PHYSICAL REVIEW RESEARCH 6, 013221 (2024)

Demonstrating Bayesian quantum phase estimation with quantum error detection

Kentaro Yamamoto®,"" Samuel Duffield,? Yuta Kikuchi,'? and David Muifioz Ramo*
YOuantinuum K.K., Otemachi Financial City Grand Cube 3F, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, Japan
2Quantinuum, Partnership House, Carlisle Place, London SWIP 1BX, United Kingdom
3Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
*Quantinuum, Terrington House, 13-15 Hills Road, Cambridge CB2 INL, United Kingdom

® (Received 12 September 2023; accepted 4 February 2024; published 29 February 2024)

Quantum phase estimation (QPE) serves as a building block of many different quantum algorithms and
finds important applications in computational chemistry problems. Despite the rapid development of quantum
hardware, experimental demonstration of QPE for chemistry problems remains challenging due to its large circuit
depth and the lack of quantum resources to protect the hardware from noise with fully fault-tolerant protocols. In
the present work, we take a step towards fault-tolerant quantum computing by demonstrating a QPE algorithm on
a Quantinuum trapped-ion computer. We employ a Bayesian approach to QPE and introduce a routine for optimal
parameter selection, which we combine with a [n + 2, n, 2] quantum error detection code carefully tailored to
the hardware capabilities. As a simple quantum chemistry example, we take a hydrogen molecule represented
by a two-qubit Hamiltonian and estimate its ground state energy using our QPE protocol. In the experiment, we
use the quantum circuits containing as many as 920 physical two-qubit gates to estimate the ground state energy

within 6 x 1073 hartree of the exact value.
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I. INTRODUCTION

Classically hard computational chemistry problems are
some of the most promising applications that the advance
of quantum computing technologies will allow us to tackle
[1-4]. Chemical properties are generally calculated by solving
the electronic structure problem for a given nuclear configu-
ration [5]. Some systems (e.g., chemical reactions involving
transition metal complexes [6,7]) require many one-electron
orbitals to represent their electronic states, making it chal-
lenging to accurately calculate their properties, even with
state-of-the-art high-performance computers. Harnessing the
ability to efficiently simulate quantum systems, quantum com-
puters will potentially facilitate those calculations to extend
the scope of computational chemistry.

Quantum phase estimation (QPE) is a heavily used sub-
routine in various quantum algorithms. The QPE algorithm,
provided a unitary operator U with eigenvector |¢) and associ-
ated eigenvalue e, computes an estimate of the phase ¢. The
iterative scheme of QPE, originally proposed by Kitaev [8,9],
runs a set of Hadamard-test-like circuits, each of which reads
off the partial information about ¢. The obtained measurement
outcomes are classically postprocessed to estimate ¢ up to
specified accuracy. Relative to the QPE based on the quantum
Fourier transform (QFT) [10-12], the iterative scheme uses
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shallower circuits at the cost of more samples and hence
makes its execution amenable on noisy quantum hardware.
The iterative QPE algorithm has since been improved to re-
duce the required quantum resources [13-23]. For example,
the authors of [17] proposed an approach based on Bayesian
inference to make the phase estimation protocol more efficient
and robust against experimental errors.

Such algorithmic improvements, along with the remark-
able development of quantum computing devices, have led
to successful demonstrations of QPE algorithms on several
different platforms. Experimental realizations of QPE on a
quantum chemistry system were initiated in [24], where the
iterative QPE was applied to a two-qubit molecular Hamilto-
nian on a superconducting processor. This was soon followed
by an experiment using Bayesian QPE on a silicon photonic
device [25]. More recently, a different type of statistical phase
estimation has been tested on a superconducting processor
[26]. In this algorithm, the trade-off between the number of
samples and circuit depth is nicely controlled, which makes
it more favorable to be run on early fault-tolerant hardware
[22,23]. However, experimental demonstration of QPE re-
mains challenging due to the depth of the circuits.

In the present work, we demonstrate Bayesian QPE on a
quantum charge-coupled device trapped-ion quantum com-
puter to push forward such limitations [27-31]. We calculate
the ground-state energy of the minimal-basis molecular hy-
drogen system described by the spin Hamiltonian [32],

H =mZ 4+ hhZ, + VY, + hyZ1Z, + hsl, (1)

where {X;, Y;, Z;} are the Pauli-X, Y, Z operators acting on ith
qubit, / is the identity operator, and {A;} are real coefficients.
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The spin Hamiltonian is obtained with the Jordan-Wigner
transformation from its fermionic Hamiltonian [3].!

To enhance the performance of the Bayesian QPE protocol,
we develop a subroutine for the selection of circuit parame-
ters. Our routine analytically extracts the optimal parameters
by minimizing a natural choice of utility function. This im-
proves on previous works based on heuristics with certain
assumptions [17].

We perform the QPE experiments by adopting two dif-
ferent techniques to alleviate hardware noise effects. First,
we employ the Bayesian QPE with a noise-aware updating
rule. The hardware noise is incorporated into the likelihood
function in the form of a depolarizing channel to mitigate de-
coherence. Second, in order to run the QPE with deep circuits,
we encode four logical qubits with a [6, 4, 2] quantum error
detection code [33-36]. The code detects an arbitrary single-
qubit error and discards the associated result to reduce the
error rate at the cost of more circuit executions as well as small
overhead in circuit depth and width. In particular, the code is
carefully tailored to various features of the quantum hardware,
such as high-fidelity gate operations, all-to-all connectivity,
and conditional exit operations [31,37,38]. See [39-46] for
previous experimental studies with a [4, 2, 2] code.

The rest of the paper is organized as follows. In Sec. II
we review the Bayesian QPE protocol, introduce our param-
eter selection rule, and demonstrate its benefits numerically.
In Sec. III the [6,4,2] error detection code is introduced
with a sketch of the encoded QPE circuit. The experimental
results from a trapped-ion quantum computer are presented
in Sec. IV. We give conclusions and an outlook in Sec. V.
Technical aspects of the Bayesian QPE, error detection code,
experimental setup, and more data are found in Appendixes
A, B,and C.

