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Elasto-viscoplastic spreading: From plastocapillarity to elastocapillarity
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We study the spreading of elasto-viscoplastic (EVP) droplets under surface tension effects. The non-
Newtonian material flows like a viscoelastic liquid above the yield stress and behaves like a viscoelastic
solid below it. Hence, the droplet initially flows under surface tension forces but eventually reaches a final
equilibrium shape when the stress everywhere inside the droplet falls below the resisting rheological stresses.
We use numerical simulations and combine volume-of-fluid (VOF) method and an EVP constitutive model
to systematically study the dynamics of spreading and the final shape of the droplets. The spreading process
explored in this study finds applications in coating, droplet-based inkjet printing, and 3D printing, where
complex fluids such as paints, thermoplastic filaments, or bio-inks are deposited onto surfaces. Additionally,
the computational framework enables the study of a wide range of multiphase interfacial phenomena, from
elastocapillarity to plastocapillarity.
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I. INTRODUCTION

The deposition and spreading of fluids over surfaces oc-
cur in a wide range of industrial applications, such as spray
coating and printing [1–5]. The fluids used in these appli-
cations often contain microscopic constituents like polymers
or colloids, resulting in highly nonlinear macroscopic rheo-
logical features like elasticity, plasticity, and shear-dependent
viscosity. Hence, understanding the rheological effects on
the fluid mechanics of spreading is essential for further
optimizing current systems or designing new materials for
specific applications [6]. In the past few years, many stud-
ies have investigated the impact and spreading of droplets
on surfaces for fluids with various rheological properties,
including viscous fluids [7–10], viscoelastic fluids [11–15],
and yield stress materials [16–25]. However, systematic
experiments are generally complicated due to the high-
dimensional interconnected parameter space. To this end,
computer simulations can be employed to investigate the sig-
nificance of rheological parameters independently from one
another.

Our focus will be on a general class of nonlinear ma-
terials named elasto-viscoplastic (EVP) fluids, which can
exhibit both elastic and plastic properties, as well as viscous
behavior. Many models of EVP fluids have been proposed
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previously. Saramito [26,27] presented a description of EVP
constitutive equations, which combine classical viscoplas-
tic models (Bingham or Herschel-Bulkley) with viscoelastic
models (Oldroyd-B or PTT). Adopting a different perspec-
tive, de Souza Mendes [28] used a generalized viscoelastic
model where material properties are functions of the strain
rate in order to incorporate the yielding behavior as well as
the thixotropic effects. Dimitriou and McKinley [29] included
isotropic and kinematic hardening in their EVP formulation
to capture various steady and unsteady flow responses. Re-
cent reviews of the development and thorough comparison of
different EVP models can be found in Fraggedakis et al. [30]
and Saramito and Wachs [31], where they comment both on
the mathematical/physical properties of the models, as well
as the numerical characteristics. Moreover, many recent stud-
ies have incorporated the models above into computational
frameworks to study various fluid dynamics problems such as
flow around particles [32–34], flow in channels [35–37], flow
in porous media [38,39], and flow around bubbles [40,41].
More related to the present investigations are the computa-
tional studies on droplets with EVP properties. Oishi et al.
[20] studied the flow of materials on an inclined plane, con-
sidering elastic properties, where they captured the so-called
avalanche effect where a decrease in viscosity (triggered by
a stress field) induces a motion that successfully creates an-
other decrease in viscosity. In follow-up studies, Oishi et al.
[22,42] have also included surface tension and thixotropic
effects on the impact of EVP droplets on normal and inclined
solid surfaces. Izbassarov and Tamissola [43] investigated
how an EVP droplet deforms inside a Newtonian medium
under simple shear and observe that the droplet deforma-
tion can present a nonmonotonic behavior as elasticity is
changed.
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(a) (b)

FIG. 1. (a) Sketch of the geometry of a spreading elasto-viscoplastic droplet. We assume the droplet to be axisymmetric around the z axis
and spread on a thin prewetted film of the same material with thickness h∞. The radius and the height of the droplet are denoted respectively as
R(t ) and H (t ). Gravity is neglected, hence, the spreading is purely due to surface tension effects. The droplet includes microscopic constituents,
resulting in macroscopic EVP models. (b) Mechanical analog of Saramito’s EVP model.

In the present paper, our main goal is to study the spreading
of EVP droplets on a surface. To this end, we aim to extend
the previous numerical analysis [44] to consider not only
viscoplastic rheology, but also the addition of elasticity. By
using Saramito’s EVP model [26], a parametric study will
be carried over in order to understand how the addition of
elasticity can affect the transient spreading dynamics and also
the final shapes of elasto-viscoplastic droplets.

The paper is organized as follows. Section II presents a
description of the problem, the governing equations used to
model the flow and the rheology of the EVP material, and also
an overview of the numerical method used in this paper. In
Sec. III, results are presented and various limits of the problem
are visited. Section IV concludes the results and presents
future perspectives. Additional numerical details can be found
in the Appendices.

II. PROBLEM DESCRIPTION AND THE NUMERICAL
FRAMEWORK

A. Problem description: Capillary spreading of a droplet

We consider the spreading of an axisymmetric EVP droplet
on a wetted surface. The choice of geometry has two main
reasons. Firstly, in several applications, including 3D printing
and spray coating, it is typical for droplets to spread and
deposit on an existing layer of the same fluid [9,10]. Secondly,
opting for a geometry that eliminates the presence of a triple
contact line provides theoretical and computational advan-
tages as it simplifies the associated complex physics related
to boundary conditions and stress singularities.

