with the introduction of the dimer
(or domino) tiling [2], which was solved exactly for the square
lattice in 1961 [3,4]. Dimer tilings are related to Pfaffian
solutions of the Ising model [5] and have reappeared in many
guises [6–10]. When the region tiled is the shape of an Aztec
diamond, vast simplifications in the enumeration occur, yet
nontrivial phase ordering emerges, as evidenced by the arctic-
circle theorem [11–14]. “Arctic boundaries” have since been
discovered for a variety of tiling systems. Pauling’s ice model
from 1935 can also be mentioned in this context, since there
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the state of a neighboring site (tile) is similarly constrained
by the state of the reference site (tile) [15,16]. Introduced
in 1961, Wang tiles [17] connected satisfiability problems to
tilings of the square lattice, and they continue to be relevant to
the study of random-search algorithms and phase transitions
in statistical computational-complexity theory [18,19].

The study of more complex tiles formed by connected
polygons was stimulated by Golomb [20,21] and his polyomi-
noes (generalizations of dominoes on the square lattice)—it
was in this context that the sphinx tile and its unusual prop-
erties were discovered. The sphinx tile is composed of six
connected equilateral triangles, as seen in the right side of
Fig. 1. Shapes made of connected equilateral triangles are
termed polyiamonds. The sphinx makes an appearance, al-
ready with its name, along with those of 11 other shapes,
in a catalog of hexiamonds (polyiamonds of size 6) due to
O’Beirne [22,23]. The sphinx stands out from the other tiles
in that it is both asymmetric (therefore, chiral) and rep-tilian,
being the smallest such tile on the triangular lattice. We
discuss each of these properties in turn. Sphinx tiles have
an intrinsic handedness. The sphinx in Fig. 1 (upper right)
we label left (“L”), and its mirror reflection we label right
(“R”). Different orientations retain their chiral labels as seen
in Fig. 2. This and further properties of the sphinx tile are
discussed in Appendix A. The sphinx is a rep-tile (as coined
by Golomb) because its shape can be dissected into repeated,
smaller copies of itself; see the order-2 tiling by four unit
sphinxes in Fig. 1 (lower right). Here order refers to the integer
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FIG. 1. The sphinx is the smallest asymmetric chiral rep-tile on
the triangular lattice. Here we show the polyiamonds with area � 7
that are area-quadrupling rep-tiles (triangle, diamond, hemisphinx,
tetriamond parallelogram, tetriamond triangle, hexiamond parallel-
ogram, and sphinx). In the second row, area-quadrupling inflation
rules are shown (the tetriamond parallelogram has more than one).

scale factor of the sphinx frame over a basic sphinx tile. This
allows one to recursively create large self-similar, aperiodic
tilings [24–27]. Rep-tiles are examples of quasicrystals, which
have turned up in a number of contexts [28–31], including the
recently discovered tiles that force aperiodicity [32,33] and
whose physical properties, including chirality, have been stud-
ied [34–36]. Here we consider the ensemble of all possible
tilings of a sphinx frame, not only those produced through a
substitution or inflation rule.

We consider that the sphinx tilings obey the partition
function

Z (β ) =
∑

{τ }
e−βE [τ ], (1)

where E [τ ] is an energy functional depending upon the tiling
τ and β ≡ 1/(kBT ). Below, we consider E [τ ] as an Ising-like
or ice-type energy that depends only upon the properties of
neighboring tiles, but first we consider the special case βE =
0, which implies Z (0) = ∑

i 1 = Nn and the entropy is S =
kB ln Nn.

The above special case reduces to a problem in combina-
torial geometry: counting sphinx tilings. We mainly consider
boundary frames being in the shape of a sphinx tile scaled
by an integer factor (the order n) — an n-Sphinx. In gen-
eral, we define the order of a polyiamond as the greatest
common divisor of its side lengths, measured in lattice units.
All n-Sphinxes can be tiled by unit sphinxes, a result that
can be shown via an inductive argument. Certain symmetric
polyiamonds of unit order exhibit the analogous feature; for
example, the first four polyiamonds in the top row of Fig. 1.
Other than the sphinx, however, there is no known asymmetric
polyiamond that can tile every order of itself. This is an
outstanding feature of the sphinx tile; it makes the sphinx

FIG. 2. L and R chiral tiles.

TABLE I. Number of tilings Nn of a sphinx frame of order n.

n Nn

1 1
2 1
3 4
4 16
5 153
6 71 838
7 5 965 398
8 2 614 508 085
9 9 822 629 511 079
10 28 751 930 151 895 611
11 162 231 215 752 303 027 270
12 32 813 942 272 624 544 838 651 213
13 1 257 159 787 425 487 037 702 548 758 466

unique among all asymmetric polyiamonds. It follows that a
polyiamond consisting of two or more unit sphinxes (like the
3-by-2 parallelogram) can be tiled by sphinxes at all orders.
Such is not the case for many other frame shapes, where only
certain orders can be tiled by sphinxes, such as triangular
frames (12, 24, 36, . . .) and regular hexagonal frames (6, 8, 10,
. . .). Considering all tilings of a Sphinx frame, it is clear that
the number of tilings grows superexponentially with the order
(see Table I and Fig. 3). Previously, sphinx tilings of Sphinx
frames have been enumerated up to order 8 [37]. Here we
extend the exact results to order 13, which allows important
insights into this system.

II. ALGORITHMS

For the enumerations of tilings of Sphinx frames up to
order 7, we used a “backtracking” method, where we proceed
across the triangles of the frame in a row-by-row manner
and recursively go back to find other tilings. This algorithm
generates every possible complete tiling, and is limited in
terms of the order it can handle.