II. BAYESIAN QUANTUM PHASE ESTIMATION

In Bayesian QPE [17], measurement outcomes are gener-
ated from the following QFT-free QPE circuit

+) Rz (8) H XD
|6) +U*]

parametrized by k € N and B € [0, 27r), with probability

@

1+ cos(kep + B —mm)

pm| ¢,k p)= 5 ;

3

where m € {0, 1} is the measurement outcome in X -basis on
the top qubit in (2) and ¢ € [0, 2r) is the unknown angular
phase we wish to determine. The equation (3) is termed the
likelihood function. Rz(B) = e~"P%/? is a rotation gate. In our
experiment, we consider an approximate eigenstate of U as

IThe coefficients {h;} are evaluated on classical computers by per-
forming the restricted Hartree-Fock method with the STO-3G atomic
basis set [5] followed by the two qubits tapered off using spin and
particle number conservations [32].

an input state |¢) that has a sufficiently small approximation
error.”

Taking a Bayesian approach, we instantiate a prior dis-
tribution p(¢), which can be uniform. After R measurement
outcomes, we probabilistically quantify the value of ¢ through
the posterior distribution

R
p(¢ | mig) o< p(@) [ | p(my | 6. K, B )

r=1

The posterior can be updated iteratively p(¢ | mi.g) x p(¢ |
my.p—1)p(mg | ¢, kg, Br), until desired precision is obtained.

Bayesian posterior distributions are typically approximated
numerically as in [17]. However, in this setting, it was noted
in [18] that the posterior is analytically tractable in the form
of a Fourier distribution

Jr
P I m) = 5+ D e €o5(j9) + 55 5in(j), ()
j=1

where the number of coefficients Jz grows at least quadrat-
ically in the number of experiments, as Jg = Jg_ + kg. To
mitigate memory requirements, the authors in [47] described
an adaptive approach where after a suitable number of shots,
the posterior representation is converted to a wrapped Gaus-
sian distribution which is fully specified by a mean and
variance parameter and can also be updated analytically (using
moment matching) on receipt of further measurements. The
conversion from Fourier to wrapped Gaussian distribution
is approximate; however, after a sufficient number of shots,
the posterior will be peaked and well approximated by the
wrapped Gaussian distribution. In this work we adopt an
equivalently adaptive approach, only we favor a von Mises
distribution over the wrapped Gaussian since it is the maxi-
mum entropy distribution for wrapped random variables (with
a specified first circular moment) [48] and has a simple closed-
form probability density function. A von Mises representation
of the posterior is similarly fully specified by a mean and
precision parameter and can also be updated analytically using
moment matching. Some example posterior distributions are
visualied in Fig. 6 in Appendix A 3.

Details of the tractable Bayesian updates can be found in
Appendix A 1, and a lightweight, easy-to-use implementation
can be found in the Python package phayes [49].

A. Parameter selection for k and 8

We have yet to specify a method to select the circuit param-
eters k and 8. Existing approaches [17,18,47] typically use the

“When the input state is given by >, ¢;|¢;) with Ul¢;) = €' |¢;),
we can use the likelihood of the form

1+ lci|? cos(kep; + B — mr)
5 .

Ignoring all {c;}i>1, where ¢( is the coefficient of the dominant
eigenstate (e.g., ground state) |¢g), Eq. (4) reduces to Eq. (3). The
error in the estimated phase, ¢y, due to the neglected contributions
from excited states is bounded by (1 — |c|?)/|co|? in the case data is
taken only from k = 1. See, e.g., [18] for further discussion.

pim | {¢i}. k, B) = “
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heuristic k = [1.25/+/Vary[¢]] and sample B randomly. Here
we introduce an approach for deterministically selecting these
parameters.

We first note that it is important to quantitatively as-
sess our posterior uncertainty over the phase ¢, e.g., to
determine a stopping criterion. This might be done by as-
sessing the variance of the posterior distribution. However,
for wrapped distributions, the standard variance Var[¢] =
E ) [(¢ — Epg)[¢])?] is not well behaved due to the mis-
alignment of the squared error and the wrapped property
[48,50]. As such, two alternative circular metrics are used to
assess concentration:

Varc[¢] = 1 — |E p[e”]]
Vary [¢] = |E 4[] 72 — 1

Circular: e [0, 1].

Holevo: € [0, oo].

The Holevo variance is often favoured due to it being un-
bounded above (akin to the standard variance). For sharply
peaked distributions we have that Var[¢] ~ 2Varc[¢] and
Var[¢] ~ Vary[¢].

For both Fourier and von Mises distributions, the circular
and Holevo variances are analytically tractable. Moreover,
for the circular variance, we can calculate the expected post-
measurement posterior circular variance to form a utility
function

Uctk, By =Y —Varclg | m,k, Blp(m |k, B). (7)

mef{0,1}

A utility function [51] describes some measure of information
gained from an experiment as a function of the experi-
ment parameters which we look to maximize, i.e., k., 8, =
argmax; zUc(k, B). In this specific case (circular variance
utility and either Fourier or von Mises prior) we can analyti-
cally maximise the utility and therefore minimize the expected
posterior variance (see Appendix A2 for calculations and
phayes [49] for implementation).

We numerically compare Bayesian QPE approaches. For
a given true phase ¢* € [0, 27) to be estimated, the mea-
surement outcomes are collected from synthetic experiments,
where noiseless QPE circuits are simulated pseudorandomly
directly from the likelihood (3). This process is repeated over
100 different values ¢*. Displayed in Fig. 1 is the mean with
min/max error bars of the expected posterior cosine distance
from the target angle ¢*. In green, we make a von Mises
approximation throughout and choose parameters according
to the heuristic above, i.e., k = [1.25/4/Varg[¢]], B sampled
uniformly in [0, 27). This approach is reminiscent of [17]
only with a von Mises distribution, rather than Gaussian, and
Bayesian updates implemented via exact moment matching
rather than approximately with Monte Carlo. In orange, we
update the true Fourier posterior again with the above heuris-
tic parameter selection, matching the approach of [18]. In
blue, we apply the adaptive procedure described above and
akin to [47] where we convert the exact posterior to von Mises
after reaching Jiax = 2000 coefficients. In this adaptive im-
plementation, we also apply the optimal parameter selection
as described above and in Appendix A 2. We observe that the

10774 ®  von Mises - heuristic k, 5 L
Fourier - heuristic k, 8 <4
I Adaptive - optimal k, 3 - L 1

1070+

10 20 30 10 50
Number of experiments

FIG. 1. Comparison of Bayesian phase estimation inference and
parameter selection methods. Simulations are noiseless and repeated
over 100 different true phases ¢*. Spots represent mean expected
posterior cosine distance from the true phase, and error bars display
min and max. The adaptive procedure converts to a von Mises distri-
bution when the number of Fourier coefficients exceeds Jy., = 2000.
The selection of k was capped at kyax = 120.

optimal parameter selection ensures the Bayesian phase esti-
mation is significantly more accurate, allowing the posterior
to efficiently rule out incorrect modes and consistently hone
in on the true phase.

