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Recent study has shown that it can be advantageous to implement a composite channel that partitions the
Hamiltonian H for a given simulation problem into subsets A and B such that H = A + B, where the terms in A
are simulated with a Trotter-Suzuki channel and the B terms are randomly sampled via the Qdrift algorithm. Here
we extend Qdrift and composite product formulas to imaginary time, formulating candidate classical algorithms
for quantum Monte Carlo calculations. We upper bound the induced Schatten-1 → 1 norm on both imaginary-
time Qdrift and composite channels. Another recent result demonstrated that simulations of lattice Hamiltonians
containing geometrically local interactions can be improved using a Lieb-Robinson argument to decompose H
into subsets that contain only terms supported on that subset of the lattice. Here, we provide a quantum algorithm
by unifying this result with the composite approach into “local composite channels” and we upper bound the
diamond distance. We provide exact numerical simulations of algorithmic cost by counting the number of gates
of the form e−iHj t and e−Hjβ to meet a certain error tolerance ε. In doing so, we optimize the partitioning into sets
A and B using gradient boosted tree models from machine learning. These numerical studies are important given
that product formulas have been historically known to outperform analytic upper bounds. We show constant
factor advantages for a variety of interesting Hamiltonians, the maximum of which is a ≈20-fold speedup that
occurs in the simulation of Jellium.
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I. INTRODUCTION

Quantum simulations of quantum systems, suggested by
Feynman in 1982 [1], provides what is perhaps the most
natural application for quantum computers with expected ex-
ponential advantages over the best classical algorithms [2–4].
The quantum simulation problem can be summarized as fol-
lows: Given a Hamiltonian H , a time t , and an error tolerance
ε, we wish to implement, on a quantum computer, an approx-
imate function f to the time evolution operator e−iHt such
that ||e−iHt − f (iHt )||κ � ε for some distance norm κ . The
significance of this operator comes from quantum mechanics
where e−iHt is the solution to the Schrödinger equation with a
time-independent Hamiltonian, i∂t |�〉 = H |�〉 in units where
h̄ = 1. Motivation for quantum simulation is drawn from the
fact that it is a necessary subroutine for phase estimation,
which allows one to learn the eigenvalues of H [5,6]. This
is of particular interest in quantum chemistry and materials
[7–11] where Hamiltonians are large and analytic solutions to

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the eigenvalue problem are not known. In addition, quantum
simulation also allows for the study of dynamical quantum ob-
servables [12]. Classically, implementing the time-evolution
operator is a difficult problem due to how rapidly the matrices
grow with respect to the size of the system of interest. As
well, quantum effects such as interference are hard to simulate
classically. This problem has received extensive attention over
the last few decades, and many different solutions have been
proposed. These solutions can in some sense be broken down
into two families; those built on product formulas including
Trotter-Suzuki [2,13,14] formulas and Qdrift [11,15–17] and
those implementing more intricate Hamiltonian transforma-
tions such as linear combinations of unitaries [18,19], and
qubitization [20–22]. Put simply, if we have a Hamiltonian
that can be expressed as a sum of terms H = ∑

j Hj with

a time evolution operator e−it
∑

j Hj , a product formula is an
approximation to e−iHt ≈ ∏

j e−iHjt , which is not exact in
general due to nonzero commutators in the Taylor series.
The crucial difference between Trotter and Qdrift formulas
is that the former directly and deterministically implements
a product of propagators, while the latter provides the means
for constructing stochastic formulas via importance sampling.
This consequentially leads to very different and somewhat
complementary error behavior that suggests these approaches
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can be effectively combined [23]. This has recently led to
composite Qdrift-Trotter simulation algorithms [24].

In the absence of fault-tolerant quantum computers, power-
ful methods have also been discovered to study the properties
of H on classical computers, particularly those of the Quan-
tum Monte Carlo type. The field of Quantum Monte Carlo
encompasses a wide variety of algorithms, which broadly
speaking involve approximating the properties of quantum
systems by means of pseudorandom number generation and
sampling. These methods are effective in calculating neces-
sary quantities such as observables and integrals, and they
are parallel by construction, making them a natural choice for
use in high performance computing clusters. These methods
have been deployed across a wide variety of fields including
nuclear [25], impurity [26], many-body [27], and solid state
physics [28]. In the aforementioned studies, multiple Monte
Carlo algorithms are discussed. Our study here most naturally
applies to the path integral Monte Carlo approach [29,30], par-
ticularly the discrete-time case [31–33] with time-independent
Hamiltonians, although we believe these methods may be
generalized to apply in the time-dependent case. Here, the
propagator of interest is often the time-evolution operator,
which has been Wick transformed to imaginary time e−βH :
it → β. This is implemented both as a projection method
to study the ground state of H , and to study the partition
function Z = Tre−βH from statistical physics where β is
the inverse temperature of the system. Using path integral
Monte Carlo we can write the partition function or expec-
tation values of other observables as a sum over paths, and
then use sampling methods to approximate the integrals (see
Sec. III D). Trotter-Suzuki formulas found some of their first
applications in Monte Carlo calculations prior to becoming
a popular ancilla-free quantum simulation algorithm. In this
paper, we take the reverse approach and consider how com-
posite Trotter-Qdrift simulation strategies [24] from quantum
computing carry over to imaginary time. We also extend these
composite strategies to account for locality of H based on
Lieb-Robinson bounds [34] in terms of their application for
quantum simulation (in real time). Much effort has also been
dedicated towards improving the error scaling and resource
requirements on Trotter-Suzuki formulas [35–37] and Qdrift
[38–40]; however, for our purposes we consider only the orig-
inal formulations.

Within this paper, we provide three contributions. First, we
show that Qdrift and composite Qdrift-Trotter algorithms [24]
can be extended to imaginary time with the same asymptotic
scaling as in real time. The basis of these algorithms is a
partitioning of the Hamiltonian such that H = A + B, where
we simulate the subset A with Trotter-Suzuki formulas and
B with Qdrift, to take advantage of the strengths of each.
This promotes them to a candidate classical algorithm for
quantum Monte Carlo calculations. In doing so, we provide
bounds on Qdrift and Trotter-Suzuki formulas in imaginary
time. Next, we show that composite algorithms can be applied
to geometrically local lattices, by first decomposing the lattice
into local subsets [34], and then partitioning the Hamilto-
nian terms supported on said subsets into localized Qdrift
and Trotter simulations. In comparison to standard composite
simulations, the local composite simulations recover the form
of the original error bounds with an additional error term that

is exponentially small. Finally, we provide a library to numer-
ically evaluate the performance of composite channels in both
real and imaginary time, as well as the performance of the
local composite quantum algorithm in real time. Here, we also
numerically introduce optimization schemes for conducting
this partitioning based on heuristics and intuition that comes
from the error bounds of each respective algorithm. Rather
than computing bounds, we evaluate the exact exponential
gate cost (the number of exponentials e−iHjt ′

with time slice t ′
that appear in the product formula) at simulation time t for im-
plementing an approximation to the time-evolution operator.
Equivalent counts are performed in imaginary time for e−βH

at inverse temperature β. This is done for a series of interest-
ing Hamiltonians, which are drawn from quantum chemistry
and spin systems, the former of which are generated using
OpenFermion [41]. The importance of the numerical analysis
lies in the historic observation that product type formulas can
greatly exceed expectations, often significantly outperforming
the tightest error bounds given the intricacy of commutator
based formulas [42]. We find significant constant factor ad-
vantages using our composite approaches, with the maximum
being a factor of 18.8 for a six-site Jellium Hamiltonian. We
make the observation that composite methods seem to work
better for Hamiltonians containing a large number of terms,
and for those with sharply peaked spectral norm distributions.

The paper is organized as follows: We begin with detailed
preliminary material in Sec. II that introduces the algorithms
in question as well as some details regarding how they are
analyzed analytically and numerically. Here we also provide
some background on the Lieb-Robinson bound and define
geometrically local Hamiltonians for which they apply. In
Sec. III, we show how to extend composite channels to
imaginary time and we provide bounds on the error for said
channels. In doing so, we show that the Qdrift algorithm
holds in imaginary time and that the same ε scaling can
be achieved, suggesting it can also be used effectively for
classical computation. We also provide a quantum algorithm
that allows us to include locality as means for partitioning
in the “local composite” channel, and show that doing so
introduces exponentially small errors in Sec. IV. In Sec. V, we
outline the details of our numerical simulations and describe
the general features of our library. We then provide plots of
the gate cost, or the number of exponential operators needed
to meet a chosen error tolerance. We conclude in Sec. VI with
a discussion and consider open questions.

II. PRELIMINARIES

In this section, we introduce the general physical setup, no-
tation, and simulation approaches that will be used throughout
the paper. We then review and summarize the algorithmic cost
of Trotter-Suzuki and Qdrift product formulas of real-time
time evolution, as well as their hybrid approach, which was
introduced in Ref. [24].

A. General notation and assumptions

Before introducing the simulation algorithms, it is impor-
tant to outline the notation that will be used throughout the
paper, as well as the assumptions that remain relevant for
calculations and proofs. The following assumptions will
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remain valid unless otherwise stated. We assume that Hamil-
tonian operators H are time independent, bounded, and that
they live in a finite 2n dimensional Hilbert space H . We
further assume that these operators can be written as a finite
sum of terms, H = ∑L

i=1 Hi with each Hi ∈ C2n×2n
. Later, in

Sec. IV, we will discuss algorithms for geometrically local
Hamiltonians in which case each term in this sum will only be
supported on a finite subset of H ; we save those details for
later. Note that we can normalize the terms in the above sum
by factoring out their respective spectral norms (Schatten in-
finity norm on matrices), hi = ||Hi|| such that H = ∑L

i hiHi.
We also impose hi � 0 by pulling any phase factors into Hi;
this can always be done without loss of generality. The Schat-
ten p-norms will be a useful concept throughout, and they
are defined as ||H ||p = (

∑
i sp

i )
1
p , where si are the singular

values of the matrix H . From this definition, we observe that
the Schatten infinity norm coincides with the spectral norm.
Other norms will be discussed throughout the paper. Wherever
a norm || · || is lacking a subscript, it will be assumed to be the
Schatten infinity norm. All other norms will be subscripted ap-
propriately. In what follows, Hamiltonian operators are taken
to be time independent, and they generate dynamics through
the time-evolution operator, U = e−iHt .

Throughout, we make use of the density matrix formalism
to describe mixed quantum states, with quantum channels
being the object that evolve states, rather than the evolution
operator e−iHt . By quantum channels we mean a mapping
A(ρ) = ∑

i EiρE†
i that is completely positive and preserves

the trace Tr(ρ). For this to be true, the operators Ei must sat-
isfy the condition

∑
i EiE

†
i = 1. These conditions are required

so that information regarding the channel operation is pre-
served and not lost to an external environment. For example,
consider performing a measurement on the output density ma-
trix A(ρ). If we find that Tr(A(ρ)) � 1, we conclude that the
mapping does not provide a complete description of the pro-
cesses involved, since there must be some other process(es)
and therefore measurement outcomes that occur with nonzero
probability [6]. For easy distinction, we reserve calligraphic
fonts for channels A while operators A are written in the
standard way. Given a density matrix ρ(t0) that describes the
state at some initial time t0, the time-evolution channel is then
defined as

U (ρ(t0), t ) := e−iH (t−t0 )ρ(t0)eiH (t−t0 ) → ρ(t ). (1)

When not specifically defining evolutionary channels, we
will often use t0 = 0 and write ρ(t = 0) = ρ to be the
initial state. If time evolution is broken into m time in-
tervals {�t1,�t2, . . . ,�tm}, the state vector evolution looks
like e−iH�tm ...e−iH�t2 e−iH�t1 |ψ〉. However, in the channel de-
scription we do not take products of channels, rather we
apply a channel multiple times in a channel composition,
which we denote with ◦. For example, U (ti+1) ◦ U (ti )(ρ) =
e−iHti+1 e−iHtiρeiHti eiHti+1 . Note that in this expression ti corre-
sponds to the time interval during which the channel acts.

A significant portion of this paper is dedicated to
the investigation of imaginary-time channels U (ρ, β ) =

1
N e−βHρe−βH and the algorithms that closely approximate
them. Upon first glance, the notion of imaginary time seems
to violate the trace preserving property of a quantum chan-

|j0
|j1
|j2 Rz(θ)

FIG. 1. A simple quantum circuit showing an implementation of
an exponentiated product of Pauli spin operators.

nel, so we introduce N as a normalization factor. To avoid
confusion, we use β throughout these discussions instead of
t , motivated by statistical mechanics where β is considered an
inverse temperature. In these cases, we are not considering a
dynamical evolution of the system in the physical sense, but
are rather interested in calculating properties of the Hamil-
tonian H , such as its partition function Z = Tre−βH or its
ground state. This is because time evolution of a quantum
system is isomorphic to the cooling of a statistical ensemble
via a Wick rotation. We wish to make clear that all discus-
sions pertaining to algorithms in imaginary time are not being
proposed for digital quantum simulation, but as classical algo-
rithms for use in calculations like quantum Monte Carlo. For
a study of imaginary-time evolution on a quantum computer,
see Ref. [43].

B. Algorithmic cost and input model

Given that we are dealing with channels containing only
product formulas, a natural cost model is to count the number
of exponential gates of the form e−iHjt ′

, required to achieve
some error ε in a simulation. Here, Hi is a specific term chosen
from a sum of Hamiltonian terms and t ′ is an appropriately
chosen time slice of the total simulation time t ; the following
sections on the algorithms of interest explain how to choose
these time slices to meet a desired simulation accuracy ε.
Throughout, the aforementioned cost will be denoted C and
often subscripted with the algorithm of interest. This cost
model is convenient analytically as the algorithms we explore
contain an exact amount of iterations or samples of terms
that can be easily equated to a count of exponential gates. As
input, we assume that the user has access to the decomposed
Hamiltonian H = ∑

j h jHj and not just the matrix version of
H . In fact, this is the way that Hamiltonians are naturally writ-
ten for spin systems and second-quantized chemistry anyway.
From a computer science perspective, we could more formally
assume we have query access to an oracle OH that provides
the exponentiated Hamiltonian terms: OH |010 . . .〉. ⊗ |ψ〉 =
|010 . . .〉 ⊗ e−iH2t ′ |ψ〉. In this case, we think of C as the total
number of queries to OH . As compilation procedures from
OH queries to gates are typically efficient, but application
dependent, we perform our cost analysis on these queries as
opposed to individual gate counts. In the case of common
Pauli and fermionic Hamiltonians, circuits to implement said
exponentials are well known and relatively simple to analyze
[44]. For example, it is common in Heisenberg-like models
to have interactions that are a product of Pauli operators
such as σ ν

i σ ν
i+1σ

ν
i+2. The time evolution of these operators

e−it (σν
i σν

i+1σ
ν
i+2 ) can be simply implemented using rotation gates

Rν (θ ) = exp(−i θ
2 σν ). In fact, using the circuit in Fig. 1, we

can implement the time evolution for any product of Pauli
operators using just Rz(θ ). This circuit effectively implements
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exp(−i θ
2 σ z

i σ z
i+1σ

z
i+2), and we can build a product of any length

by continuing this pattern. Switching this to a product of
σx or σy is straightforward given that Rx = ĤRzĤ and Ry =
T 2Rz(T 2)†. We can then adjust the simulation time t through
our choice of angle θ . Fermionic Hamiltonians follow in a
similar way, given that we can map them to a Pauli Hamilto-
nian using the Jordan-Wigner transformation, which will be
outlined in Sec. V A 1. The exampled circuit also reinforces
the need for product formula approximations since while we
can simply implement the above-mentioned products of op-
erators, implementing e−it (σ x+σ z ) is highly nontrivial, and we
approximate it as e−itσ x

e−itσ z
as we detail in the following sec-

tions. In our cost model, this approximation would be counted
as two gates. Numerically, counting exponential gates is also
a convenient cost model since it allows for straightforward
counting of gates as they are applied.

C. Trotter-Suzuki formulas

Given an operator that can be written as a finite sum of
terms A = ∑L

i Ai, the simplest approximation for the corre-

sponding operator exponential is then e
∑L

i Ai ≈ ∏L
i eAi . While

this holds as an equality for exponential functions for vari-
ables, it does not in general hold for operator exponentials
since individual terms of A do not necessarily commute. This
can be easily seen by considering the Taylor series of a simple
exponential approximation e(A+B)x ≈ eAxeBx to second order
in x,

e(A+B)x − eAxeBx

=
[
1 + Ax + Bx + (A + B)2x2

2!
+ · · ·

]
−
[(

1 + Ax + A2x2

2!
+ · · ·

)(
1 + Bx + B2x2

2!
+ · · ·

)]
(2)

= (AB + BA)x2

2
− ABx2 + · · · (3)

= [B, A]x2

2
+ · · · (4)

An error clearly arises due to a nonvanishing commutator,
meaning the approximation is exact for commuting algebras.
However, the nature of this error opens up the possibility for
improving this approximation. If one can symmetrize this for-
mula, the second-order commutator will vanish. In reference
to the previous example, a perhaps obvious symmetrization
is e

Ax
2 eBxe

Ax
2 , which annuls the error term [B,A]x2

2 , leaving
only error terms in O(x3). More generally, for an operator
A = ∑

i Ai, the second-order Trotter-Suzuki decomposition is
given by

S2(Ax) =
L∏
i

e
Aix
2

i∏
L

e
Aix
2 , (5)

where the flipping of indices in the two products is indicative
of reversing the ordering of products. One can readily imagine
that it is then possible to continue this strategy and build
higher-order formulas and cancel out arbitrarily high com-
mutator errors in the product formula approximation. Indeed,

we can build these highly nontrivial decompositions in the
following way [45,46]:

Definition II.1 (Trotter-Suzuki product formula). Given a
linear operator A acting on a finite-dimensional Hilbert space
that can be represented as a finite sum of linear operators
A = ∑L

i Ai, a Trotter-Suzuki product formula approximation
S2k (Ax) for A of order 2k (k > 1) can be constructed in the
following recursive fashion:

S2k (Ax) := (S2k−2(Axs2k ))2

× S2k−2((1 − 4s2k )Ax)(S2k−2(Axs2k ))2, (6)

where s2k = 1

4−4
2k−1

2
.

Hence, in order to obtain a desired product formula of order
2k, we start with the second-order formula S2(Ax) given in
Eq. (5) and recursively build the higher-order formulas. To re-
iterate, the advantage of doing so is that for a product formula
of order 2k, the error of the approximation is ∈ O(t2k+1) with
t here as the time interval [46].

When the general operator eAx is replaced by the Hamil-
tonian time-evolution operator e−iHt , where H = ∑L

i Hi, it
becomes obvious how product formulas can be used to evolve
quantum states |ψ〉. However, we also wish to generalize
this to evolve probabilistic mixtures of states, which are
represented by density matrices ρ = ∑

i pi|ψi〉〈ψi|. A Trotter-
Suzuki evolution formula for a channel can be written as
follows:

Definition II.2 (Trotter-Suzuki channel). Given a Hamilto-
nian H , a density matrix ρ, times t and t0 (t > t0 � 0),
and order 2k, then a Trotter-Suzuki channel T 2k (ρ(t0),�t )
performs the operation T 2k (ρ(t0),�t ) → ρ(t ) and can be
defined as

T 2k (ρ(t0), t ) := S2k (−iH�t )ρS2k (−iH�t )† (7)

where S2k (−iHt ) represent the product formulas from Eq. (5)
and �t = t − t0.

Since the error of this approximation accumulates con-
siderably for long iteration times, we introduce the iteration
parameter r, and apply the channel r times with time intervals
t/r. As a result, longer time simulations become more expen-
sive in the number of iterations r required to manage the error
that accumulates to do the simulation time t . The composition
of r Trotter-Suzuki channels is straightforward, and applying
r channels each for time t/r can be written as

T 2k (ρ, t )◦r =
r∏

j=1

S2k

(
−iH

t

r

)
ρ

r∏
j=1

S2k

(
−iH

t

r

)†

. (8)

The cost of this algorithm for first-order decomposition is
simply rL where L is the number of Hamiltonian terms. For
order 2k, the cost is ϒLr where ϒ = 2 × 5k−1.

