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Kondo effect and its destruction in heterobilayer transition metal dichalcogenides
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Moiré structures, along with line-graph-based d-electron systems, represent a setting to realize flat bands.
One form of the associated strong correlation physics is the Kondo effect. Here, we address the recently
observed Kondo-driven heavy fermion state and its destruction in AB-stacked hetero-bilayer transition metal
dichalcogenides, which can be controlled by the gate voltages. By studying an effective interacting Hamiltonian
using the slave spin approach, we obtained a phase diagram with the total filling factor and the displacement
field strength as the tunable parameters. In an extended range of the tunable displacement field, our numerical
results show that the relative filling of the d orbital, which is associated with the highest moiré band from the
MoTe2 layer, is enforced to be νd ≈ 1 by the interaction. This agrees with the experimental observation. We also
argue that the observed high coherence temperature scale could be explained by the non-negligible bandwidth of
the d orbital. Our results set the stage to address the amplified quantum fluctuations that the Kondo effect may
produce in these structures and new regimes that the systems open up for Kondo-destruction quantum criticality.
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I. INTRODUCTION

Moiré structures provide a setting to study strong cor-
relation physics. One of the first realized moiré structures
is magic-angle twisted bilayer graphene, in which multiple
strongly correlated phases have been observed in experiments
[1,2]. Multilayers of transition metal dichalcogenide (TMDC)
represent another type of moiré structure to study correlation
physics. Pertinent to the TMDC moiré structure are a vari-
ety of strongly correlated phenomena, such as the correlated
Chern insulator, the fractional Chern insulator, the Mott insu-
lator, Wigner crystals, and the Kondo effect [3–27].

In these structures, the moiré energy bands near the Fermi
level are typically narrow. Therefore, the kinetic energy is re-
duced and the correlation effects are proportionally enhanced.
This type of behavior is also expected in other materials
platforms, such as d-electron-based materials on kagome and
other line-graph lattices with geometry-induced flat bands
[28–30]. There has been a growing realization that these
classes of systems can be described in terms of a Kondo lattice
and the associated heavy fermion behavior, as arising in moiré
structures based on TMDC [3–7] and graphene [31–41], and
in geometry-induced flat-band materials [42–44]. As such,
these systems represent new platforms for emulating Kondo-
driven correlation physics [45–49].
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Here, we show that the AB-stacked MoTe2/WSe2 hetero-
bilayer realizes a new correlation regime for both the Kondo
effect and its destruction. To put our work into perspective,
we now describe our specific motivations and provide a brief
summary of the main points of our findings.

A. AB-stacked MoTe2/WSe2 hetero-bilayer

In AB-stacked MoTe2/WSe2 hetero-bilayer moiré struc-
ture, the two monolayers with lattice constant mismatch are
stacked in opposite directions. Moiré bands near the Fermi
level from both layers form localized Wannier states sitting
on hexagonal moiré superlattice sites [16,23] with different
bandwidths, which allows a tight-binding description. More
precisely, the moiré band which predominately comes from
the MoTe2 layer has a smaller bandwidth than the other moiré
band from the WSe2 layer. In the following, we will denote the
Wannier orbital that predominately originates from the MoTe2

layer as d orbital, and the orbital originating from the WSe2

layer as c orbital. Interorbital tunneling is strongly suppressed
due to the spin-valley locking mechanism in TMDC materials
[16] and the opposite stacking directions. The interorbital
tunneling is expected to be chiral due to the bilayer stacking
[7]. Because of the small bandwidths in moiré structures, the
repulsive Coulomb interaction in the c and d orbitals is not
negligible. Therefore, an extended two-orbital Hubbard model
will be a reasonable minimum model.

In transport experiments, the total electron filling factor
and the displacement field perpendicular to the sample plane
can be controlled directly by tuning the gate voltages. Since
the c and d orbitals come from two different layers, the per-
pendicular displacement field induces a potential difference
between these two orbitals, and thus the electron fillings in
the two individual orbitals can be controlled indirectly.
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In this system, a heavy Fermi liquid state has been ob-
served in an extended range of displacement field strengths
[3] (see Fig. 11 in Appendix F). Quite noticeably, the co-
herence temperature controlling the crossover between the
high-temperature incoherent scattering regime and the low-
temperature Fermi liquid regime is very high: Tcoh ≈ 20–40 K
(called T ∗ in Ref. [3]). A sufficiently large magnetic field
suppresses this heavy Fermi liquid state, as can be understood
by the magnetic-field-induced suppression of the Kondo effect
[45]. Very recently, a magnetic ordered phase with destructed
Kondo screening was also observed by reducing the filling
of the c orbital [4]. These recent experimental discoveries
indicate that the AB-stacked MoTe2/WSe2 hetero-bilayer is
a promising candidate for studying Kondo-driven correlation
physics.

B. Kondo effect

The Kondo effect underlies the extremely strong correla-
tions of heavy fermion metals. Historically, heavy fermion
metals have provided a canonical system for the under-
standing of Fermi liquid phases with large renormalization
factors [45].

When the two bandwidths strongly differ, the narrower
band can act as local moments while the wider band re-
mains itinerant. This regime develops in frustrated d-electron
systems, when the near-Fermi-energy flat bands and their
topological nature are taken into account [42–44], forming a
new correlation regime in which the local Coulomb repulsion
U is in between the two bandwidths.

However, the bandwidths and the interaction of the AB-
stacked MoTe2/WSe2 hetero-bilayer do not seem to fall in
this regime. The ratio of the two bandwidths is only about 2
and the interaction strength is not small in the WSe2 layer
(see details below). One of the objectives of our work is
to assess the correlation regime of the two-orbital Hubbard
model. We anchor our consideration in terms of the coherent
temperature, which has been experimentally measured, by
exploring the implication of the aforementioned magnitudes
of the bandwidths and interaction strength and the interlayer
hybridization strength. The observed coherent temperature is
incompatible with any estimate in the local-moment-based
Kondo regime. Using a saddle-point treatment of the micro-
scopic Hamiltonian, we argue that it instead implicates a more
general correlation regime.