B. Noise-aware likelihood

The likelihood in (3) assumes a noiseless implemen-
tation of the circuit (2). In the presence of noise, it is
more realistic to consider a noise-aware likelihood of the
form [17]

14+ (1 —g)cos(tk¢p + B — mmr)

pim| .k, B)= >

®)

where ¢ is an error parameter due to decoherence. The noise-
aware likelihood (8) remains in a convenient Fourier form
and still admits the same analytical Bayesian updates as
(3) [47] as well as the aforementioned optimal parameter
selection.

The error parameter g is typically determined as a function
of the quantum device specifications and the depth parameter
k. Naturally, deeper circuits suffer from an increased error
rate. It is therefore common in practice to consider some kp,x
to limit the depth of the circuits and control the error rate.
For example, one finds ¢ = 1 — (1 — p,)" if the noisy QPE
circuit Ugpg is modeled by the depolarizing channel that maps
a density matrix p to

Naq Il Nag 1
(1 = p2)™UqpepUqgpg + (1 — (1 — p2) )2n ©))

with the depolarizing error rate p, of two-qubit gates and the
number of two-qubit gates N, = O(k) in the circuit.
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III. ERROR DETECTION WITH [6, 4, 2] CODE

Aiming at hardware demonstration of the aforementioned
QPE protocol, we consider how to protect our quantum circuit
from errors caused by noisy quantum hardware. Quantum
error detection (QED) codes provide such protection with lim-
ited quantum resources by discarding erroneous executions
of quantum circuits. For instance, the [n + 2, n, 2] code for
even n is a stabilizer code whose code space is stabilized
by X®"*+2 and Z®"+? [33-36] (dubbed Iceberg code in [38]).
In this work, we employ the code with n = 4, i.e., [6, 4, 2]
code, to encode four logical qubits. The logical qubits and two
redundant physical qubits, denoted by L := {1, 2, 3,4} and
A = {ayx, az}, form the six-qubit code on T := L UA. More
concretely, the three-qubit QPE circuit, with one dummy qubit
appended, is encoded into six physical qubits. We introduce
two additional ancillary qubits to carry out fault-tolerant state
preparation, syndrome extractions, and final measurement,
leading to eight qubits used in total. We denote the two
stabilizers by Sy := @), X; and Sz := @),.; Z;, and their
simultaneous eigenstates associated with the eigenvalue +1
define the four-qubit logical space. Reading out —1 upon mea-
suring {Sx, Sz} signals the errors that do not commute with
the stabilizer operators, and thus such circuit executions are
discarded. The undetectable errors by stabilizer (syndrome)
measurements lead to logical errors disturbing the encoded
system.

The encoded quantum states are manipulated by logical
Pauli operators,

X = XiXax , 2= ZiZazv fori e L, (10)

which commute with the stabilizers and obey {X;,Z;} =
[X:, Z;] = 0 fori # j. All the logical operations are compiled
to the universal logical gate set, which, in the form of physical
gates, is given by [38]3

{Rep, @) [0, j €T, i#j, Pe{X,Y,Z}},  (12)

where we have defined a Pauli exponential operator Rp(0) :=
e~""P/2 for a rotation angle 6 and a Pauli operator P.

Figure 2 shows the entire structure of the encoded QPE
circuit. See Appendix B for explicit compilation of each com-
ponent. For concreteness, we let the operator, U k in the QPE
circuit an approximation to e~¥ with Hamiltonian (1) and
t € R by the Lie-Trotter first-order product formula [52],

Ut = (e_ihT]tZl il it s
 e-ihkiZiZy ,—ihskil

= ¢ M L O(kt?/s). (13)

3For example, the physical operation Rx,x;(6) corresponds to the
following logical operations:

Ry (0) (€L, j=uax),

Ryx,(0) (i, je€L),

Ryxx,0) i,k I,m}=L, j=ay), (11)
Ry x%,%,0) (k. I,mn} =L, i=ax, j=az).
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FIG. 2. Sketch of the entire encoded QPE circuit. It starts with
the state preparation with two ancillary qubits at the bottom. Then
the logical controlled unitary operations, ctrl-u, are sequentially
applied with the syndrome measurements interweaved. In every f
step of time evolution, a syndrome measurement is performed, and
executions are discarded upon detecting errors. A stabilizer Sy is
inserted in each block to alleviate physical memory errors. The ctrl-v
operation is applied right before the measurement [the logical Rz(8)
is absorbed into ctrl-v]. After all the logical unitary operations are
performed, the final fault-tolerant measurement is made to read off
logical Pauli expectation values.

Here the integer s is the number of discretized time
steps. Then the controlled version of the unitary u :=
el L =i, g compiled to logical operators,
which is denoted by ctrl-u in Fig. 2. The remaining
part v := e uktZiZ2p=ibskil g gimilarly compiled to logi-
cal operators ctrlu-v and applied at the end because it
commutes with # and does not require the Lie-Trotter
decomposition.

The encoded circuit starts with encoding the initial state.
The two extra ancillary qubits are dedicated to performing
the fault-tolerant initialization. We split the logical operation
(ctrl-u)* into |ks/f] blocks. Application of each block is
followed by a syndrome measurement to inspect whether the
encoded state is stabilized by {Sx, Sz}. As soon as one syn-
drome measurement is read off as —1, the circuit execution is
aborted. Furthermore, we insert a stabilizer Sy in the middle of
each block, which acts on the code space as the identity. How-
ever, it suppresses the coherent physical errors in the form of a
single-qubit Z rotation accumulating in time (Appendix B 3).
After all the logical unitary operations are performed, we
make a final measurement to ensure that both stabilizers
are measured to 1 and read off logical Pauli expectation
values.

We remark on some features of the code exploiting the
capability of Quantinuum H1-1 trapped-ion computer used
in the present experiments [37,38] (see Appendix D for
additional details on the hardware). The state preparation,
syndrome measurements, and projective measurement are
performed in a fault-tolerant manner [39,53-55]. While non-
fault-tolerantly implemented, a logical operator Rpp,(9) (12)
is, up to single-qubit Clifford gates, compiled to a single
Mglmer-Sgrensen (MS) gate, Rzz,(6), which is natively im-
plemented on the trapped-ion computer with the gate infidelity
~2x1073 [56,57]. As such, the high-fidelity MS gate opera-
tions combined with the all-to-all connectivity are expected to
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lead to logical circuit executions with a low logical error rate.*
Last, the Quantinuum device is equipped with conditional
exit, a functionality to immediately abort the circuit execution
conditioned on classical registers. Due to this feature, one can
save runtime by discarding calculations as soon as a syndrome
measurement detects errors without running the remaining
calculations in vain.