For higher-order frames, we have developed the seam
method, a variant of meet-in-the-middle search. While the
sphinx frame itself has no symmetry, it is decomposable into
two symmetrical hemisphinx frames (trapezoids), identical
save for their orientation and common edge (the line AB in

FIG. 3. ln Nn = S/kB where Nn is the number of tilings from
Table I vs the square of the order n (n2 is the number of tiles). Values
of n are displayed in red.
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FIG. 4. Left: Illustration of the seam method, where the seam is
the path in black. The tilings of the two regions on either side of the
seam are displayed in Fig. 35. Middle and right: A tiling of the first
three rows using the dangler method, and its associated dangler shape
(red triangular cells).

Fig. 4). A seam is a self-avoiding lattice walk from vertex A to
vertex B that does not leave the frame. Additionally, the walk
must cross neither the red line, nor the green line two rows
posterior. The number of seams can be reduced by certain
conditions that must be satisfied so as to allow tilings of both
areas — see Appendix D. To make sure a tiling cannot belong
to two different seams, we demand that all tiles of the left part
of the frame cover at least one grid triangle on the left of the
red line and that no tile of the right part crosses the red line.
Whereas the number of self-avoiding walks increases very
rapidly with the order of the sphinx, the number that are valid
seams is vastly smaller. For order 8, for instance, the number
of seams is 1468, while the number of walks is 3 523 417. For
each possible partition, we determine the number of tilings
of the two areas and multiply the two numbers together, and
then sum over all possible seams. This method allows one to
generate all tilings by convolution of the tilings from each side
of the seams.

For n > 11, the severity of the memory constraints in
the above methods led us to devise the dangler method. In
principle, the new method produces seams for each row and
onlyd the tilings between two consecutive seams have to be
enumerated. Consider initiating a tiling at the top row of Fig. 4
(middle panel) and continuing successively to the next rows.
For each row R, we require tilings to cover rows 1 to R entirely,
while allowing partial coverage in the next two rows. The
shapes encountered in rows R + 1 and R + 2 (“danglers,” seen
in red in the right panel of Fig. 4) can be represented by two
bit strings, in which the 0s and 1s stand for empty and covered
triangles, respectively. Different tilings may lead to the same
dangler, hence the number of danglers is in most cases smaller
than the number of tilings. For each row R, we save the two
binary integers of each dangler and the number of associated
tilings. Then the next row (R + 1) is handled for all danglers
of row R. Say m tilings are associated with a certain dangler
of row R and n tilings were found that lead to a certain new
dangler of row R + 1. Then the new dangler represents m · n
tilings that cover the rows 1 to R + 1 completely. For any row,
the number of danglers is less than or equal to the sum of all
associated tilings. For the first few rows, both numbers are
increasing, but, at some stage, the number of danglers begins
to decrease (at a row number dependent upon the frame and its
orientation). For example, the order-12 Sphinx frame in orien-
tation 7 consists of 36 rows as shown in Fig. 5. For row 18,
we found 509 235 danglers and 347 201 208 446 538 108 883
tilings. It is a huge difference whether one must consider
509 235 cases or 347 201 208 446 538 108 883 cases in the

FIG. 5. An order-12 sphinx frame in orientational state 7 (see
Fig. 30) with rows from 1 to 36 indicated.

next step. The number of different coverings of the empty
triangles of a row is obtained by backtracking from left to
right, ensuring no duplicates can occur.

With the dangler method, it takes less than a second on a
desktop computer to calculate the number of sphinx tilings of
an 8-Sphinx, and all results from our previous methods up to
order 11 could be easily confirmed. Order 12 takes about 3 h,
and order 13 about 3 days using up to 6 cores. The bottleneck
of the calculation is the memory required to save the danglers,
which in practice limits this method to order 13. The dangler
method is much faster than the seam method, but the output of
the algorithm is just the number of tilings and no tiling can be
produced explicitly. In contrast, the seam method can be split
into several independent parts (corresponding to the different
seams), and it has the advantage that the tilings of these parts
can be saved and used for further study.

III. ENUMERATION RESULTS AND ENTROPY

The exact numbers of tilings Nn from the three methods
combined are listed in Table I. For small n all tilings of
n-Sphinxes are shown in Fig. 6 (n = 1, 2, 3), Fig. 7 (n = 4),

FIG. 6. All sphinx tilings of orders 1, 2, and 3.
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FIG. 7. The 16 sphinx tilings of an order-4 Sphinx frame.

Fig. 8 (n = 5). For n = 13, the number of tilings is greater
than 1030, highlighting the rapid growth in the number of
tilings and the power of the dangler method. The asymptotic
behavior of Nn can be surmised by plotting its logarithm as
a function of n2, the number of sphinx tiles in an n-Sphinx,

as shown in Fig. 3. The data points (red circles) indicate
a periodicity (mod 3), such that sphinx frames of order 3k
have more tilings than expected when looking at lower or-
ders; we have no definitive explanation for this intriguing
behavior.

FIG. 8. The 153 sphinx tilings of an order-5 Sphinx frame.
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FIG. 9. A plot of the slopes in Fig. 3 vs 1/n4, implying for large
n, S/kB = ln Nn ∼ 0.425n2 = n2 ln 1.53.

The equations of the linear fits in Fig. 3 are:
ln Nn = 0.2288n2 − 0.7508 (n =3–5), ln Nn = 0.3759n2 −
2.5114 (n = 6–8), ln Nn = 0.4154n2 − 3.703 (n = 9–11), and
ln Nn = 0.4221n2 − 2.0353 (n = 12,13). Figure 9 shows a
plot of the three latter slopes as a function of 1/n4 implying
Nn ∼ exp(0.425n2 − 63.8/n2) or an entropy that grows as

S = kB ln Nn ∼ kBn2 ln σ, (2)

where ln σ = 0.425 is the entropy per tile, and σ =
exp(0.425) = 1.53(1) is the “sphinx constant.” The existence
of this constant is not obvious, though not unexpected either.
It implies that the entropy is extensive. For comparison, the
number of domino tilings in the Aztec diamond is given
exactly by Nn = (

√
2)A, where A = n(n + 1) is the area of

an order-n diamond in domino units, implying σ = √
2 �

1.41421 [11,12]. For a domino tiling of a rectangular bound-
ary of dimensions 2n × 2m containing 2nm dominos [3,4,38],

ln Nn ∼ (2N + 1)(2M + 1)G/π + . . . (3)

for large N and M, where G is the Catalan constant
� 0.915966, implying σ = exp(2G/π ) � 1.79162. For
a square-rhombus tiling of an octagonal region, one
has σ = exp(0.36021(3)) = 1.4466 [39]. For a tiling of
rhombuses within a hexagonal boundary on the triangular
lattice, σ = 3

√
3/4 � 1.29903. A random tiling of Penrose

tiles was found to yield σ = exp(0.495) = 1.640 [40]. For the
ice-model, the entropy constant is σ = 3/2 in the mean-field
limit [15], and exactly (4/3)3/2 � 1.5396 in two dimensions
[41], similar to the value we found here for sphinxes. Thus,
the sphinx constant σ falls generally in the range of other
tiling entropy constants.