C. Kondo destruction

In the modern period of the heavy fermion field, heavy
fermion metals have become active frontiers for the ex-
ploration of metallic quantum criticality [46–49] (as well
as strongly correlated metallic topology [50–52]). A cata-
lyst for extensive theoretical understanding and experimental
studies has been the notion of Kondo destruction. The
Kondo destruction theory was advanced in a study of the
dynamical competition between the Kondo and Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions in Kondo lattice
models [53], and was subsequently discussed [54] and studied
[55] based on alternative approaches. Experimental evidence
has come from a variety of heavy fermion metals [56–61]. In

FIG. 1. (a) The global schematic phase diagram of the Kondo
lattice. Vertical axis G stands for the frustration strength, and hori-
zontal axis ρJK describes the Kondo coupling. The three dashed lines
represent possible quantum phase transition sequences between the
Kondo-destroyed phases (light blue region: MS , magnetic ordered
small Fermi surface; or PS , paramagnetic small Fermi surface) and
the heavy Fermi liquid states (gray region: PL , paramagnetic large
Fermi surface; or ML , magnetic ordered large Fermi surface). The
third axis, which measures the deviation of the d orbital filling from
unity, δ = νd − 1, is a new axis that becomes readily tunable in
moiré heavy fermion systems. (b) Schematic phase diagram of the
two-orbital extended Hubbard model in the parameter space of d
orbital filling factor δ = νd − 1 and c orbital filling factor νc. Here
HFL stands for heavy Fermi liquid and OSMP (blue line) stands
for orbital-selective Mott phase, in which the Kondo screening is
destructed and local spin moments can form.

the Kondo regime, the RKKY interaction favors a ground state
with the quantum magnetism of the local moments. This pro-
cess induces a dynamical competition against the formation of
a Kondo singlet. The ensuing destruction of the Kondo effect
leads to amplified quantum fluctuations. Because the nature
of the ground state associated with the quantum magnetism
itself can vary from genuine long-range magnetic order to
being disordered (without symmetry breaking), the competi-
tion leads to a global phase diagram, as summarized in the
main plane of Fig. 1(a) [62–65]. The Kondo lattice undergoes
a transition from the heavy Fermi liquid state with a large
Fermi surface (PL or ML, labeled by gray), which incorporates
the local moments into the Fermi volume, into a small Fermi
surface state that does not count the local moments in the
Fermi volume (PS or MS , labeled by blue). Most extensive
studies have focused on the case when the “M” phase cor-
responds to an antiferromagnetic order, where the strength
of frustration G affects the degree of the order. The case of
ferromagnetic order has also been considered [66,67], though
the role of frustration becomes uncertain. The salient proper-
ties associated with the Kondo destruction QCP also include
a dynamical “Planckian” (h̄ω/kBT ) scaling, the associated
linear-in-T relaxation rate, and loss of the quasiparticles at the
QCP [47–49,68].

For the AB-stacked MoTe2/WSe2 hetero-bilayer, the
extended correlation regime that has been implicated by con-
siderations of the coherent temperature scale, as summarized
in the previous subsection, also raises the question of the
type of phase transition that can take place. In this work,
we address the issue within the saddle-point analysis in the
nonmagnetic sector. Our analysis does find a Kondo destruc-
tion, starting from a regime of heavy fermion phase that

013219-2



KONDO EFFECT AND ITS DESTRUCTION IN … PHYSICAL REVIEW RESEARCH 6, 013219 (2024)

is implicated by the magnitude of the observed coherence
temperature. Our results are qualitatively summarized in
Fig. 1(b). Our findings set the stage for further dynamical
analyses of the model to explore the realization of other salient
properties of the Kondo destruction. We discuss the issue
further in Sec. V.

D. A new axis in the phase diagram

An important advantage of moiré structures is that a gate
voltage readily tunes the electron density. The variation, how-
ever, is the total density ν. We can express ν as the sum of
the electron density for the MoTe2 layer, νd , and that for the
WSe2 layer, νc. Thus, a new axis arises, namely the deviation
of νd from half-filling. This is illustrated as a new axis of
δ = νd − 1 in Fig. 1(a) for the global phase diagram. More
specifically, we illustrated the result of our saddle-point calcu-
lations in the generalized phase diagram Fig. 1(b), where the
vertical axis represents a cut in the δ = 0 plane of the global
phase diagram illustrated in Fig. 1(a). We stress two particular
aspects of Fig. 1(b). First, δ = 0 develops for a range of the
total density ν; this pinning of the d-electron density to half-
filling results from strong correlations. In this pinned range,
the transition point between the heavy Fermi liquid and the
orbital-selective Mott phase (OSMP) along the line captures
an overall transition across the blue line in the global phase
diagram of Fig. 1(a). Second, the heavy Fermi liquid state
can still exist if the d orbital is slightly doped from unity
(i.e., when |δ| � 1). If the d orbital filling factor νd is tuned
significantly away from unity, one can anticipate a crossover
out of the heavy Fermi liquid, resulting in a reduction in the
effective mass of the d orbital.

More specifically, we use a saddle-point approach based
on the U(1) slave spin representation [69] to study the ef-
fective model for the TMDC hetero-bilayer with the total
electron density ν = νc + νd and the displacement field po-
tential εD as tuning parameters. We demonstrate that the
stripe-shaped heavy Fermi liquid region in this two-parameter
space observed in experiment [3,4] can be well captured by
our calculation. The transition between the heavy Fermi liquid
state and OSMP, which is associated with the reduction of the
conduction electron density, is also observed in the numerical
results shown in Fig. 5(d).