As illustrated in Fig. 1(a), a droplet is initially placed over
a thin film of the same material and allowed to spread due
to capillary forces. Viscous forces oppose this spreading by
slowing it down, and yield stress is capable of stopping it com-
pletely as shown previously in [44] for a purely viscoplastic
scenario. The role of elasticity in this process, however, is less
clear and a numerical framework will be implemented in order
to understand such effects. To this end, we will model the
rheology of the EVP material by the Saramito model [26,27],
which generalizes both the Bingham viscoplastic and the
Oldroyd-B viscoelastic models. Figure 1(b) shows a mechan-
ical analog of this model. Below the yield stress the material

behaves like a Kelvin-Voigt solid, while after yielding it flows
as an Oldroyd-like fluid.

B. Governing equations

The governing equations for the isothermal incompressible
bi-phase flow, are the continuity and momentum conservation
given by

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ ∇ · (uu)

)
= −∇p + ∇ · τ + fg + fσ , (2)

where u and p are the velocity and pressure fields. The
gravitational force is defined as fg = ρg where ρ is the fluid
mass density. In our numerical method, the surface tension
force is also defined as a body force fσ = σκδsn, where κ is
the curvature of the interface, σ the constant surface tension
coefficient, n is the unit vector normal to the interface, and δs

is the Dirac delta function centered on the interface [45].
The deviatoric stress tensor τ is the sum of the solvent τs

and polymeric τ p contributions,

τ = τs + τ p. (3)

The solvent stress contribution presents a Newtonian be-
havior and the polymeric stress includes the memory effects,
hence,

τs = 2μsD, (4)

where μs is the solvent viscosity and D = 1
2 [∇u + (∇u)T ]

is the strain rate tensor. The polymer stress τ p includes
the elasto-viscoplastic contribution, emerging from the mi-
crostructures. For viscoelastic fluids, it is common to model
the contribution of the polymeric stress as τ p = μp

λ
f (A),

where λ is the relaxation time, μp is the plastic viscosity,
and f (A) is a strain function of the conformation tensor
A [46–48]. We assume f (A) = (A − I) and A follows a

linear relaxation law
�

A= − 1
λ

(A − I), where
�

(·) is the upper-
convected time derivative. Adding a critical yield stress at
which the material switches between liquid and solid phase,
we arrive at a constitutive law, first formulated by Saramito
[26,27]. The model combines the Bingham (viscoplastic)
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[49,50] and the upper-convected Maxwell (viscoelastic) mod-
els [46–48,51,52]. The polymeric stress then is governed by

λ

�

τ p + max

(
0, 1 − τ0

‖τ p‖
)

τ p = 2μpD, (5)

where τ0 is the yield stress, ‖τ p‖ =
√

tr(τ p2), and
�

τ p is
given by

�

τ p= ∂τ p

∂t
+ (u · ∇ )τ p − (∇u)τ p − τ p(∇u)T . (6)

A dimensionless version of these equations can be obtained
by scaling the variables as follows:

x = Lx̄, t = L
U

t̄, u = U ū,

p = ρd U 2 p̄,

τ p = ρd U 2τ̄ p, (7)

where x is the position vector, t is time, U =
√

σ
ρdL is the

characteristic velocity, ρd is the droplet density, and the length
scale is L = [3V/(4π )]1/3 with V being the volume of the
droplet (L can be seen as the radius of a corresponding spher-
ical droplet with same volume V).

Removing, for convenience, the bars in (7), the dimension-
less governing equations for the droplet phase are given by

∇ · u = 0, (8)

∂u
∂t

+ ∇ · (uu) = − ∇p + ∇ · (2 Ohs D) + ∇ · τ p + Bo · g

+ κδsn, (9)

De

�

τ p + max

(
0, 1 − J

‖τ p‖
)

τ p = 2 Ohp D, (10)

with the dimensionless groups: Ohnesorge numbers (Ohs and
Ohp), Bond number (Bo), plastocapillary number (J ), and
Deborah number (De) defined, respectively, as

Ohs = μs√
ρdσL

, Ohp = μp√
ρdσL

, Bo = ρd gL2

σ
,

J = τ0L
σ

, De = λ

√
σ

ρdL3
. (11)

The Ohnesorge numbers compare the characteristic Rayleigh
timescale and the viscocapillary time scale and, for this
problem, could be seen as normalized solvent or polymeric
viscosities. The Bond number compares the gravitational
stresses and capillary pressure. In the present study, we focus
on pure capillary spreading, where gravity is negligible, hence
Bo = 0 in all simulations. Although we admit that the limit of
large Bo and negligible surface tension is interesting and im-
portant for geophysical problems like lava flows, mudslides,
and snow avalanches where large-scale EVP fluids flow un-
der gravity [53,54]. The plastocapillary number compares the
yield stress and the capillary stresses, and the Deborah number
is the ratio of the polymeric relaxation time to the characteris-
tic time scale of the problem. Note that many authors choose
to replace parameters Ohs and Ohp by Oh = Ohs + Ohp and

β = Ohs/(Ohs + Ohp) [55], where β can be seen as the nor-
malized ratio of solvent to apparent viscosity. We also note
that, using the present multiphase method, we also have fluid
motion in the air phase. Therefore, a set of equations similar
to Eqs. (8)–(10), but with Newtonian rheology, is also solved
for the air flow. Consequently, two other nondimensional pa-
rameters are also relevant: the density ratio between droplet
and air (ρd/ρa) and viscosity ratio (μs/μa), where subscript
a denotes air properties. Both of these ratios are kept constant
with a value of 100.