TABLE II. Polyads of sizes n = 1 to 6 and their properties. The
46 dyads and their tilings are displayed in Figs. 34 and 37.

n Name Polyads Polyads with multiple tilings f-polyads

1 Monad 1 0 0
2 Dyad 46 1 1
3 Triad 1 868 25 1
4 Tetrad 98 733 1 940 2
5 Pentad 5 449 410 138 865 0
6 Hexad 311 784 564 9 816 368 6

FIG. 10. The order-7 sphinx. Colors represent for each triangle
the number of the 36 different ways in which it is covered by sphinx
tiles, as shown in Fig. 11.

In Fig. 10, we use a color map to show the number density
of states out of the 36 possible states allowed a given triangu-
lar cell within the order-7 frame (Fig. 11). The numbers range
from the maximum (36) shown in white to the minimum (4)
shown in indigo. Note the possible emergence of an arctic-
type interface for larger frames.

We note that once lower-order tilings have been identified,
it is possible to carry out a general inflation or substitution
process to generate higher-order sphinx tilings, as a gener-
alization of the rep-tile process. For example, each of the 4
tilings of the 3-Sphinx can be tiled with any of the 16 tilings of
order 4, yielding 4 × 164 = 262144 tilings of the 12-Sphinx,
among other possible inflations. However, all inflationary
tilings taking together add up to an insignificant fraction of
the 3.28 × 1025 total tilings we found for the 12-Sphinx.

IV. POLYADS

For the purposes of our discussion, we define a polyad of
size n as a simply connected polyiamond consisting of 6n
triangular cells and tileable by n sphinx tiles. In other words,
the size of a polyad is the area of that polyad measured in
sphinx units. The polyad is a frame, and it does not refer
to any specific tiling. Two polyads are considered equal if
they can be transformed into each other by rotation, reflection
or translation. A polyad can have up to 12 different states,
due to rotation and reflection. Two tilings of a given polyad
are disjoint if there are no sphinx tiles in the same position
and orientation in the two tilings. Two sets of tilings of the
same polyad are disjoint if tilings of the first and second set
are pairwise disjoint. A fundamental polyad (or f-polyad) has
more than one tiling that can be split into two disjoint sets of
tilings. Many small f-polyads have only two tilings and thus
the two disjoint sets have only one element each (Fig. 12).
Up to size 6, there exists only one f-polyad with more than
two tilings: its 4 tilings appear in the lower-right of Fig. 12.
The upper two tilings of that f-polyad belong to one set and
the lower two tilings to the other set. As seen here, each set
contains tilings that are not disjoint from each other. Both sets
may be further split into disjoint sets. We have found only one
f-polyad with more than two mutually disjoint sets of tilings,
the “mystical triode” of Fig. 13 (lower panel).
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FIG. 11. The 72 different ways to cover a grid triangle by a certain face of a sphinx tile in a certain state, 36 for each orientation of the
circled triangle (A on the left and V on the right).

Rotation or mirror reflection of a given tiling of a symmet-
ric frame may produce a distinct tiling, and such polyads can
be fundamental (see Fig. 12). The smallest size where asym-
metric f-polyads occur is size 7 (see an example in Fig. 13).
As we shall see below, f-polyads will play a central role in our

FIG. 12. Fundamental polyads of size 2, 3, and 4 (upper left
panel) and size 6 (upper right panel), and their multiple tilings (lower
panels).

method to switch from one tiling to another without retiling
the whole frame of the system.

As an example of f-polyads in a different context, consider
the domino tiling where a 2 × 2 square can be tiled with either
two horizontal or two vertical dominos. Thus, the square is
an f-polyad for this system, and in fact it has been proven
that by making successive changes in the tilings of these
f-polyads, one can generate all possible domino tilings in a
rectangular system of even side length [42]. In Ref. [43], the
authors have also considered larger regions (f-polyads) for this
system. Another example of an f-polyad is given by the tiling
of a triangular lattice by lozenges (rhombuses), in which a
hexagon of six triangles can be tiled by three lozenges in two
different ways [44]. By repeating this retiling, it is possible to
generate all rhombic tilings of this system.

FIG. 13. Upper: An asymmetric fundamental heptad (polyad of
size 7) with 3 tilings. The first one is disjoint to the others, but tilings
2 and 3 are not disjoint to each other. Lower: The “mystical triode,”
a threefold symmetric fundamental ennead (polyad of size 9) with
three mutually disjoint tilings.
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FIG. 14. Spectrum of fundamental polyads (number of distinct
f-polyads for each size) found in the tilings of sphinx frames of orders
5, 6, and 7. Inset shows a scaling plot of the number vs.

√
size/order,

with a dashed curve connecting the measured data for size � 21 to
the two points at size 48 and 49 for order 7. The vertical scale is
logarithmic except for the point 0.