IV. EXPERIMENTS

We experimentally demonstrate the Bayesian QPE proto-
col adopting the parameter selection introduced in Sec. II A
with and without the [6,4,2] error detection code on
the Quantinuum HI1-1 quantum computer, after calibrat-
ing the individual QPE circuit (2). We calculate the
ground state energy of the Hamiltonian (1) with the coef-
ficients (hy, hy, h3, ha, hs) = (—0.3980, —0.3980, —0.1809,
0.0112, —0.3322) hartree. It describes the equilibrium geom-
etry of the hydrogen molecule with the interatomic distance
Ry = 0.73486 A. The experimental results shown in this
section are calculated using the product formula (13) witht =
0.1 and s = 1 in atomic unit of time. This yields —2.0x10~*
hartree of systematic error. The estimated energy E is related
to the estimated phase ¢ by E = —¢/t.

The present experiments rely on the following software
packages. The quantum circuits are prepared with pytket
v1.13.2 [58], and executed with pytket-quantinuum
v0.15.0. We use InQuanto v2.1.1 [59] and its interface to
pyscf v2.2.0 [60] to calculate the coefficients of the spin
Hamiltonian (1) on classical computers. The classical pre-
and postprocessing for parameter selection and Bayesian in-
ference are handled by phayes v0.0.3 [49].

A. Calibration of QPE

We start by calibrating the performance of individual QPE
circuits. The benchmark informs us of the quantitative rela-
tionship between the circuit depth k and noise level g, which
limits the precision of phase estimation. It also showcases
that the QED primitive can suppress hardware noise to enable
experiments with deeper circuits.

To this end, we evaluate the probability of obtaining
the measurement outcome “0” from the QPE circuit (2) in
comparison with what one would expect from a noiseless
experiment. In order to reduce the source of systematic errors,
we use the exact eigenstate |¢g) of the operator U with the
eigenvalue ¢y, giving an approximation to the ground state
energy of H up to the error of product formula (13).

The unencoded circuit (2) (see Secs. (B1)—(B3) for details)

contains Nz%) two-qubit (2Q) gates with?

N3 (k) = 5k + 4 + A, (14)

“Fault-tolerant implementations of logical gates are proposed
[34,54]. We do not pursue such protocols here to avoid extra over-
heads.

SA ctrl-u uses five 2Q gates, a ctrl-v has fouur 2Q gates, and the
preparation of Hartree—Fock (exact ground) state uses zero (one) 2Q
gates.

0.7 1 === Noise model
A Unencoded
061 @ Encoded (error detection) I e
0.5 1 ,?’/
0.4 ,I'/
o /’/
0.31 -
0.21 el
0.1, i
[
0.0 $ 1 $
20 40 60 80 100
k

FIG. 3. Parameter ¢ obtained by fitting the experimental results
with the function (16) for the unencoded (black triangles) and en-
coded (red circles) cases. The error bars represent the statistical
uncertainties due to a finite number of measurements. The black
dashed curve shows the function (17) with p, = 1.6x1073.

where Aj = 0 (1) when the input state is the Hartree-Fock
state (exact eigenstate). For the experiment with QED, we use

the encoded circuit (Fig. 2), which contains NéeQ) 2Q gates,®

k
Nz(g(k) = 6k + 12\‘?J + 20 4 5Ainit. (15)

The frequency of syndrome measurements is fixed to f = 8

throughout the encoded experiments presented in this section.

For calibration the integer k is chosen from

{20, 40, 60, 80, 100}, and for each k, we pick B from the

four sample points {—k¢py — 7w, —k¢pg — /2, —k¢o, —k¢po +

7 /2}. We run 500 shots of calculations for each parameter set
{k, B} and fit the experimental data with the function
_ 1+ —g)coslk(dy — w) + B]

fk, Big, 0) = > (16)

to extract the parameters ¢ and w that characterize the
amplitude damping and the shift in the estimated phase, re-
spectively. In the absence of hardware noise, both ¢ and w
vanish to recover the noiseless likelihood (3). The experi-
mental results with and without QED are shown in Fig. 3.
The k dependence of g obtained from the experiments with
unencoded circuits is captured by the following function:

qlk;py) =1 — (1 — py)Ma®, (17

with p, = 1.6x1073. Equation (17) is derived assuming the
depolarizing noise model (9). The parameter p, gives a rough
estimate of average two-qubit gate infidelity, whose order of
magnitude matches the value reported in [57]. While g rapidly
grows as the circuit depth k increases in the unencoded case,

®A ctrl-u contains six 2Q gates, each syndrome measurement uses
12 2Q gates, the preparation of encoded Hartree-Fock (exact ground)
state uses nine (14) 2Q gates, the ctrl-v uses three 2Q gates, and eight
2Q gates are used in the final measurement.
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FIG. 4. Discard rates of the encoded circuit calibrations with
respect to k are represented by red data points. The dashed line shows
(17) with p, = 1.6x 1073,

it is well suppressed in the encoded case due to the protection
by the [6, 4, 2] code. As presented in Appendix C, for both
unencoded and encoded benchmarks, the phase shifts w are
of order 10~ (Fig. 9 in that Appendix). In this work we omit
w in the noise-aware likelihood function (8) in the Bayesian
QPE due to the lack of its characterization. While the coherent
error represented by w may be mitigated at the cost of further
sampling overhead, we leave it as a future work to explore
error mitigation techniques [61-65].

The suppression of error rate with QED is accomplished at
the cost of discarding faulty computations that are detected by
syndrome measurements. The discard rate d, the ratio of the
number of discarded circuits to the total number of executed
circuits with respect to the circuit depth & is shown in Fig. 4.
The same error model (17),

d(k; py) =1 — (1 — py)Va®), (18)

with p; = 1.6x1073 recovers the experimentally obtained
discard rate. It is, however, not obvious that the discard rate
d is explained by (18), which is based on the depolarizing
noise model. The increase of ¢ of (16) in the unencoded case
mainly stems from incoherent errors. On the other hand, the
errors detected by the QED contain all the single-qubit errors,
and thus, the discard rate is generally influenced by a wider
class of errors. However, we inserted an X-stabilizer Sy in
the middle of each block in the encoded circuit (Fig. 2) to
suppress the dominant source of coherent errors. While Sy
acts as the identity on logical states, we confirm that the
stabilizer insertion suppresses coherent error, which in turn
reduces d and g as further discussed in Appendix B3 (see
Fig. 8). Consequently, the discard rate in the current encoded
experiments is dominated by incoherent errors and is well
captured by the depolarizing model.