Limits of Eqs. (8)–(10) for the capillary flows worth men-
tioning:

Case 1: J = 0 — Visco-elastocapillarity regime.
Omitting the yield stress leads to a purely viscoelastic

(Oldroyd-B) fluid under capillary forces [56–60].
Case 2: De = 0 — Plastocapillarity regime.
Excluding viscoelastic (memory) effects results in a purely

viscoplastic (Bingham) free surface flow under capillary
stresses [61]. Note that, substituting De = 0 in Eq. (10), from
Eq. (9), we arrive at the deviatoric stress of

τ = 2

[
Ohs + Ohp + J

2‖D‖
]

D, (12)

for yielded regions. For a Bingham fluid, D = 0 when the
material is unyielded. Hence, numerical regularization is
required. In practice, for this limit, instead of the EVP con-
stitutive model, we will solve a regularized version of the
generalized Newtonian model above [44,62].

Case 3: J = 0 and De = 0 — Newtonian regime I.
Without elastoplastic rheology, we simply have a Newto-

nian fluid spreading due to surface tension, and the deviatoric
stress tensor is

τ = 2 (Ohs + Ohp) D. (13)

Case 4: De → ∞ — Newtonian regime II
For finite Ohp and J , if De → ∞, we arrive at τ p → 0 and�

τ p→ 0. Given the finite deformation, we will have another
Newtonian spreading with

τ ≈ 2 Ohs D. (14)

In other words, the polymers behave like passive scalars
and do not contribute to the dynamics of the problem. This
regime might not be physical because, in reality, the viscous
and plastic dissipations might also depend on the relaxation
time. Note, if Ohp/De (∼elastic module) remained finite, then
equation (10) converged to the constitutive model of an elastic
solid [48].

Case 5: J → ∞ — Elastocapillarity regime.
For a finite De, when the plastocapillary number is large,

Eq. (10) reduces to
�

τ p= 2
Ohp

De
D, (15)

i.e., the stress inside the material remains below the yield
stress and the polymeric response is elastic. In fact, Ohp/De =
μpL/σλ is the elastocapillary number (or the inverse of it
[56]). In this limit, the droplet behaves like a Kelvin-Voigt
solid that spreads under capillary stress [63–65]. This regime
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is highly related to other soft wetting phenomena, where cap-
illarity forces deform soft solids [66–68].

In all of the cases above, the system of equations is closed
with appropriate boundary conditions. We apply a no-slip
condition on the solid wall. Rotational symmetry is applied
at the center of the droplet and outflow boundary conditions
are used at the two boundaries distant from the droplet.

C. Initial condition and numerical method

We used the open source code Basilisk C to solve the
equations described in the previous section. An overview of
the numerical procedure will be given in this section. Detailed
descriptions of Basilisk can be found in [69] (also see Appen-
dices A 1 and A 2).

The simulation is setup by initializing a droplet according
to the following shape:

h(r, 0) = h∞ + R0 max
(
0, 1 − (r/R0)2

)
, with

R0 = 1, (16)

which represents a half-parabola in an axisymmetric coordi-
nate system. The droplet is placed in a squared domain with
dimensions [0, 5R0] × [0, 5R0], which is fully discretized
with a nonuniform quadtree grid [70,71]. To accurately re-
solve the flow structure inside the droplet and its shape, we
apply increased refinement levels for the liquid phase and also
at the interface (see Appendix A 1). As the droplet spreads
over time, the mesh is also adapted so that the refined region
follows the interface.

The interface is represented implicitly by the volume-of-
fluid (VOF) scheme [72], in which each mesh cell stores a
value representing the fraction of droplet fluid. Density and
viscosity are then locally determined based on the volume
fraction c(x, t ) according to

ρ(c) = c ρd + (1 − c)ρa, (17)

μ(c) = c μd + (1 − c)μa, (18)

where ρ and μ represent the density and dynamic viscosity
of a fluid, respectively. The subscripts d and a represent, the
droplet and the air, respectively.

This volume fraction field c is then advected over time by
solving the equation

∂c

∂t
+ ∇ · (cu) = 0. (19)

The numerical code then solves the governing equa-
tions using a projection method and a multilevel Poisson
solver (see [71,73] for more details of the VOF implemen-
tation and Appendix A 3 for the present code and validation
tests).

III. RESULTS AND DISCUSSION

We construct the discussion on EVP spreading by first
analyzing the results of pure viscoplastic and viscoelastic
droplets. In all simulations in this section, the following pa-
rameters are fixed: Ohs = 1/90, Ohp = 8/90, Bo = 0.

FIG. 2. Droplet final radius and height as a function of the plas-
tocapillary number. Symbols are the present numerical simulations.
The thick dashed lines show the theoretical predictions from [44].
The gray horizontal line indicates the initial radius and height of the
droplets.

A. Plastocapillarity

Theoretical, computational, and experimental results for
viscoplastic droplet spreading (De = 0) have been previously
presented [25,44]. We will revisit this limit first to validate
the simulation and also to extend the available results for
higher plastocapillary numbers. To this end, we will focus
on the properties of the final shape of the droplet when
t → ∞. Unlike Newtonian droplets, droplets of yield-stress
fluids will be arrested at this limit, resulting in a finite final
radius R f and height Hf . In a pure viscoplastic case, these
features can be explained by balancing the capillary stress and
yield stress [44], resulting in theoretical scaling laws, R f /L =
1.74J −1/7, Hf /L = 1.09J 2/7. Note, the prefactors are ob-
tained from asymptotic analysis [44]. Also note, to test our
numerical results against these laws, we must choose a stop-
page criterion in our simulations since we use a regularized
model in the viscoplastic limit. We do this based on the nondi-
mensional kinetic energy [Ek = (1/σL2)

∫
V

1
2 ρd ‖u‖2 dV ]

of the droplet, such that the simulation is stopped when
Ek < 10−6.