All f-polyads up to size 6 were found exhaustively and
their statistics are listed in Table II. To efficiently find polyads
it useful to describe them by closed self-avoiding walks and
identify sections that do not allow disjoint tilings, thus elim-
inating those polyads. The f-polyad spectrum represents how
many distinct f-polyads occur in a given frame as a function
of their size. The f-polyad spectra in tilings of Sphinx frames
of order 5, 6, and partial results for order 7, are graphed in
Fig. 14. There are ten fundamental polyads of size 1 to 6,
as displayed in Fig. 12. Fundamental monads and pentads
do not exist; f-polyads for size 7, 8, 9, and 10 are given in
Figs. 15–18, respectively.

V. MONTE CARLO METHODS

Using the concept of fundamental polyads, we developed
a Monte Carlo (MC) method to generate new tilings from a
given tiling. In the simulation, we pick one of the polyads at
random and search for its occurrence. If none is found, we
consider a different polyad; otherwise we replace the polyad

with another one of its tilings. A larger frame will typically
include many fundamental polyads. Polyads overlapping in
space allow us to generate a sequence of different tilings. The
power of our MC method stems from this fact: a sphinx tiling
can be transformed to any other sphinx tiling of the same
frame by a finite sequence of f-polyad transitions (see Fig. 19
for an example). We just need a small subset—polyads up
to size 11—to find all tilings for frames of order up to six.
Discussion of minimal f-polyads for a 7-Sphinx is given in
Figs. S17 and S18. For larger frames, it is an open question
whether a limited set of f-polyads is sufficient to find all the
tilings. In Appendix B, we prove that if all f-polyads can be
used, the MC method will generate all possible tilings of a
frame. A typical tiling of a 23-Sphinx is shown in Fig. 20,
which contains 103 f-polyads of sizes 2–6 and at least 34
larger ones. Tilings with low and high chiral energy are shown
in Fig. 21. A special tiling of a 12-Sphinx based upon tri-
angle inflation is shown in Fig. 22. Finally, a typical tiling
of a 100-Sphinx generated by the MC method is shown in
Fig. 23. For the initial tiling for the MC method, we use
a combination of known tilings or subsets of the sphinx
and inflations.

VI. CHIRALITY CONDENSATION

Surprisingly, the spatial distribution of average chirality in
sphinx tilings features regions of excess left- and right- hand-
edness associated with specific corners of the frame. While
this localization might perhaps be expected at low temper-
atures for asymmetric frames (like the Sphinx), it holds for
symmetric frames also, even in the high-T limit. In Fig. 24,
we show the spatial distribution of chirality on each triangle
in a 7-Sphinx, averaged over all tilings. Localized preferences
for one chirality over the other are precipitated by the shape
of the boundary. For more details see Appendix H.

There are seven possible L-R-constellations in the 120◦
angle of the 7-Sphinx. They are shown in Fig. 25, sorted
according to the frequency in which they occur. A reflection
with respect to the symmetry axis of the 120◦ angle not
only interchanges L- and R- sphinx states, it simultaneously
interchanges sphinx spatial locations as well. Both effects
combined allow condensation of chirality at fixed spatial lo-
cations, such as the appearance of chirality monopoles and
dipoles, even for symmetric frames (see Fig. 26).

FIG. 15. Fundamental heptads (polyads of size 7). The nine heptads found in tilings of order-7 Sphinx frames (upper row), and two
additional heptads not found in the order-7 tilings but are found in tilings of a sphinx of order 8 (lower row).
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FIG. 16. Fundamental octads (polyads of size 8) found in tilings of the order-7 Sphinx.

VII. CHIRAL ENERGETICS

We introduce an interaction energy in our system to study
the effects of temperature on the equilibrium chirality of the
tilings. To define this energy, the L- and R- sphinx states
are paramount, with χi = +1 for L and χi = −1 for R. We
assign an energy −J to each triangular lattice edge (length 1)
between two touching sphinxes if the chiralities are the same,
and +J if the chiralities are different, and sum over all unit
edges:

E [τ ] = −J
∑

edges[τ ]

χiχ j, (4)

where τ is a particular tiling, and i, j refer to the nearest-
neighbor tiles adjacent an edge. For J > 0, we expect that at

lower temperatures the system will condense into a phase of
a single chirality, if the boundary frame allows it to occur;
otherwise, there should be a phase with a majority of one
chirality. Now we carry out the same polyad-based MC sim-
ulation as above, but add the Metropolis acceptance criterion
based upon the changes in energy associated with a given trial
move (accept a move with probability min(e−β�E , 1) [45]).

The resulting average energy is plotted in Fig. 27. To
find this curve for the order-23 Sphinx, we carried out our
MC algorithm at high temperatures, so that all states were
equally likely, and sampled the distribution n(E ) of the num-
ber of states at energy E , which we used to calculate E (T ).
For low E of this system, we extrapolated the behavior to
our estimated minimum energy of −1850J , while the lowest

FIG. 17. Fundamental enneads (polyads of size 9) found in tilings of the order-7 Sphinx. Number 1 is the “mystical triode” that has three
distinct tilings (Fig. 13). Number 43 is the Sphinx frame of order 3 shown in Fig. 6, where the bottom right tiling has no common tiles with
the other three tilings of the S3 frame, making it fundamental.
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FIG. 18. Fundamental decads (polyads of size 10) found in tilings of the order-7 Sphinx.

energy we found via MC was −894J . Exact results for the net
chirality as a function of temperature of the sphinx of order 7
are graphed in Fig. 28. We expect that, as the system size gets
larger, a sharp chirality transition occurs, but this is an area for
future study.

VIII. CONCLUSIONS

As far as we are aware, this is the first statistical-mechanics
study of a tiling problem for tiles that are chiral and have no

symmetry. We have included an interaction energy and studied
the chirality and average energy as a function of temperature.

Our paper builds a foundation for future tiling research.
It is possible to apply f-polyad and Monte Carlo methods to
develop a statistical mechanics for tiles other than the sphinx
tile. Such a tile could be any polyiamond, polyomino, hat
polykite, member of the spectre family, or any other polygon.
Some of our methods do not even require working on a lattice.