This article is organized as follows. In Sec. II, we briefly
introduce the tight binding and interacting Hamiltonian and
the definition of the tunable parameters that will be used later.
Then we present the general and numerical results about the
heavy Fermi liquid in Sec. III, and about the orbital-selective
Mott phase transition and Kondo destruction in Sec. IV. Fi-
nally, we discuss results in Sec. V, and we summarize our
findings in Sec. VI.

II. MODEL

In this section, we briefly introduce the model Hamiltonian
for the AB-stacked bilayer MoTe2/WSe2 system. We start
from the effective tight-binding model on a hexagonal lattice,
and then present an interacting Hamiltonian based on this
lattice model. A detailed discussion about the Hamiltonian
can be found in Appendix A.

A. Tight-binding model

Monolayer TMDC materials in the 2H structural phase are
known to have strong spin-orbital coupling, which leads to
spin-valley locking [70,71]. As depicted in Fig. 2(a), the hole
pocket near valley K exclusively has a spin-↑ band, whereas
the pocket near K′ only contains a spin-↓ band.

In hetero-bilayer TMDC systems, the difference in unit-
cell size results in a lattice mismatch that can cause the
formation of a moiré superlattice at zero-angle twisting. As
a result, the size of the moiré Brillouin zone is determined by
the difference between the Brillouin zones of the two mono-
layers, as illustrated in Fig. 2(b). In valley K, the top band
edge of the MoTe2/WSe2 band will be centered around the
K/K ′ point in the moiré Brillouin zone, respectively. Since the
two layers are AB-stacked, the hole bands from the two layers
in the same valley will carry opposite spin quantum numbers.
As a consequence, the interlayer hoppings only consist of
spin-flipping terms, which are anticipated to be weak.

Similar to the Bistritzer-MacDonald model [72] for twisted
bilayer graphene, a single valley continuum model can also
be derived for the AB-stacked TMDC [16,23]. The band
structure of the continuum model can be found in Fig. 2(d).
Since the hole pockets in the two types of monolayers have
different effective mass, the highest moiré bands will also
exhibit different bandwidths: the moiré band from MoTe2

has a bandwidth DMo ∼ 40 meV, while the other layer has
DW ∼ 80 meV.

Although the continuum model is more accurate, it is
challenging to study compared to a simplified tight-binding
model. By analyzing the symmetry of the continuum model
[73], a tight-binding model, which is able to capture the major
low-energy features of this system, can be constructed from
the continuum model [16,19,20,23]. The charge centers of
the orbitals from each layer can form triangular moiré su-
perlattices, and they are located at two distinct hexagonal
sites belonging to two different Wyckoff positions, which are
represented by yellow and blue markers in Fig. 2(c). There-
fore, the tight-binding model can be written on the hexagonal
lattice, with two orbitals per unit cell. We use c†

iτ /d†
iτ to

represent the fermionic creation operator of the orbital from
the WSe2/MoTe2 layer and valley τ at superlattice site i.
Here τ = ± represent the single-layer valley indices, which
correspond to K and K′, respectively. One can write down the
following tight-binding Hamiltonian with four bands [19,20]:

H0 =
∑

〈〈i j〉〉,τ
tceτ iφc

i j c†
iτ c jτ +

∑
〈〈i j〉〉,τ

td eτ iφd
i j d†

iτ d jτ

+
∑
〈i j〉,τ

(tcd c†
iτ d jτ + H.c.) + εD

2

∑
iτ

(c†
iτ ciτ − d†

iτ diτ ).

(1)

Here 〈〈i j〉〉 denotes the next-nearest-neighbor sites, which are
always intralayer terms, while 〈i j〉 represents the nearest-
neighbor sites, exclusively connecting sites from different
layers. The phase factors associated with the intralayer hop-
pings are chosen to be φc

i j = 2π/3 and φd
i j = −2π/3 along

the arrows in Fig. 2(c). These hopping phases will result
in the top band edges of the MoTe2/WSe2 bands being lo-
cated at the K/K ′ points in valley τ = +. As shown by the
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FIG. 2. (a) The spin-valley locking of monolayer TMDC materials. Here we use K,K′ to represent the two valleys of the monolayer
Brillouin zones. Since the two layers are stacked oppositely, the hole pockets in the same valley will have opposite spins. (b) The relationship
between the monolayer Brillouin zones (yellow and blue hexagons with dashed lines) and the moiré Brillouin zone (black hexagon).
(c) Effective tight-binding model of a single valley on a hexagonal lattice. Intralayer hoppings in valley τ along the direction of the arrows
have a phase factor eτ i 2π

3 in the WSe2 layer, or e−τ i 2π
3 in the MoTe2 layer. Interlayer hoppings are shown by black dashed lines. Because of

the spin-valley locking, these interlayer hoppings flip the electron spin. (d) The single valley band structure of the continuum model. The
interlayer hoppings open a small gap along M-K ′-M lines, and the highest moiré band above this hybridization gap carries nonzero Chern
number C = ±1. (e) The tight-binding model band structure with tc = 9 meV, td = 4.5 meV, and tcd = 1.5 meV. In this figure, the interlayer
potential εD is chosen such that the top band edges of the two bands are at the same energy. The tight-binding model is able to capture the key
features of the highest moiré bands qualitatively.

dashed lines in Fig. 2(c), the interlayer hoppings are along
the nearest-neighbor directions instead of on-site. This leads
to a chiral signature with the form of kx ± iky near K and
K ′ in the hybridization function, which is different from the
momentum-independent hybridization in standard Anderson
models, as has been studied in Ref. [7]. εD represents the
potential difference between the two layers induced by the
displacement field.

By fitting the tight-binding model with the dispersion of the
continuum model, these parameters can be set to the following
values:

tc ≈ 9 meV,

td ≈ 4.5 meV,

tcd ≈ 1.5 meV. (2)

The dispersion of the tight-binding model is also shown in
Fig. 2(e). Qualitative features of the highest moiré bands
in the continuum model can be well-captured by this
simple tight-binding model. Therefore, we will use these
tight-binding parameters throughout this manuscript unless
otherwise stated.