Figure 2 shows the final radius and height of our simulated
droplets versus the plastocapillary number J . As expected,
due to the higher influence of yield stress on capillary-driven
spreading, the final radius decreases with J , while the final
height increases. Both final radius and height reach a plateau
after a certain value of plastocapillary number, J ≈ 1 (see
Video I within the Supplemental Material [74]). At this limit,
the droplets practically get stuck at their initial shape, since
the capillary stress is not strong enough to overcome the yield
stress at all. There exists a transition regime between the
low yield-stress scaling laws (soft) and the high yield-stress
plateau (stiff) regimes, where the numerical results smoothly
vary between the two. There is a good agreement between the
theory and numerical results when the droplets are soft enough
to yield. As plastocapillary number increases, the droplet does
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FIG. 3. Spreading radius (top) and height (bottom) over time for
different values of the Deborah number.

not entirely yield and hence breaks the assumption in the
theoretical predictions. Note that the exact point of transition
from soft to stiff limit depends on the initial conditions. This
could have important implications for some applications such
as 3D printing [25,75–79], when depending on the values
of J , the history (shape) of droplet/filament at the time of
deposition can influence the final geometry of the print.

B. Visco-elastocapillarity

We continue by considering the case of viscoelastic ma-
terials without plasticity, that is, J = 0. In this situation, the
constitutive model reduces to an Oldroyd-B fluid. Figure 3
shows the droplet radius (top) and height (bottom) over time
for different values of De (see Video II within the Supple-
mental Material [74]). In the Newtonian limit (De = 0), the
spreading eventually follows the rate predicted by Tanner’s
law [7], i.e., R ∝ t1/10 and H ∝ t−1/5. For the viscoelastic
case, we note that, in the first moments, the droplet spreads
considerably more as we increase De. We anticipate this is due
to the increased relaxation time of the fluid. As we increase
the relaxation time (or De), the stresses take a longer time
to develop as the flow field develops inside the droplet, con-
sequently, the droplet spreads more since the internal stress
is smaller during this transient period. As a consequence,
interestingly, the spreading curves converge to an apparent
Newtonian limit when De → ∞. In this limit, the polymeric
stress does not have enough time to develop at all within
the timescale of the simulation, and we actually recover a
Newtonian droplet that only exhibits the solvent stress, i.e.,
we have a Newtonian fluid with Ohnesorge number Oh∞ =
Ohs (circles in Fig. 3). For the intermediate values of De,
the interface experiences an oscillatory behavior (see Fig. 3),
where the droplet height first reaches a local minimum and
then increases again as elastic stresses build up, eventually
reaching a decaying regime.

To further analyze the anatomy of viscoelastic spreading,
we inspect the flow field inside the droplet using a flow
parameter [80],

ξ = |D| − |�|
|D| + |�| , (20)

where D and � are the deformation rate and vorticity ten-
sors (the symmetric and antisymmetric components of ∇u),
respectively: D = 1/2 [∇u + (∇u)T ] and � = 1/2[∇u −
(∇u)T ]. The flow parameter can vary in the range ξ ∈ [−1, 1],
where ξ = 1 represents a purely extensional flow, ξ = 0 shear
flow and ξ = −1 indicates solid-like rotation. Figure 4 shows
the value of ξ inside a viscoelastic droplet with De = 0.245
for different time frames. At the beginning of spreading, the
flow close to the axi-symmetry axis and in the bulk of the
droplet is predominantly extensional (red color). Meanwhile,
a shear-dominant boundary layer forms from the contact line
and across the substrate [zone I Fig. 4(a)]. Two rotating re-
gions also develop close to the interface and grow over time
[zones II and III in Fig. 4(b)] but decay as the droplet fur-
ther spreads. Eventually, the flow inside the droplet is mainly
extensional in the center [zone IV in Fig. 4(d)] and shear
dominant close to the substrate.

In the next step, we will study the additional effects of
plasticity on the complex flow structures shown above in an
EVP spreading.

C. Elasto-viscoplastic spreading

We now consider the general scenario of elasto-
viscoplastic spreading, i.e., De and J are both finite. In this
case, all the nonlinear properties mentioned earlier (including
the coexistence of solid and liquid states in plastic fluids
and the time-dependent characteristics of viscoelastic fluids)
are simultaneously observed. We inspect the nondimensional
polymeric stress τ p and observe in which regions this stress
is above (yielded) or below (unyielded) the value of J (see
[43]). Figure 5 shows the value of scalar S = log(‖τ p‖) −
log (J ) at different times inside a droplet with J = 0.18 and
De = 0.816. S > 0 means the material is fluidized and flows
like a viscoelastic fluid, and S < 0 means the material is not
yielded and behaves like a viscoelastic solid. As expected, the
droplet is initially mostly unyielded (large blue region) since
we assume there is no internal stress as our initial condition.
The stress begins to increase from the contact line, which is
the location of the highest curvature [zone I in Fig. 5(a)].
After some time, most of the droplet is yielded (red colors)
with a particularly higher stress region near the wall and
droplet edge [zone II in Fig. 5(b)]. Meanwhile, a moving plug
forms near the interface of the droplet [zone III in Fig. 5(b)],
correlated with the rotating regions shown in Fig. 4. As time
continues to increase, the droplet solidifies once again with
a static plug in the center [zone IV in Fig. 5(c)], leading to
a full stoppage. Note that, unlike the pure viscoplastic case,
no regularization is needed in the case of EVP materials;
the viscoelastic solid will reach an equilibrium state as long
as stress everywhere inside the droplet is below the yield
stress.