Looking at cost formulas for different orders 2k, we desire
information about r, specifically, the minimum value of r re-
quired to meet some error tolerance ε where ||T 2k (ρ, t/r)◦r −
U (ρ, t )||κ � ε for some norm κ . In Ref. [24], the dia-
mond norm is selected, which is the completely bounded
trace norm between channels tensored with the environ-
ment. The diamond norm is defined as ||U (t ) − V (t )||
 :=
supρ:||ρ||�1 ||(U (ρ, t ) − V (ρ, t )) ⊗ 1||1. This is a good analyti-
cal norm to choose, given that it maintains the interpretation of
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distinguishability between states from the trace distance (see
Sec. B 1 b). However, it is a bound on channels (maximized
over possible input states ρ) and thus yields the interpretation
of distinguishability between quantum channels. This norm is
also subadditive and submultiplicative, which makes it conve-
nient to work with. The procedure in Ref. [24] upper bounds
this norm, sets the value equal to ε, and solves the expression
for r to arrive at the following first- and 2kth-order costs:

C1
T S (H, t, ε, 1) = Lr � L

⎡⎢⎢⎢ t2

2ε

∑
i, j

hih j ||[Hi, Hj]||∞
⎤⎥⎥⎥, (9)

C2k
T S (H, t, ε, 2k) = ϒLr

� ϒL

⌈
(ϒt )1+1/2k

ε1/2k

(
4αcomm(H, 2k)

2k + 1

1/2k
)⌉

,

(10)

where C, to reiterate, is the number of operator exponentials
that need be applied rather than an exact gate count where
gates are drawn from some universal gate set. Here, αcomm has
the following definition:

αcomm(H, 2k) :=
∑

γi∈{1,...L}

(∏
hγi

)
× ∣∣∣∣[Hγ2k+1 , [Hγ2k , . . . [Hγ2 , Hγ1 ] . . .]

∣∣∣∣
∞.

(11)

This is a nested commutator error that arises from 2k
symmetrizations in the product formula. The main takeaway
from this formula is the structure of the Hamiltonian that the
simulation cost depends on. Trotter-Suzuki channels clearly
depend on the number of terms in the Hamiltonian L and on
the commutator structure of the Hamiltonian. The simulation
cost does not directly depend on the magnitude of the terms
||Hi||, only indirectly through their commutators. This is im-
portant to keep in mind when examining the next algorithm
and its cost dependence.

D. Qdrift random compiler

The Qdrift algorithm was discovered by Campbell [15]. It
generates random product formulas allowing for the evolution
of a system to stochastically drift (through the Hilbert space)
towards the true evolution with high probability. Using the
introduced quantum channel notation, the algorithm works as
follows:

Definition II.3 (Qdrift channel). Given a Hamiltonian
H = ∑L

i=1 hiHi, density matrix ρ, times t and t0 (t > t0 � 0),
and let pi = hi

λ
with λ = ∑L

i=1 hi be a probability distribution
from which Hamiltonian terms are drawn, then a Qdrift
channel Q(ρ(t0),�t ) → ρ(t ) can be defined as

Q(ρ(t0), t ) :=
L∑

i=1

pie
−iHiλ�tρeiHiλ�t , (12)

where �t = t − t0.
This channel mixes unitaries with a single sample from

the distribution pi. Similarly to the Trotter-Suzuki approach,
the accuracy of this approach improves with the number of
samples N that go into our “random product formula”. To

write the channel for multiple samples, it is useful to think
of sampling a vector j = { j1, j2, . . . jN } of length N , i.i.d
from the distribution Pj = λ−N

∏N
k=1 h jk . This corresponds to

implementing the unitary Vj = ∏N
k=1 e−iHjk τ with τ = tλ/N.

With this in mind, we can neatly write down the expression
for the channel with arbitrary samples N as

Q(ρ, t )◦N =
∑

j

PjVjρVj
†, (13)

where the sum is performed over all possible vectors j of
length N . In terms of preparing these gates with a quantum cir-
cuit, this algorithm can be thought of as a linear combination
of unitaries under classical control. Similarly to the Trotter-
Suzuki formula, we are also interested in the algorithmic
cost of Qdrift. A diamond distance upper bound is provided
in Ref. [15], which is then used via the same procedure to
provide a cost function in Ref. [24], by using N = 4λ2t2/ε

and restricting ε ∈ (0, λt ln(2)/2),

CQD(H, t, ε) = 4λ2t2

ε
. (14)

The important take home message here is the difference in the
structure of the algorithmic cost between the Trotter-Suzuki
formula [Eq. (9)] and Qdrift [Eq. (14)]. In Qdrift, the cost
does not depend on the number of Hamiltonian terms L, or
the commutator structure. In contrast, it depends on the size
of the terms in the sum of the spectral norms λ. It is important
to keep this in mind when constructing composite channels.

E. Composite simulation formulas

Equipped with the Trotter-Suzuki and Qdrift channel for-
mulas, we wish to hybridize these approaches to form a
composite time evolution channel. The eventual goal is to do
so in such a way that we can minimize the “side effects”
of each algorithm while taking advantage of the strengths of
each approach. Following Ref. [24], we define the composite
channel as follows. We consider the Hamiltonian H = A + B,
where A = ∑LA

j=1 Aj and B = ∑LB
j=1 Bj . Other terms of inter-

est, such as the number of summands in a set L are written
with a subscript A to indicate that they belong to a set of
Hamiltonian terms that will be simulated by a Trotter-Suzuki
channel, and the same goes for the B terms, for a Qdrift
channel. The composite channel takes the form

X 2k (ρ, t ) = QB(t ) ◦ T 2k
A (t )(ρ), (15)

where the channel subscripts indicate the subset of the Hamil-
tonian that it is simulating. Note that there is substantial
freedom in the construction of this channel. The first obvious
freedom is the partitioning into the sets A and B. Section V B
is devoted to this task. The next choice lies in the Trotter-
Suzuki order 2k. Further, we can construct an outer loop as in
Ref. [24], which uses a Trotter-Suzuki style symmetrization
of the channels themselves. We further discuss this in later
sections where we will resort to the notation X 2k,2g for 2k
inner, 2g outer orders respectively. If only a single superscript
is given, it is understood to be the inner order with the outer
order fixed at 1 as in Eq (15). For example, a composite
channel with outer order 2g = 2 is written as

X 2k,2(ρ, t ) = QB(t/2) ◦ T 2k
A (t ) ◦ QB(t/2)(ρ). (16)
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Such an “outer loop” with a respective “outer order” was
introduced as a strategy to make more detailed analysis of
simulation costs. The outer loop can be thought of as a product
formula for composite channels, symmetrizing the channels
and allocating the respective time slice, while the inner Trotter
order does so on the operator exponentials as before. However,
when introducing the outer order in Ref. [24] it was enforced
to match the same order as the inner factorization. In this pa-
per, one of our goals is to numerically evaluate the exact costs
of these composite algorithms, and this gives us the freedom
to independently set the inner and outer orders. However, an
actual application of the outer loop is situational as it requires
specific knowledge about the commutator structure for it to be
of use.

We now restate the first-order cost result for composite
channels from Ref. [24], where the A terms are placed in a
Trotter channel and the B terms are placed in Qdrift,

Ccomp(A, B, t, ε) = (LA + NB)r

= (LA + NB)

⎡⎢⎢⎢ t2

ε

⎛⎝1

2

∑
i, j

aia j ||[Ai, Aj]||∞

+ 1

2

∑
i, j

aib j ||[Ai, Bj]||∞ + 4λ2
B

NB

⎞⎠⎤⎥⎥⎥.

(17)

We only restate the first-order Trotter-Suzuki result due to
the fact that this is the expression from which we will draw
most of intuition to build our heuristics for partitioning. As
well, the second-order cost formula is of a similar structure
with extra αcomm and ϒ terms, but it is based on channels
with matching inner order and outer order, which our numer-
ical work does not follow in general. Inspecting Eq. (17), it
clearly inherits the structure from Trotter in its dependence on
the commutators and number of terms LA in the set A (first
term), and on Qdrift in the sum of the spectral norms λB and
number of samples NB of the terms in the set B (third term).
The second term adds to the cost due to the hybridization
of the Trotter and Qdrift channels. Clearly, in order to gain
as much advantage as possible using this algorithm over the
noncomposite approaches, we desire that the Hamiltonian
of interest has a structure that we can exploit via a good
choice of partitioning. An interesting structure might be of
an H that contains terms of largely varying magnitude, such
that there might be a sharp contrast between the small and
large terms, rather than their spectral norms following, say,
a Gaussian distribution. Having small magnitude terms that
largely outnumber the large-magnitude terms is also likely
desirable. This understanding naturally leads into the later
topic of how to choose the partitioning. This task can be
motivated by the structure of H and its commutators, if known
a priori. For example, inspecting Eq. (17), if we have a small
number of large commuting terms and numerous small non-
commuting terms, it seems natural to place the large terms
into the Trotter channel, but sample the smaller magnitude
terms with Qdrift. As we build higher orders of the com-
posite channels, we can also expect a certain time scaling
trade-off between the algorithms. Higher-order Trotter-Suzuki

formulas will asymptotically outperform Qdrift at long
times; however, the overhead that comes with building these
formulas will surely lead to them being outperformed at short
times by taking a small number of Qdrift samples to approxi-
mate ρ. In this spirit, with a good partitioning, we expect there
to exist a large intermediate t region in which composite chan-
nels outperform their constituents. The question of choosing
effective partitioning will be further addressed in Sec. V B.

F. Local lattice Hamiltonians

Given the observation of commutator-dependent error in
previous sections, an interesting system to study are geomet-
rically local Hamiltonians. These systems are defined on a
lattice, and they have only local interactions, such as nearest-
neighbour terms. It turns out, via a Lieb-Robinson bound
(Sec. II G), that commutators of time evolved local observ-
ables fall off exponentially with the separation distance in
the lattice. This means that guarantees can be made on the
rate at which information propagates in these lattice models,
which directly implies that the dynamics of disjoint subsets
are uncorrelated for some finite time. In the context of infor-
mation processing, bounded information propagation suggests
certain algorithmic approximations like a product formula can
be made much more effective than in the naive case where
locality is not taken into account. This motivates the search for
a local product decomposition to simulate the time evolution
of local systems. In fact, computational advantages have been
demonstrated for local Hamiltonians in Ref. [34]. We follow
this study in defining geometrically local Hamiltonians as

Definition II.4. Given a D-dimensional lattice � ∈ ZD, a
local Hamiltonian can be written as

H =
∑
X⊆�

HX , (18)

where HX is only supported on the subset X that con-
tains only immediately adjacent lattice points, and it acts
as 1 on ZD ∈ �\X . Equivalently, HX = 0 if diam(X ) > 1,
where diam(X ) = maxx,x′∈X dist (x, x′) and dist is the graph
distance between the lattice indices. Each term in the Hamil-
tonian is also normalized such that ||HX || � 1.

In our analysis below, we will explicitly state when we are
referring to a local Hamiltonian. These Hamiltonians can be
used to describe a wide variety of physical systems, perhaps
most famously is the quantum Heisenberg model, which will
be investigated numerically in Sec. V. If locality is not explic-
itly mentioned then the Hamiltonian is of the aforementioned
more general structure.

G. Lieb-Robinson bound

A Lieb-Robinson bound is essentially a bound on the speed
at which information propagates through a quantum system
that has interactions governed by a local Hamiltonian. This
result is particularly interesting due to the fact that it holds for
nonrelativistic quantum systems, meaning that in no part of
the system is the finite speed of light c enforced. Instead, the
locality of the system’s interactions, as well as the geometry of
the lattice leads to the emergence of a Lieb-Robinson velocity
vLR, which bounds the speed of causality. The central idea
behind this bound is that the commutator between the time
evolution of an operator AX and another operator BY , such that
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the operators are supported on disjoint sets X ∩ Y = ∅, have
an exponentially small commutator. More formally, a general
Lieb-Robinson bound is often given as [47,48]

||[e−iH�t AeiH�t , B]|| � 2||A||||B||Fe−μ(dist (X,Y )−vLR|t |), (19)

where μ is a constant that depends on the lattice and F
depends on the cardinality of the sets X and Y . It is also
important to note how the distance between sets is defined,
and it appears in the exponent above. The distance between
the sets X and Y is dist (X,Y ) = minx∈X,y∈Y dist (x, y), where
dist (x, y) is the distance between elements in the set; in a
lattice this measure is just the absolute value of the difference
of their indices. From a simulation viewpoint, and specifically
regarding our Trotter-Suzuki product formulas, we know that
the error in these approximations depend on commutators
of terms. Therefore, carefully-chosen product decompositions
may have exponentially small error. This understanding moti-
vated the algorithm in Ref. [34], and in Sec. IV we combine
this algorithm with the composite framework.

III. IMAGINARY-TIME CHANNELS
ALGORITHMIC ANALYSIS

Within this section, we show that the composite algo-
rithms proposed by Hagan and Wiebe in Ref. [24], for the
purposes of digital real-time quantum simulation, can be ap-
plied onto the imaginary-time case with similar error bounds
and asymptotics. As mentioned previously, the algorithms
in this section are formulated with the intention of calcu-
lating properties of the Hamiltonian on classical computers.
These algorithms can therefore be considered as quantum-
inspired classical algorithms, a topic unrelated to the problem
of quantum imaginary-time evolution [43]. For comparison,
quantum imaginary-time evolution, sometimes abbreviated
QITE, is a method for conducting imaginary-time evolution
on a quantum computer. The key idea for QITE algorithms
is that unitary evolution by an effective Hamiltonian can ap-
proximate the action of imaginary-time evolution [Eq. (21)
below]. Given that we start and end on a normalized state,
the success of the approach relies on k-local Hamiltonians
with strongly bounded spatial correlation lengths. Rather than
focusing on this problem, our paper extends recent develop-
ments in the theory of quantum algorithms to imaginary time
in the classical setting; we are not limited by conditions of
unitary evolution with this restriction to classical algorithms.
Within this section, we introduce the imaginary-time Qdrift,
Trotter-Suzuki, and the composite channels, and we bound
their distance norm with respect to the ideal unitary evolution.

We first introduce the notion of an imaginary-time evolu-
tion channel, given in the definition below, and demonstrate
how it can be viewed as a ground-state preparation, or “cool-
ing” procedure.

Definition III.1 (Imaginary-time evolution channel).
Given a Hamiltonian H and input state ρ, we define the
imaginary time evolved state as the action of the following
map:

U (ρ, β )

TrU (ρ, β )
= e−βHρe−βH

Tr(e−βHρe−βH )
. (20)

This can be seen as an imaginary-time evolution chan-
nel most straightforwardly when considering quantum state
vectors as opposed to density matrix. The time-independent
Schödinger equation tells us |ψ (t )〉 = e−iHt |ψ (0)〉. If we take
this expression and perform a Wick rotation that sends t →
−iβ we get that |ψ (β )〉 = e−βH |ψ (0)〉. If we consider the
action of this matrix e−βH on the density matrix of the state
|ψ (0〉 we get e−βH |ψ (0)〉〈ψ (0)|e−βH due to the fact that e−βH

is a Hermitian operator. Relaxing the input from a pure state
to a density matrix and normalizing by the trace yields the
channel provided in Definition III.1.

Often when imaginary time is discussed in quantum me-
chanics the state vector representation is used, in which case
the imaginary-time exponential operator has the property

lim
β→∞

e−βH |ψi〉
||e−βH |ψi〉||2 = |ψ〉GS. (21)

This clearly only holds whenever our initial state |ψ〉i has
nonzero overlap with the ground state |ψ〉GS , which is ex-
pressed as 〈ψi|ψGS〉 �= 0. In the density matrix picture, we
have the following equivalent property:

lim
β→∞

e−βHρie−βH

Tr(e−βHρie−βH )
= ρGS, (22)

such that supp(ρi ) ∩ supp(ρGS ) �= ∅. This property can be
seen by expanding ρ into an arbitrary mixed state in the energy
eigenbasis. Now that the maps of interest have been made
clear, we can consider algorithms that closely approximate
them and analyze their performance analytically by bounding
their error. An important detail is the choice of distance norm
to quantify this error. In comparison to real-time composite
algorithms, the aforementioned diamond norm is not a good
choice for imaginary time, given that this norm is about distin-
guishing quantum operations on a system and ancillary space,
whereas here we are simply performing classical calculations.
For this reason, we bound the following induced Schatten
p → q norm on a map �: ||�||p→q = max||ρ||q=1 ||�(ρ)||p.
Here, � will be the difference between the ideal map and
that which is generated by the composite algorithm, and we
will investigate the case of the induced trace norm where
p = q = 1. Despite the fact that the maps being investigated
in this section are nonlinear, due to the trace operation in
the denominator, the outputs of the maps are Schatten-class
linear operators, and thus the induced Schatten norm is well
defined. Further, by analyzing 1 → 1 norms for two density
matrices, such as max||ρ||1=1 ||ρ − σ ||1 � ε, we can guarantee
from properties of the trace distance that the measurement
statistics for ρ and σ will deviate by at most ε.

A. Imaginary-time Qdrift

Introduced in Sec. II D, Qdrift was introduced as a quan-
tum simulation algorithm that, in real-time simulations, has
a unique property in that its error does not depend on the
number Hamiltonian summands, nor on the commutators be-
tween them, only on the total size of these operators. To the
best of our knowledge, this algorithm has not been applied to
imaginary-time calculations. We recover all the characteristic
properties of the Qdrift channel in imaginary time with renor-
malizing trace operations in the following Theorem.
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Theorem III.1 (Imaginary-time Qdrift). Given a Hamilto-
nian H = ∑

j h jHj with λ = ∑
j h j , imaginary time β,

number of samples N , and a density matrix initial state ρ, then
the induced Schatten 1 → 1 norm of the difference between
the imaginary-time Qdrift channel and exact imaginary-time
evolutionary channel has the following bound:∣∣∣∣∣
∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
−
( Q(ρ, β/N )

TrQ(ρ, β/N )

)◦N
∣∣∣∣∣
∣∣∣∣∣
1→1

� 4β2λ2

N

e2λβ/N

2 − e2βλ/N
+ 2

4β4λ4

N3 e6λβ/N

1 − 2β2λ2

N2 e2λβ/N
+ 2

2β2λ2

N
e4λβ/N,

(23)

given that |e2βλ/N − 1| < 1, which is satisfied if N >
2βλ

ln 2 . Fur-
ther, If the constraint λ

N � 0.01 is satisfied, then the bound
simplifies to∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
−
( Q(ρ, β/N )

TrQ(ρ, β/N )

)◦N ∣∣∣∣∣∣∣∣
1→1

� Cβ2λ2

N
, (24)

where the constant C ≈ 29.71747.
For a proof of this theorem see Appendix A. The proof

consists of repeated applications of the triangle inequality and
submultiplicative property of the diamond norm, as well as
manipulations with the geometric series and a tail bound on
a Taylor series. The geometric series arises when one uses a
Taylor expansion on the terms in the denominator and takes
the trace of the zeroth-order term, which is just Trρ = 1.
A constant theme throughout the analytics in this paper are
multiple exponential factors that arise due to the techniques
used to bound trace terms. Multiple techniques are used to
accomplish this throughout, and the exponential factors are
unavoidable in imaginary time, given that the exponential op-
erator is no longer unitary and has an exponentially decaying
norm. For clearer interpretation of the bounds we use lin-
earization techniques to either show that they disappear under
some constraints when proving an inequality, or showing they
become O(1) in some limit for an asymptotic bound. The
important takeaway from this theorem is that the Qdrift error
scales essentially the same was in imaginary time as it does in
real time, thus making it a candidate algorithm to be applied
in quantum Monte Carlo calculations. As well, this promise
on the ratio λ

N is reasonable to make as this algorithm excels
in the regime of small terms.

B. Imaginary-time Trotter-Suzuki

Different from Qdrift, work has already been done to pro-
vide bounds on nonunitary product formulas [14]. However,
these bounds are given in terms of operator norms rather than
channel distances, as well as they are given without renor-
malizing trace operations. However, these existing results are
integral in proving the theorem below.