B. Interacting Hamiltonian

Kondo-driven physics is usually modeled by the Anderson
lattice Hamiltonian. However, it is crucial to assess whether
the AB-stacked TMDC hetero-bilayer can be well described
by the standard Anderson lattice Hamiltonian. Indeed, a few
factors beyond the Anderson lattice model need to be consid-
ered. The bandwidth ratio between the two bands from the

MoTe2 and WSe2 layers is not very small: DMo/DW ∼ 0.5.
Both DW and DMo might be comparable to the strength of
the on-site interaction in the hetero-bilayer TMDC moiré
material. Hence, (i) the dispersion of the d bands is not negli-
gible, and (ii) the interaction in the conduction band has to
be considered. We also note that (iii) the nonlocal interac-
tion terms might not be negligible when compared with the
on-site interaction [15,21]. As indicated by previous studies,
these nonlocal interaction terms are able to affect the quasi-
particle weight Z [74], and contribute to the stabilization of
intervalley excitonic order, leading to a quantum anomalous
Hall effect in this system [20,75]. Therefore, we choose the
multiorbital extended Hubbard Hamiltonian as our minimum
model, which is more general than the standard Anderson
lattice Hamiltonian, though in the latter case the effect of
a correlated conduction band has been discussed [76]. The
interacting Hamiltonian can be written the following form:

HI = U

2

∑
i,α=c,d

(niα+ + niα− − 1)2

+ V
∑

〈i j〉,ττ ′

(
nicτ − 1

2

)(
n jdτ ′ − 1

2

)

+ V ′ ∑
〈〈i j〉〉,αττ ′

(
niατ − 1

2

)(
n jατ ′ − 1

2

)
, (3)

in which niατ = α
†
iτ αiτ , α = c or d is the electron density

operator. Here we use U to represent the on-site interaction,
V to represent the interorbital [nearest-neighbor (NN)] inter-
action, and V ′ to represent the next-nearest-neighbor (NNN)
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FIG. 3. (a) The orbital resolved filling factor of the heavy (Mo) orbital νMo in the parameter space (ν, εD ). In the region labeled by the red
dashed lines, the d orbital is almost at half-filling νMo ≈ 1. (b) The quasiparticle weight of the d orbital ZMo in the parameter space (ν, εD ).
The conduction-band filling factors νW are constants along the three solid lines. (c) The filling factors of the two orbitals at a fixed total filling
ν = 1.4 with varying displacement field. The heavy Fermi liquid region is highlighted with light blue. (d) The mass enhancement (inverse of
the quasiparticle weight Z−1) of the d orbital as a function of d orbital filling, with multiple fixed conduction orbital fillings. (e) The coherence
temperature scale evaluated with fixed total filling factor ν = 1.4. We choose the strength of on-site interaction as U = 70 meV, NN interaction
V = U/2, and NNN interaction V ′ = U/4.

interaction. The interaction strength in the lattice model can be
estimated from the Wannier functions of the orbitals, and the
on-site interaction U is indeed comparable to the bandwidth
of the wide band DW.

III. HEAVY FERMI LIQUID

Based on experimental observations, the heavy Fermi liq-
uid behavior is predominantly observed within a stripelike
region in the (εD, ν) phase diagram [3] when the total hole
filling factor is in the interval 1 < ν < 2. Hence, we first
choose the strength of on-site interaction as U = 70 meV, NN
interaction as V = U/2, and NNN interaction as V ′ = U/4.
We also consider different values of hole total filling factor
1.3 � ν � 1.7, and the displacement field in the range of
−80 � εD � 0 meV. We proceed to solve the saddle-point
equations in the U(1) slave spin approach, the details of which
are explained in Appendix B.

A. Development of heavy Fermi liquid

The orbital resolved filling factors can be obtained from the
U(1) slave spin approach, which are shown in Fig. 3(a). When
the filling factor ν remains constant, there exists a range of
displacement field strengths where the Mo layer orbitals are
approximately pinned at unity filling (νMo ∼ 1). Remarkably,
the width of this interval does not vary significantly with the
total filling factor, resulting in a “stripe” region highlighted
by the red dashed lines in Fig. 3(a), which resembles the

experimental observation [see Fig. 11 in Appendix F for refer-
ence]. To demonstrate this clearly, we also provide the orbital
resolved filling factors as functions of the displacement field
potential εD with fixed total filling factor ν = 1.4 in Fig. 3(c).
It is evident that the d orbital (Mo) filling exhibits a distinct
“plateau” pattern when εD is varied, corresponding to the
stripe region in Fig. 3(a). We also observed that the width
of the stripe region in the phase diagram is around �εD �
30 meV, which is clearly smaller than the on-site Hubbard
interaction U = 70 meV. This could be attributed to the large
bandwidth of the d orbital.

Similar to the determination of orbital resolved filling fac-
tors, the evaluation of orbital resolved quasiparticle weight
for the d orbital Mo is also accessible through the slave spin
approach, the results of which are shown in Fig. 3(b). This
quasiparticle weight ZMo drops significantly to ZMo � 0.2
within the heavy Fermi liquid region. To demonstrate how
the d orbitals are screened by the conduction electrons, we
plot the mass enhancement of the heavy band, which is de-
fined as the inverse of the quasiparticle weight, with different
conduction electron densities in Fig. 3(d). The effective mass
always approaches its maximum value at νMo = 1, and be-
comes smaller if the d orbital is doped away from half-filling.
We also notice that the maximum value of the effective mass
decreases with an increasing conduction electron density, be-
cause of the stronger screening. This picture is captured by the
schematic phase diagram in Fig. 1(b).