We systematically extended the analysis above by chang-
ing the control nondimensional parameters. Figure 6 demon-
strates the value of S for different combinations of J and De
(see Video III within the Supplemental Material [74]). For a
given De, increasing the value of J leads to larger unyielded
regions inside the droplet, which is expected as we increase
the material yield-stress. Hence, for a given De, and at a given
time, the droplet spreads less as the values of J increase.
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I

FIG. 4. Flow structure inside a viscoelastic droplet with De = 0.245 at different time stamps. Regions of ξ = 0 indicate purely shear flow,
ξ = 1 extensional flow, and ξ = −1 rotation.

(a) (b)

(c) (d)

FIG. 5. Distribution of S at different timestamps inside a elasto-viscoplastic droplet with De = 0.816 and J = 0.18. Blue regions indicate
stress below the plastocapillary number J (unyielded) and red regions are above J (yielded).

FIG. 6. Distribution of S inside the elasto-viscoplastic droplet for different values of De and J . All snapshots are taken at time t = 8.16
(see Video III within the Supplemental Material [74]). Blue regions indicate stress below the plastocapillary number J (unyielded) and red
regions are above J (yielded). We note that the colorbar limits do not include the total range of values present in the data, since we are only
interested in visualizing regions that are above or below zero.

013226-6



ELASTO-VISCOPLASTIC SPREADING: FROM … PHYSICAL REVIEW RESEARCH 6, 013226 (2024)

FIG. 7. The evolution of droplet height as a function of the plas-
tocapillary and Deborah numbers.

For a given J , increasing the Deborah number also generates
larger unyielded regions (in blue). Similarly to the explanation
in Sec. III B, increasing De results in smaller values of τ p

and more regions below the yield stress. Intriguingly, at the
high J cases (last row in Fig. 6), it is notable to observe
that by increasing De, the droplet spreads significantly even
though it almost entirely behaves like a solid. This is because
the current EVP formulation models the unyielded case as
a viscoelastic solid, allowing for a finite deformation rate
(as opposed to a Bingham rigid solid where the deformation
rate is zero for the solid state). This means that the material
can experience deformation even below the yield stress, as
seen clearly in the examples when both J and De are high
(elastocapillarity regime).

For a better quantitative analysis of the dynamics shown
above, we look at the variation of droplet height over time
for different values of J and De, as shown in Fig. 7. For
EVP droplets the spreading stops and a final shape is reached.
This is similar to the plastocapillarity regime; however, the
elasticity clearly influences the final shape. Similarities to the
visco-elastocapillarity regime can also be seen, particularly in
the local overshoot and the oscillation of the height that is
observed for most cases and amplifies with De. At the same
time, the impact of De on the dynamics is more pronounced
for higher values of J , resulting in a larger difference in the
final shape (height and radius).

Finally, we quantify the Deborah number effects on the
final radius of the droplet to complete the picture shown in
Sec. III A. Figure 8 shows the final radius of droplet versus
J for different values of De. The limit De = 0 corresponds
to a viscoplastic limit, also shown in Fig. 2 and the dashed
lines represent the theoretical scaling for this case. As De
increases, the droplet spreads more, particularly for higher
values of J . For higher De values, we also see a decrease
in the critical value of J from which the spreading stays
almost constant. This happens because, as we saw earlier, the
elasticity promotes unyielded droplets, and for droplets that
are already unyielded, further increasing the value of J does
not introduce further changes. For the elastocapillary limit,
when De and J are large, balancing the surface tension and

FIG. 8. Final radius (top) and height (bottom) of EVP droplets
for a range of J and De. The horizontal dashed gray lines show
the initial radius and height. The thick blue and red dashed lines
correspond to the plastocapillarity limits (see Sec. III A).

elastic forces results in scaling laws for the final radius and
height of the droplet. At the stoppage moment, the surface
tension force can be estimated as Fσ = σH2

f /R f . Balancing
this with the elastic forces, estimated as Fe = (μp/λ)R2

f , and
a for a given volume of the droplet V ∼ L3 ∼ H f R2

f , we
arrive at R f /L ∼ (Ohp/De)−1/7 and H f /L ∼ (Ohp/De)2/7.
These formulations are similar to those for the plastocapillar-
ity limit, except that the plastocapillary number (yield stress)
is replaced by elastocapillary number (elastic modulus). In
Appendix A 4, we test these scaling laws by looking at the
final radius and height as a function of De.

IV. CONCLUSIONS

We numerically investigated the spreading of elasto-
viscoplastic fluids under surface tension forces. Direct nu-
merical simulations are performed using the EVP model of
Saramito to understand how different nondimensional groups
influence the spreading. We focused our study on the im-
portance of two nondimensional groups: the plastocapillary
number J , and the Deborah number De. We confirm that
increasing the plastocapillary number in EVP spreading,
reduces the droplet spreading, as previously explained for
the viscoplastic limit [25,44]. The influence of elasticity on
spreading can also be significant. Increasing the Deborah
number (while other parameters are fixed) promotes more
spreading. This effect is associated with the polymeric re-
laxation time, which delays the development of the internal
droplet stresses, allowing the droplet to spread with less resis-
tance.