Theorem III.2 (Imaginary-time Trotter-Suzuki channels).
Given a Hamiltonian H = ∑

j h jHj with λ = ∑
j h j ,

imaginary time β, time steps r, and a density matrix
initial state ρ, then the induced Schatten 1 → 1 norm of
the difference between the imaginary-time Trotter-Suzuki
channel T 2k (ρ, β ) and the exact imaginary-time evolutionary

U (ρ, β ) channel has the following bound:

∣∣∣∣∣
∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 2ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k
e4ϒβλ/r (e4βλ/re2β||H ||/r + e2β||H ||/r ),

(25)

which yields the following asymptotic bound:

∣∣∣∣∣
∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

∈ O
(

ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k

)
. (26)

Here ϒ is the number of stages of the product formula, 2k
is the order of the product formula, αcomm is defined as in
Eq. (11), and λ is the sum of the spectral norms of the Hamil-
tonian summands. Here O(·) is understood in the infinite limit
of its arguments.

For a proof of this theorem, see Appendix A. The proof
follows similar strategies to that of imaginary-time Qdrift;
however, one cannot simply expand a geometric series in the
denominator here given that we have a product instead of a
sum of terms. So we instead bound the trace terms using a
combination of von Neumann’s trace inequality and Weyl’s
inequality regarding the singular values of matrices. Similar
to the Qdrift case, we obtain a similar looking bound to that
obtained in [24] for the real-time case, with some additional
exponential factors as expected. Considering asymptotics, the
bounds behave the same in both cases where we again see the
dependence of the error on a nested commutator sum.

C. Imaginary-time composite channels

Now equipped with error bounds on both Qdrift and
Trotter-Suzuki channels in imaginary time, we can proceed
with the analysis of channels composed of the two. Given
the difficulty of analyzing the renormalizing operations in the
trace terms, we will again make use of asymptotic notation
as was done in the Trotter-Suzuki analysis in the previous
section. We will once again write a partitioning of the Hamil-
tonian as H = A + B, where A = ∑LA

i=1 aiAi are the terms
placed in the Trotter-Suzuki channel and B = ∑LB

i=1 biBi are
placed in the Qdrift channel.

Theorem III.3 (Imaginary-time composite channels).
Given a partitioned Hamiltonian H = ∑

j a jA j + ∑
i biBi

with λA = ∑
j a j , λB = ∑

j b j , imaginary time β, time steps
r, Qdrift samples NB, and a density matrix initial state ρ, then
the induced Schatten 1 → 1 norm of the difference between
the imaginary-time composite channel X 2k (ρ, β ) of order 2k
and the exact imaginary-time evolutionary channel U (ρ, β )
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has the following bound:∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
− X 2k (ρ, β )

TrX 2k (ρ, β )

∣∣∣∣∣∣∣∣
1→1

∈ O
(

β2λ2
B

NBr
+ ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k
+ ||[A, B]||β

2

r

)
(27)

given that r � ϒβλ. Here, all parameters in this bound cor-
respond to the same quantities in Theorems III.1 and III.2,
where the subscripts A and B indicate their belonging corre-
sponding set.

For a proof of this bound see Appendix A. The condition
on r is not overly restrictive, nor arbitrary. In general, we
do not expect to simulate the imaginary-time evolution with
r sublinear in either the imaginary time β or the norms of
the Hamiltonian λ, and ϒ is an artefact of using higher-order
Trotter-Suzuki formulas. This result yields three error terms
that we might expect. It is a sum of the Qdrift and Trotter error,
plus the error that arises from the initial partitioning of the

Hamiltonian into two subsets. Therefore, it becomes apparent
that if we have information about the terms in the Hamilto-
nian, we can potentially exploit the form of this error bound
by choosing a good partition. By good partition, we mean one
that is close to the optimal one that minimizes the error. We
later show in Sec. V B how to possibly go about choosing a
partition using intuition from physics, as well as provide a
machine learning regressor to find the optimal partition. The
later is more for a proof of principle rather than something you
would run in practice due to the large overhead.

D. Examples and implementation

Within this section we illustrate an implementation of
the imaginary-time composite channel with an example. Ap-
proximating the imaginary-time propagator e−βH , which is
a function of a Hamiltonian H that is hard to exponentiate
in general, can be achieved through the algorithm written in
pseudocode below. This algorithm returns a list of propagators
(of which their product approximates e−βH ) that are instead
easily diagonalizable.

Algorithm 1. Pseudocode for implementation of an imaginary-time composite simulation using a high-order Trotter formula and a
partitioning heuristic to divide the Hamiltonian terms between the two channels.

Input. Simulation parameters: Trotter-Suzuki inner-order 2k, Qdrift samples NB, iterations r, and imaginary time β. A list of Hamiltonian
terms H = ∑

j h jHj , two deterministic classical functions: PARTITION(H ), which returns two lists of Hamiltonian terms
A = ∑

q aqAq and B = ∑
p bpBp, and TROTTER(A, 2k, β, r) that returns a Trotter-Suzuki product formula of order 2k with time

slice β

r . We also require a classical oracle function SAMPLE(), which returns a value j from the probability distribution pj = b j∑
l bl

.

Output. A composite imaginary-time product formula in the form of a list of propagators, with inner-order 2k and outer-order 1, which
closely approximates the imaginary-time propagator e−βH .

Function CompositeListCompilation(H, β, r, 2k, NB):
A, B ← PARTITION(H);
m ← 1;
X ← { }(empty ordered list);
T ← TROTTER(A, 2k, β, r);
while m ≤ r do

Q ← { }(empty ordered list);
λB ← ∑

l bl;
j ← 1;
while j ≤ NB do

j ← SAMPLE();
append e−βλBBj/NBr to Q;
j ← j + 1;

end
append T to X ;
append Q to X ;
m ← m + 1;

end
return X ;

The algorithm above is written for illustrative purposes and
simply constructs a composite product formula in the form
of an ordered list. This can then be used as a subroutine for

other algorithms in computational physics, such as those from
the field of quantum Monte Carlo (QMC). For example, in
statistical physics calculating the partition function Z is of
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central interest. Given this returned list, which for clarity, is
not a channel, we can approximate Z as

Z = Tr(e−βH )

= Tr
((

e− β

r A1 . . . e− β

r ALA e− βλB
rNB

B1 . . . e− βλB
rNB

BNB
)r)+ ε, (28)

where ε is bounded by a set of functions implied by Theorem
III.3. Next, we insert the resolution of the identity between
each propagator such that the trace disappears

Z =
∑

j1, j2,... jn

〈 jn|e− β

r A1 | j1〉 . . . 〈 jLA−1|e− β

r ALA | jLA〉

× 〈 jLA |−
βλB
rNB

B1 | jLA+1〉 . . . 〈 jn−1|e− βλB
rNB

BNB | jn〉 + ε, (29)

given that n = |X |r or the number of terms in the list mul-
tiplied by the number of iterations. Note that the indices are
written such that there are LAr Trotter terms and NBr Qdrift
terms, with the difference that the subscripts indexing the
Qdrift terms are dummy indices, as these propagators are
importance sampled at random, as shown in the pseudocode.
Now, with the above expression, we can either diagonalize
these terms and Monte Carlo sample this sum, or impose a
classical mapping that allows us to apply some of the well
known QMC algorithms. These classical mappings depend
on the system in play, for example, if we are interested in
Heisenberg or XXZ chains, it is possible to map the model
onto a higher-dimensional Ising model and apply the method
of world lines [49]. The motivation for using this more
complicated propagator list, as opposed to the standard Trot-
terization, is that a propagator with a lower error requires a
smaller r to achieve the desired precision, and can therefore
reduce the path length of the Monte Carlo path integral re-
quired to approximate Z above. Our numerics show that this
framework can achieve a substantially lower error in the right
conditions via attaining a smaller C in multiple cost plots in
Sec. V D 2, therefore, highlighting the potential applications
of this algorithm to improve QMC simulations.

In this example, it was chosen to show arbitrary inner-order
and outer-order 1, given that the goal is simplicity. Recalling
that outer order refers to the symmetrization of how channels
are applied, as previously outlined in Eq. (16), this pseu-
docode can be simply generalized to higher outer orders by
also requiring an additional subroutine that symmetrizes T
and Q, and adjusts their time-slices accordingly. We also re-
mark that the classical function PARTITION(H ) is presented
here somewhat as a black box. This is done for generality,
given that the user is free to use a method of their choosing.
In Sec. V B, we present an explicit algorithm for this function,
which requires a single additional input ωc called the chop
threshold, and simply involves a looping if statement that sorts
Hamiltonian summands into A or B depending on whether
their spectral norm is greater or less than ωc.

IV. LOCAL COMPOSITE CHANNELS
FOR REAL-TIME EVOLUTION

We introduce here an algorithm for real-time evolution,
which utilizes the local structure of the Hamiltonian and is

composite. It combines intuition from both the Trotter-Qdrift
composite channels as discussed in Sec. II E and what we
refer to as the Lieb-Robinson or block decomposition. This
decomposition procedure is motivated by the Lieb-Robinson
bound, first introduced in Sec. II G, and provides the means
for constructing a product formula such that the propagators
are supported on finite subsets of a lattice with exponen-
tially small error (introduced in Ref. [34]). Our main result
is Eq. (39), which bounds the error of the local composite
channel. In this section we accomplish the following goals:

(i) We introduce product formulas motivated by the local-
ity of H , summarizing the main result of Ref. [34], and explain
how to unify this approach with composite product formulas
into local composite channels.

(ii) We generalize the bound from Ref. [34] to a bound on
quantum channels in Theorem IV.1, and then extend this to a
diamond norm bound in Lemma IV.1.

(iii) We prove a diamond norm error bound on local com-
posite channels in Theorem IV.2 using a simple property
regarding channel composition proven in Lemma IV.2.

The basic idea behind the method is as follows. We decom-
pose the Hamiltonian evolution into local blocks and build
composite channels out of the operators supported on these lo-
cal blocks. Each block is thus assigned a local partition {A, B}
and a sample number NB. The local block decomposition
goes as follows: We start with some Hamiltonian H = ∑

X HX

defined on some lattice � with X ⊆ � and by breaking up the
lattice into two regions A ∪ B = �. Now we take a smaller
region of the lattice Y ⊆ A and use the result to approximate
the time evolution operator in the following way,

e−iHt ≈ e−iHAt (e−iHY t )†e−iHY ∪Bt . (30)

Note that this breakup is distinct from Trotterization in that
we are decomposing the operator into a product formula of
which the operator exponentials still contain sums of opera-
tors. However, the operator sums now only contain terms in
each local “block”. We can recurse this process to make m
blocks of near-equal size. As an illustration, the second round
of decomposition would look like the following. Suppose the
region of the lattice A = G ∪ K , and we pick another small
region Z ∈ G, then this further allows us to break down the
larger region A from the original definition of the lattice set
� = A ∪ B. Writing out the full formula now gives

e−iHt ≈ e−iHGt (e−iHZt )†e−iHZ∪K t (e−iHY t )†e−iHY ∪Bt , (31)

and since the set G = A\K , we have successfully further lo-
cally decomposed the Hamiltonian in this product formula.
Next, we can decide which simulation method to employ to
approximate and implement the block-evolution operators,
which in our case is the composite product formula. Based
on prior intuition, we expect this approach to perform well
on disordered models yet with local interactions, such that
there is a structure for the local composite channels to ex-
ploit. An example might be a Hamiltonian with a sharply
peaked spectral norm on each block (as is the case with
weak coupling). However, by adding Qdrift sampling to the
local framework, with the speed limit vLR in mind we are
“fuzzing” the light cone in the quantum circuit evolution of
the system. For example, in Fig. 2 we show a circuit that illus-
trates the Trotter time evolution of a local Hamiltonian where
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|2 A
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H0,1

H1,2

H2,3

H3,4

FIG. 2. Brickwork circuit diagram to highlight the emergent light
cones from nearest-neighbor interactions. The notion of “fuzzing”
the light cone occurs when we use Qdrift to sample terms along these
light-cone boundaries in the circuit.

the Hi, j terms only connect neighboring qubits within and
between each disjoint subset A and B of the one-dimensional
lattice.

The light-cone analogy is now made clear: A term H0,1 in-
fluences the most adjacent qubit in B only once three “layers”
of gates have been applied (intermittent gates cannot improve
this speed). This behavior is analogous to the Lieb-Robinson
velocity that upper bounds the propagation of information
flow in the lattice. We note though that in a local composite
channel, some of the gates are being randomly sampled in
the Qdrift channel, thus the evolution of the light cone is not
exactly reproduced since not all terms are necessarily imple-
mented due to sampling. Keep in mind that local composite
channel does include more complicated subsets of gates, some
of which evolve boundary region terms like H3,4 backwards
in time; the circuit above is presented simply for conceptual
purposes.

Towards bounding the error of a local composite chan-
nel, we build on the result from Ref. [34], which concerns
with bounds on time evolution operators, and reformulate it
as a bound on channels. The motivation for the reformu-
lation of the bound into a channel norm is so that Qdrift
could be incorporated into this algorithm. This would later
allow us to bound the overall error. Since Qdrift produces
mixed states, we need to work with the density matrix
formalism.

Theorem IV.1. Given a time t and a local Hamiltonian
H = ∑

X HX that generates a time-evolution unitary U
and an evolutionary channel U , ∃ (μ > 0) | for any dis-
joint regions A, B,C we have the following operator norm
bound:

||UA∪BU†
BUB∪C − UA∪B∪C || ∈ O(e−μdist (A,C) )

∑
X :bd (AB,C)

||HX ||,

(32)
where the evolutionary channels contain only Hamiltonians
terms supported on their subscripted sets of the lattice, and
X:bd(AB,C) indicates X ⊆ A ∪ B ∪ C and X �⊆ A ∪ B and
X �⊆ C.

Proof. We first restate the main result from Ref. [34] on
time evolution operators,

||UA∪BU †
BUB∪C − UA∪B∪C || ∈ O(e−μdist (A,C) )

∑
X :bd (AB,C)

||HX ||.

(33)

Now, write V := UA∪BU †
BUB∪C and U := UA∪B∪C and consider

the following induced channel infinity norm

max
ρ:||ρ||1�1

||V ρV † − UρU †||

= max
ρ:||ρ||1�1

||V ρV † − UρV † + UρV † − UρU †||

= max
ρ:||ρ||1�1

||(V − U )ρV † + Uρ(V † − U †)||

� max
ρ:||ρ||1�1

||(V − U )ρV †|| + max
ρ:||ρ||1�1

||Uρ(V − U )†||

� 2||V − U ||. (34)

In the last line we used the fact that the infinity norm of
a density matrix is upper bounded by 1, and the unitary
invariance of the Schatten norms. Inserting the original defi-
nitions for V and U into maxρ:||ρ||1�1 ||V − U || � 2||V − U ||,
where V is just V ρV †, and similarly U = UρU †, we suc-
cessfully upper bounded the desired channel norm using the
above result with the constant factor disappearing due to O
notation. �

In the previous theorem (34), a bound was proven for only
one round of decomposition, but note that when defining V ,
the proof holds regardless of how many unitary blockings the
operator is composed of. In Ref. [34], it was stated that the
error in Theorem IV.1 for D rounds of decomposition in a D-
dimensional lattice is ∈ O(e−μl DLD

/l) for a lattice with chain
length L and blocks with overlap l . The overlap for the block
in the example from Eq. (30) would be the diameter of the
set Y , which can be written diam(Y ) = maxy,y′∈Y dist (y, y′);
the latter distance is again the distance between lattice
indices.

The bound (34) we have proven above is still not of the
form of that given in Qdrift. The Qdrift bound utilizes the dia-
mond distance, which is a completely bounded trace norm or
Schatten 1-norm defined as ||V − U ||
 = maxρ:||ρ||1�1 ||(V −
U ) ⊗ 1||1. While this is an upper bound on the infinity norm
in general, it is not immediately clear how tight this bound
may be as factors of dimensionality of the system may come
into play, which we wish to avoid. This can be made clear
by a simple example: Consider an N × N identity matrix
1N . This matrix has ||1N ||1 = N while ||1N ||∞ = 1, where
N is a factor of dimensionality. Therefore, if possible, we
would also like to convert this result (34) to a diamond norm.
Building on Ref. [24], we accomplish this in the following
lemma:

Lemma IV.1. Given a time t and a local Hamiltonian H =∑
X HX that generates a time evolution unitary U and an

evolutionary channel U , ∃ (μ > 0) | for any disjoint regions
A, B,C we have the following diamond distance bound:

||UA∪BU†
BUB∪C − UA∪B∪C ||


∈ O(e−μdist (A,C) )
∑

X :bd (AB,C)

||HX ||. (35)

Proof. We use Eqs. (11)–(17) from Ref. [24] replac-
ing their Trotter channel with the local block channel V =
UA∪BU†

BUB∪C and set U = UA∪B∪C with V and U representing
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the unitaries that induce each channel,

||U (t ) − V (t )||
 := ||(U (t ) − V (t )) ⊗ 1||1
= max

ρ:||ρ||1�1
||U (t ) ⊗ 1ρU (t )† ⊗ 1 − V (t ) ⊗ 1ρV †(t ) ⊗ 1||1

� max
ρ:||ρ||1�1

||U (t ) ⊗ 1ρU (t )† ⊗ 1 − U (t ) ⊗ 1ρV †(t ) ⊗ 1||1

+ max
ρ:||ρ||1�1

||U (t ) ⊗ 1ρV †(t ) − V (t ) ⊗ 1ρV †(t ) ⊗ 1||1

= max
ρ:||ρ||1�1

||ρ(U (t ) − V †(t )
) ⊗ 1||1 + max

ρ:||ρ||1�1
||(U (t ) − V (t )) ⊗ 1ρ||1

� 2||U (t ) − V (t )||∞ max
ρ:||ρ||1�1

||ρ||1

= 2||U (t ) − V (t )||∞. (36)

To obtain the third line from the bottom we apply Eq. 1.175 from [50]. This can similarly be obtained using the submultiplica-
tivity of the Schatten p norms and then applying Hölder’s inequality. In either case, we have a term like ||U (t ) ⊗ 1||, however,
the Schatten infinity norm is independent of the tensor product, and is equal to 1 for any unitary. In the last line, we inserted the
Theorem IV.1 to complete the proof. We observe the same bound on our Diamond distance as appeared in the induced infinity
norm with the constant factor 2 once again absorbed into O. �

Before investigating this channel numerically, we provide a bound on the diamond norm between this local composite channel
and the exact evolutionary channel. Along with the fact that the diamond norm is subadditive and submultiplicative, we will make
use of the following two properties:

||A◦r − B◦r ||
 � r||A − B||
, ||AB − CD||
 � ||A − C||
 + ||B − D||
,
where A,B, C, and D represent channels.

These properties were shown in Ref. [50]. For our purposes, we require a more general property that holds for the composition
of k channels Ai. We provide a simple proof in the following lemma:

Lemma IV.2. Given a composition of k quantum channels Ai, and another composition of k quantum channels Ãi, the
diamond norm of the difference between these two channels has the bound∣∣∣∣©k

i=1Ai − ©k
i=1Bi

∣∣∣∣

 �

k∑
i=1

||Ai − Bi||
. (37)

Proof. The proof is achieved by induction and it uses the fact that ||Ai||
 � 1 for any quantum channel, which is due to the
fact that the spectral norm is unitary invariant and density matrices have a maximum eigenvalue of 1. Starting from the left and
suppressing the composition operation ◦ above, we have

||AkAk−1 . . .A1 − BkBk−1 . . .B1||
 = ||AkAk−1 . . .A1 − BkAk−1Ak−2 . . .A1 + BkAk−1Ak−2 . . .A1 − BkBk−1 . . .B1||

= ||(Ak − Bk )Ak−1 . . .A1 + Bk (Ak−1Ak−2 . . .A1 − Bk−1Bk−2 . . .B1)||

� ||Ak − Bk||
||Ak−1 . . .A1||
 + ||Bk||
||Ak−1Ak−2 . . .A1 − Bk−1Bk−2 . . .B1||

� ||Ak − Bk||
 + ||Ak−1Ak−2 . . .A1 − Bk−1Bk−2 . . .B1||
. (38)

Repeating this procedure, we decompose the rightmost term
into a sum of two channel differences by induction, allowing
one to prove the original identity in Eq. (37). �

Next, we utilize Theorem IV.1, where we converted the
spectral norm result on local block unitaries to a bound on
a local decomposition channel. It is now made clear why
this was done; we require a channel description to describe
the Qdrift algorithm and relate their bounds. Using Lemma
IV.2, we proceed with the initial goal of bounding the di-
amond norm between the local composite channel and the
exact evolutionary channel. Here, for compactness we adopt
the notation of writing blocked composite local channels as

XYi and “exact” local channels (prior to hybridization into
Trotter and Qdrift) UYi . Here, Yi indicates a set of lattice points
Yi ⊆ � such that each Yi is constructed via the algorithm laid
out earlier in this section. Therefore, only certain Hamiltonian
interaction terms are supported on the lattice subsets Yi. Ad-
ditionally, let UYi contain terms that have also undergone the
appropriate conjugation (given that the intersections of some
blocks are evolved backwards in time). Finally, let each set
Yi ∈ Y such that Y = {Y1,Y2, . . . ,Ym} and m is the number
of blockings constructed by the Lieb-Robinson decompo-
sition. This provides convenient notation for the following
theorem:
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Theorem IV.2 (Local composite channels). Given a time t , local channel iterations r, and a local Hamiltonian H� on a D-
dimensional lattice �, let XY (t ) be a local-composite channel with m local blocks Yi, and partition {A, B}Y on each block, then
the diamond norm of the difference between the local composite channel and the evolutionary channel has the following bound:

||©Y (XY (t/r))◦r − U (t )||

� m max

Y
||(XY (t/r))◦r − UY (t )||
 + εLR

= t2m

2r
max

Y

⎛⎝⎛⎝∑
i, j

aYi aYj ||[AYi , AYj ]|| +
∑
i, j

aYi bYj ||[AYi , BYj ]||
⎞⎠ + 4λ2

BY
t2

NBY r

⎞⎠ + O(e−μlDLD/l ), (39)

where AY , BY are once again the terms of HY in Trotter and
Qdrift with their respective spectral norms aY , bY , NB is the
number of Qdrift samples and λ is the sum of the spectral
norms of the terms in Qdrift. It should also be stressed that r
is a local channel iteration, which means that we do not iterate
the channel that is a composition of blocks but rather each in-
dividual local composite channel built out of the block terms.
The reason for this is that the error in the local decomposition
is independent of time for time independent H with t ∈ O(1).
We also require m ∈ O((L/l )D) [34].