The large mass enhancement for the d orbital could po-
tentially account for the experimentally observed narrow
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bandwidth of the Mo bands [3], whose corresponding effec-
tive mass m∗

Mo ≈ 5–10me is an order of magnitude larger than
the value mMo ≈ 0.65me predicted by the noninteracting con-
tinuum model [16,23]. In contrast, the quasiparticle weight of
the conduction electron [see Fig. 8(a) in Appendix C] remains
relatively high with Z � 0.8 across the entire parameter space
examined. Consequently, the effective mass m∗

W ≈ 0.5me is
similar to the value mW ≈ 0.35me predicted in the noninter-
acting theory.

B. Coherence temperature scale

The coherence temperature Tcoh, which characterizes the
onset of Kondo screening as temperature is lowered, can be
estimated from the effective bandwidth of the d orbital in
the zero-temperature slave fermion Hamiltonian [77–79]. In
practice, this “bandwidth” can also be estimated from the
inverse of the local density of states of the slave fermion,
which will be explained in detail in Appendix C.

Normally, one would expect that the Kondo screening tem-
perature scale is on the order of 1

2 DW exp(−DW
JK

) [45]. The
Kondo coupling can be estimated by JK ∼ t2

cd/�, in which
tcd ≈ 1.5 meV is the hybridization and � is the activation
gap. Hence, the Kondo coupling strength is expected to be
JK � 5 meV, resulting in a very low screening temperature
scale of � 0.1 K. Alternatively, in Kondo lattice systems, the
coherence temperature of a metallic Kondo screened phase
is controlled by Tcoh ∼ r2/DW ∼ 0.05 K [78], in which the
renormalized hybridization is r ∼ √

ZMotcd ∼ 5 K. Both esti-
mations lead to notably low temperature scales.

However, the coherence temperature has been extracted
from resistivity measurements [3] to be much higher, ≈20–
40 K. Indeed, the bandwidth of the d orbital in hetero-bilayer
TMDC is far from negligible, and thus the coherence tem-
perature will depend on the quasiparticle weight ZMo in a
different manner. As discussed in Appendix C, the coherence
temperature can be estimated via the following expression
when DMo is considered:

Tcoh ∼ ZMoDMo + ZMoZWt2
cd

DW
. (4)

Thus, much higher coherence temperatures become possible
due to the dispersion of the heavy band. For fixed total filling
factor ν = 1.4, the value of Tcoh as a function of displacement
field can be found in Fig. 3(e). In the heavy Fermi liquid
region, the coherence temperature is estimated to be at the
order of magnitude of Tcoh ∼ 50 K. Notably, it aligns with the
order of magnitude of ∼40 K measured in the experiment. We
also show that the quasiparticle weight of the d orbital and the
coherence temperature (Fig. 4) approach their minimum when
the d orbital is at half-filling.

IV. ORBITAL-SELECTIVE MOTT PHASE

An orbital-selective Mott phase (OSMP) develops when
the d electrons are localized while the c electrons are itinerant.
The transition from the heavy Fermi liquid into the OSMP can
be achieved by tuning the total filling factor. In Figs. 5(a) and
5(b), we provide the d orbital filling factors and quasiparti-
cle weights obtained with on-site interaction U = 75 meV at

FIG. 4. (a) The quasiparticle weights of both orbitals as functions
of the heavy fermion filling factor νMo. (b) The coherence temper-
ature scale as a function of the heavy fermion filling factor. The
total filling factor in both figures is fixed to be ν = 1.4. The on-site
interaction is chosen to be U = 75 meV and V = U/2, V ′ = U/4.

different total filling factors ν = 1.2, 1.4, 1.6. The d orbital
filling factors as functions of the displacement field, which
are shown in Fig. 5(a), have “plateau” regions in certain εD

intervals. The plateaus of different filling factors appear at
different displacement field potential values, resulting in a
stripe-shaped heavy Fermi liquid region, which is similar to
what we obtained in Fig. 3(a). As one would expect from
the lack of conduction electron screening, the heavy fermion
quasiparticle weight can eventually be diminished to zero with
a sufficiently low conduction electron density, which ampli-
fies the contrast between the fate of (de)localization of the
two orbitals. In Fig. 5(b) we present the displacement field
dependent heavy fermion quasiparticle weight with different
total filling factors. With smaller total electron densities, the
minimum values of ZMo also get smaller, corresponding to
the qualitative trend observed in Fig. 3(d). Indeed, ZMo drops
to zero at its minimum point, indicating a transition into the
OSMP with a destructed Kondo screening at ν = 1.2.

We then discuss this transition into the OSMP along
another axis with fixed displacement field potential εD =
−70 meV. In Fig. 5(c), we found that the d orbital filling
factor is almost pinned at νMo = 1 when the total filling is
reduced to ν � 1.3. It is also noticeable that the heavy fermion
quasiparticle weight only drops to zero as the filling factor is
further reduced to ν � 1.2, as shown in Fig. 5(d).

We also note that the critical filling factor of the transition
into the OSMP strongly depends on the strength of the inter-
action. For example, as we will discuss in Appendix E, total
filling factor ν = 1.4 is in fact sufficiently low for an OSMP
if the on-site interaction is increased to U = 80 meV.

As one would notice in Fig. 2(c), since the d orbitals
effectively form a triangular lattice in the OSMP, the RKKY
interaction might either be frustrated antiferromagnetic or
ferromagnetic at very low conduction electron density. The
RKKY interaction could lead to either an antiferromagnetic
ordered state [6,7], a ferromagnetic ordered state [4], or a
paramagnetic state in the local moment phase, depending
on the competition between the frustration strength and the
screening strength as mentioned in Fig. 1(a). However, deter-
mining the magnetic order in the OSMP is beyond the scope
of the present work.
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FIG. 5. (a) The orbital resolved filling factors of the Mo orbital as a function of displacement field with different total filling factors. Data
shown by dash-dotted, dashed, and solid lines are obtained with ν = 1.6, 1.4, and 1.2, respectively. (b) The quasiparticle weight of the Mo
orbital as a function of displacement field. The total filling factors are the same as in (a). (c) The orbital resolved filling factors as functions of
the total filling factor ν, with fixed displacement field potential εD = −70 meV. It can be seen that the d orbital Mo filling is almost pinned at
νMo = 1 when ν � 1.3. (d) The quasiparticle weights as functions of the total filling factor ν with fixed displacement field. Orbital-selective
Mott phase can be attained when ν � 1.2. The on-site, NN, and NNN interactions are chosen to be U = 75 meV, V = U/2, and V ′ = U/4.