Overall, for fixed (solvent and polymeric) Ohnesorge num-
bers, the De − J parameter space covers a range of regimes,
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FIG. 9. De − J parameter space and its different limits. The general case of EVP spreading reaches different regimes, depending on which
rheological factor (elasticity or plasticity) dominates. Note that the high De regime of Newtonian fluids is for finite Ohp.

including visco-elastocapillarity, elastocapillarity, and plas-
tocapillarity, which can be further studied by the model
presented here. Figure 9 presents a (schematic) overview of
these limits.

The spreading of EVP fluids plays a key role in many
industrial applications, such as coating and 3D printing. Our
paper, based on a continuum model, sheds light on how elastic
and plastic rheological properties alter viscous spreading. The
study can be further extended in many different ways. Firstly,
further experimental studies are required. The present experi-
mental data [44] are limited to viscoplastic limits and are not
sufficient to compare with the simulations here. Ideally, exper-
iments in which the values of plastocapillary and the Deborah
numbers can be systematically changed should be performed.
This, however, could be a difficult task as chemical or phys-
ical changes in microstructure often change the yield stress,
viscosity, and elastic moduli of the material, simultaneously.
The EVP model of Saramito, used here, is relatively simple to
implement and describes a large number of physical phenom-
ena at various limits. However, the model does not consider
transient yielding and predicts a linear elastic solid response
for small strains (see Fig. 16 below), which does not hold
for most elasto-viscoplastic materials. Including other mecha-
nisms, like kinematic hardening [29,81], accounts for a more
realistic transient yielding processes. More recently, Kamani
et al. [82,83] presented a model that features a rate-dependent
relaxation time, allowing for plastic deformation when stress
is below the yield stress. The model nicely presents the tran-
sient yielding, which might affect dynamical processes like
droplet spreading. Hence, one improvement of the present
results could be the implementation of such models. We aim
to address this in our future work.

The present article focuses on the problem of spreading.
Still, in principle, the computational framework presented
here could be used to study and analyze a range of
capillary-driven phenomena such as bubble or drop coales-
cence [84–88], pinch-off [89,90], multicomponent systems
like drops on liquid-infused surfaces [91,92] or soft wetting
[66,68,93,94], and nonaxisymmetric shapes [76]. The model

can also be used to study the complex flow history effects,
such as the effect of nozzle flow on the final deposition of 3D
printers. Finally, the model can be extended for materials with
more complicated rheological properties such as thixotropy
[20,95,96] and also for wetting of dry surfaces, when a triple
line exists [23].
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APPENDIX: NUMERICAL REGULARIZATION AND GRID
DEPENDENCY

1. Viscoplasticity and viscoelasticity

We use a generalized Newtonian Bingham model when
De = 0, i.e., a viscoplastic material. In this case, the apparent
viscosity is replaced by a regularized Bingham-Papanastasiou
viscosity [97]

μapp = Ohs + Ohp + J
2‖D‖ (1 − e−‖D‖/εvp ), (A1)

where εvp is the regularization parameter (see [98]). Figure 10
shows an example of convergence tests for the viscoplastic
regularization parameter when J = 0.18, Ohs + Ohp = 0.1,
De = 0, Bo = 0 and the interface is captured at time t = 10.
Performing a series of theses tests, we note that all solu-
tions have converged for values εvp � 10−3. Therefore, in
all viscoplastic simulations reported in this article, we fixed
εvp = 10−3.

An adaptive quadtree mesh is used in all the simulations
in this paper. An example of nonuniform grids is shown in
Fig. 11. The maximum level of refinement is initially applied
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FIG. 10. Convergence tests for the Bingham regularization pa-
rameter. The plastocapillary number is J = 0.18 and the mesh is
fixed at Level = 10.

only near the interface, while one level coarser is used ev-
erywhere inside the droplet. Over time, the adaptive mesh
refinement may also impose the maximum level in regions
inside the droplet, based on error estimations on the velocity
and volume fractions. In the outer (air) phase, the size of the
grids gradually increases from the interface. We checked for
the effect of grid size on the numerical results presented here
to ensure the reported outcomes on dynamics of spreading
and the droplet shapes are independent of the grid size. In
Fig. 12(a), the maximum mesh refinement level is varied for
a fixed εvp = 10−3. The change in the interface dynamics is
negligible when Level � 10. With these results in mind, all
the viscoplastic simulations in this paper are performed with
εvp = 10−3 and Level = 10.

We now perform a convergence test for the case of vis-
coelastic droplets (J = 0 and De �= 0). In this situation, no
viscoplastic regularization needs to be used, so we only check
for mesh convergence. Figures 12(b) and 12(c) show the ra-
dius and height of the droplet over time for different mesh
levels with fixed De = 0.41. We note that little difference is
observed with mesh levels above 9. For this reason, all the
viscoelastic simulations performed in this work will use the
mesh level 10.