Proof. We begin with the norm we wish to bound, and then
apply the above identities to format the norm such that known
bounds from [24,34] can be applied,∣∣∣∣©m

i=1(XY (t/r))◦r − U (t )
∣∣∣∣



= ∣∣∣∣©m

i=1(XYi (t/r))◦r − ©m
i=1UYi (t ) + εLR

∣∣∣∣

 (40)

�
m∑

i=1

||(XYi (t/r))◦r − UYi (t )||
 + εLR (41)

� m max
Y

||(XY (t/r))◦r − UY (t )||
 + εLR. (42)

Here the Lieb-Robinson error εLR is used to represent the error
incurred from block localizing the exact evolution channel in
Eq. (40). Then by inserting the bound given in [24], Eq. (31),
we arrive at the original expression. It then immediately fol-
lows that we can bound local composite channels of any order
2k by inserting the result of [24], Eq. (58); however, we omit
this as it follows trivially from above. �

The takeaway from this is that the block-local composite
channel is bounded by an error that is very similar to that
of the general composite channel asides from the addition
of an extra term that is asymptotically exponentially small.
However, while we expect to see improvement from this lo-
calization scheme, getting more out of this bound does not
seem feasible due to the amount of freedom in this algorithm
as almost every parameter is dependent on the “worst” subset
of the set Y .

V. NUMERICAL SIMULATIONS

In this section we highlight the details of configuring our
numerical investigations by defining Hamiltonians of interest.
We then discuss partitioning strategies and choice of an error
measure before presenting numerical results. The choice of
error measure usually does not require a dedicated subsection.
However, when considering composite algorithms, there is a
subtle feature in that not all algorithms may be treated on

equal footing by the same error measure, which can lead to
inconsistencies. For our purposes, the trace distance is the
most useful measure of choice. Rather than computing upper
bounds, the numerical results we provide here are exact cal-
culations of the cost C, or the precise counts on the number of
quantum gates with the form e−i t

r

⊗
j σν

j required to meet some
desired precision ε. We write gates in this form to highlight
that the Hamiltonian summands in our simulations are always
written as a tensor product of Pauli operators, allowing for a
nice parallel to the well-known rotation gates in the context of
quantum computing. For imaginary time, although this form
still holds in our numerics, the same analogy does not hold,
as we are simply constructing e− β

r Hj on a classical computer,
which can be of somewhat arbitrary form.

In order to calculate C, we have constructed a library to
compile any desired product formula simulation, given a list
of Hamiltonian terms, partition, Qdrift samples, simulation
time, and desired precision. These simulator objects are han-
dled by external functions that can partition the simulators,
calculate errors and exact costs, or approximate simulation
cost via Monte Carlo methods and more. The library is
built on NumPy, but also contains conversion functions to
load Hamiltonians generated by quantum chemistry packages
OpenFermion [41] and PySCF [51] to simulate systems of
interest. It also contains methods for geometrically local sim-
ulations to compute blockings using the required set logic.

A. Hamiltonians of interest

Within this section, we introduce the Hamiltonians in our
numerical investigation of composite algorithms, as well as
briefly outline methods used for their generation.

1. Electronic structure Hamiltonians in second quantization

The electronic structure problem is perhaps one of the most
famous classically intractable problems that has vast appli-
cations in quantum chemistry. In order to write down these
Hamiltonians, it is first necessary to introduce fermionic cre-
ation and annihilation operators. Fermions are particles with
half-integer spin that obey Fermi-Dirac statistics, meaning
they obey the following anticommutation relations:

{am, a†
n} : = ama†

n + a†
nam = δmn, (43)

{am, an} = {a†
m, a†

n} = 0. (44)

We work in Fock space where the subscripts of operators
indicate the excitation number or the atomic orbital of an
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electron. Molecular electronic structure Hamiltonians then
take the form

H =
∑
mn

hmnama†
n +

∑
pqrs

hpqrsapaqa†
r a†

s . (45)

Here the first term represents single excitations and the second
term keeps track of double excitations or “hopping” amongst
orbitals. The coefficients h are molecular integrals that depend
on the basis of choice to describe the molecule [44]. Further,
more can be done to aid in the implementation of this problem
on a quantum computer. The Jordan-Wigner transformation
provides a one-to-one mapping between the fermionic and
spin operators. This will allow us to write down the time-
evolution operator in terms of the universal rotation gates (and
CNOT gates). To understand the transformation, first observe

a† =
[

0 0

1 0

]
= σ x − iσ y

2
:= σ−, (46)

a =
[

0 1

0 0

]
= σ x + iσ y

2
:= σ+. (47)

Now to build in the desired commutation relations and gen-
eralize this to a Hilbert space for N qubits, or the tensor
(Kronecker) product of N two-dimensional Hilbert spaces
H = ⊗N

i=1 Hi,

a†
n ⇔ 1⊗n−1 ⊗ σ− ⊗ (σ z )⊗N−n−1, (48)

an ⇔ 1⊗n−1 ⊗ σ+ ⊗ (σ z )⊗N−n−1. (49)

In order to build these Hamiltonians numerically, we use
the OpenFermion [41] and PySCF [51] packages for quantum
chemistry. OpenFermion is a library that allows for the easy
manipulation of fermionic operators that arise in quantum
chemistry, as well as it interfaces with a variety of electronic
structure packages that perform molecular integrals in the ba-
sis of choice to generate Hamiltonians in the form of Eq. (45).
Further, OpenFermion also has the Jordan Wigner transform
built in, allowing one to construct this Hamiltonian in the Pauli
basis. PySCF was our electronic structure package of choice
to compute molecular integrals.

Given the form of Eq. (45), we observe that our Hilbert
space needs to be truncated. An active space calculation does
exactly this; the Hamiltonian is written in a space such that
only so many orbitals are “active” or such that an electron can
be excited to occupy active orbitals. We generate all of our
electronic structure Hamiltonians in the minimal basis where
we use a the number of qubits equal to the total period of
the molecule. For our numerical investigation, we provide a
function to generate chains of hydrogen atoms given a very
simple input; bond length and number of atoms. The function
uses PySCF to compute the molecular integrals, and then uses
the data to build the Hamiltonian in an active space implied
by the minimal basis, and using a minimal spin configuration.

2. Jellium uniform electron gas

Jellium is a model of a uniform electron gas that captures
the interactions between delocalized electrons in a solid with
uniformly distributed positive potentials serving as nuclei. It
is not only a system of interest in materials science, but also
as a benchmark system in quantum simulation. More compact

representations of this Hamiltonian have been proposed as a
candidate for experimental simulation on near-term hardware
[9]. The system Hamiltonian has a closed form representation
and does not require any additional molecular integrals to
construct,

H = 1

2

∑
p,σ

k2
pa†

p,σ ap,σ − 4π

�

∑
p�=q, j,σ

(
ζ j

eikq−p·Rj

k2
p−q

)
a†

p,σ aq,σ

+ 2π

�

∑
(p,σ )�=(q,σ ′ ),ν �=0

a†
p,σ a†

q,σ ′aq+ν,σ ′ap−ν,σ

k2
ν

, (50)

where the jth nuclei has position Rj and atomic number ζ j ,
and kν = 2πν

�
1/3

with cell volume � and σ containing both up
and down spins. For the derivation of this Hamiltonian see
Appendix B of [9]. Conveniently, OpenFermion also provides
simple functions to quickly generate this Hamiltonian, and
we do so in the momentum plane wave basis with periodic
boundary conditions. We elect not to use the more compact
plane wave dual basis representation presented in [9], due to
the fact that we are using this Hamiltonian as a benchmark,
rather than studying the outputs of the simulation. For the
composite simulation, Jellium provides many Hamiltonian
terms and a very sharply peaked distribution (see Fig. 3 for a
system of size equal to that of the spin models we study. Given
that system size is more of a limiting factor than term number
in our numerical study, this presents an opportunity to see how
a composite channel performs on a system with greater L.
To limit the system size we also use a spinless model, and
then perform the Jordan-Wigner transformation on the second
quantized Hamiltonian to represent our Hamiltonian as a sum
of Pauli operators. This Hamiltonian is constructed with the
necessary transformations using OpenFermion [41].

3. Graph Hamiltonian model

The Hamiltonian we explore here involves a spin chain
imposed on a lattice � ∈ ZD with a graph distance metric
dist (u, v) = |u − v|1 where u and v are vectorized coor-
dinates on the graph with dimension equal to D. For our
investigation we only examine lattices with D = 1, given that
for a fixed number of sites, this gives the most sharply peaked
spectral distribution than any other D,

H =
∑
i> j

e−dist (i, j)αi jσ
x
i σ x

j +
∑

k

βkσ
z
k . (51)

This system is similar to the quantum transverse field Ising
model but with interactions that fall of exponentially with
graph distance. The coefficients αi j and βk are site depen-
dant coupling constants that allow for the introduction of
more disorder and/or structure in the Hamiltonian. To add
some disorder to the model, we draw these coefficients pseu-
dorandomly from a Gaussian distribution with mean 0 and
variance 1.

4. Heisenberg Model

The Heisenberg model describes a quantum spin system
in a magnetic field with nearest-neighbour interactions. The
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FIG. 3. Jellium spectral norm distribution. Semi-log plots of the sorted normalized spectral norms vs Hamiltonian index for 5 and 7 site
Jellium models in (a) and (b) respectively. The plots show the increases in number of terms as well as how the distributions become increasingly
sharply peaked. In red we provide a potential choice of ωc for the partitioning heuristic.

Hamiltonian takes the form

H =
∑

j

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

) +
∑

i

Bzσ
z
i .

(52)

Here Bz is the strength of the magnetic field in the z direction
and J{x,y,z} are coupling constants. Given the intuition of our
composite channel, we expect this model to take advantage
of our algorithm when the coupling constants largely differ in
magnitude such that partitioning into Trotter and Qdrift takes
advantage of more Hamiltonian structure. Furthermore, intro-
ducing site-dependant coupling constants or writing down a
highly disordered spin system could further add structure that
the algorithm can take advantage of. A Hamiltonian of this
nature would look something like the following:

H =
∑

j

(
J ( j)

x σ x
j σ

x
j+1 + J ( j)

y σ
y
j σ

y
j+1 + J ( j)

z σ z
j σ

z
j+1

)
+
∑

i

Bzσ
z
i . (53)

This Hamiltonian appears somewhat contrived for extracting
the performance of the local composite channel. However,
this system closely resembles the Edwards-Anderson model
of a spin glass, a system of interest in condensed matter
physics. In an attempt to create a sharp distribution, we sim-
ply sample J ( j)

ν from an exponential distribution with a scale
parameter of 0.1.

B. Partitioning schemes

The main difficulty with deploying the composite sim-
ulation framework concerns finding a good partitioning. In
introducing composite simulations, Hagan and Wiebe sug-
gested partitioning schemes derived on the basis of optimizing
analytic cost functions both in deterministic and probabilistic
settings [24]. Here, we take a different approach involving the

exact calculation of the simulation error, and an optimization
routine that, given convergence, finds the optimal partition-
ing and gate count with respect to a chosen error tolerance
and simulation time. This approach is used to answer the
question regarding the best savings one can hope to achieve
when deploying composite methods to simulate a specific
Hamiltonian. We are not proposing this as a preprocessing
routine (for a study of this nature see Ref. [52]), as it has
complexity greater than that of the simulation itself, which
is trivial as the optimization involves solving the simulation
problem recursively. In addition, we also arrive at simple
heuristics that can be used to partition certain Hamiltonians
with little overhead, which we do propose as a strategy for
using a composite approach.

Chop is the partition that we introduce in this paper. The
idea is based on the heuristic of placing a few terms with
larger spectral norms into Trotter-Suzuki channels and numer-
ous small terms into Qdrift, assuming that the Hamiltonian
presents this structure. We start by sorting the terms by their
spectral weights and introducing a “chop threshold” ωc ∈
[0, maxi hi]. This scale will determine the partition such that
if a term has spectral norm hi � ωc then Hi → A if hi < ωc

then Hi → B. Now we can express the error tolerance ε as a
function of channel iterations r, with partitioning chop ωc and
a sample number Nb that will be chosen in an optimization
routine, and for a fixed initial state and time,

||(X 2k )◦r (ρ, t/r, ωc, Nb) − U (ρ, t )||1 = ε(r). (54)

By fixing an error tolerance for ε, the exact cost of the sim-
ulation becomes a black box function with no closed form
expression,

Ccomp = f (εthresh, r, ωc, Nb). (55)

This is the cost function we wish to minimize. However, we
cannot do that by conventional methods such as with direct
gradient descent. Also, with no strong intuition for a choice
of NB, if we wish to optimize this parameter we have to deal
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with integer optimization as well. The iterations r, however,
while an integer, does not require optimization, but rather
emits a search problem. If we allow an optimizer to pick
initial random values for Nb and ωc from a fixed interval,
then we must find the value r required to meet the error
threshold εthresh, which will ultimately be determined by the
optimizer’s choice of the other two parameters. To complete
this, we perform an exponential search on r until we find some
r where ε(r) � εthresh and set this as an upper bound on r.
We then perform a binary search to find the smallest value
of r required to meet this condition and count the number
of gates in the channel. This is a very expensive function
given that we are precisely building the composite channel,
applying it to the density matrix initial state in the problem,
and counting the gates applied in each iteration of the search.
The expensive nature emerges due to the sheer number of
matrix multiplications required in performing this task, not in
the search for r, which is nearly optimal. Note the importance
of using the trace distance in this approach as it guarantees
monotonicity of ε(r), which makes the search possible. This
is not so in the framework of sampling the quantum infidelity,
as finding the cost here would require other statistical methods
(see Appendix B).

Now a glaring question left unanswered is the choice of
an optimizer. We implement the gradient-boosted regression
trees (GBRT) algorithm included in Sci-Kit Optimize [53].
This algorithm is specifically-designed to handle the opti-
mization of very expensive functions. It is also convenient for
our purposes given that it can handle both integer and real
optimization parameters simultaneously. At a high level, the
algorithm works by using a series of decision trees with an as-
sociated loss function. The decision trees perform regression
to fit the input function and are iteratively generated based
on the minimization of the loss function via gradient descent.
This optimizer and cost function (55) can then be easily gener-
alized to the local composite channels where now we have an
Nb and ωc for each blocking. As the number of local blocks
grows, the optimization routine will need to take a larger
number of input parameters in this prescription. However, the
size of the system becomes classically intractable long before
we would consider using this many local blocks, so this is far
from a concern.

In some cases, models may exhibit a partitioning that is
somewhat canonical and can lead to excellent performance of
composite methods. This occurs when we have a Hamiltonian
that fits naturally into the intuition behind the algorithm, such
that we have a set A containing large terms with small com-
mutators and a set B with small terms that are known not to
commute in general. We are, therefore, proposing to use the
chop partition but by choosing the chop threshold ωc based
on physical intuition regarding the Hamiltonian, rather than
some expensive optimization routine. A perfect example of
such a system is a Heisenberg model with weak coupling.
In this case, looking at Eq. (52), we would set the chop
threshold ωc = max{Jx, Jy, Jz}, which implies we simulate the
interactions with Qdrift {Jνσ

ν
j σ

ν
j+1}ν=x,y,z → B, and simulate

the site energy terms with Trotter-Suzuki {Bzσ
z
j } → A. In this

way, the terms in the set A all commute with each other,
whereas the terms in the set B are guaranteed to have a small
spectral norm. We bring numerical evidence that this provides

computational advantages in the sections below. In general,
any system with perturbative interactions may benefit from
this framework, given that the commutators within the system
are small, as they will avail this canonical partitioning. In
cases where the partitioning is not as obvious, as is the case
with H3 and Jellium, we can achieve similar advantages by
choosing ωc = max d||Hj ||

d j s.t.||B|| � ||A||, meaning we sweep
an ordered list of the Hamiltonian spectral norms and track
the largest difference between terms, chopping the list where
this occurs, given j � L

2 . The final condition is just to ensure
the majority of terms are simulated by Qdrift. We also use this
strategy throughout Sec. V D and show advantages.

C. Error measures

In this investigation, there is some arbitrariness in the error
measure one can choose in order to quantify the performance
of a simulation channel. In order to evaluate the resources
required by an algorithm, one must evaluate the number of
gates required to meet a certain ε, which is calculated by
said error measure. In the literature, this ε is often quantified
by the diamond distance utilized in previous sections. How-
ever, while analytically convenient, for any reasonably-sized
system, computing this quantity becomes computationally ex-
pensive. While it is possible to evaluate it efficiently, this
requires finding the solution of a semidefinite program, which
is much less efficient than using some other error measures.
In addition, since we are not constrained to analytically solv-
able expressions or closed form equations with our numerical
methods, we can optimize this cost in terms of some partition
scheme. This is the idea behind the optimal chop partition,
and doing so requires frequent computations of ε. With this in
mind, the error of our algorithm should be a quantity that we
can compute in a reasonable amount of time while also being
a fair error measure. The criteria for “fairness” comes within
the error measures treating each algorithm that comprises the
composite channel on an equal footing. For example, if we
are to optimize the partitioning with respect to the gate cost
(which is dependent on ε), then if Trotter is more performant
with respect to Qdrift in one error measure than in another,
then our composite optimizer will favor Trotter, which will
be reflected in the partition. As a result the total cost of the
composite channel will be skewed by the error measure used.

We consider the infidelity and trace distance as possible
measures of ε. For definitions and an additional discussion
regarding the scaling and complexity of computing these
quantities, see Appendix B. Analytics are required in order to
answer the question of which measure might provide a more
fair comparison. More specifically, we can ask the question
of how the error measures will scale with respect to the total
simulation time t , and then test these results numerically. In
terms of the infidelity, we provide the following Theorems:

Proposition V.1 (Qdrift infidelity time scaling). Given
a Qdrift channel Q(ρ, t ) and the standard evolutionary
channel U (ρ, t/N ), for a density matrix ρ, time t/N ,
then the infidelity between the outputs of the channels
1 − F (Q(ρ, t ),U (ρ, t/N )) ∈ O(t2).

Proposition V.2 (Trotter-Suzuki infidelity time scaling).
Given a Trotter-Suzuki channel T 2k (ρ, t ) and the standard
evolutionary channel U (ρ, t ), for a density matrix pure state
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ρ and time t , then the infidelity between the outputs of the
channels 1 − F (T 2k (ρ, t )U (ρ, t )) ∈ O((t2k+1)2).