In the high-temperature limit, where there are no interac-
tion effects in the system, the system becomes simply a tiling

013227-9
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FIG. 19. Fundamental transitions between the 22 sphinx tilings
of the order-6 Diamond (D6). These transitions allow the net chirality
to change from +12 (center left) to −12 (center right) in 5 steps. The
tilings of each of the 3 necessary f-polyads are shown on the bottom.
The black dotted lines show the 16 transitions using the 3 × 4 f-
tetrad, the four green dotted lines represent the bowtie transition,
while the central dotted red line indicates the transition of octad 1
from Fig. 16. That octad has mirror symmetry and the associated
transition is just the mirror reflection (also a 180◦ rotation) and
has the net effect of switching all brown and light-brown tiles with
green and light-green tiles, respectively, as seen in the lower-right
bottom.

problem, and by carrying out extensive enumeriations we are
able to find the behavior of the entropy of the tilings, which
is compared to the behavior of the dimers and other tiling
models.

As the temperature is lowered, the energetics and chiral-
ity are affected by the interaction and the behavior becomes
more steplike at a finite temperature as the order increases.
Perhaps for even larger systems a sharp transition will become
evident.

We developed exact and Monte Carlo methods to explore
the statistical mechanics of, and to expose the chiral nature
inherent in, ensembles of densely packed chiral tiles subject

FIG. 20. A typical MC random tiling of a 23-Sphinx.

to finite spatial boundaries. Spatial localization of chirality
associated with particular boundary regions, even in racemic
systems with zero net chirality, appears to be a generic feature
of some interest.
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APPENDIX A: SPHINX NOMENCLATURE

Sphinx anatomy (Fig. 29)
The sphinx lives on the triangular lattice. It has six triangle

faces, connected along their edges.
Lattice orientation and colors (Fig. 30)
We always orient the triangular lattice so that there are

horizontal grid lines. Besides the horizontal grid lines (H)
there are rising lines (U) which go up from left to right and
descending lines (D). In this lattice the sphinx can have 12
different orientations (states). To distinguish the states we use
12 different colors (standard colors).

The state of a sphinx tile can be described by three param-
eters, as follows.

Base slope (Fig. 31 top)
There are three different slopes for the base (longest edge)

of the sphinx, depending on which type of grid line the base
lies, Thus we can describe the base orientation by H, U or D.
(H-sphinx, U-sphinx, D-sphinx)

Chirality (Fig. 31 middle)
The sphinx can have two different handednesses (chirali-

ties), which we call left (L) and right (R) based on the position
of the “head” of the sphinx. Consider a walk along the bound-
ary of a sphinx. Start at the neck and surround the head first.
We speak of a L-sphinx if the head lays on the left when it is
passed, in this case the walk is counterclockwise. Otherwise
(head on the right, clockwise walk) we speak of a R-sphinx. If
we want to distinguish sphinxes by their chirality we use the
color blue for L-sphinxes and red for R-sphinxes.

Charge (Fig. 31 bottom)
From the six triangular faces of the sphinx there can be

four upright or only two upright, depending on the orientation
of the sphinx. Because the letters A and V look like different
oriented triangles, we speak of an A-sphinx if it consists of
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FIG. 21. Tiling realizations of an order-23 Sphinx frame for low and high chiral energy. Top left: low energy, top right: high energy, with
standard coloring of Fig. 30. Bottom row: the same tilings, but with L-sphinxes shown in blue and R-sphinxes shown in red, the coloring of
Fig. 31 (middle).

four upright triangles and otherwise of a V-sphinx. The colors
amber and violet may be used to distinguish these types of
sphinxes.

We give A-triangles the charge q = +1 and V-triangles the
charge q = −1; then a sphinx has the charge |q| = 2, with
q(A-sphinx)= +2, q(V-sphinx)= −2. See Fig. 32.

Transformations of the sphinx states
The sphinx can be transformed from a certain state to

another by rotations and reflections. Here we restrict the dis-
cussion on three fundamental transformations.

(a) 120◦-Rotation (counter clockwise)
changes the base slope (H → D → U → H),
preserves chirality and charge.
(b) 180◦-Rotation (point reflection)
changes the sign of the charge (A ↔ V),
preserves chirality and base slope.
(c) Reflection at an axis vertical to the base

FIG. 22. A tiling of an order-12 Sphinx with six order-12 trian-
gles as subframes.

changes the chirality (L ↔ R),
preserves base slope and charge.
Tiling Criteria
Consider a given frame with a certain orientation (state)

in the triangular grid. Call t the number of triangles (area) of
the frame, tA the number of A-triangles and tV the number
of V-triangles. Then the charge of the frame is q = tA − tV .
The frame only can be tiled by sphinxes if the following three
conditions are satisfied. These conditions are necessary but
not sufficient.

(1) t has to be a multiple of 6.
Because the area of a sphinx tile is 6.
(2) q has to be even.
Because the charge of a sphinx tile is 2 or −2.
(3) t/6 and q/2 have to have the same parity.
Say nA and nV are the numbers of A- and V-sphinxes in the

tiling. Then nA + nV = t/6 and nA − nV = q/2. Thus 2nA =
t/6 + q/2. Therefore t/6 and q/2 have to be even both or odd
both.

Corollary:
All sphinx tilings of a certain frame with certain orienta-

tion consist of the same number of A-sphinxes and the same
number of V-sphinxes.

An example with t = 36 and q = 12 is shown in Fig. 33.
The charge of a sphinx frame of order n is 2n.
Different ways to cover a grid triangle by a sphinx tile.

(Fig. 11)
Each A (	) and V (∇) grid triangle and can be covered

in 36 ways by a sphinx tile. Depending on its orientation,
a sphinx tile has 2 (or 4) A-faces and 4 (or 2) V-faces. A
given A- or V-triangle may be covered by one of the 6 faces
of a sphinx tile in one of 12 states. The prevalence of each
triangular face and each state of all tiles in the tilings of S7 is
shown in Fig. 7.
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FIG. 23. A typical tiling of an order-100 Sphinx frame generated by the f-polyad MC algorithm. Notice patches of sphinxes aligned in the
different orientations.