V. DISCUSSION

We have analyzed the crossover into the heavy Fermi liquid
state in the AB-stacked MoTe2/WSe2 bilayer moiré superlat-
tices. In addition, we have described the transition from the
heavy Fermi liquid state into the orbital-selective Mott phase
that does not contain any long-range order.

To address the quantum critical physics, it is important
to study the dynamical interplay between the Kondo effect
and RKKY interactions. To put the Kondo physics of the
AB-stacked MoTe2/WSe2 in context, we recall that, in the
correlation regime captured by the Kondo lattice model, stud-
ies based the extended dynamical mean-field theory (EDMFT)
showed that the RKKY interactions compete against the
Kondo effect [53–55]. A new energy scale, E∗

loc, emerges
characterizing the destruction of the Kondo effect. As illus-
trated in Fig. 6, this scale separates two regimes of the phase
diagram spanned by temperature and a nonthermal control
parameter. To the right of the E∗

loc line, the system flows
towards a heavy Fermi liquid ground state. The low-energy

FIG. 6. Schematic finite-temperature phase diagram near a
quantum critical point (QCP) to be expected from a dynamical
competition between Kondo and RKKY interactions, based on the
EDMFT studies of the Kondo lattice [53,68]. The cartoons for the
heavy Fermi liquid and Kondo-destroyed phases are adapted from
Ref. [60].

physics of the heavy quasiparticles and the associated large
Fermi surface is characterized by the heavy Fermi liquid
temperature scale, THFL. The vanishing of the THFL scale at
the QCP signifies the loss of quasiparticles. To the left of
the E∗

loc line, the system flows towards a ground state in
which the Kondo singlet is destroyed and the Fermi surface
becomes small. Accordingly, the E∗

loc line characterizes the
localization-delocalization of the heavy fermions. The role
of long-range order depends on where the system lies in the
global phase diagram. For example, along trajectory “I” of
Fig. 1(a), the onset of the magnetic order is concurrent with
the destruction of the Kondo effect. This is also illustrated
in Fig. 6. Finally, the vestige of the coherence temperature
is characterized by the temperature scale T0 where the initial
onset of the Kondo effect takes place as the temperature is
lowered. These salient properties have been extensively evi-
denced by experiments in heavy fermion materials, including
the dynamical scaling [56,60,80], Fermi surface crossover
across a T ∗ temperature scale (associated with the E∗

loc energy
scale) and its extrapolated zero-temperature jump [57,58,81],
a linear-in-T relaxation rate that connects with the T -linear
electrical resistivity [82–84] and related properties [59,85],
and, finally, the loss of quasiparticles [61].

The analysis presented here indicates that the AB-
stacked hetero-bilayer TMDC opens up a new correlation
regime of Kondo destruction. Our findings raise the theoret-
ical question about the dynamical competition between the
Kondo/hybridization and RKKY interactions in this correla-
tion regime, which is left for future work. Our results also
motivate new opportunities for experimental studies, namely
to explore the dynamical signatures of Kondo destruction
outlined above in the AB-stacked hetero-bilayer TMDC and
related moiré structures.

VI. SUMMARY

In this work, we studied an effective model that can well
describe the Kondo physics in the AB-stacked MoTe2/WSe2

hetero-bilayer system. This effective model can be expressed
as an extended Hubbard Hamiltonian with d and c or-
bitals, which correspond to moiré bands from the MoTe2 and
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WSe2 layers, respectively. The bandwidths of the two moiré
bands differ by a factor of ∼2, which could lead to orbital-
selective correlation effects. The hybridization between the
two orbitals is also taken into consideration. The Hubbard
Hamiltonian can describe the charge transfer between or-
bitals with strong displacement fields, which is not captured
by the Kondo lattice Hamiltonian. Interaction in the c or-
bitals and the bandwidth associated with the d orbitals are
also usually not addressed in previous studies. Hence, we
believe that the two-orbital extended Hubbard Hamiltonian
is the most suitable model for understanding the Kondo-
driven phenomena in this moiré structure without unnecessary
complexity.

We then use a saddle-point approach to solve this effective
interacting Hamiltonian. Using the total electron filling factor
and the displacement field as tunable parameters, we identify
the crossover into a heavy Fermi liquid in the phase diagram,
which resembles the experimentally observed results [3]. With
the d orbital bandwidth considered, our numerical study can
also explain the heavy electron mass mMo ≈ 10me and the
high coherence temperature Tcoh ≈ 20–40 K, which have been
observed in transport measurements, providing a consistent
interpretation. These results indicate that the Kondo effect in
this system is in an extended correlation regime that goes
beyond the canonical Kondo-lattice description.

We have also explored the consequence of doping the d
orbital away from half-filling. This doping, δ = νd − 1, serves
as a new axis of the heavy fermion phase diagram. The nu-
merical results have shown that the heavy Fermi liquid states
with a very small ZMo can still exist in a narrow window
when δ = νd − 1 �= 0. When the d orbital is doped noticeably
away from half-filling, a small displacement field change can
lead to a drastic change of its value, and the heavy fermion
quasiparticle weight as well as the coherence temperature will
be significantly increased. These phenomena have also been
observed in the experiments.