2. Elasto-viscoplasticity

When De �= 0 and J �= 0, the full Saramito constitutive
equations (10) are used. The software Basilisk already con-

FIG. 11. Nonuniform grid generated for the spreading simula-
tion. The right panel shows the magnified view of the white box in the
left. Cells are colored by their level of refinement (the computational
domain is a square and has a level 0 refinement; see [70]). We note
that this figure does not capture the entire domain, which continues
both in the r and z directions.

tains a well-tested implementation of the Oldroyd-B model
for solving viscoelastic flows given the parameters λ (relax-
ation time) and μp (polymeric viscosity) [99]. To make use
of this existing module, we rewrote the Saramito constitutive
equation (10) as

De

α

�

τ p +τ p = 2
Ohp

α
D, where

α = max

(
εevp, 1 − J

‖τ p‖
)

, (A2)

and εevp is a small threshold parameter. We note that equa-
tion (A2) has the same form as the traditional Oldroyd-B
equation but with nonconstant relaxation time and poly-
meric viscosity coefficients. Therefore, we use the standard
Oldroyd-B solver in Basilisk by dynamically setting these two
coefficients according to the expressions in Eq. (A2).

Figure 13 shows convergence tests for the EVP threshold
parameter and for the mesh refinement parameter in a simu-
lation with De = 0.816 and J = 0.18. We observe that εevp

has negligible influence on the shape of the droplet, even at
relatively large values. Regarding mesh convergence, we see
that for refinement levels above 9, the results are already very
similar. For all the following EVP simulations in this article,
we used the combination εevp = 10−7 and Level = 10.

3. Appendix: Validation

We present a number of validation cases where theoretical
results are available. All codes are available on GitHub [100].

a. Startup shear flow

A basic rheology test for non-Newtonian fluids is the
startup shear flow between two parallel plates, which we
will use here to test our code. We nondimensionalize the
equations using the domain half-height H as length scale and
U = H γ̇xy as velocity scale, where γ̇xy is the imposed shear
rate. In this manner, we arrive at

∇ · u = 0, (A3)

Re

(
∂u
∂t

+ ∇ · (uu)

)
= −∇p + ∇ · (2 β D) + ∇ · τ p, (A4)

Wi

(
∂τ p

∂t
+ (u · ∇ )τ p − (∇u)τ p − τ p(∇u)T

)

+ max

(
0, 1 − Bi

‖τ p‖
)

τ p = 2 (1 − β ) D, (A5)

with the dimensionless groups: Reynolds number (Re), Bing-
ham number (Bi), Weissenberg number (Wi), and viscosity
ratio (β ∈ (0, 1]) defined respectively as

Re = ργ̇xyH2

μ0
, Bi = τ0

μ0γ̇xy
, Wi = λpγ̇xy, β = μs

μ0
, (A6)

where μ0 = μs + μp is the total viscosity.
We model the geometry as a rectangular domain

[−10, 10] × [−1, 1] and impose the velocity ux = 1 at the top
boundary and ux = −1 at the bottom boundary, such that the
nondimensional shear rate is γ̇xy = 1.
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(a) (b) (c)

FIG. 12. Mesh convergence tests for a Bingham material and a viscoelastic fluid. (a) Snapshot of a Bingham droplet at time t = 10 with
fixed εvp = 10−3 and J − 0.18. [(b),(c)] Radius and height evolution for a viscoelastic droplet with De = 0.41 and different mesh refinements.

Figure 14 shows the values of polymeric stress components
obtained for three values of Bi and five values of Wi. In
the same figure, we also plot the semi-analytical solution for
this problem obtained in [26]. We observe good agreement
between the two solutions, which indicates that the code de-
veloped here is correctly capturing the evolution of the EVP
stress over time.

b. Oscillatory shear flow

Oscillatory shear tests are also standard benchmark flows
for non-Newtonian fluids. For this test, we impose a periodic
deformation given by γ (t ) = γ0 sin(ωt ), where γ0 is the strain
amplitude while ω is the frequency. Consequently, the defor-
mation rate is γ̇ (t ) = γ0ω cos(ωt ). We nondimensionalize the
problem with the following rescalings:

x = H x̄, t = 1

ω
t̄, u = γ0Hωū, p = γ0μ0ω p̄,

τ p = γ0μ0ωτ̄ p. (A7)

With these choices, we obtain the same Eqs. (A3)–(A5),
but with the following definitions for the nondimensional
groups:

Re = ρωH2

μ0
, Bi = τ0

μ0γ0ω
, Wi = λpω, β = μs

μ0
. (A8)

Figure 15 shows the Lissajous plots relating the shear stress
to deformation and deformation rate with different values of

(a) (b)

FIG. 13. Convergence tests for the EVP regularization parameter
(left) and for the mesh refinement parameter (right). In the regular-
ization tests, we keep fixed the mesh level as 10 and in the mesh tests
we fix the regularization εevp = 10−7. All simulations are performed
with De = 0.816 and J = 0.18.

Bi and Wi. In the same figure, we also plot the semi-analytical
solution for this problem obtained in [26]. Once again, good
agreement is obtained, showing that the present code captures
the transient dynamics of Saramito’s EVP stress. Note that,
in these tests, we initialize the stress with τ = 0, such that it
requires a short amount of time before adjusting itself into its
periodic cycle.

From the same tests, we can also extract the values of the
storage modulus (G′) and the loss modulus (G′′). These are
shown as circles in Fig. 16, and the straight lines represent
the semi-analytical solution for a shear flow (see [26]). We
note that the values of G′ and G′′ are given as a function
of Bi−1, which can be seen as a nondimensional equivalent
for the strain amplitude. Also note that, as discussed in the
conclusion, the Saramito model leads to the sudden drop of
G′′ at small strains, where only the contribution of the solvent
viscosity is present.

c. Droplet under shear flow

In order to test our implementation in a problem with a
moving interface, we will look into the deformation of an EVP
droplet under simple shear flow in a Newtonian fluid.