B. Bayesian QPE

Having calibrated the performance of QPE circuits, we
turn to the Bayesian QPE experiments with and without QED
(see Appendix E for their pseudocodes). As an input state

|¢) of QPE, we prepare the Hartree-Fock state |00). The
Hartree-Fock state provides the mean-field approximation to
the ground state of H and is commonly used in computational
chemistry to evaluate the electronic correlation energy. For the
Hamiltonian given at the beginning of the section, the fidelity
between the Hartree-Fock state and the exact ground state is
0.981. Therefore, it is not expected that our demonstration
of Bayesian QPE is significantly influenced by contamination
from the other eigenstates. In Appendix A 4, we numerically
confirm this by conducting noiseless QPE simulations.

The number of Fourier coefficients in (6) is set t0 Jyax =
2000, and the maximum depth is specified by ky.x = 120.
The number of 2Q gates in the unencoded QPE circuit is
up to NZ("Q) (kmax) = 604, while it is as many as Nég(kmax) =
920 in the encoded circuit with the expected discard rate
d(kmax; p2) = 0.77. We use p, = 1.6x1073 throughout the
subsection.

The estimated energy E is plotted against the number of
circuit executions in Fig. 5. To take into account the discarded
experiments in the QPE with QED, we use the rescaled num-
ber of experiments given by

R
E = Z nshots(kr)a nshots(kr) =

r=1

_ 19
1 —d(k,; p2) (19

where k, stands for the depth of the circuit in the rth round
of the Bayesian QPE experiment, ng,s(k,) is an average
number of experiments until the circuit of depth k. is ex-
ecuted without any error detected, and R is the number of
Bayesian updates (5). The calculated energies E with the
noise-aware likelihood is —1.185 4 0.009 hartree after 125
Bayesian updates of distributions for the exact ground state
energy Ey = —1.1375 hartree. On the other hand, with the
QED, we find E = —1.131 4 0.007 hartree after 44 Bayesian
updates. There are two main sources of the systematic error
observed in the unencoded experiment [Fig. 5(a)]. One is the
coherent errors that our noise-aware likelihood function (8)
fails to capture. It implies that, with the use of the noise-aware
likelihood based on better characterizations of coherent errors,
the precision can be further improved. This also shows the
benefit of using the QED, which does not require aggressive
characterization of hardware noise. The other source is that
the unencoded experiment has less informative measurements
[larger error parameter g of (8)], and therefore, the adap-
tive Bayesian inference scheme necessarily converts to a von
Mises approximation earlier than in the encoded case for the
same Jyax. This leads to a higher probability of algorithmic
error as observed in the synthetic experiments (Fig. 1).
Finally, we remark that in the encoded experiments the
conditional exit operation provided by the HI computer is
used to reduce the total runtime. The feature allows one to
abort the calculation as soon as the error is detected by a syn-
drome measurement. For example, provided the encoded QPE
circuits of depth k = {40, 80, 120}, the ratios of the average
number of 2Q gates before the exit to the total number of
2Q gates are given by {0.83, 0.67, 0.56}. This ratio becomes
0.60 if we accumulate the average and total number of 2Q
gates along the Bayesian QPE experiment. It should be noted,
however, that whether the reduction of depth by the condi-

013221-6



DEMONSTRATING BAYESIAN QUANTUM PHASE ...

PHYSICAL REVIEW RESEARCH 6, 013221 (2024)

(@) 12
1.0 0.05 .
0.8
0.00

0.6

i

S
sttt
—0.05 !“.!"_!ull-lI||::::||::::::ﬂ||LI||IIIIIIII|L||::||||||1|.!|,::

0.4

80 100 120

E — Eq [hartree]

0.2

0.0

0 20

-0.2

60 80 100 120
R

40

(b) 12
1.01 0.05 i
~ 081 IRSANARERSRERE;
m 0.00 1
i
I
= ~0.05 1 i
S 0.4 ‘ : . '
L,L 80 100 120
0.2 .
0.0 | i :
0.2
0 20 40 60 80 100 120
R

FIG. 5. Estimated energies plotted against the number of experiments R for the unencoded QPE (a) and against the rescaled number of
experiments R for the encoded experiments (b). The black circles represent the estimated energies with the error bars representing +/Vary [E].
The purple dashed lines indicate when the distributions are converted from Fourier to von Mises representations.

tional exit leads to the reduction of actual runtime depends on
various other overheads.

V. CONCLUSION

We conducted QPE experiments on the hydrogen molecule
Hamiltonian to estimate its ground state energy using a
Quantinuum H1-1 trapped-ion quantum device. To the best
of our knowledge, it is the first experiment where the QPE
on logical qubits is applied to a quantum chemistry problem.
We note that [45,46] addressed the same problem using the
variational quantum eigensolver and the [4, 2, 2] code.

To make the best use of the limited circuit volume that can
be reliably run, we employed the Bayesian approach to the
QPE with an enhanced parameter selection which we have
demonstrated to have significantly improved robustness prop-
erties. Furthermore, we tested two approaches to cope with
the hardware noise and imperfections. In the first approach,
we adopted the noise-aware likelihood function for Bayesian
update, assuming that the depolarizing channel models the
dominant source of errors. We calculated the energy with the
error 0.048 4= 0.009 hartree using the QPE circuit containing
up to 604 two-qubit gates. In the second approach, the QPE
circuit is encoded with the [6, 4, 2] quantum error detection
code. In the encoded circuit, a simple coherent error miti-
gation via X -stabilizer insertions is applied to achieve lower
discard and logical error rates. With the encoded circuits,
the ground state energy was estimated within 0.006 % 0.007
hartree of the exact value. The largest circuit contains 920
physical two-qubit gates with the discard rate ~77%. While
our experimental results show a slightly better performance
with the QED, there is room for improvement in both ap-
proaches. For instance, more elaborate characterizations of
hardware noise and error mitigation strategies can be deployed
[64,66,67]. This allows one to alleviate the coherent errors
which were omitted in our noise-aware likelihood function for
the unencoded experiment [61-63,65]. The error mitigation
also helps the encoded experiment by reducing the discard rate
and logical error rate.