The proofs of these propositions are included in Ap-
pendix B. Here, we obtain the nontrivial result that the
infidelity is squared when considering Trotter-Suzuki for-
mulas. This would lead to our optimized chop algorithm to
heavily favor this channel over Qdrift, and for this reason, we
consider it an “unfair” error measure. On the other hand, if we
consider how the trace distance scales with simulation time in
both algorithms, we obtain the following Theorems:

Proposition V.3 (Qdrift trace distance time scaling).
Given a Qdrift channel Q(ρ, t ) and the standard evolutionary
channel U (ρ, t/N ), for an arbitrary density matrix ρ and
time t/N , then the trace distance between the outputs of the
channels T (Q(ρ, t ),U (ρ, t/N )) ∈ O(t2).

Proposition V.4 (Trotter-Suzuki trace distance time
scaling). Given a Trotter-Suzuki channel T 2k (ρ, t ) and the
standard evolutionary channel U (ρ, t ), for an arbitrary density
matrix ρ and time t , then the trace distance between the
outputs of the channels T (T 2k (ρ, t ),U (ρ, t )) ∈ O(t2k+1).

Here, we see that no such squaring occurs, and the ex-
pected time-scaling is obtained. For this reason, we compute
the entire density matrix and ε using the trace distance in
all of our numerical simulations. Proofs of the above theo-
rems, as well as further discussions can again be found in
Appendix B.

D. Performance results

In this section, we first numerically analyze the real-time
quantum algorithm given by Hagan and Wiebe [24] and then
show equivalent numerical calculations of the imaginary-time
classical case. To accomplish this, we provide cost plots in
which we provide the minimum C, or the number of rotation
gates to achieve a desired simulation accuracy ε (calculated by
the trace distance) for each point in time t or β. To reiterate,
here we exactly compute entire evolution channels with a
random initial state ρ sampled from the unit hyper-sphere, and
directly apply and count gates. We conclude this section with a
brief discussion about numerical studies for the local compos-
ite simulation algorithms. In these plots, we study variants of
the composite channel and display results with the aforemen-
tioned notation with the addition of a tilde over the channel if
the partition and NB have been optimized with GBRT. For ex-
ample, a composite channel with inner-order 2 and outer-order
1 with an optimized partition and number of Qdrift samples
NB is written like so X̃ 2,1. Before presenting all of the results,
for ease of reference, we find it useful to remind the reader of
all relevant notations by summarizing them in Table I.

Throughout this section, we normalize ||H || = 1 and run
simulations for times t ∈ (0, 3π

2 ] so as to ensure the system
undergoes nontrivial dynamics without overlapping the phase.
This is done due to the fact that Trotter formulas have a
periodic error for ||H ||t � 2π , and running simulations in this
range would lead to the optimizer finding the “good points”,
where the error happens to be small, which would provide a
very low cost simulation and a sharp drop in the cost trend. We
also report the cost advantages achieved on crossover points,
which are values of t = t ′ such that CQD(t ′) = CT S (t ′). We

TABLE I. Summary of notation used in the numerical analy-
sis, consistent with previous sections. The channels do not indicate
whether we are working in real or imaginary time, however, that will
be clear based on the subsections in which plots appear. This will
also be the case for local channels simulating Hamiltonians defined
on graphs.

Notation Description

C Algorithmic cost defined in Sec. II B
t Total simulation time
β Imaginary time/inverse temperature
r Number of channel iterations/time-steps
NB Number of Qdrift samples
T 2k A Trotter-Suzuki channel of order 2k
Q A Qdrift channel
X 2k,2g A composite channel with inner-order 2k

and outer-order 2g
X̃ 2k,2g A composite channel with partition and NB

optimized by the GBRT algorithm
X 2k

l= j A local composite channel with
inner-order 2k and block length l = j

denote the composite channel crossover advantage as

ξ := CQD(t ′)/CX (t ′) = CT S (t ′)/CX (t ′). (56)

As we are unable to compute these times exactly we use
interpolation methods to report values of ξ . This is motivated
by the fact that analytics suggest this to be the point of greatest
advantage for a composite channel [24]. This is intuitive, espe-
cially given higher-order Trotter-Suzuki formulas, which are
known to asymptotically outperform Qdrift for large t , whilst
Qdrift is dominant in the small t limit, suggesting a region
where their strengths can be combined. Therefore, studying ξ

is interesting in that it (given that our optimization scheme is
convergent) represents the maximum advantage of using com-
posite simulation algorithms. The value t ′ at which ξ appears
may also suggest time scales for which composite algorithms
are most advantageous. However, this analysis does not pro-
vide methods for finding t ′ or predicting ξ a priori as this is a
very hard problem. The significance in t ′ here lies in the fact
that we always observe it to fall within the numerical domain
of t ||H || ∈ (0, 3π

2 ], which coincides with the domain suitable
for quantum phase estimation, given we are implementing the
real-time algorithm. For imaginary time, these values can be
viewed as relevant energy-time scales in which these formulas
bring a computational benefit, rather than some physically
interesting regime. Summarized in Table II are our calculated
crossover advantages.

1. Real-time composite quantum simulations

Beginning with hydrogen chains, our results are high-
lighted in Fig. 4. This plot reveals two interesting features: For
long-time simulations, heuristics can be found that essentially
match the performance of an optimized formula simply by in-
specting the distribution of the norms of individual summands
||Hj ||, and with the optimized routine, we find a significant
improvement at the crossover point with ξ = 2.3. These plots
begin flat for most of the simulation channels, which for
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TABLE II. Summary of gate cost improvements observed via
the crossover advantage ξ defined in Eq. (56) (contingent on opti-
mization convergence). We observe that savings tend to somewhat
improve as the number of terms increases (within the same model),
with the exception of Jellium 7 where optimizer struggles with par-
titioning due to the number of terms. This is evident in the lack of
monotonicity of C(X̃ 1) in Fig. 6. The most significant savings are
seen for the Jellium models. Even in cases where the number of terms
are comparable to other models, larger advantages are persistent in
Jellium. This further establishes the spectral norm distribution as one
of the most important indicators of performance in the composite
framework.

Hamiltonian ξ Num. terms Time

Hydrogen-3 2.3 62 Real
5 site Jellium 9.2 56 Real
6 site Jellium 18.8 94 Real
7 site Jellium 10.4 197 Real
7 spin Graph 4.1 49 Real
8 spin Graph 3.9 64 Real

8 spin Heisenberg 3.1 29 Imag.
Hydrogen-3 2.3 62 Imag.
6 site Jellium 18.8 94 Imag.

the most part, indicate that one application of the channel
achieves the desired ε for multiple sequential simulations at
small times. This is expected, and is especially common with
Trotter-Suzuki formulas, given that with one iteration they
apply at least L gates depending on the order, while Qdrift
provides the option of sampling single gates.

Figure 4 is interesting given that both the heuristic and
optimized channels provide significant advantages at the
crossover point, as well as the heuristic partition seems to
match the asymptotic performance of the optimized channel.
This demonstrates that optimization subroutines are not re-

FIG. 4. H3 cost plot simulation (real time). Log-log gate cost
plot for the H3 Hamiltonian generated with OpenFermion using
three-dimensional Gaussians in a minimal basis. The bond distance
is chosen to be that which minimizes the energy surface of H2, which
is ≈0.8 angstrom. We achieve a crossover advantage of ξ = 2.3, as
well as remaining constant factor advantages at long times. For other
plot notations see Table I.

quired to gain advantages in this framework. Furthermore, the
second inner-order composite channel also shows a consistent
advantage over the second-order Trotter channel.

To gain insight into effective choices of partition and Qdrift
samples, we also plot the optimized NB values and the ratio of
Trotter terms to total terms |A|/|H | with time in Fig. 5. Here,
we find choices that somewhat agree with our prior intuition.
For short times, places almost all terms into Qdrift, and slowly
increases NB. As t increases, more terms are placed into Trot-
ter with the partition bouncing around in the regime where
Trotter and Qdrift have similar costs, which is also expected.
The composite channel X̃ 2,1 essentially places all terms into
the Trotter simulator, given the favorable asymptotic perfor-
mance of higher-order Trotter formulas over Qdrift, while X̃ 1

finds a balance between the two at long times, likely due to
their equivalent t scaling. The most interesting behavior is that
of NB at mid to long times. Here, NB peaks near the crossover
point and then falls off as Trotter t scaling becomes dominant
in X̃ 2,1. However, for the X̃ 1 channel, NB experiences some-
what of a revival after the peak, and stabilizes at 15, which is
about 24% of the terms. We use this percentage to motivate
future heuristic choices of NB in our investigation of Jellium
in Fig. 6, which turns out to work quite well.

When it comes to the simulation of Jellium, we find some
of the most significant performance improvements within this
section, including an order of magnitude cost difference at the
crossover point (see Fig. 6). Specifically, in the case of six-site
Jellium, the Trotter and Qdrift cost at the crossover point is
approximately 100 gates, versus the composite channel, which
achieves the same precision ε with only about seven gates.
Here, it is also shown that one can find an adequate partition
that leads to advantages at longer times without the need for
any optimization. This is also the only model whereby the
optimization routine struggles to find optimal partitions in
the neighbourhood of the crossover point. This leads to the
Jellium 7 model inheriting a smaller ξ than what is likely
achievable.

The final system we investigate in this section is that of
the graph toy model with exponentially decaying interactions,
which is a beyond nearest neighbor model. In Fig. 7, we study
this model for chains of length 7 and 8, and find essentially
identical behavior. When moving from 7 to 8 spins, we only
add 15 more terms to the Hamiltonian, which is clearly not
enough to see any significant advantages. In fact, the crossover
advantage is slightly smaller for the bigger model, but this
could also be due to the optimizer not fully converging.

2. Imaginary-time composite channels

This section contains cost plots of simulations of the same
aforementioned Hamiltonians, but with imaginary-time prop-
agators, where we present cost plots of the most interesting
Hamiltonians from the previous section.

For simulations of the Heisenberg model, we find similar
advantages to those in real time. In Fig. 8, we see that our pro-
posed heuristic leads to an advantage over Trotter-Suzuki and
Qdrift in the regions of interest. What is different about this
plot is that the optimizer finds the same NB and partitioning
for all short times. This is an artefact of both the Hamiltonian
and how the optimizer is programmed. Since all the splitting
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FIG. 5. Optimized H3 simulation parameters. Semi-log plots of parameters obtained by the GBRT optimization routine for the X̃ 1 and
X̃ 2,1 real-time channels. These parameter choices correspond to the H3 simulation in Fig. 4. In (a) we plot the cardinality of the A set over the
total number of terms, as a function of time. These values are dictated by GBRT optimized value of ωc. In (b) we present the equivalent plot
with NB. For other plot notations see Table I.

FIG. 6. Jellium simulation cost plots (real time). Log-log cost plots of quantum simulations of Jellium with five, six, and seven sites in (a),
(b), and (c) respectively. In (a) and (b) we have in red, a chop heuristic where no optimization overhead is used. The distribution of Hamiltonian
terms is chopped immediately before max

d||Hj ||
d j , and approximately 1

5 L terms are sampled. This heuristic works quite well, although it is
outperformed by the optimized version, especially at short times. In (a) we achieve ξ = 9.2. In (b) we achieve an impressive advantage
of ξ = 18.8, the largest of all our real-time results. In (c), we perform a similar analysis of the seven-site model with some higher-order
composite channels, but find that the optimizer has increased difficulty with larger numbers of Hamiltonian terms. Here ξ = 10.4, but through
inspecting some neighboring points of the crossover region, it surely has the potentially to be much larger. For other plot notations see Table I.
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FIG. 7. Toy spin graph model cost plot. In (a) the we have a cost plot for the seven-spin model where we obtain a crossover advantage of
ξ = 4.1, which is fairly significant. The plot has multiple regions where different composite channels are optimal. In (b) we have the eight-spin
model where we establish ξ = 3.9. This advantage, as well as the channel performance is almost identical to (a). For other plot notations see
Table I.

(single site) terms have equal spectral norm, the optimizer
is placed in an all or nothing scenario, as choosing ωc < 1
immediately places all terms into Qdrift. Given that after
receiving the cost, the program then solves a search problem
to find the minimal r to achieve ε precision, it is rare that it
finds the ideal conditions to build a pure Qdrift channel with
r = 1. However, significant savings are still achieved at the
crossover point, and over T 1 and T 2 at large β. Once again,
the validity of heuristic partitions are shown, specifically in
the first-order composite channel, which exactly matches its
optimized version at large β.

For Hydrogen chains, we obtain strikingly similar results
and compared with those in real time, as seen in Fig. 9. We
once again obtain a significant crossover advantage, as well
as constant factor advantages at large β, or low temperature.
Heuristics are also shown to continue to hold in their effec-
tiveness, in this case, from the crossover point and onward.

FIG. 8. Eight-spin Heisenberg model cost plot. In this
imaginary-time simulation we establish ξ = 3.1, as well as maintain
advantages at large β. We also find that our chosen heuristics are
essentially optimal at large β, with the green and dark blue lines
overlapping. For other plot notations see Table I.

For Jellium, we choose to investigate the system size with
the best-behaved optimizer, as well as the largest ξ , which
occurs for the six-site model. In imaginary time, we once
again reproduce a significant advantage, shown in Fig. 10. As
in the case with H3, this plot is quite similar to the real-time
case in Fig. 6. However, here at large β the composite channel
seems to do better in imaginary time given that even the first-
order composite channel (with optimization) outperforms the
second-order Trotter channel. This happens in the final point
of the plot where T 2 is no longer in the “flat-regime”. While
this is very interesting, it is unclear analytically why this
occurs, and we would likely not expect this trend to continue
asymptotically.

Overall, this section nicely complements some of the an-
alytics in Sec. III both by reinforcing the fact that composite
quantum channels allow for similar advantages in both real
and imaginary time, as well as through calculation of exact

FIG. 9. H3 simulation cost plot (imaginary time). The same pa-
rameters are used to build the three-atom Hydrogen chain as we done
in real time. We achieve incredibly similar results, and again recover
the real-time result of ξ = 2.3 that was achieved in Fig. 4. For other
plot notations see Table I.

013224-20



COMPOSITE QDRIFT-PRODUCT FORMULAS FOR … PHYSICAL REVIEW RESEARCH 6, 013224 (2024)

FIG. 10. Six-site Jellium simulation cost plot (imaginary time):
Here we recover the crossover advantage of ξ = 18.8 from the
real-time simulation in Fig. 6, which is also the largest advantage
achieved in our imaginary-time simulations. We additionally achieve
advantages over second-order Trotter at large β. For other plot nota-
tions see Table I.

constant factor advantages. In other words, this section pro-
vides convincing evidence on the applicability of composite
formulas to classical imaginary-time Monte Carlo algorithms.

3. Local composite quantum channels

Distinct from the previous two algorithms, with the local
composite channels we do not immediately expect to see
significant simulation advantages for the small systems we
can compute. Recall that this algorithm makes use of the
Lieb-Robinson velocity vLR that limits the propagation of
information and thus correlations in a local lattice model. In
our numerics, our lattices contain �8 sites, meaning even for
small vLR, the lattice can still become quickly entangled. In
this section, it is important to understand where the observed
advantages are originating, whether they are from the local
decomposition, or something else. For example, the results
in prior sections already suggest that composite channels can
outperform Trotter and Qdrift channels in certain regimes. If a
block decomposition is introduced, we pay a small gate cost to
break the simulation into subsets (as gates on the boundary are
applied more than once), but the advantages of the composite
simulation are almost guaranteed to outweigh this cost. Thus
we wish to find a regime in which we can perform calculations
of exact costs with local composite channels that explicitly
gain advantages via block decomposition. Otherwise, we will
observe essentially the same behavior as before, but with
slightly smaller constant factors. There are two ways to go
about achieving this; one is to add more sites to the model,
which quickly becomes computationally intractable with stan-
dard methods. The second strategy is to decrease the coupling
between sites in the lattice, which naturally decreases vLR.
This is the strategy we utilize. In reference to Eq. (52) we
perform our cost plots on Heisenberg models with eight sites
with Bz = 1, and J ( j)

ν sampled from an exponential distribu-
tion with a scale parameter (serving as a coupling constant)
of 0.00005. To allow for a fair simulation, we then choose
ε = 0.000001, such that statistically, 98% of terms will be

FIG. 11. Eight-spin Heisenberg model simulated by localized
and standard channels: This cost plot compares Trotter to its lo-
calized versions, with the subscript l indicating the overlap of the
boundary region in the block-local simulation. Channels with no
l subscript are the standard simulations from prior sections. As
expected, we observe that the composite channel is most efficient;
however, given that the standard Trotter algorithm outperforms the
localized Trotter channel, we can conclude that we are not in the
regime where locality is providing advantages. The same heuristics
were used for the composite channel as in Fig. 8, with NB = (4, 1, 4)
on lattice subsets (A,Y, B). For other plot notations see Table I.

greater than ε, which can be seen from a simple integration of
the PDF. Results of this simulation are shown in Fig. 11.

Given the gap between T 1 and Tl=2 in this very weak-
coupling regime, it is unclear whether our methods (exact gate
counts) provide the means for investigating advantages gained
by locality. In Ref. [34], via computations of bounds, numerics
did not show advantages (in the form of T gates) until approx-
imately 100 sites were included in a more strongly-coupled
model with J ( j)

ν ∈ [−1, 1] sampled i.i.d., so our results with
far fewer spins are not unexpected. However, we still theoreti-
cally expect to see advantages in the limit where system sizes
are large, and we can take advantage of the Lieb-Robinson
bound.

VI. DISCUSSION AND SUMMARY

The main contributions of this paper are the extension
of the composite channel to imaginary time and to local
Hamiltonians, and the construction of a composite simulation
library for numerically evaluating algorithmic performance.
The imaginary-time bounds provided advocate for the po-
tential use of Qdrift and composite Qdrift-product formulas
in classical simulations where they can potentially improve
the efficiency/accuracy of quantum Monte Carlo simulations.
This is possible via shortening the path length of discrete time
path integrals in these calculations given that our algorithms
can approximate e−βH with fewer propagators than Trotter-
Suzuki formulas in most cases. Our results also highlight
that depending on the choice of β, one may also perform
an imaginary-time simulation using Qdrift, particularly for
high-temperature physics. It is an open question as to whether
these methods can be used to improve the overall accuracy
before one runs into the sign problem. Nevertheless, these
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methods are interesting as one can use physical information
about the Hamiltonian to choose a partitioning that possibly
grants a computational advantage.

Furthermore, the extension of the composite channel to
local Hamiltonians provides an interesting approach to lat-
tice simulations in which there is a priori knowledge about
the lattice structure. The diamond distance bound on this
algorithm is significant in that the cost of establishing local
composite blocks seemingly minimal in terms of asymptotics,
making it a potentially useful algorithm. However, it seems
more powerful numerical methods may be required to explore
the regimes in which this approach shines, given the size of
the systems likely required. An interesting future trade-off to
be explored here is the size of the blocking l , and the size of
the commutator sums in Theorem IV.2. Furthermore, one can
investigate optimizations of partitions and Qdrift samples on
lattice subsets. Despite our library containing these methods,
we did not employ them as they can lead to misleading figures.
Here, one must tread cautiously, as adding more blocks with
parameterized weights and Qdrift samples can lead to an opti-
mizer finding lower costs, similar to how adding hidden units
to a neural network can lead to the over-fitting of a data set in
machine learning. In this scenario, it may be possible to find
localized composite channels that outperform the standard
channels, simply because the increase in parameters allowed
us to find a more tailored partitioning.

One of the difficulties with the techniques introduced in
Ref. [24] is finding good parameters to yield cost improve-
ments. Our numeric results seem to suggest that even heuristic
approaches for parameters, such as NB, can yield at least fac-
tors of 2 reductions for small Hamiltonians, as seen in Fig. 4.
The difficulties of multiple parameter optimization becomes
more of an issue when moving to the local simulation frame-
work. With m blocks there are at least 2m parameters that need
to be determined with a chop partitioning scheme. However,
simple heuristics still lead to performance advantages over
localized Trotter-Suzuki formulas in Fig. 11. The fact that
said heuristics provide advantages with only an eight-spin
model suggests that cost savings should scale favorably with
increased lattice sizes.

In Sec. V C, a series of short but significant proofs were
also provided to remind the reader to be cautious in examining
error within hybridized algorithms. In our case, the infidelity
treated Qdrift differently than Trotter by a square, and using
it would have skewed the partitions and provided inaccurate
costs on the composite channel.