We nondimensionalize the problem with the following
rescalings:

x = Rx̄, t = 1
γ̇xy

t̄, u = Rγ̇xyū, p = μM γ̇xy p̄,

τ p = μM γ̇xyτ̄
p, κ = 1

R
κ̄, δs = 1

R
δ̄s, (A9)

where R is the droplet initial radius, γ̇xy is the imposed shear
rate, and μM is the viscosity of the matrix fluid (Newtonian).

With these choices, we obtain the following nondimen-
sional equations:

∇ · u = 0, (A10)

ρ

ρM
Re

(
∂u
∂t

+ ∇ · (uu)

)
= − ∇p + ∇ ·

(
2

μ0

μM
β D

)

+ ∇ · τ p + 1

Ca
κ̄ δ̄sn, (A11)

Wi

(
∂τ p

∂t
+ (u · ∇ )τ p − (∇u)τ p − τ p(∇u)T

)

+ max

(
0, 1 − Bi

||τ p||
)

τ p = 2
μ0

μM
(1 − β ) D, (A12)
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FIG. 14. Evolution of τ p
xy and τ p

xx over time in a start up simple shear flow. Circles correspond to the numerical solution from our code and
straight lines are the semi-analytical solution to the problem (see [26]). The Reynolds number is always fixed at Re = 0.1 and the viscosity
ratio is β = 1/9.

FIG. 15. Lissajous plots showing the shear stress τ p
xy as a function of the periodic strain (top) and strain rate (bottom). Circles correspond

to the numerical solution from our code and straight lines are the semi-analytical solution to the problem (see [26]). The Reynolds number was
kept at Re = 0.1 and viscosity ratio at β = 1/9.
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FIG. 16. Nondimensional storage (G′) and loss (G′′) moduli for a Saramito fluid as a function of Bi−1. Circles are numerical solutions from
our code corresponding to the same 9 simulations shown in Fig. 15. Straight lines are the semi-analytical solution to the problem (see [26]).

where ρ is the density of the droplet, ρM is the density
of the fluid around it and μ0 = μs + μp is the total vis-
cosity of the droplet. The dimensionless groups are now
given by

Re = ρM γ̇xyR2

μM
, Bi = τ0

μM γ̇xy
, Wi = λpγ̇xy, β = μs

μ0
,

Ca = σ

μM γ̇xyR
. (A13)

When subject to a constant shear flow, the circular droplet
deforms into an ellipsoid shape. This can be measured by the
droplet deformation parameter D = (L − B)/(L + B), where
L and B are lengths of the major and minor axes of the ellipse,
respectively. For all tests below we will use a channel of half-
height H = 4R, which also imposes some confinement effects
on the droplet. The ratio between droplet-matrix properties
will be fixed at μ0

μM = ρ

ρM = 1.

We begin by looking into results for a Newtonian droplet
(Bi = 0, Wi = 0, β = 1) as a function of the capillary
number. As shown in the left panel of Fig. 17, our com-
putational results follow the previous simulation of Zhou
and Pozrikidis [101] and the (almost) linear variation, ex-
pected for 2D droplets at small Ca. For higher values of
Ca, the numerical results deviate from the linear variation
as the analytical solution is valid for the limit of small
deformations.

We also perform tests for the deformation of a viscoelastic
droplet with nondimensional numbers Re = 0.3, Ca = 0.6,
Wi = 0.4, β = 0.4, and Bi = 0. Figure 17 (right panel) shows
the deformation of the droplet over time. We compare the
dynamics of the deformation with the computational solution
previously presented by Figueiredo et al. [102], where a good
agreement was observed.

Finally, we perform tests for an EVP droplet under shear.
For a 3D droplet, this problem has been explored in [43], but
in our validation test, we chose to perform 2D simulations

FIG. 17. Validation results for Newtonian and viscoelastic droplets under simple shear flow. (Left) Final deformation of a Newtonian
droplet for different capillary numbers. (Right) Transient droplet deformation of a viscoelastic droplet under shear.
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FIG. 18. Transient and steady-state deformation of an EVP droplet under shear for different Bingham and Weissenberg numbers. [(a)–(c)]
Transient deformation for three different values of the Bingham number. (d) Final deformation for various Bi and Wi.

since our droplet spreading work is also a 2D (axisym-
metric) problem. Figures 18(a)–18(c) show the evolution of
the droplet deformation as a function of time for three dif-
ferent Bingham numbers. For each Bingham, a set of five
Weissenberg numbers are explored. The transient behavior
qualitatively compares well with those of [43], as we also see
some temporary oscillations for cases with intermediate and
high Wi. The final droplet deformation is shown in Fig. 18(d)
for various Bi and Wi and, once again, good qualitatively
agreement is observed with [43]. For low values of Bi, we
observe the non-monotonic influence of elasticity, where the
deformation first decreases and then increases again with Wi.
For high values of Bi, the deformation increases monotoni-
cally with Wi. We note that, quantitatively, our values of D
are smaller than those of [43] due to the fact that they per-
formed 3D droplet simulations, while the ones presented here
are 2D.

4. Elastocapillarity

Figure 19 presents the data in Fig. 8 as a function of De.
Note that the prefactors presented here are simply good fit
through the data and are not from asymptotic analysis. A more
rigorous analysis like those presented for viscoplastic limits
[44] is needed to find the exact prefactors.

FIG. 19. Final radius and height as a function of De. The dashed
lines show the scaling laws for the elastocapillarity limit, where both
J and De are high enough such that the droplet spreads and stops
like a soft solid.
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