In the present work, we focused on a specific QPE al-
gorithm, taking advantage of the capability of the device,
for which the error detection code is highly optimized. In
the future, it will be interesting to investigate other types of
QPE algorithms such as the one leveraging adaptive mea-
surements [20] or the randomized protocols suggested in
[22,23] to further improve the performance of ground state
energy estimation towards its application to more practical
problems.
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APPENDIX A: DETAILS ON BAYESIAN
PHASE ESTIMATION

1. Bayesian updates

Recall the general phase estimation likelihood (8)

1+ —g)cos(tk¢p + B — mm)

pm| ¢k, B)= 2

In the following we describe the process of a single
Bayesian update for converting a prior distribution p(¢) into
a posterior distribution p(¢ | m) o< p(¢)p(m | ¢, k, B) on re-
ceipt of a measurement m. For brevity we describe only a
single update; however, the single update generalizes trivially
by iteratively setting the prior to the posterior from the previ-
ous update, as described in Sec. II.
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a. Fourier distribution

Suppose the prior is represented by a Fourier distribution

1 J
P@) =+ > "cjcos(jg) + s; sin(jg).
j=1

where {c;, s;}7_, are the distribution coefficients and ¢; =
s; =0V recovers the uniform distribution (a natural initial
prior).

As noted in [18] p(¢) is conjugate for the likelihood p(m |
¢, k, B) meaning the posterior takes the same Fourier form
(with J — J + k) and can be calculated analytically using the
standard trigonometric product-sum formulas.

We note that the circular moments of a Fourier distribution
are also tractable:

M; = Epp)le7?] = Epg)lcos(j¢) + i sin(jp)],

=n(c; +is)). (AD)

b. von Mises distribution

In [47] an adaptive procedure was developed where the
Fourier posterior was converted to a wrapped Gaussian distri-
bution when the number of coefficients became prohibitively
large. In this work we advocate for the use of a von Mises
distribution over the wrapped Gaussian as the von Mises dis-
tribution is the maximum entropy distribution for a wrapped
random variable (with specified M) and has a tractable den-
sity function

_ explx cos(¢p — u)]

p(P) 3 lo ()

, (A2)

where  is the mean, « is a precision parameter, and /; is a
modified Bessel function of the first kind and order j € N.
Note that for sharply peaked distributions we have a Gaussian
approximation p(¢) ~ N(¢ | i, /1/k).

As with Fourier distributions, the circular moments are
tractable

) g _ D)
T (k) Io(x)

This identity can be used to find the first circular moment
M of the posterior p(¢ | m) o p(¢p)p(m | ¢, k, 8). The von
Mises distribution is not conjugate for p(m | ¢, k, 8), and
therefore the true posterior is not von Mises. However, we can
do an approximate moment-matching update (as in [17,47])
where we find an approximate posterior with unique parame-
ters u, k that give a von Mises distribution with first circular
moment M matching that of the true posterior p(¢ | m).
This procedure resorts to inverting (A3), which can be done
efficiently numerically.

We can use the same moment-matching technique to con-
vert a Fourier distribution into a von Mises distribution (with
matching M). All implementation details can be found in
phayes [49].

[cos(ju) +isin(ju)l. (A3)

2. Parameter selection

As described in Sec. IT A, we consider the specific (but
well-motivated) choice of negative circular variance utility

function

Uctk, By=_ —Varcl$ | m, k, Blp(m | k, B),

mef0,1}

where Varc[¢ | m, k, Bl = 1 — |E ppimr.p)[€?]] € [0, 1]. The
goal is to find k*, B* = arg maxk’ﬁUc(k, B).

It can be shown using (A1)—(A3) that for both a Fourier or
von Mises prior, the posterior first circular moment takes the
form

@+ bcos(B — mm) + ¢sin(B — mm)

Evtomsple] = pn |k, )
N ia_l +écos[B —mm) + fsin(B — mn)]’
pim | k, B)
wherea, ..., f are real values independent of 8 but dependent
on k.

Thus the circular variance utility for a given value of k
becomes

Uc(B1k)=—1+/fT(B)+ [ (B),

where FE(B) = axbcos(B) £ csin(B) + d cos(28) +
esin(2B) for new real-valued, k-dependent coefficients
a,...,e.

This equation can be maximized in B analytically
by considering dgUc(B | k) =0. After multiplying by
VT (B)f~(B), squaring both sides (twice), and simplifying
terms, the result is a cubic polynomial in cos?(8) which
can be solved easily. The roots can then be checked to find
the maximizer. A sympy [68] document listing these equa-
tions explicitly can be found in phayes [49].

The aforementioned procedure maximizes Uc(B | k), i.e.
for a given k. For a Fourier prior this process can simply be
repeated for each k € {1, ..., J} maintaining the same O(J)
complexity of a single posterior update. In the von Mises case,
we find that checking a small range of k on either side of

Vary [¢]’% finds the maximizer.

3. Example posteriors

In Fig. 6 we display some example posteriors for a small
synthetic phase experiment where five measurements are col-
lected. Observe that the optimal parameter selection allows
the posterior to quickly hone in on the correct phase, while
the heuristic parameter with the analytical Fourier posterior
struggles to rule out incorrect modes. The von Mises approach
(and similarly Gaussian-based approaches) are unimodal by
design and therefore have to retain a large variance. We also
observe over the repeated experiments (and in Fig. 1) that the
unimodal assumption can result in the correct phase being
missed entirely. The optimal parameter selection’s ability to
eliminate incorrect modes means that we more robustly con-
verge to the correct phase and also that the posterior is better
approximated by a von Mises distribution when the adaptive
procedure reaches conversion time.

4. Noiseless simulation of Bayesian QPE

To show how much energy estimates vary among different
instances of Bayesian QPE experiments, we exemplify the
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FIG. 6. Example posteriors for the three Bayesian phase estimation approaches discussed in Sec. Il A and Fig. 1. The posteriors are from
noiseless synthetic phases estimation experiments and are displayed after five experiments have been measured. Each curve represents one of
five independent runs with a different pseudo-random seed. Note that with just five measurements the adaptive approach never converts to a
von Mises distribution.

results from the noiseless quantum simulator. The computa- Such a reliable convergence is due to the optimal parameter
tional setup is the same as that of the Bayesian QPE given in selection method. The results also confirm that the use of
Sec. IV B. The estimated energies E from the Bayesian QPE Hartree-Fock state as an input does not lead to significant
simulations agree with the exact ground state energy Ej within systematic error in estimating the ground state energy with
++/Vary[E] after 50 Bayesian updates as shown in Fig. 7. the precision we require.
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FIG. 7. Energy estimate plotted along the number of experiments calculated with a noiseless quantum simulator. The four panels
correspond to different runs with the same computational setup as those given in Sec. IV B.
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APPENDIX B: ENCODING AND COMPILING THE QPE CIRCUIT WITH [6, 4, 2] CODE

Recall that the unencoded QPE circuit (2) is given by

(B1)

Note the fourth qubit is absent in the experiments with unencoded circuits, but it is added so that the circuit is encoded with
[n + 2, n, 2] code, where n has to be even. The reason why it is initialized to |[+) will become clear later [Eq. (B7)]. The control

unitary operations are

! !