APPENDIX B: PROOF OF ERGODICITY OF MC METHOD
USING FUNDAMENTAL TRANSITIONS

Definition of a fundamental transition:
(a) A transition of a sphinx tiling to a different sphinx

tiling of the same frame is called fundamental if all sphinx
tiles that do not have the same position and orientation in
both tilings build a general fundamental polyad. (A general
fundamental polyad can have a hole.)

Main Theorem:
(b) A sphinx tiling can be transformed to any other sphinx

tiling of the same frame by a finite sequence of fundamental
transitions.

This theorem guarantees that, in principle, the MC method
using fundamental transitions will access all states and will
thus be ergodic, assuming all general f-polyads are known
for the given system. For a small frame this is shown in
Fig. 19. We know that for sphinx frames up to order 6, small
sets of f-polyads (without hole) are sufficient. The question
remains how we can determine effective, suitable sets of
f-polyads that allow all states of a given (large) system to
be found.

Proof by induction:
A frame that can be tiled by sphinx tiles is a polyad. Say u

and v are two different tilings of the same polyad �. Define
σ as the size of � and define M as the set of all tilings of �.

013227-12



ENTROPY AND CHIRALITY IN SPHINX TILINGS PHYSICAL REVIEW RESEARCH 6, 013227 (2024)

FIG. 24. Plot of average chirality of sphinxes over each triangle
in a 7-Sphinx. Blue (red) represents triangles that are covered more
frequently with sphinxes of left (right) chirality. For more examples,
see Fig. 26.

u �= v and u, v ∈ M ⇒ |M| � 2 and σ � 2. (σ > 1 because a
polyad of size 1 has only one tiling.)

Base case σ = 2,
There are 46 polyads of size 2 (dyads) (Fig. 34) but only

one (the bowtie) has two tilings. The bowtie is a fundamental
polyad because it has exactly two disjoint tilings. � is the
bowtie ⇒ � is fundamental ⇒ the transition from u to v is
fundamental. The theorem is true for σ = 2

Induction step. To show:
The theorem is true for σ = n + 1 if it is true for σ =

2, 3, 4, ..., n.

Case 1: u and v are not disjoint.
We delete all tiles which have same position and orienta-

tion in both tilings. At least one tile is deleted because u and v

are not disjoint. There remain one or more polyads, each with
disjoint tilings in u and v and each with size � n. Successively
one after the other polyad shall be handled and the tiling
of the polyad in u shall be transformed to the tiling of this
polyad in v. If such a polyad is fundamental it contributes one
fundamental transition to the searched sequence. Otherwise it
contributes a finite sub-sequence of fundamental transitions,
because the polyad satisfies the conditions of the theorem with
size � n.

Case 2: u and v are disjoint.
Case 2.1: |M| = 2(� has only 2 tilings).
In this case � is fundamental ⇒ the transition from u to v

is fundamental.
Case 2.2: |M| > 2(� has more than 2 tilings).
(We try to find a chain of tilings from u to v where no

neighbors are disjoint.)
Recurrence definition of two sequences of sets Ri ⊆ M and

Si ⊂ M

R0 := M and S0 := {v}.
Ri := Ri−1\Si−1 and Si := {r ∈ Ri | ∃ t ∈ Si−1 with r and t

not disjoint}
(Ri consists of all (remaining) tilings of M that are not used

before in any S j with j < i.)
(Si consists of all remaining tilings that have a tile in same

position and orientation as a tiling of Si−1.)
Determine Ri and Si consecutively until i = k with Sk = {}

or u ∈ Sk . This always happens because M is finite.
Case 2.2.1: Sk = {}(a chain does not exist).
Then u ∈ Rk and v ∈ M\Rk = S0 ∪ S1 ∪ S2 ∪ . . . ∪ Sk−1

⇒ M is split into two disjoint sets of tilings Rk and
M\Rk ⇒ � is fundamental ⇒ the transition from u to v is
fundamental.

Case 2.2.2: u ∈ Sk (a chain exists).
tk := u
For i = k − 1 down to 0 successively choose a tiling ti ∈ Si

with ti are not disjoint to ti+1. Note ti exists according to the
definitions of Si and Si+1.

As ti and ti+1 are not disjoint they satisfy the condition
of case 1 and can be transformed in each other by a finite
sequence of fundamental transitions.

As tk = u and t0 = v we achieve a sequence of fundamental
transitions from u to v. �

APPENDIX C: TILINGS OF SPHINX FRAMES
OF ORDER 4 AND 5

The 16 tilings of an order-4 sphinx frame are presented in
Fig. 7. Here the canonical state (state 1) of the sphinx frame
is shown. The standard colors of the tiles are used. The color
of a tile depends on its state. See details for states and colors
in Fig. 30. All 153 tilings of an order-5 sphinx frame (in state
1) are shown with standard colors in Fig. 8.

APPENDIX D: SEAM METHOD

For an order-6 sphinx, there are a total of 145 valid seams
and a total of 71 838 tilings. One of this seams was shown in
Fig. 4 on the left side. For this seam all tilings of both parts
are presented in Fig. 35. Each combination of one of the 5 left
parts with one of the 38 right parts is a tiling of the whole
frame. Thus this seam contributes 5 × 38 = 190 tilings.

Some necessary conditions for seams so as to allow tilings
of both parts of the frame:

(1) The number of grid triangles on both sides of the seam
have to be multiples of 6.

(2) Say tA is the number of A-triangles and tV the number
of V-triangles for the left or right part from the seam, then tA
and tV have to be even. Moreover it can be shown that 2 · tA −
tV has to be multiple of 6.

FIG. 25. There exist only seven different sphinx constellations for the 120◦ angle of the 7-Sphinx. The shown numbers tell us how often a
constellation occurs in all 5 965 398 tilings of the 7-Sphinx.
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FIG. 26. Chirality distribution of a 12-Diamond of area 288 (left), tiling of an order-7 “yacht” hexiamond of area 294 (middle), and
a “microscopic” explanation of the localization of chirality in a symmetric frame (right). These can be compared with the order-7 Sphinx
chirality distribution as shown in Fig. 24.