In addition, our approach captures the orbital-selective
Mott phase, in which the d electrons are localized while the
c electrons remain itinerant. Our saddle-point analysis shows
a vanishing heavy fermion quasiparticle weight at sufficiently
low electron density. This is also qualitatively in agreement
with the recent experimental observation [4].

Our results set the stage to address the amplified quan-
tum fluctuations that the Kondo effect may produce in these
moiré structures and the new correlation regimes that they
open up for the Kondo-destruction quantum criticality. As
such, the TMDC moiré structures provide a new setting to
explore the salient properties associated with the amplified
quantum fluctuations, such as the dynamical h̄ω/kBT scaling,
the linear-in-T relaxation rate, and loss of quasiparticles.
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APPENDIX A: MODEL

In this Appendix, we provide a detailed discussion about
the noninteracting Hamiltonian and its Wannier functions in
Appendix A 1. A brief review of the continuum model is dis-
cussed, and Wannier functions for the low-energy moiré bands
can be constructed by analyzing their symmetry eigenvalues.
The tight-binding model introduced in Sec. II A is based on
the Wannier functions obtained from the continuum model.

The Coulomb interaction matrix elements discussed in
Appendix A 2 are also based on the Wannier functions ob-
tained from the continuum model. The effective interacting
Hamiltonian in Eq. (3) is guided by these matrix elements as
well.

1. Wannier functions of the noninteracting Hamiltonian

We first review the continuum model of twisted bilayer
TMDC materials. In this system, the moiré superlattice origi-
nates from the lattice mismatch between the MoTe2 and WSe2

layers. Both layers are hexagonal lattices with lattice constants
aMo ≈ 3.575 Å and aW ≈ 3.32 Å [16]. Therefore, the lattice
constant of the moiré unit cell is aM = aMoaW/(aMo − aW) ≈
46.55 Å, which is much larger than the lattice constant of
each individual layer. As a consequence, the reciprocal lat-
tice of the moiré lattice is much smaller than the Brillouin
zones of the single layers, which can be seen in Fig. 2(b).
In this paper, we use a1 = (0, aM ), a2 = (aM/2,

√
3aM/2)

to represent the moiré lattice basis vectors, and we use b1 =
(2π/aM,−2π/

√
3aM ), b2 = (0, 4π/

√
3aM ) to represent the

corresponding reciprocal basis vectors.
Similar to the Bistritzer-MacDonald model for twisted

bilayer graphene, we can also write down the Hamiltonian
for AB-stacked bilayer MoTe2/WSe2 in a single valley as
follows:

h =
(

hd̂ (−i∂) + Vd̂ (r) − εD
2 W (r)

W ∗(r) hĉ(−i∂) + Vĉ(r) + εD
2

)
,

(A1)
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in which hd̂ , hĉ are the quadratic dispersion Hamiltonian of
the individual layers:

hd̂,ĉ(−i∂) = 1

2md̂,ĉ

∂2. (A2)

Vd̂ (r) and Vĉ(r) are the moiré potential received from the other
layer, and W (r) is the interlayer tunneling strength, which
has the same period as the moiré superlattice. As mentioned
in Ref. [16], the interlayer tunneling is strongly suppressed,
since it is a spin-flipping process. Therefore, it is reasonable
to build the Wannier functions for each layer individually.

Previous density functional theory studies have shown
that the effective band mass of the MoTe2 layer is md̂ =
0.65me, and the mass of the WSe2 layer is mĉ = 0.35me, in
which me = 9×10−31 kg is the bare electron mass [16]. The
intralayer moiré potential has the following form:

Vd̂,ĉ(r) = 2vd̂,ĉ

3∑
i=1

cos(gi · r + φd̂,ĉ), (A3)

where gi = Ci−1
3 g1 and g1 = b1 are the three smallest moiré

reciprocal vectors along different directions. The eigenstates
of the single-layer Hamiltonian in the valley τ are Bloch states
with the following form:

ψk,τα (r) = 1√
tot

∑
Q

uQ,τα (k)ei(k−Q)·r. (A4)

Here Q stands for moiré lattice reciprocal vectors, and α =
ĉ, d̂ stands for the two types of fermions. The wave functions
in the opposite valley −τ can be obtained via a time reversal
transformation.

In the MoTe2 layer, the values of these potential param-
eters are vd̂ = 4.1 meV, φd̂ = 14◦ [16]. Solving the kinetic
Hamiltonian of this layer yields the band structure shown in
Fig. 7(a). The C3z eigenvalues of the three high symmetry
points are also labeled. By comparing these eigenvalues with
the little group irreps in Table I and the EBRs in Table II,
we can find that this moiré band indeed corresponds to a
local orbital on Wyckoff position 1a with site symmetry group
representation 2E . Using the WANNIER90 [86] program with
a trial wave function at this Wyckoff position and the angular
momentum of 2E , we are able to find the proper gauge choice
of the Bloch wave function uQ,τα (k) which corresponds to the
maximally localized Wannier function of the moiré band [87].
The real-space distribution of its orbital has been shown in
Fig. 7(b). Clearly, this orbital is highly concentrated within
the size of a moiré unit cell.