Z || zZ T
Z

_ ARy (3t
Ry - AU
and
E— Ry (—hakt) —z
. = 170 (B3)
v Rz (2hakt) 7z || 2

In the second equality of each equation, we note that a controlled Pauli exponential operator ctrl-Rp(6) can be decomposed into
a product of Pauli exponential operators using the following identity:

ctrli-Rp,(0) = Rp, (0/2)Rz,p,(—0/2).

(B4)

Also, we introduced the shorthand notation of a ctrl-Rp(6) gate that shows only the Pauli operator P on the exponent with the
angle 0 suppressed. Note that Rz(8) in (B1) can be absorbed into the ctrl-v (B3).
We discuss each component of encoded circuit (2) and how they are compiled to the universal gates (12). For the convenience

of discussion, we reproduce the encoded circuit here:

|
B

r 17
_ _ L _ L
1_ |- _ [ 2 _] [ L 2 ] | _ _7:
24111 | 1 F -l 1.l 4 H F
s) ]
sAEE|[EF] Ao FAEF] AEF| HizHEE
o = SX e g = g
s EE[4IER] 47 (418 43| dIEHER
2 g 5
ax —H o+ — — — — — —8— — —%:
[0) e o
az 45 ||| 1_F - H4EH] L HEE
o wn
U RS L. oy 47 F] 10— E
0) 4= L 0) =1 Jo) —_ F

1. State preparation, syndrome measurements,
and final measurement

Fault-tolerant protocols are known for state prepara-
tion, syndrome measurements, and final measurement in
[n+2,n,2] QED code. Here we briefly comment on each
primitive by referring to the literature for further details:

(1) The Hartree-Fock state |+00+4) (exact ground state
e 19nX:/2| 1 00+) with o = —0.07113) is fault tolerantly

encoded following Appendix D of [55]. It uses nine two-qubit
(Rzz) gates and two ancillary qubits to detect faults.

(2) The fault-tolerant syndrome measurements of Sy and
Sz are performed in the form proposed in [38], which uses 12
two-qubit gates and two ancillary qubits.

(3) The final measurement is based on the implementation
in [55]. The primitive consists of syndrome measurement
of S, stabilizer and destructive X measurements on all the
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FIG. 8. (a) Parameter g of (16) and (b) discard rate d are shown against k that are evaluated with the emulator of H1-1 quantum computer.
The blue and red data points with sampling errors are obtained from the encoded QPE circuit without and with the X -stabilizer insertions,
respectively. The black dashed curve is drawn using the noise model (18) with p, = 1.6x1073.

physical qubits. If no errors are detected, the measurement
outcomes are postprocessed to extract the observable. There
are eight two-qubit gates and two ancillary qubits in the mea-
surement circuit.

2. Logical unitary operations

Converting ctrl-v (B3) to ctrl-v and compile it to logical
gates is straightforward. We focus on how to compile ctrl-u.
We first pullout/ ® S® S® Iand I ® ST ® ST ® I in (B2) to
convert Y operators into X operators,

1 1zl Zz Z |
2 Sz 2
u
A
3 R

4:]+) — |+)

Sl

(BS)

which simplifies the compilation as we will see momentar-
ily. The operators I ® S® S® I and I ® ST ® ST ® I can be
absorbed in either the initial state or the final state without
affecting the measurement outcome.

Using Eq. (10), we find the encoded form of (B6),

14 r — Z | Z Y r
24 TZHZN HXH
3_2_: |l rZzdZziixl |
4415t i -
ax - - - H -
az - L 1z U Z Y L

(B6)

where the stabilizer condition Sy = Sz = 1 is used to reduce
the weight of Pauli operators. Furthermore, we exploit the
fourth logical qubit initialized to |¥), which implies X4 = 1.
Then we find the reduction of the operator,

Z\XoX5 = 2124, X0 X3 = —Y1Y,, 57X 4, (B7)

which is Y1Y,, in the subspace such that Sy = §7 = X,=1
holds. Thus, we have compiled all the logical operators to
two-qubit Pauli exponential operators to obtain (B7), which
are readily implemented by the native two-qubit gate Rzz(6)
and single-qubit gates. Each ctrl-u (B7) uses six two-qubit
gates.

3. Memory error suppression with X -stabilizer insertions

While syndrome measurements can detect any single-qubit
errors, if the number of faults in each block between two
consecutive measurements is not sufficiently low, they can
damage the logical circuit as logical errors. The physical
errors can quickly spread across many qubits because the
logical operations are not fault-tolerantly implemented. We
found that the physical coherent error has sizable impacts
on both the logical error rate and discard rate, as shown in
Fig. 8.

The coherent error on the H1 quantum device is mainly
modelled by the memory error ¢¥% with y e R and j € T
[57]. The errors mostly occur on the qubits during their idling
or transportation. As such, the parameter y is roughly charac-
terized by (in the H1 emulator, it is proportional to) the idling
or transportation time. Since X; flips the sign of the exponent
in ¢7%i, the memory errors are expected to cancel before and
after the inserted Sy in each block.

To alleviate the physical memory error, we insert an X-
stabilizer, Sy = ®ieT X;, in the middle of each block. While
Sx acts as the identity on logical states, we observe that the
stabilizer insertion suppresses coherent error, which in turn
reduces the discard rate and g of (16) as shown in Fig. 8.

APPENDIX C: SUPPRESSING OVER- OR
UNDER-ROTATION OF Rz; GATES

A small over- or under-rotation in Rz7(6) forces us to
apply the gate Rz (6 + &) for some unknown §. It may not be
negligible as the error accumulates similarly to the coherent
error. Since Rz7(45) commutes with the stabilizers {Sx, Sz},
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FIG. 9. Phase shift w in (16) evaluated for unencoded (red circle)

and encoded (black triangle) QPE circuits for each sample point
of k.

the errors are not detected by the syndrome measurements of
the [[6, 4, 2] code.