TABLE III. Number of dangler shapes and tilings for an order-12 Sphinx frame.

Number of Number of tilings that cover all
dangler shapes rows from 1 to R completely
in rows R + 1 and allow tiles to reach from Maximum number

Row R and R + 2 row R to rows R + 1 or R + 2 of tilings per dangler

1 1 563 660 1 563 660 1
2 2 425 788 6 749 488 136
3 44 808 275 185 916 194 377
4 134 472 174 3 783 718 296 3024
5 183 606 640 38 805 692 479 820 432
6 261 688 546 278 986 845 030 1 903 023
7 124 226 131 2 299 176 633 379 28 857 388
8 50 764 453 12 906 149 275 568 410 155 553
9 16 451 093 65 764 091 664 663 5 011 013 238
10 5 652 931 342 742 865 380 799 21 543 804 545
11 2 151 320 1 705 127 038 597 723 879 954 404 572
12 1 306 886 9 277 068 222 902 118 1 853 428 696 911
13 957 858 62 760 561 968 254 764 14 126 586 516 272
14 770 269 313 908 741 372 537 769 115 717 404 631 817
15 625 220 1 767 697 678 819 240 349 534 458 519 097 758
16 568 380 11 265 688 433 944 695 738 2 223 905 305 929 387
17 541 625 63 347 947 744 620 011 957 26 055 598 644 871 087
18 509 235 347 201 208 446 538 108 883 112 210 412 559 783 398
19 499 270 2 183 684 053 476 827 440 910 574 138 948 225 372 195
20 496 092 12 301 442 561 700 289 999 794 4 593 417 385 095 581 151
21 489 835 70 101 592 808 398 613 837 681 23 676 181 631 639 159 289
22 425 316 372 819 101 729 163 840 549 119 116 072 981 473 250 019 901
23 161882 858 648 007 102 714 918 220 990 888 328 915 722 460 383 112
24 98 913 2 972 400 093 641 788 177 161 127 1 821 936 225 977 560 494 508
25 34 962 6 954 282 621 282 954 785 418 968 9 817 471 633 252 747 653 333
26 10 363 12 243 537 479 285 116 578 416 905 62 178 029 366 375 487 047 045
27 3 427 22 157 545 493 614 557 462 734 950 138 476 696 952 227 099 253 046
28 768 33 152 355 783 977 067 609 383 308 399 511 925 424 970 024 549 877
29 192 32 058 089 044 124 212 675 313 227 1 703 964 867 539 070 271 230 296
30 61 49 926 904 977 648 125 717 224 170 2 814 151 538 058 596 107 313 074
31 12 33 708 952 511 830 048 478 624 562 6 143 214 589 592 323 184 596 454
32 4 32 813 942 272 624 544 838 651 213 11 091 382 736 397 093 501 411 140
33 4 32813 942 272 624 544 838 651 213 11 091 382 736 397 093 501 411 140
34 1 32 813 942 272 624 544 838 651 213 32 813 942 272 624 544 838 651 213
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FIG. 27. Energy per tile vs kBT/J of tilings of a 23-Sphinx based
on 109 MC samples, and energy per tile of the 7-Sphinx based upon
exact enumeration of all states.

(3) There are self-avoiding partial walks that do not allow
a tiling with sphinx tiles. All seams which contain such a part
are nonvalid, see Fig. 36.

It is not a problem if nonvalid seams are considered in the
program. If no tiling exists for one part, then the value 0 is
added to the current number of tilings.

APPENDIX E: DANGLER METHOD

For the dangler method we work with sphinx frames in
state 7, Fig. 5. All danglers hanging in the first row are
distinct. Here the number of tilings is equal to the number
of danglers, Table III. The maximum number of danglers
is reached in row 6. Note that the number of tilings rep-
resented by the danglers is already more than 1000 times
greater than the number of danglers of row 6. Here the amount
of memory required to store the danglers reaches its max-
imum. After row 12 the number of danglers is less than

FIG. 28. The average energy and average chirality as a function
of temperature, calculated from the exact enumeration of all 5965398
tilings of the 7-Sphinx.

FIG. 29. The six faces of the sphinx hexiamond in its canonical
state, and anatomical names that we have assigned to them.

1 million and the remaining calculation time is negligibly
short.

APPENDIX F: SPHINX DYADS

A sphinx dyad is a polyad of size 2, meaning that it is a
size-2 polyiamond with area 2 × 6 = 12 (in units of triangular
area), which can be tiled by two sphinx tiles. There exist 46
free sphinx dyads. “Free” means distinct up to rotation and
reflection (Fig. 37). Although one dyad (the bowtie) has two
different tilings, the number of free tilings is also 46, because
the tilings of the bowtie are mirror images of each other, see
first two tilings in Fig. 12. All 46 free dyad tilings are shown
in Fig. 34. One can find the numbers of polyads with sizes
from 3 to 6 (triads, tetrads, pentads, hexads) in Table II.

APPENDIX G: FUNDAMENTAL POLYADS FOUND
IN TILINGS OF AN ORDER-7 SPHINX FRAME

In order to find f-polyads with size � 7 we consider all
pairs of tilings of an order-7 sphinx frame. In such a pair we
delete all tiles that occur in the same position and orienta-
tion in both tilings. In most cases the remaining part is not

FIG. 30. Standard colors and numerical designations for the 12
different states of a sphinx tile. The letter labels refer to the sphinx
properties and states shown in Fig. 31.
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FIG. 31. Special colors used to distinguish certain tile proper-
ties. Upper: Base slope, 0◦ (H, horizontal) (yellow), +60◦ (U, up)
(magenta), −60◦ (D, down) (turquoise); Middle: Chirality, L = left
(blue), R = right (red); Lower: Charge, A (+) (amber), V (−)
(violet).

fundamental. But as we know all tilings of the order-7 sphinx,
all f-polyads that occur in an order-7 tiling will remain at least
in one pair of tilings. Of course there also are f-polyads that
are not part of any order-7 sphinx tiling. Hence this search is
not exhaustive. See Figs. 15–18.