Finally, the library built for this project is easy to imple-
ment. It is also flexible, and it reliably evaluates the exact
number of operator of exponentials e−iHjt required to execute
on a quantum computer (or e−iHjβ for classical) to time evolve
a system within a given error tolerance. To reiterate, the reason
this is important is because the cost of these algorithms is
highly dependent on the Hamiltonian, specifically in the num-
ber and size of the terms, and their commutators. Additionally,
the costs and errors discussed in this paper are derived from
analytic upper bounds on the diamond distance and induced
Schatten 1 → 1 norm, which are often bounded with repeated
applications of the triangle inequality and using max opera-
tions, and can therefore be loose. These exact numerics can
capture the true costs and errors of these algorithms, and

advantages can motivate further studies into these approaches.
This library is open source and available on GitHub [54].
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APPENDIX A: PROOFS OF IMAGINARY-TIME BOUNDS

1. Imaginary-time Qdrift

Theorem III.1 (Imaginary-time Qdrift). Given a Hamilto-
nian H = ∑

j h jHj with λ = ∑
j h j , imaginary time β,

number of samples N , and a density matrix initial state ρ, then
the induced Schatten 1 → 1 norm of the difference between
the imaginary-time Qdrift channel and exact imaginary-time
evolutionary channel has the bound∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
−
( Q(ρ, β/N )

TrQ(ρ, β/N )

)◦N ∣∣∣∣∣∣∣∣
1→1

� 4β2λ2

N

e2λβ/N

2 − e2βλ/N
+ 2

4β4λ4

N3 e6λβ/N

1 − 2β2λ2

N2 e2λβ/N
+ 2

2β2λ2

N
e4λβ/N,

(23)

given that |e2βλ/N − 1| < 1, which is satisfied if N >
2βλ

ln 2 . Fur-
ther, If the constraint λ

N � 0.01 is satisfied, then the bound
simplifies to∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
−
( Q(ρ, β/N )

TrQ(ρ, β/N )

)◦N ∣∣∣∣∣∣∣∣
1→1

� Cβ2λ2

N
, (24)

where the constant C ≈ 29.71747.
Proof. Following the Supplemental Material of Ref. [15],

we will make use of the Liouvillian super-operator formalism
for the imaginary-time channel. In imaginary time we have

L(ρ) = {H, ρ} = Hρ + ρH, (A1)

which generates the following channel:

e−βL(ρ)

Tre−βL(ρ)
= e−βHρe−βH

Tr(e−βHρe−βH )
. (A2)

Throughout this section, whenever L appears, it is implied
that we mean L(ρ), we use the former for more compact
notation. The difference between L defined here and that in
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[15] is that the commutator becomes an anticommutator, and
the i vanishes due to the nature of the imaginary-time channel.
Equivalence can be seen via the Taylor series expansion of
e−βL(ρ), where Ln means n applications of the super-operator:
{H, {H, . . . , {H, {H, ρ}} . . .}}. From [15], this super-operator
yields the following properties:

||L||1→1 � 2||H || � 2λ. (A3)
Similarly, if we define L j that generate unitaries under

each Hj as in [15], and given that the Hamiltonian terms are

normalized by h j the following also holds:

||L j ||1→1 � 2||Hj || = 2. (A4)

We are now ready to proceed with the proof. To avoid
cumbersome notation we will write L(ρ) simply as L. Let us
first examine the induced 1-norm of the difference between
exact channel UN that acts for imaginary time β/N and the
Qdrift channel Q, and the generalize this for N compositions
of the Qdrift channel representing N samples,

∣∣∣∣∣
∣∣∣∣∣ UN

TrUN
− Q

TrQ

∣∣∣∣∣∣∣∣
1→1

=
∣∣∣∣∣∣∣∣ e−β/NL

Tre−β/NL −
∑

i
hi
λ

e−βλ/NLi

Tr
(∑

j
h j

λ
e−βλ/NL j

)
∣∣∣∣∣
∣∣∣∣∣
1→1

(A5)

=
∣∣∣∣∣
∣∣∣∣∣ e−β/NL

1 + Tr
(∑∞

n=1
(−βL)n

Nnn!

) −
∑

i
hi
λ

e−βλ/NLi

1 + Tr
(∑

j
h j

λ

∑∞
m=1

(−βL j )m

Nmm!

)
∣∣∣∣∣
∣∣∣∣∣
1→1

(A6)

�
∣∣∣∣∣
∣∣∣∣∣ e−β/NL

1 + Tr
(∑∞

n=1
(−βL)n

Nnn!

) −
∑

i
hi
λ

e−βλ/NLi

1 + Tr
(∑∞

n=1
(−βL)n

Nnn!

) ∣∣∣∣∣
∣∣∣∣∣
1→1

+
∣∣∣∣∣
∣∣∣∣∣

∑
i

hi
λ

e−βλ/NLi

1 + Tr
(∑∞

n=1
(−βL)n

Nnn!

) −
∑

i
hi
λ

e−βλ/NLi

1 + Tr
(∑

j
h j

λ

∑∞
m=1

(−βL j )m

Nmm!

)
∣∣∣∣∣
∣∣∣∣∣
1→1

(A7)

:= a + b. (A8)

Now we shall proceed by dealing with each of these terms individually. The denominator of the a can be expanded via its
geometric series,

a =
∣∣∣∣∣∣
∣∣∣∣∣∣
⎛⎝ ∞∑

k=0

(
−Tr

( ∞∑
n=1

(−βL)n

Nnn!

))k
⎞⎠(

e−βL/N −
∑

i

hi

λ
e−βLi/N

)∣∣∣∣∣∣
∣∣∣∣∣∣
1→1

(A9)

=
∣∣∣∣∣∣

∞∑
k=0

(
−Tr

( ∞∑
n=1

(−βL)n

Nnn!

))k
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣e−βL/N −

∑
i

hi

λ
e−βλLi/N

∣∣∣∣∣
∣∣∣∣∣
1→1

. (A10)

We will first focus on the leftmost factor. To bound this term we will apply the triangle inequality to apply the norm to
each term in the sum. We will also use the fact that the absolute value of the trace is trivially upper bounded by the induced
1-norm: |TrL(ρ)| � ||L||1→1. Here it is understood that this absolute value is maximized over all ρ : ||ρ|| = 1. We then use the
submultiplicative property ||Ln||1→1 � ||L||n1→1,

a �
∞∑

k=0

( ∞∑
n=1

βn|Tr(L)n|
Nnn!

)k∣∣∣∣∣
∣∣∣∣∣e−βL/N −

∑
i

hi

λ
e−βλLi/N

∣∣∣∣∣
∣∣∣∣∣
1→1

(A11)

�
∞∑

k=0

( ∞∑
n=1

βn||L||n1→1

Nnn!

)k∣∣∣∣∣
∣∣∣∣∣e−βL/N −

∑
i

hi

λ
e−βλLi/N

∣∣∣∣∣
∣∣∣∣∣
1→1

(A12)

�
∞∑

k=0

( ∞∑
n=1

βn2nλn

Nnn!

)k∣∣∣∣∣
∣∣∣∣∣e−βL/N −

∑
i

hi

λ
e−βλLi/N

∣∣∣∣∣
∣∣∣∣∣
1→1

(A13)

=
∞∑

k=0

(e2λβ/N − 1)k

∣∣∣∣∣
∣∣∣∣∣e−βL/N −

∑
i

hi

λ
e−βλLi/N

∣∣∣∣∣
∣∣∣∣∣
1→1

(A14)

=
∣∣∣∣e−βL/N − ∑

i
hi
λ

e−βλLi/N
∣∣∣∣

1→1

2 − e2βλ/N
. (A15)
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Where we require |e2βλ/N − 1| < 1. Next, inspecting the numerator, this is of the form bounded in the Appendix of [15],
therefore, the following holds trivially:

a � 4β2λ2

N2

e2λβ/N

2 − e2βλ/N
. (A16)

Next, let us proceed to bound the b term

b =
∣∣∣∣∣
∣∣∣∣∣

∑
i

hi
λ

e−βLi

1 + Tr
(∑∞

n=1
(−βL)n

n!

) −
∑

i
hi
λ

e−βLi

1 + Tr
(∑

j
h j

λ

∑∞
m=1

(−βL j )m

m!

)
∣∣∣∣∣
∣∣∣∣∣
1→1

(A17)

=
∣∣∣∣∣
∣∣∣∣∣∑

i

hi

λ
e−βLi

∣∣∣∣∣
∣∣∣∣∣
1→1

∣∣∣∣∣∣∣
∞∑

k=0

(
−Tr

( ∞∑
n=1

(−βL)n

n!

))k

−
∞∑

l=0

⎛⎝−Tr

⎛⎝∑
j

h j

λ

∞∑
n=1

(−βL j )n

n!

⎞⎠⎞⎠l
∣∣∣∣∣∣∣ (A18)

� e2βλ/N

∣∣∣∣∣∣∣
∞∑

k=0

(
−Tr

( ∞∑
n=1

(−βL)n

n!

))k

−
∞∑

l=0

⎛⎝−Tr

⎛⎝∑
j

h j

λ

∞∑
n=1

(−βL j )n

n!

⎞⎠⎞⎠l
∣∣∣∣∣∣∣. (A19)

Now, carefully expanding the double sums up to second order,

= e2βλ/N

∣∣∣∣∣∣∣
∞∑

k=2

(
−Tr

( ∞∑
n=2

(−βL)n

n!

))k

−
∞∑

l=2

⎛⎝−Tr

⎛⎝∑
j

h j

λ

∞∑
n=2

(−βL j )n

n!

⎞⎠⎞⎠l

+ Tr
∑

j

h j

λ

∞∑
m=2

(−βλL j )m

Nmm!

− Tr
∞∑

n=2

(−βλL)n

Nnm!
+ Tr

βL
N

− Tr
∑

j

h j

λ

βλL j

N

∣∣∣∣∣∣. (A20)

Using the fact that
∑

j h jL j = L, the final two terms cancel and we have

= e2βλ/N

∣∣∣∣∣∣∣
∞∑

k=2

(
−Tr

( ∞∑
n=2

(−βL)n

Nnn!

))k

−
∞∑

l=2

⎛⎝−Tr

⎛⎝∑
j

h j

λ

∞∑
n=2

(−βL j )n

Nnn!

⎞⎠⎞⎠l

+ Tr
∑

j

h j

λ

∞∑
m=2

(−βλL j )m

Nmm!
− Tr

∞∑
n=2

(−βλL)n

Nnm!

∣∣∣∣∣∣ (A21)

� e2βλ/N

⎛⎜⎝
∣∣∣∣∣∣

∞∑
k=2

(
−Tr

( ∞∑
n=2

(−βL)n

Nnn!

))k
∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∞∑

l=2

⎛⎝−Tr

⎛⎝∑
j

h j

λ

∞∑
n=2

(−βL j )n

Nnn!

⎞⎠⎞⎠l
∣∣∣∣∣∣∣

+
∣∣∣∣∣∣Tr

∑
j

h j

λ

∞∑
m=2

(−βλL j )m

Nmm!

∣∣∣∣∣∣ +
∣∣∣∣∣Tr

∞∑
n=2

(−βλL)n

Nnm!

∣∣∣∣∣
⎞⎠ (A22)

� e2βλ/N

⎛⎜⎝ ∞∑
k=2

( ∞∑
n=2

βn|TrLn|
Nnn!

)k

+
∞∑

l=2

⎛⎝∑
j

h j

λ

∞∑
n=2

βn|TrLn|
Nnn!

⎞⎠l

+
∑

j

h j

λ

∞∑
m=2

βmλm
∣∣TrL j

n
∣∣

Nmm!
+

∞∑
n=2

βnλn|TrLn|
Nnm!

⎞⎟⎠.

(A23)

Now we once again use the property |TrL(ρ)| � ||L(ρ)||1→1,

� e2βλ/N

⎛⎜⎝ ∞∑
k=2

( ∞∑
n=2

βn||L||n1→1

Nnn!

)k

+
∞∑

l=2

⎛⎝∑
j

h j

λ

∞∑
n=2

βn||L j ||n1→1

Nnn!

⎞⎠l

+
∑

j

h j

λ

∞∑
m=2

βmλm||L j ||m1→1

Nmm!
+

∞∑
n=2

βnλn||L||n1→1

Nnm!

⎞⎟⎠
(A24)
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� e2βλ/N

⎛⎜⎝ ∞∑
k=2

( ∞∑
n=2

2nβnλn

Nnn!

)k

+
∞∑

l=2

⎛⎝∑
j

h j

λ

∞∑
n=2

2nβnλn

Nnn!

⎞⎠l

+
∑

j

h j

λ

∞∑
m=2

2mβmλm

Nmm!
+

∞∑
n=2

2nβnλn

Nnm!

⎞⎟⎠ (A25)

� e2βλ/N

(
2

∞∑
k=2

(
2β2λ2

N2
e2λβ/N

)k

+ 2
2β2λ2

N2
e2λβ/N

)
(A26)

= 2
4β4λ4

N4 e6λβ/N

1 − 2β2λ2

N2 e2λβ/N
+ 2

2β2λ2

N2
e4λβ/N . (A27)

Where in the last three lines we used both the tail bound on an exponential sum;
∑∞

n=2
xn

n! � x2

2 ex and the tail-sum of

the geometric series;
∑∞

n=2 xn = x2

1−x . The latter of the two requires that |x| < 1 for convergence, so we therefore, require

| 2β2λ2

N2 e2λβ/N | < 1, which is not a strong requirement given we are interested in large N . Now combining the results for a and
b we obtain the final result for a channel that simulates a fraction 1/N of the dynamics,

||UN − �QD||1→1 � a + b (A28)

� 4β2λ2

N2

e2λβ/N

2 − e2βλ/N
+ 2

4β4λ4

N4 e6λβ/N

1 − 2β2λ2

N2 e2λβ/N
+ 2

2β2λ2

N2
e4λβ/N . (A29)

Using the fact that the norm is subadditive under composition∣∣∣∣U◦N
N − �◦N

QD

∣∣∣∣
1→1 � N ||UN − �QD||1→1, (A30)

we are left with the following result for the full-time channel:

∣∣∣∣U − �◦N
QD

∣∣∣∣
1→1 � 4β2λ2

N

e2λβ/N

2 − e2βλ/N
+ 2

4β4λ4

N3 e6λβ/N

1 − 2β2λ2

N2 e2λβ/N
+ 2

2β2λ2

N
e4λβ/N . (A31)

Next, we wish to linearize this bound for a clearer interpretation of the error. We can do so by utilizing the conditions required
to hold in the proof

|e2βλ/N − 1| < 1, (A32)∣∣∣∣2β2λ2

N2
e2λβ/N

∣∣∣∣ < 1. (A33)

The first condition (A32) gives e2βλ/N ∈ (0, 2), which implies 2βλ

N ∈ (−∞, ln 2), and given that we require this quantity
necessarily be positive we have 2βλ

N ∈ [0, ln 2). Now, our second condition (A33), given the positivity constraint, further implies
x2

2 ex ∈ [0, 1) with x = 2βλ/N. Using max value obtained from Eq. (A32), that x < ln 2, Eq. (A33) reduces to x2

2 ex � 2 ln 2 ∈
[0, 1). Given that Eq. (A33) is a product of two monotonic functions in the domain (0,∞), any value of x less than the maximum
obtained in the first condition also satisfies the second. Therefore, going forward we focus only on satisfying the constraint in
Eq. (A32).

Going forward in linearizing Eq. (A31) we will take λ and N to be constant and consider variable β, and continue by upper
bounding each term. Beginning with the first term we have

4β2λ2

N

e2λβ/N

2 − e2βλ/N
= 2β2λ2

N

1

y − 1
2

, s.t. y(β ) = e−2λβ/N and
2

3
� y(β ) � 1. (A34)

Now we rewrite the aforementioned constraint 1 � e2λβ/N < 2, to be 1 � e2λβ/N � 3
2 to prevent one from approaching a

divergence in the proof arbitrarily closely. Utilizing the following property:

f (b) = f (a) +
∫ b

a

df

dy
dy � f (a) + (b − a) max

y∈[a,b]

∣∣∣∣df (y)

dy

∣∣∣∣, (A35)

with f (β ) = 1
y(β )− 1

2
Eq. (A34) is upper bounded in the following way:

4β2λ2

N

4β2λ2

N
e4βλ/N � 4β2λ2

N

(
3 + 12

λ

N

)
. (A36)
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Moving on to the third term in Eq. (A31), we have

4β2λ2

N
e4βλ/N = 4β2λ2

N
y2, s.t. y = e2βλ/N and 1 � y(β ) � 3

2
, (A37)

and using the same integral bound we obtain

4β2λ2

N
e4βλ/N � 4β2λ2

N

(
1 + 3

λ

N

)
. (A38)

Finally, we are left to bound the second term in Eq. (A31), which we can write in the following way:(
4β2λ2

N
e4λβ/N

) 4β2λ2

N2 e2λβ/N

2 − 4β2λ2

N2 e2λβ/N
= 2

(
4β2λ2

N
e4λβ/N

)
y ln y

1 − y ln y
, s.t. y(β ) = e2λβ/N and 1 � y(β ) � 3

2
. (A39)

The function f (y) = y ln y
1−y ln y is monotonic over the constrained domain and can be upper bounded by inserting the largest

value that ln y achieves. Also, notice the term in parentheses is precisely the third term in Eq. (A31) that we bounded above.
Using these two observations,

2

(
4β2λ2

N
e4λβ/N

)
y ln y

1 − y ln y
� 4β2λ2

N
2

(
1 + 3

λ

N

)
y ln 3

2

1 − y ln 3
2

(A40)

� 4β2λ2

N
2 ln

3

2

(
1 + 3

λ

N

)(
1

2
3 − ln 3

2

+ 2λ

3N

1(
2
3 − ln 3

2

)2

)
, (A41)

where in the last step we once again used the integral identity following the same procedure as we did for the first term. Now
that we have linearized each term, we combine all the results to obtain

∣∣∣∣U − �◦N
QD

∣∣∣∣
1→1 � β2λ2

N

(
a + b

λ

N
+ c

λ2

N2

)
(A42)

where a ≈ 28.41845, b ≈ 128.95110, and c ≈ 95.08717. If we make the promise that λ
N � 0.01, the bound simplifies to

∣∣∣∣U − �◦N
QD

∣∣∣∣
1→1 � Cβ2λ2

N
(A43)

where C ≈ 29.71747, completing the proof. �
This condition is not very restrictive on the imaginary time β. Considering the condition given in Eq. (A32), we have β <

ln 2N
2λ

≈ 34.657, so β < 10π , meaning that given this promise on the ratio λ
N , the bound holds for a simulation time that allows

the phase to oscillate up to five times if we were dealing with real time.

2. Imaginary-time Trotter-Suzuki formulas

Following the procedure in [24], we must first convert the existing bound to a bound on channels and then bound the error
with the renormalizing operations.