To deal with the misalignment of the angle in Rz (), we
assume that the imperfect rotation angle is characterized by

(CDH

=5—,
161
i.e., the misalignment § is constant in magnitude and only
sensitive to the sign of 6. To eliminate §, we modify the time
period ¢ of each discretized time step in U (¢) to #; and t, for
even and odd k, respectively. For instance, for two consecutive
time evolution operators, we make the following adjustment,

(e—th )2 N e—iHll e—iHZZ , (C2)

with some #; and #, such that t{ +# =2t and #;t, < 0. It
indeed removes the rotation error with (C1) at the cost of
larger error from the Lie-Trotter’s formula because the modi-
fied evolution time obeys max(t;, t;) > t.

We tested the protocol on Quantinuum H1-1 emulator and
H1-1 hardware with different sets of (¢, #,) summarized in
Table I. We see the clear reduction of the phase shift @ with
Eq. (C2). In the present QPE experiments, f; = —0.057 and
t, = 0.257 in atomic units are employed.

Finally, we show the phase shift @ in the calibration ex-
periment with and without error detection as discussed in
Sec IV A. The protocol (C2) is employed for both cases.
The encoded circuit contains the Sy insertion. In both unen-
coded and encoded experiments, the magnitudes of w are of
order 1073 as shown in Fig. 9.

APPENDIX D: DETAILS ON QUANTINUUM
TRAPPED-ION QUANTUM COMPUTER

We provide the details about the HI-1 trapped-ion quan-
tum computer used in our experiments. See [57] for further
information. It executes quantum operations by controlling
the trapped 7' Yb™ ions, whose Sj /> hyperfine states play the
role of qubits. At the time the experiments were performed,
there were 20 qubits in the H1-1 system, out of which we used
eight qubits for the experiments. The typical error rate of state
preparation and measurement is 3x 1073, The native gate set
consists of single-qubit rotations, e~13(€s9X+sing¥) gng =i’
for arbitrary 0, ¢, A € R, and two-qubit ZZ rotation gates,
¢71228Z for an arbitrary 6 € R, with the typical gate infideli-
ties 4x107 and 2x1073, respectively. There are five gate
zones where all the gate operations are carried out. In particu-
lar, the interactions in the dedicated interaction areas enable
high-fidelity two-qubit gate operations between any pair of
qubits. Such all-to-all connectivity is given by rearranging the
physical location of the qubits. Finally, our protocol heavily
exploits the midcircuit measurement and reset, which is per-
formed with the typical cross-talk error rate, 1x107>.

APPENDIX E: PSEUDOCODES FOR THE QUANTUM
PHASE ESTIMATION ALGORITHMS

We provide a pseudocode of the quantum phase estimation
algorithm without and with error detection in Algorithms 1
and 2. In the experiment, the input parameters are set to t =
0.1m, s = 1, and Jax = 2000, and the state |¢) is set to the
Hartree-Fock state |00). We also set Riax = 125 and fix g via
(17) with p = 1.6x 1073 in Algorithm 1. In Algorithm 2 we
set f = 8 and Rpax. The outputs E,[¢] and Vary[¢] provide
the estimate of —FEt and its variance.

TABLE 1. Phase shift w in estimating phase calculated on the emulator (H1-1E) and hardware (H1-1) with different sets of time periods #,
and f,. k = 60. The bottom two rows show the results with the protocol (C2).

Backend t/m t/m w/1073 7
1 HI-1E 0.30 0.30 0.0+0.1
2 HI1-1 0.30 0.30 4.74+0.2
3 HI1-1 0.20 0.20 4.340.2
4 Hl1-1 0.10 0.10 3.71+0.1
5 HI1-1 —-0.10 0.50 0.24+0.3
6 HI1-1 —0.05 0.25 0.5+0.2
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Algorithm 1 QPE without QED

input : Hamiltonian H [Eq. (1)], the evolution time per Trotter step ¢ € R, the number of Trotter steps s € N, the
maximum number of Fourier coefficients Jmax, the maximum number of Bayesian updates Rmax, and an input
state |¢). The parameter ¢ in Eq. (8).
p(p) = % for ¢ € [0,2x] and 0 otherwise;
k <+ 1;
B+ 0;
R+ 1;
J « 0;
while R < Rupax do
m < the measurement outcome of the circuit (2) (see also (B1))e€ {0,1};
if J < Jmax then
Update the distribution p(¢) < p(¢)p(m | ¢) /N, where the updated distribution is represented by a Fourier
series (6), p(m | ¢) is given by the noise-aware likelihood (8), and A is a normalization factor;
J < J+k;
else
Compute E,[¢] and Varg[¢] from the distribution p(¢)p(m | ¢)/N with the noise-aware likelihood p(m | ¢) (8)
and normalization factor A/;
Update p(¢) in the form of von Mises distribution (A2) whose mean and variance are E,[¢] and Varg[¢] (see
Appendix A 1);

end

Compute k*, " = argmax, 5 Uc(k, 8) (see Appendix A 2);
A

B B%

R+~ R+1;

end

output: E,[¢] and Varg[¢]

Algorithm 2 QPE with QED

input : Hamiltonian H [Eq. (1)], the evolution time per Trotter step ¢ € R, the number of Trotter steps s € N, the
maximum number of Fourier coefficients Jmax, the maximum number of Bayesian updates Rmax, and an input
state |¢). Frequency of syndrome measurements f in Fig. 2.

p(¢) = 5= for ¢ € [0,2n] and 0 otherwise;

k <+ 1;

B+ 0;

R+ 1;

J + 0;

while R < Rpax do

while True do

Run the encoded circuit (Fig. 2);

if no error is detected then
| Exit the inner loop;

end

end

m < the measurement outcome of the successfully executed circuit € {0,1};

if J < Jmax then

Update the distribution p(¢) < p(¢)p(m | ¢)/N, where the updated distribution is represented by a Fourier
series (6), p(m | ¢) is given by the noise-aware likelihood (8), and N is a normalization factor;

J <~ J+k;

else

Compute E,[¢] and Varg[¢] from the distribution p(¢)p(m | ¢)/N with the noise-aware likelihood p(m | ¢) (8)
and normalization factor N;

Update p(¢) in the form of von Mises distribution (A2) whose mean and variance are E,[¢] and Varg[¢] (see
Appendix A 1);

end

Compute k*, 8 = argmax,, 5 Uc(k, 8) (see Appendix A 2);
k<« k%

BB

R+ R+1;

end

output: E,[¢] and Varg[¢]
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