FIG. 32. Illustrations of the A- and V-tile orientations, where +
and − represent A and V triangles respectively. Sphinx tiles with
states shown in the upper row are called A-sphinxes and those in the
lower row are called V-sphinxes.

Except for the two tilings in Fig. 38, all 5 965 398 sphinx
tilings of an order-7 Sphinx frame contain at least one of
the six fundamental polyads (of orders 2, 3, 4, 4, 6, and 8,
respectively) that are shown in Fig. 39. Furthermore, there are
only seven tilings of the order-7 Sphinx lacking the first five
polyads of Fig. 39.

APPENDIX H: CHIRALITY DISTRIBUTION

In order to study the chirality distribution of a frame that is
tilable by sphinx tiles we consider all tilings of this frame and
count how often each grid triangle in the frame is covered by
L- and R-sphinxes. The chirality of a grid triangle is defined
by χ = L−R

L+R , where L (R) is the number of coverings by
L-sphinxes (R-sphinxes). For each grid triangle L + R has the
same value, the total number of tilings of the frame. To show
the chirality distribution, triangles with χ > 0 are colored
blue and those with χ < 0 are colored red. Dependent on the
size of |χ | in the range from 0 to 1 the color is lighter or
darker. White color means χ = 0. The chirality distribution of
the order-7 Sphinx (5 965 398 tilings) was shown in Fig. 24.
This can be compared with a Diamond of order 12 (29 014 790
tilings) and the hexiamond “Yacht” of order 7. The areas of the
frames are comparable: the 7-Sphinx and the 7-Yacht are tiled
by 49 sphinx tiles while the 12-Diamond contains 48 sphinx
tiles (see Fig. 26). Besides the Sphinx, the Yacht is the only
hexiamond that can be tiled at order 7 by elementary sphinxes.

On the right of Fig. 26, we give a “microscopic” expla-
nation of the localization of chirality even within a symmetric
frame, as illustrated by three small Diamond frames. Consider
the 120◦ corners of the Sphinx and Diamond frames, where

FIG. 33. Each tiling of an order-6 sphinx in the canonical state
(state 1) consists of 21 A-sphinxes (colored in amber) and 15 V-
sphinxes (colored in violet).
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chirality “dipoles” are apparent. The upper corner (and, by
symmetry, the lower corner) of a 6-Diamond (D6) admits only
the three possibilities shown, out of all 22 tilings of D6. There
are 7, 7, and 8 tilings, respectively, that contain these three
possible corners. The wing dyad (Fig. 37) is primarily respon-
sible for this seemingly paradoxical situation, because it alone
is invariant under the reflection isometry. The mirror reflection
of such a symmetric frame has two effects: it changes not
only the chirality of individual tiles, it also switches their
spatial positions, allowing for this type of locally asymmetric
structure in the average chirality field. In general, other types
of local distributions of chiralty are allowed and associated
with corners of the frame boundary; for instance, monopoles
and quadrupoles.

APPENDIX I: GENERAL SUBSTITUTION METHOD

Twelve is the minimal order of a Sphinx frame (S12) that
admits tilings wherein each of its six triangular subframes
(in this case, T12) is tileable by sphinxes, since Triangle
frames smaller than T12 allow no sphinx tilings, Fig. 22. This
substitution method, using all 830 tilings of T12, generates
8306 distinct sphinx tilings of S12. Although this accounts for
over 3.2 × 1017 tilings, that is just one hundred millionth of

all the S12 tilings. Of course, any polyiamond (by definition,
composed of unit equilateral triangles) can be inflated by a
factor of 12, used as a frame, and then tiled by sphinxes
analogously. The set of tilings generated in this manner will
likewise be a minute subset of the set of all sphinx tilings
forced by that frame.

APPENDIX J: SAMPLE TILINGS WITH LOW AND HIGH
CHIRAL ENERGY

Beside other applications of the Monte Carlo method we
also search for tilings with low and high chiral energy in
sphinx frames that are too large for exhaustive treatings. In
Fig. 21 two samples are shown one for low and one for high
chiral energy. Both tilings are shown in standar coloring as
well as in chiral coloring with L-sphinxes in blue and R-
sphinxes in red.

APPENDIX K: LARGE SPHINX TILING

The Monte Carlo method using fundamental polyads
makes it possible to generate random tilings of sphinx frames
as large as order 100 and beyond, as illustrated in Fig. 23.

FIG. 34. The free tilings of the 46 sphinx dyads are shown in the color spectrum of Fig. 30. The dark blue sphinx tile is in the canonical
state. Here the dyads are sorted by the state of the second tile. The bowtie (circled in red) is the only dyad with two different fixed tilings; the
second tiling is a mirror reflection of the one shown here as shown in Fig. 12.
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FIG. 35. Illustration of the seam method for a sphinx of order 6. The considered seam allows five tilings for the left part and 38 tilings for
the right part, yielding a total of 5 · 38 = 190 possible tilings for this one seam.
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FIG. 36. Self-avoiding partial walks that do not allow a tiling for one or both parts of a seam on an order-6 sphinx frame, and thus can be
ruled out immediately.
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FIG. 37. The 46 different free sphinx dyads arranged alphabetically by the names we have given them.
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FIG. 38. The only two tilings of an S7 frame that do not contain any of the six fundamental polyads of Fig. 39. Here, the tilings contain a
fundamental hexad (upper figure) and heptad (lower figure) as displayed to the right of each tiling.

FIG. 39. Except for the two tilings in Fig. 38, all 5 965 398 sphinx tilings of an order-7 Sphinx frame contain at least one of these 6
fundamental polyads (of orders 2, 3, 4, 4, 6, and 8, respectively). Furthermore, there are only seven tilings of the order-7 Sphinx lacking the
first five polyads above.
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