Theorem III.2 (Imaginary-time Trotter-Suzuki channels). Given a Hamiltonian H = ∑
j h jHj with λ = ∑

j h j , imaginary
time β, time-steps r, and a density matrix initial state ρ, then the induced Schatten 1 → 1 norm of the difference between the
imaginary-time Trotter-Suzuki channel T 2k (ρ, β ) and the exact imaginary-time evolutionary U (ρ, β ) channel has the following
bound: ∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 2ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k
e4ϒβλ/r (e4βλ/re2β||H ||/r + e2β||H ||/r ), (25)

which yields the following asymptotic bound:∣∣∣∣∣
∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

∈ O
(

ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k

)
. (26)

Here ϒ is the number of stages of the product formula, 2k is the order of the product formula, αcomm is defined as in Eq. (11), and
λ is the sum of the spectral norms of the Hamiltonian summands. Here O(·) is understood in the infinite limit of its arguments.
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Proof. First consider the induced 1-norm of the difference between the channels after a single iteration or time-step r. As in
the previous proof, absolute values containing a channel operation are understood to be maximized over all inputs ρ : ||ρ||1 = 1,∣∣∣∣∣∣∣∣ U (ρ, β/r, β/r)

Tr(U (ρ, β/r, β/r))
− T 2k (ρ, β/r, β/r)

Tr(T 2k (ρ, β/r, β/r))

∣∣∣∣∣∣∣∣
1→1

�
∣∣∣∣∣∣∣∣U (ρ, β/r) − T 2k (ρ, β/r)

TrU (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

+
∣∣∣∣∣∣∣∣T 2k (ρ, β/r)

(
1

TrT 2k (ρ, β/r)
− 1

TrU (ρ, β/r)

)∣∣∣∣∣∣∣∣
1→1

(A44)

=
∣∣∣∣ 1

TrU (ρ, β/r)

∣∣∣∣||U (ρ, β/r) − T 2k (ρ, β/r)||1→1 + ||T 2k (ρ, β/r)||1→1

∣∣∣∣ Tr(U (ρ, β/r) − T 2k (ρ, β/r))

Tr(U (ρ, β/r))Tr(T 2k (ρ, β/r))

∣∣∣∣ (A45)

�
∣∣∣∣ 1

TrU (ρ, β/r)

∣∣∣∣||U (ρ, β/r) − T 2k (ρ, β/r)||1→1 + ||T 2k (ρ, β/r)||1→1||U (ρ, β/r)

− T 2k (ρ, β/r)||1→1

∣∣∣∣ 1

Tr(U (ρ, β/r))Tr(T 2k (ρ, β/r))

∣∣∣∣ (A46)

= ||U (ρ, β/r) − T 2k (ρ, β/r)||1→1

( ||T 2k (ρ, β/r)||1→1

|Tr(U (ρ, β/r))Tr(T 2k (ρ, β/r))| + 1

|TrU (ρ, β/r)|
)

, (A47)

where in the second line we simply cross multiply the traces of the outputs of the channels (since they are just numbers), and
in third line we use the fact that the absolute value of the trace is trivially upper bounded by the diamond norm. Going forward
we need to lower bound the traces in the denominator, which can be done using the well-known von Neumann trace inequality,∑N

i=1 σ A
i σ B

N−i+1 � Tr(AB) where σ
(A,B)
i represent the singular values of the matrix A or B respectfully, and they are ordered such

that σi � σi+1. The absolute values in the denominator also need not be written as these traces are positive by definition. For the
exact evolution channel we have

TrU (ρ, β/r) = Tr(e−βHρe−β/rH ) (A48)

= Tr(e−2β/rHρ) (A49)

�
∑

i

σi(e
−2β/rH )σN−i+1(ρ) (A50)

� σmin(e−2β/rH )Tr(ρ) (A51)

� e−2β/r||H ||, (A52)

where we use the fact that the trace of ρ is 1, along with the fact that ρ is positive semidefinite and hermitian, such that the
sum of its singular values is equal to its trace. Next, we follow a similar procedure in dealing with the trace of the output of the
Trotter-Suzuki channel,

TrT 2k (ρ, β/r) = Tr(S2k (β/r)ρS†
2k (β/r)) (A53)

� σmin(S†
2k (β/r)S2k (β/r))Trρ (A54)

= σmin(S†
2k (β/r)S2k (β/r)). (A55)

In order to understand how this term behaves with respect to β/r and H , we require more careful analysis. To do this it will be
useful to introduce some more convenient notation. Just like an arbitrary product formula can be defined in the following way
(following the notation of [14]):

S2k (β/r) =
ϒ∏

υ=1

L∏
l=1

e−β/rsυ,l Hπυ(l ) . (A56)

Where s controls the prefactor that modifies the time step and π controls the ordering of the H summands in each stage of the
formula. We utilize the following property of singular values: given two matrices A, B ∈ C the following holds σn(A)σi(B) �
σi(AB) � σ1(A)σi(B), given that singular values are ordered such that σ1 � σ2 � · · · � σn. Also, note that since the individual
evolution operators are no longer anti-Hermitian, coupled with the fact that Trotter-Suzuki formulas are symmetric, S†

2k = S2k ,

TrT 2k (ρ, β/r) � σmin
(
S2

2k (β/r)
)

(A57)

� σ 2
min

(
ϒ∏

υ=1

L∏
l=1

e−β/rsυ,l Hπυ(l )

)
(A58)
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�
(

ϒ∏
υ=1

L∏
l=1

σmin(e−β/rsυ,l Hπυ(l ) )

)2

(A59)

�
(

ϒ∏
υ=1

L∏
l=1

e−β/rsυ,l ||Hυ(l )||
)2

(A60)

= (
e
∑ϒ

υ=1

∑L
l=1 −β/rsυ,l ||Hυ(l )||)2

(A61)

= e−2β/rλ, (A62)

where each inequality step is a repeated application of the aforementioned property. In the last step, we complete the using the
property of Trotter-Suzuki formulas that

∑
υ,l sυ,l = 1 and the definition

∑
l ||Hl || = λ.

We also need to deal with the most important term, which is the actual induced 1-norm of the difference between the channels.
To do this, we will massage this term into a form where we can apply a result from [14]. To do this we follow the same procedure
from Sec. II G,

||U (β ) − T 2k (β )||1→1 := max
ρ:||ρ||=1

||U (β ) − T 2k (β )||1 (A63)

= max
ρ:||ρ||1=1

||e−Hβρe−Hβ − S2k (β )ρS2k (β )||1 (A64)

� max
ρ:||ρ||1=1

||e−Hβρe−Hβ − e−HβρS2k (β )||1 (A65)

+ max
ρ:||ρ||1�1

||e−HβρS2k (β ) − S2k (β )ρS2k (β )||1 (A66)

= max
ρ:||ρ||1=1

||e−βHρ(e−Hβ − S2k (β ))||1 + max
ρ:||ρ||1=1

||(e−Hβ − S2k (β ))ρS2k (β )||1 (A67)

� (||e−βH ||∞ + ||S2k (β )||∞)||e−Hβ − S2k (β )||∞ max
ρ:||ρ||1�1

||ρ||1 (A68)

= 2eβλ||e−Hβ − S2k (β )||∞ (A69)

= 2eβλ||U (β ) − S2k (β )||∞. (A70)

Next we apply the following bound from Appendix E in [14],

||U (β/r) − S2k (β/r)||∞ � 2ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k+1
e4 β

r ϒλ (A71)

where ϒ and λ are again the number of stages of the product formula and the sum of the spectral norms of the Hamiltonian
summands respectively. Now we are simply left with a single term to bound in the diamond norm of the Trotter-Suzuki channel.
We can similarly define the Trotter-Suzuki channel as a composition of multiple stages of channels, each containing compositions
of evolution channels corresponding to each Hamiltonian summand. We write this in the following way:

T 2k (β/r) ≡ ©ϒ
υ=1 ©L

l=1 e− β

r sυ,lLπυ(l ) , (A72)

where we once again have the Liouvillian generator for imaginary time L(ρ) = {H, ρ}, and all other machinery is defined in the
same was as above. In this way it is more natural to proceed in using the submultiplicative property of the norm,

||T 2k (β/r)||1→1 �
ϒ∏

υ=1

L∏
l=1

||e− β

r sυ,lLπυ(l ) ||1→1 (A73)

�
ϒ∏

υ=1

L∏
l=1

e2 β

r sυ,l ||Hπυ(l ) || (A74)

= e
∑ϒ

υ=1

∑L
l=1 2 β

r sυ,l ||Hυ(l )|| (A75)

= e2 β

r λ. (A76)

In the second line we use the Taylor expansion of the exponential of the Liouvillian to apply the induced 1 → 1 norm to the
exponent as seen in the Qdrift proof. We make use of the aforementioned fact that ||Ll ||1→1 � 2hl where hl is the spectral norm
of the Hl Hamiltonian term. Now, combining all of our results we are left with the following:∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 4ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k+1
e4 β

r ϒλeβλ/r
(
e4 β

r λe2 β

r ||H || + e2 β

r ||H ||) (A77)
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and we wish to compare the exact evolution to the channel after r iterations. In other words, we use the property ||X ◦r −
Y ◦r ||1→1 � r||X − Y ||1→1, proven earlier (for the diamond norm, but it also holds here) in Eq. (37), to obtain∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 4ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k
e4 β

r ϒλeβλ/r
(
e4 β

r λe2 β

r ||H || + e2 β

r ||H ||). (A78)

Similar to the Qdrift case, we wish to eliminate the exponential factors to give a more straightforward interpretation of scaling
of the error bound. However, in this case the proof did not impose restrictions on the size of these exponentials. Therefore, we
instead upper bound each exponential term in a common way and then make on observation about the scaling of r, to show that
the exponential factors are O(1). We begin by using the fact that ||H || � λ, and eβλ/r � eϒβλ/r to obtain∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 4ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k

(
e

11ϒβλ

r + e
7ϒβλ

r
)
. (A79)

Now, let us posit that r ∈ �(ϒaβbλc) | a, b, c � 1. Focusing on the terms in parentheses above, the terms in the exponents are
positive by definition, so we have (e10ϒβλ/r + e6ϒβλ/r ) � 1. If the posited scaling holds, then (e11ϒβλ/r + e7ϒβλ/r ) ∈ O(1) such that this
term is asymptotically upper bounded by some constant C. In fact, if a, b, or c > 1, then C = 1 in the infinite limit. From [24],
we use the fact that αcomm(H, 2k) � 22kλ2k+1 to verify this intuition,∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� 42k+1ϒ2k+1 λ2k+1

(2k + 1)!

β2k+1

r2k
C < ε, (A80)

where solving for r in terms of ε gives

(4ϒλβ )1+ 1
2k

(
C

ε(2k + 1)!

) 1
2k

< r. (A81)

Asymptotically, this gives the following asymptotic bound:

r ∈ �

(
ϒ1+ 1

2k λ1+ 1
2k β1+ 1

2k

ε
1
2k

)
. (A82)

Here, we enforce ε � 1, which then confirms the initial intuition about the asymptotic scaling of r, such that that r ∈ �(ϒaβbλc),
where a = b = c = 1 + 1/2k, and the exponential term vanishes in the infinite limit, yielding∣∣∣∣∣

∣∣∣∣∣ U (ρ, β )

Tr(U (ρ, β ))
−
( T 2k (ρ, β/r)

Tr(T 2k (ρ, β/r))

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

∈ O
(

ϒ2k+1 αcomm(H, 2k)

(2k + 1)!

β2k+1

r2k

)
, (A83)

thus completing the proof. �

3. Imaginary-time composite channels

Theorem III.3 (Imaginary-time composite channels). Given a partitioned Hamiltonian H = ∑
j a jA j + ∑

i biBi with λA =∑
j a j , λB = ∑

j b j , imaginary time β, time steps r, Qdrift samples NB, and a density matrix initial state ρ, then the induced
Schatten 1 → 1 norm of the difference between the imaginary-time composite channel X 2k (ρ, β ) of order 2k and the exact
imaginary-time evolutionary channel U (ρ, β ) has the following bound:∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
− X 2k (ρ, β )

TrX 2k (ρ, β )

∣∣∣∣∣∣∣∣
1→1

∈ O
(

β2λ2
B

NBr
+ ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k
+ ||[A, B]||β

2

r

)
(27)

given that r � ϒβλ. Here, all parameters in this bound correspond to the same quantities in Theorems III.1 and III.2, where the
subscripts A and B indicate their belonging corresponding set.

Proof. We begin by expanding the imaginary-time composite channel X (ρ, β ) in terms of familiar quantities that have been
previously bounded. That being said, this proof relies almost entirely on Theorems III.1 and III.2. Throughout, notation is used
such that U (ρ, β )A represents an exact evolution channel under the Hamiltonian A from the the theorem statement. It is implied
throughout that terms in A are simulated by the Trotter-Suzuki channel, while terms in B are simulated by Qdrift. Therefore, we
write T 2k

A (ρ, β/r) and QB(ρ, β/r) as Trotter and Qdrift channels generated by the Hamiltonians A and B for clearer notation, and
once again we initial consider a time-step β/r. Expanding the composite channel we have∣∣∣∣∣∣∣∣ U (ρ, β/r)

TrU (ρ, β/r)
− X 2k (ρ, β/r)

TrX 2k (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

=
∣∣∣∣∣∣∣∣UB(ρ, β/r) ◦ UA(ρ, β/r) + EA,B(β/r)

TrU (ρ, β/r)
− QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrQB(ρ, β/r) ◦ T 2k
A (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

, (A84)
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where EA,B(β/r) is an error term that comes from partitioning the exact evolution U into two evolution channels over A and B.
We leave the denominator un-expanded for convenience. As before, we can add and subtract a convenient term to give us terms
with common denominators that are more straightforward to bound, and then apply the triangle inequality,

=
∣∣∣∣∣∣∣∣UB(ρ, β/r) ◦ UA(ρ, β/r) − QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrU (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

+
∣∣∣∣∣∣∣∣ EA,B(β/r)

TrU (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

+
∣∣∣∣∣∣∣∣QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrU (ρ, β/r)
− QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrQB(ρ, β/r) ◦ T 2k
A (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

. (A85)

Now we proceed by bounding each of these terms individually. Starting with the first term∣∣∣∣∣∣∣∣UB(ρ, β/r) ◦ UA(ρ, β/r) − QB(ρ, β/r) ◦ T 2k
A (ρ, β/r)

TrU (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

�
||UB(ρ, β/r) − QB(ρ, β/r)||1→1 + ∣∣∣∣UA(ρ, β/r) − T 2k

A (ρ, β/r)
∣∣∣∣

1→1

TrU (ρ, β/r)
(A86)

�
(||UB(ρ, β/r) − QB(ρ, β/r)||1→1 + ∣∣∣∣UA(ρ, β/r) − T 2k

A (ρ, β/r)
∣∣∣∣

1→1

)
e2||H ||β/r, (A87)

where in the second line we use the trace bound found in the proof of Theorem III.2. Each of the diamond norms remaining
above have been bounded in Theorems III.1 and III.2, and we will plug in said results at the end of the proof. Proceeding to the
second term we have∣∣∣∣∣∣∣∣QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrU (ρ, β/r)
− QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)

TrQB(ρ, β/r) ◦ T 2k
A (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

(A88)

� ||QB(ρ, β/r)||1→1

∣∣∣∣T 2k
A (ρ, β/r)

∣∣∣∣
1→1

∣∣∣∣∣ Tr
(
U (ρ, β/r) − QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
)

Tr(U (ρ, β/r))Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
) ∣∣∣∣∣ (A89)

= ||QB(ρ, β/r)||1→1

∣∣∣∣T 2k
A (ρ, β/r)

∣∣∣∣
1→1

∣∣Tr
(
UB(ρ, β/r) ◦ UA(ρ, β/r) + EA,B(β/r) − QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
)∣∣

Tr(U (ρ, β/r))Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
) (A90)

� e
2βλB

r e
2βλA

r e
2β||H ||

r

∣∣∣∣UB(ρ, β/r) ◦ UA(ρ, β/r) + EA,B(β/r) − QB(ρ, β/r) ◦ T 2k
A (ρ, β/r)

∣∣∣∣
1→1

Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
) (A91)

� e
2βλ

r e
2β||H ||

r

(
||UB(ρ, β/r) − QB(ρ, β/r)||1→1 + ∣∣∣∣UA(ρ, β/r) − T 2k

A (ρ, β/r)
∣∣∣∣

1→1

Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
) + ||EA,B(β/r)||1→1

Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
)),

(A92)

where in the last line we once again apply the triangle inequality, and also observe that λA + λB = λ. Now we only have two
unfamiliar terms left to bound, the partitioning error EA,B(β/r) and the trace of the composition of the Qdrift and Trotter channels.
To analyze the trace, we expand both of the channels into their operator form

Tr
(
QB(ρ, β/r) ◦ T 2k

A (ρ, β/r)
) = Tr

⎛⎝∑
j

PjVjS2kρS2kVj
†

⎞⎠ (A93)

=
∑

j

PjTr(VjS2kρS2kVj
†) (A94)

=
∑

j

PjTr(S2kVj
†VjS2kρ) (A95)

�
∑

j

Pjσmin(S2kVj
†VjS2k )Trρ (A96)

� σ 2
min(S2k )

∑
j

Pjσ
2
min(Vj) (A97)

� e− 2βλA
r

∑
j

Pjσ
2
min(Vj). (A98)

Now recall the definition of the product formula from the multisample Qdrift channel defined in Definition II.3 Vj = ∏N
k=1 e−iHjk τ

with τ = βλ/N. To reiterate, the index j is a vector of length N , and the index set contains every possible length-N permutation
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of the LB Hamiltonian terms in the Qdrift channel. Since we already have exponential terms in our bound, we can use a naive
lower bound here, which coincides with the most likely case of drawing the largest term N times. This gives

� e− 2βλA
r

∑
j

Pj

N∏
k=1

σ 2
min

(
e−Bjk

βλB
Nr
)

(A99)

� e− 2βλA
r e− 2||B||βλB

r (A100)

= e− 2βλ

r , (A101)

where in the last line ||B|| = 1 based by definition of Qdrift, and λA + λB = λ.
Now combining all of our results we have the following:(||UB(ρ, β/r) − QB(ρ, β/r)||1→1 + ∣∣∣∣UA(ρ, β/r) − T 2k

A (ρ, β/r)
∣∣∣∣

1→1 + ||EA,B(β/r)||1→1
)
e

2β||H ||
r
(
1 + e

4βλ

r
)
. (A102)

This term is a sum of the errors of each respective algorithm, with the addition of the partitioning error, multiplied by some
exponential terms that come from lower bounding traces, which have been common throughout. Therefore, this is exactly what
we might expect a priori. Going forward we wish to represent this error for the entire simulation rather than just a single time
step, and then show that the exponential terms become irrelevant in the limit of interest. For the full time simulation we have∣∣∣∣∣

∣∣∣∣∣
( U (ρ, β/r)

TrU (ρ, β/r)

)◦r

−
( X 2k (ρ, β/r)

TrX 2k (ρ, β/r)

)◦r
∣∣∣∣∣
∣∣∣∣∣
1→1

� r

∣∣∣∣∣∣∣∣ U (ρ, β/r)

TrU (ρ, β/r)
− X 2k (ρ, β/r)

TrX 2k (ρ, β/r)

∣∣∣∣∣∣∣∣
1→1

, (A103)

where the quantity on the right is that which has been bounded. Inserting the imaginary-time Qdrift bound from Theorem III.1,
and the single step Trotter bound from Eq. (A77) we have(

Cβ2λ2
B

NBr
+ 2ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k
e4β/rϒλA (e4β/rλA e2β/r||A|| + e2β/r||A||) + r||EA,B(β/r)||1→1

)
e

2β||H ||
r

(
1 + e

4βλ

r
)
. (A104)

Next we deal with the partitioning error ||EA,B(β/r)||1→1 = ||U (ρ, β/r) − UB(ρ, β/r) ◦ UA(ρ, β/r)||1→1. We know from Theo-
rem III.2 that ||U (β, ρ) − UB(ρ, β/r) ◦ UA(ρ, β/r)||1→1 � 2e

βλ

r ||U (β, ρ) − UB(ρ, β/r) ◦ UA(ρ, β/r)||∞, then once again using the
bound from Appendix E of [14], we have(

Cβ2λ2
B

NBr
+ 2ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k
e4β/rϒλA (e4β/rλA e2β/r||A|| + e2β/r||A||) + ||[A, B]||e βλ

r
2β2

r
e

4βλ

r

)
e

2β||H ||
r
(
1 + e

4βλ

r
)
. (A105)

We are now left with an equation nonlinear in r, which makes it more difficult to make asymptotic arguments similar to those
in made Theorem III.2. Since, we wish to eliminate the exponentials from this bound, we first upper bound all exponentials by
enϒβλ/r where we keep the coefficients n for each of them. This allows us to collect the exponentials and simplify the expression
to the following:(

Cβ2λ2
B

NBr
+ 2ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k

(
e10ϒβλ/r + e6ϒβλ/r

) + ||[A, B]||2β2

r
e5ϒβλ/r

)(
e2ϒβλ/r + e6ϒβλ/r

)
. (A106)

Now, we introduce the constraint that r � ϒβλ. Imposing this constraint over r allows all of the exponentials to be upper
bounded by a constant such that in the limit that all other parameters approach infinity, this bound becomes the following:∣∣∣∣∣∣∣∣ U (ρ, β )

TrU (ρ, β )
− X 2k (ρ, β )

TrX 2k (ρ, β )

∣∣∣∣∣∣∣∣
1→1

∈ O
(

β2λ2
B

NBr
+ ϒ2k+1 αcomm(A, 2k)

(2k + 1)!

β2k+1

r2k
+ ||[A, B]||β

2

r

)
, (A107)

thus completing the proof. �

APPENDIX B: NUMERICAL ERROR ANALYSIS

1. Types of Error Measures

Here, we propose two different error measures and discuss
the advantages associated with each.

a. Infidelity of quantum states

The fidelity is a quantity that serves as a measure of the
closeness between two quantum states, of which can be either
pure or mixed states and is summarized in the following
definition.

Definition B.1 (Fidelity). Let ρ, σ ∈ C2n×2n
be density

matrices that represent quantum states with equal Hilbert
space dimension. The fidelity between the states is then de-
fined as

F (ρσ ) := Tr

[√√
ρσ

√
ρ

]2

(B1)

where F (ρ, σ ) ∈ [0, 1] and F (ρ, σ ) = F (σ, ρ).
The infidelity is then simply defined as 1 − F and repre-

sents a measure of distance between two states with the latter
properties in the definition still holding. The computational
advantage of using infidelity over some other measures is that
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it is relatively cheap to compute, especially for large systems.
This does not appear obvious on first glance given the need
to compute two matrix square roots, which often involves
diagonalization. However, we can take advantage of a nice
property, F = Tr(ρ, σ ) if one of ρ or σ is pure. A simple
proof is provided in the following lemma.

Lemma 1 (Pure-nonpure fidelity property). Given a two
density matrices ρ and σ where at least one of which is pure,
then the expression for the fidelity simplifies to F (ρ, σ ) =
Tr(ρσ ).

Proof.

F (ρ, σ ) := Tr

[√√
ρσ

√
ρ

]2

(B2)

= Tr

[√√
|ψ〉〈ψ |σ

√
|ψ〉〈ψ |

]2

(B3)

= Tr
[√

|ψ〉〈ψ |σ |ψ〉〈ψ |
]2

(B4)

= 〈ψ |σ |ψ〉Tr(|ψ〉〈ψ |) (B5)

= Tr(ρσ ). (B6)

Here we choose ρ to be a pure state |ψ〉〈ψ |, which is a
projector and thus ρ = ρ2 = √

ρ. We use these properties
along with the fact that the trace of a pure state is equal to
one to complete the proof. Note that F is also known to be
symmetric F (ρ, σ ) = F (σ, ρ) but we do not show this here.
This implies the statement is true for either ρ or σ pure. �

The important part of this lemma is that we only require
one of the density matrices to be a pure state. To evaluate the
error of a composite channel, we will be taking the infidelity
between channel outputs, and due to the nature of Qdrift
the channel will always output a mixed state. However, the
exact evolution channel providing the means for comparison
only produces pure states given pure state input. With these
definitions and properties we can then present the following
strategy: Reformulate the fidelity expression such that it can
be written as an expectation value that only requires matrix
vector multiplication to compute, and then use Monte Carlo
sampling to approximate this quantity. This is shown via the
following derivation:

F (U (ρ, t ),X 2k (ρ, t ))

= Tr(e−iHt |ψ〉〈ψ |eiHt e−iAt e−iBt |ψ〉〈ψ |eiBt eiAt ) (B7)

= Tr(e−iHt |ψ〉〈ψ |eiHt S2k (−iAt )

×
∑

j

Pje
−iB jτ |ψ〉〈ψ |eiBjt S2k (−iAt )†) (B8)

=
∑

j

PjTr(〈ψ |eiBjt S2k (−iAt )†e−iHt |ψ〉

× 〈ψ |e−iHt S2k (−iAt )e−iB jτ |ψ〉) (B9)

=
∑

j

Pj |〈ψ |eiBjτ S2k (−iAt )†e−iHt |ψ〉|2 (B10)

= E[|〈ψ |eiBjτ S2k (−iAt )†e−iHt |ψ〉|2] (B11)

≈ 1

N

N∑
j

|〈ψ |eiBjτ S2k (−iAt )†e−iHt |ψ〉|2. (B12)

Now when numerically evaluating the error, only matrix-
vector multiplication is needed as opposed to matrix-matrix
before. Here we no longer need to build exact density matrices
outputted by the composite channel, and the step involving
the matrix square root has been eliminated. However, the
trade-off is that we have to use Monte Carlo sampling to
estimate this expectation value. Given that the naive methods
for matrix-vector and matrix-matrix multiplication scale like
O(n2) and O(n3) respectively, for small systems the over-
head of Monte Carlo sampling may lead to a loss of any
computational advantage. However, for large systems where
n3 � n2, this sampling method is quite advantageous. It is
also important to note that sampling makes Qdrift channel
much cheaper to study as well. For a Qdrift channel with L
terms and N samples, building the exact channel yields addi-
tional matrix multiplication overhead O(NL) (not considering
arithmetic overhead). While this does not seem prohibitive,
it does become expensive when we have a Hamiltonian with
many terms that we wish to sample many times for a high
degree of accuracy. It should be noted, however, that this is not
as bad as it initially seems given that there are LN terms Qdrift
channel sum. The numerical routine that computes this sum
was optimized to achieve this, by using the fact that channel
samples are i.i.d. With intermediate summation to produce
a new input ρ after each sample vector, we do not need to
compute each term in this sum individually,∑

j

p je
−iHjtρie

iHjt → ρi+1 (B13)

repeating this procedure N times until ρi → ρN , which
constructs the exact Qdrift channel output with O(NL) matrix
multiplications. We mention this to highlight the advantages
of Monte Carlo sampling where it can be done reliably, as
well as to highlight how Qdrift is numerically computed
exactly in our paper (which will be made necessary by results
in the following section).

b. Trace distance over density matrices

The next error measure we wish to investigate is the trace
distance, which is equivalent to the Schatten 1-norm. The
trace distance is a metric over the space of density matrices
that can be defined in the following way:

Definition B.2 (Trace distance). Let ρ, σ ∈ C2n×2n
be den-

sity matrices that represent quantum states with equal Hilbert
space dimension. The trace distance between the states is then
defined as

T (ρ, σ ) := ||ρ − σ ||1
= Tr

[√
(ρ − σ )(ρ − σ )†

]
, (B14)

where T (ρ, σ ) ∈ [0, 1].
Given that ρ and σ are necessarily Hermitian, the trace

distance simplifies to T (ρ, σ ) = ∑
i |λi|2 where λi are eigen-

values of the matrix (ρ − σ ). There are no simplifications in
our approach to computing this numerically. Here, we must
compute the exact density matrix output of the composite
channel (a necessarily mixed state outputted by the Qdrift
channel component) and the output of the unitary channel.
Exact diagonalization is performed to obtain the eigenvalues,
and the sum above is then computed. Providing a rigorous
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argument for crossover points in the compute time between
the fidelity and trace distance (as a function of N, L) is beyond
the scope of this paper; however, given the arguments from
the previous section our intuition is that for small systems the
trace distance will be computable in a reasonable amount of
time whereas Monte Carlo sampling the infidelity will become
more advantageous as the system size grows.

2. Comparison of error measures

In the following section we provide short proofs regarding
how the error of each of the Qdrift and Trotter-Suzuki algo-

rithms scale with time, both in the infidelity and trace distance
framework. It is important to note that we are specifically
using the Schatten 1-norm over density matrices and not an
induced 1-norm over channels. Therefore, we are computing
this quantity using the outputs of the two channels, and the
same goes for the infidelity, which is only defined on the den-
sity matrices that are the outputs of the channels in question.
We begin with the infidelity.

Proposition V.1 (Qdrift infidelity time scaling). Given
a Qdrift channel Q(ρ, t ) and the standard evolutionary
channel U (ρ, t/N ), for a density matrix ρ, time t/N ,
then the infidelity between the outputs of the channels
1 − F (Q(ρ, t ),U (ρ, t/N )) ∈ O(t2).

Proof.

1 − F (Q(ρ, t ),U (ρ, t/N )) := 1 − Tr(Q(ρ, t )U (ρ, t/N )) (B15)

= 1 − Tr

⎛⎝∑
j

Pje
−iHjτ |ψ〉〈ψ |eiHjτ e−iHt/N |ψ〉〈ψ |eiHt/N

⎞⎠ (B16)

= 1 −
∑

j

Pj〈ψ |eiHt/N e−iHjτ |ψ〉〈ψ |eiHjτ e−iHt/N |ψ〉 (B17)

= 1 −
∑

j

Pj |〈ψ |
(
1 − iHt/N − H2t2/N2

2!
+ · · ·

)(
1 + iHjτ − H2

j τ
2

2!
+ · · ·

)
|ψ〉|2 (B18)

= 1 −
∑

j

Pj |〈ψ |
(
1 − iHt/N + iHjτ + HHjtτ/N − H2t2/N2

2!
− H2

j τ
2

2!
+ · · ·

)
|ψ〉|2 (B19)

= 1 −
∑

j

Pj |〈ψ |
(
1 − iHt/N + iHjtλ/N + HHjt

2λ/N2 (B20)

− H2t2/N2

2!
− H2

j t2λ2/N2

2!
+ · · ·

)
|ψ〉|2 (B21)

= 1 −
∑

j

Pj (1 − 2〈ψ |H |ψ〉〈ψ |Hj |ψ〉t2λ/N2 + 〈ψ |H |ψ〉2t2/N2 + 〈ψ |Hj |ψ〉2t2λ2/N2 + ct2 · · · )

(B22)

= t2
∑

j

Pj (2〈ψ |H |ψ〉〈ψ |Hj |ψ〉λ/N2 − 〈ψ |H |ψ〉2/N2 − 〈ψ |Hj |ψ〉2λ2/N2 − c · · · ) (B23)

� t2
∑

j

Pj (|2〈ψ |H |ψ〉〈ψ |Hj |ψ〉|λ/N2 + |〈ψ |H |ψ〉2|/N2 + |〈ψ |Hj |ψ〉2|λ2/N2 + |c| · · · ) ∈ O(t2).

(B24)

We use the cyclic property of the trace and the fact that ρ is a pure state |ψ〉〈ψ | and then replace the operator exponentials
with their respective Taylor series expansions, keeping terms only up to t2 throughout. In the final step, the modulus is
taken and the triangle inequality applied to upper bound the sum. This is done for the purpose of ensuring the signs
of the terms are “well behaved” such that O() notation can be aptly applied. As well, c is used for brevity where c =
〈ψ |(HHjλ/N2 − H2

2! /N2 − H2
j λ

2/N2

2! )|ψ〉 + H.c. Here the notation O(t2) is understood in the limit as t → 0. �
Given the diamond distance bound in [15], the O(t2) infidelity scaling is not surprising. Not only this, but recall from

Eq. (B18), where the largest order in commutator error from the product formula was quadratic, and given that Qdrift applies
no symmetrization strategy, we did not expect this to disappear. We would like to remind the reader that the shining feature of
Qdrift is that the cost is independent of the number of terms in the Hamiltonian. Next, we examine how a Trotter-Suzuki channel
behaves in the infidelity measure.
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Proposition V.2 (Trotter-Suzuki infidelity time scaling). Given a Trotter-Suzuki channel T 2k (ρ, t ) and the standard evolution-
ary channel U (ρ, t ), for a density matrix pure state ρ and time t , then the infidelity between the outputs of the channels
1 − F (T 2k (ρ, t )U (ρ, t )) ∈ O((t2k+1)2).

Proof.

1 − F (T 2k (ρ, t ),U (ρ, t )) := 1 − Tr(T 2k (ρ, t )U (ρ, t )) (B25)

= 1 − Tr(S2k (−iHt )|ψ〉〈ψ |S2k (−iHt )†e−iHt |ψ〉〈ψ |eiHt ) (B26)

= 1 − 〈ψ |eiHt S2k (−iHt )|ψ〉〈ψ |S2k (−iHt )†U (t )|ψ〉 (B27)

= 1 − |〈ψ |eiHt S2k (−iHt )|ψ〉|2 (B28)

= 1 − |〈ψ |(S2k (−iHt )† ± it2k+1R2k+1 ∓ it2k+3R2k+3 + · · · )S2k (−iHt )|ψ〉|2 (B29)

= 1 − |〈ψ |1 + ±it2k+1R2k+1S2k (−iHt )|ψ〉 ∓ it2k+3R2k+3S2k (−iHt )|ψ〉 + · · · |2 (B30)

= 1 − |1 ± it2k+1〈ψ |R2k+1S2k (−iHt )|ψ〉 ∓ it2k+3〈ψ |R2k+3S2k (−iHt )|ψ〉 ± · · · |2 (B31)

� 1 − |1|2 + (t2k+1)2|〈ψ |R2k+1S2k (−iHt )|ψ〉|2 + · · · (B32)

= (t2k+1)2|〈ψ |R2k+1S2k (−iHt )|ψ〉|2 + · · · ∈ O((t2k+1)2). (B33)

We again use the cyclic property of the trace and the fact that ρ is a pure state |ψ〉〈ψ |. The evolution operator e−iHt is rewritten
in terms of the product formula and corrections at significant orders. Rn are remainder operators of order n of which we keep to
order 2k + 3. In the second last step, we use the triangle inequality and ignore terms of higher order. Keeping higher-order terms
is unnecessary in that we cannot use them to generate terms of order � (t2k+1)2. Once again, O((t2k+1)2) is understood in the
limit as t → 0. �

This theorem provides a peculiar result. The expected error in the output of a Trotter-Suzuki channel from Sec. III B is squared
by the nature of the infidelity calculation. Given that ε2 � ε � 1, error squaring can lead to a much lower gate cost, and given that
Trotter experiences this phenomenon while Qdrift does not, a numerical optimizer may heavily favor Trotter and the potential
advantages from the composite approach will likely fade. This is the main issue with choosing infidelity as an error measure
whilst hybridizing algorithms with different error scaling. The following two theorems show that the trace distance suffers no
such side effect:

Proposition V.3 (Qdrift trace distance time scaling). Given a Qdrift channel Q(ρ, t ) and the standard evolutionary channel
U (ρ, t/N ), for an arbitrary density matrix ρ and time t/N , then the trace distance between the outputs of the channels
T (Q(ρ, t ),U (ρ, t/N )) ∈ O(t2).

Proof.

T (Q(ρ, t ),U (ρ, t/N )) := Tr

[√
(Q(ρ, t ) − U (ρ, t/N ))(Q(ρ, t ) − U (ρ, t/N ))†

]
(B34)

= Tr

[√
(Q(ρ, t ) − U (ρ, t/N ))2

]
(B35)

= Tr

⎡⎢⎢⎣
√√√√√
⎛⎝⎛⎝∑

j

Pje−iHjτ ρeiHjτ

⎞⎠ − (e−iHt/NρeiHt/N )

⎞⎠2
⎤⎥⎥⎦ (B36)

= Tr

⎡⎢⎢⎣
√√√√√
⎛⎝∑

j

Pj
(
1 − iHjτ − H2

j τ
2 + · · · )ρ(1 + iHjτ − H2

j τ
2 + · · · ) − (eiHt/Nρe−iHt/N )

⎞⎠2
⎤⎥⎥⎦ (B37)

= Tr

⎡⎢⎢⎣
√√√√√
⎛⎝∑

j

Pj (ρ + iλt/N[Hj, ρ] + λ2t2/N2(HjρHj − i{Hj, ρ})+ · · · ) − (eiHt/Nρe−iHt/N )

⎞⎠2
⎤⎥⎥⎦(B38)
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= Tr

⎡⎢⎢⎣
√√√√√
⎛⎝(

ρ +
∑

j

h j

λ
(iλt/N[Hj, ρ] + λ2t2/N2(HjρHj − i{Hj, ρ}) + · · · ) − (eiHt/Nρe−iHt/N )

⎞⎠2
⎤⎥⎥⎦

(B39)

= Tr

⎡⎢⎢⎣
√√√√√
⎛⎝ρ + it/N[H, ρ] +

∑
j

h j

λ

(
λ2t2/N2

(
HjρHj − i

{
H2

j , ρ
}) + · · · ) − (eiHt/Nρe−iHt/N )

⎞⎠2
⎤⎥⎥⎦
(B40)

= Tr

⎡⎢⎣
√√√√∑

j

h j

λ

(
λ2t2/N2

(
HjρHj − i

{
H2

j , ρ
} · · · ) + (t2(HρH + i{H2, ρ}) + · · · )

)2

⎤⎥⎦ (B41)

= t2Tr

[√
(R(t ))2

]
∈ O(t2). (B42)

Here we expand the Qdrift channel with the Taylor series of the exponential operators and show that the terms of this series cancel
with that of the Taylor series of UN up to order t2. To achieve this we simply use the definitions of Pj = h j/λ and

∑
j Hj = H .

In the last line R(t ) is considered a remainder operator, which is only a function of polynomials t n, n � 0. The notation O(t2) is
understood in the limit as t → 0.

Proposition V.4 (Trotter-Suzuki trace distance time scaling). Given a Trotter-Suzuki channel T 2k (ρ, t ) and the standard evo-
lutionary channel U (ρ, t ), for an arbitrary density matrix ρ and time t , then the trace distance between the outputs of the channels
T (T 2k (ρ, t ),U (ρ, t )) ∈ O(t2k+1).

Proof.

T (T 2k (ρ, t ),U (ρ, t ))

:= Tr

[√
(T 2k (ρ, t ) − U (ρ, t ))(T 2k (ρ, t ) − U (ρ, t ))†

]
(B43)

= Tr

[√
(T 2k (ρ, t ) − U (ρ, t ))2

]
(B44)

= Tr

[√
((S2k (−iHt )ρS2k (−iHt )†) − (e−iHtρeiHt ))2

]
(B45)

= Tr

[√
((S2k (−iHt )ρS2k (−iHt )†) − ((S2k (−iHt )† ± it2k+1R2k+1 + · · · )ρ(S2k (−iHt )† ∓ it2k+1R†

2k+1 + · · · ))2)

]
(B46)

= Tr

[√
((∓it2k+1S2k (−iHt )ρR†

2k+1 ± it2k+1R2k+1S2k (−iHt )† + · · · ))2

]
(B47)

= t2k+1Tr
[√

(R(t ))2
]

∈ O(t2k+1). (B48)

Here expand the exponential operators in the evolutionary
channel U in terms of their error terms for some general
2kth-order Trotter-Suzuki channel, where Rn are remainder
operators of order n. As the algebra proceeds we only keep
terms of order � t2k+1 throughout. Keeping higher-order

terms is unnecessary in that we cannot use them to generate
terms of order � t2k+1. In the last line R(t ) is considered
a general remainder operator, which is only a function of
polynomials t n, n � 0. Once again, O(t2k+1) is understood in
the limit as t → 0. �
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FIG. 12. Numerical plots of log infidelity and trace distance scaling with log time for both Trotter-Suzuki and Qdrift channels. Plots are
all constructed using one iteration or sample respectively. Note that the slope of the plots follow the analytical predictions exactly, with the
infidelity squaring the expected Trotter error in (b) and (c). Note that in (c) we run into machine precision error at small times and for long
times in (a) and (d) Qdrift no longer converges. The plots were compute using 100 Monte Carlo samples for Qdrift infidelity, and exact density
matrices elsewhere for a graph Hamiltonian with five spins.

FIG. 13. Trace distance time scaling for a composite channel in
inner order 2k = 2. This plot emits an interesting structure in that
the time dependence of the trace distance goes through a “phase
transition” between Qdrift (red) and second-order Trotter-Suzuki
(blue) dominated regions. Given that Qdrift excels in short time
simulations and whereas the higher-order Trotter-Suzuki dominates
at longer simulation times this is not entirely unexpected.

There are no surprises with the trace distance error as
it yields the expected time scaling from the results of Ap-
pendix B 1 b. Numerical investigations also support our proofs
(see Fig. 12). Therefore, while it may be more expensive
to compute for larger systems, this makes it favourable to
work with as it provides a more “fair” measure, treating the
algorithms on more equal footing. Thus, it is expected that
the composite channel will appear more performant using
this metric. In addition, using this framework requires no
sampling, which means that monotonicity of the cost will
be guaranteed with respect to channel iterations. This will
prove useful in the cases in which we choose to optimize
over possible partitions with respect to the cost. Now, out
of interest, we also wish to numerically investigate the trace
distance of the composite channel. Analytically, this is likely
a messy problem given the partition, but intuitively we expect
the scaling to be some linear combination αt2 + βt3 + γ with
the slope of the log plot being between 2 and 3 (see Fig. 13).
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