It has been mentioned in Refs. [16,22,23] that the detail of
the intralayer moiré potential of the WSe2 layer Vĉ(r) is not
crucial to the low-energy physics. However, it still controls
the little group representation at high symmetry points, since
the gap opening around � and K is very sensitive to the phase
φĉ. Fortunately, Ref. [16] provided the C3z eigenvalues of the
WSe2 band at these high symmetry points, which indicates
that 60◦ � φĉ � 180◦. Therefore, we use vĉ ≈ 5 meV and
φĉ ≈ 120◦ as estimated values for the intralayer potential.
The corresponding single-layer band structure of WSe2 layer
can be found in Fig. 7(c). C3z eigenvalues at high symmetry
points also agree with the 2E elementary band representation

FIG. 7. (a) The single valley band structure of the MoTe2 layer
without interlayer tunneling considered. The band structure in the
opposite valley can be obtained by simply applying time reversal
transformation to the band structure in this valley. The (spinless)
C3z eigenvalues at high symmetry points �, K , and K ′ are labeled,
in which ω = ei 2π

3 . (b) The Wannier orbital of the highest band
(the lowest hole band) in the MoTe2 layer. (c) The single val-
ley band structure of the WSe2 layer without interlayer tunneling.
(d) The Wannier orbital of the highest band in the WSe2 layer.
These wave functions are obtained via WANNIER90 [86], and the
red arrows represent the basis vectors of the Bravais moiré lattice a1

and a2.

at Wyckoff position 1c. We also show the Wannier orbital
obtained by WANNIER90 for the WSe2 layer in Fig. 7(d).
This explains why the two orbitals formed in two layers give
rise to a hexagonal lattice, as depicted in Fig. 2(c) in the
main text.

2. The projection of Coulomb interaction

In this subsection, we use some realistic parameters to
estimate the interaction strength of our effective four-band
model. With the Wannier wave functions obtained in the
previous subsection, we are able to project the screened
Coulomb interaction into these low-energy orbitals. The
projected interactions can be written as

HI = 1

2tot

∑
kk′q∈MBZ

∑
ττ ′=±

∑
αα′=ĉ,d̂

U ττ ′
αα′ (q; k, k′)

× α
†
k+q,τ αk,τ α

′†
k′−q,τ ′α

′
k′,τ ′ . (A5)

Here we still use τ, τ ′ = ± to represent the two valleys
K and K′, and α, α′ = ĉ, d̂ to represent the two flavors
(MoTe2 layer and WSe2 layer) of fermions. The interaction
matrix elements U ττ ′

αα′ (q; k, k′) can be written in the following

TABLE I. The character table of irreps at high symmetry points
of space group 143.

�1 �2 �3 K1 K2 K3 K ′
1 K ′

2 K ′
3

E 1 1 1 1 1 1 1 1 1
C3z 1 ω ω∗ 1 ω ω∗ 1 ω∗ ω
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TABLE II. The elementary band representation of space group 143 of the three maximum Wyckoff positions.

Wyckoff positions 1a 1b 1c

EBR A1 ↑ G 1E ↑ G 2E ↑ G A1 ↑ G 1E ↑ G 2E ↑ G A1 ↑ G 1E ↑ G 2E ↑ G

� �1 �3 �2 �1 �3 �2 �1 �3 �2

K K1 K3 K2 K2 K1 K3 K3 K2 K1

K ′ K ′
1 K ′

2 K ′
3 K ′

2 K ′
3 K ′

1 K ′
3 K ′

1 K ′
2

form:

U ττ ′
αα′ (q; k, k′) =

∑
G

V (q + G)Mτ
α (k, q + G)

× Mτ ′
α′ (k′,−q − G), (A6)

in which G are reciprocal vectors of the moiré lattice. The
Fourier transformed screened Coulomb potential has the
form V (q) = (ξe2/4ε0ε) tanh(ξq/2)/(ξq/2), where we use
ξ ≈ 10 nm as the distance between the gates, and ε ≈ 10
as the dielectric constant of the substrate. The form factors
Mτ

α (k, q + G) can be expressed by the inner products of the
noninteracting Bloch wave functions:

Mτ
α (k, q + G) =

∑
Q

u∗
Q+G,τα (k + q)uQ,τα (k), (A7)

where we have to use the gauge choice of uQ,τα (k), which
corresponds to the maximally localized Wannier states.
Performing a discrete Fourier transformation into the Wannier
function basis, this projected interacting Hamiltonian can also
be written as

HI = 1

2

∑
R0

∑
RDD′

∑
ττ ′,αα′

Ũ ττ ′
αα′ (R; D, D′)

× α
†
R+D+R0,η,lαR+R0,η,lα

′†
D′+R0,η′,l ′α

′
R0,η′,l ′ . (A8)

Obviously, the real-space interaction elements are given by
the following expression:

Ũ ττ ′
αα′ (R; D, D′) = 1

cN3
M

∑
kk′q∈MBZ

U ττ ′
αα′ (q; k, k′)

× eiq·(R+D−D′ )eik·Deik′ ·D′
. (A9)

Usually, two types of these projected interaction terms
are considered when building an interacting lattice model.
The first type of terms belongs to the direct channel with
D = D′ = 0:

Ṽ ττ ′
αα′ (R) = Ũ ττ ′

αα′ (R; D = 0, D′ = 0), (A10)

and the other type of terms belongs to the exchange channel
with D = −D′ = −R �= 0:

J̃ττ ′
α (R) = −Ũ ττ ′

αα (R; D = −R, D′ = R). (A11)

Using the Coulomb potential V (q) and the Bloch state
wave functions we obtained in the previous subsection,
we numerically evaluated the values of some direct
interaction terms, which can be found in Table III. The
on-site interactions U of the two layers Ṽĉĉ(0) and Ṽd̂d̂ (0) are
close but different. As a simplification, we use the same value
for both layers in the actual calculation. The nearest-neighbor
interaction V = Ṽĉd̂ (0) approximately satisfies V ≈ U/2, and

the next-nearest-neighbor interaction V ′ = Ṽ (a1,2) is also
around V/2. Hence, choosing U = 70 meV, V = U/2 and
V ′ = U/4 are reasonable estimations for these parameters.
Since the screened Coulomb potential can change with the
dielectric constant ε and the gate distance ξ , it is important
to stress that these on-site, NN, and NNN interaction values
should be regarded as reasonable estimations, and they can
have different values in realistic materials.

On the other hand, the largest exchange term we obtained
is only around 1.05 meV, thus we ignored all the exchange
interactions.

APPENDIX B: METHOD

To take into account the interaction effect, we utilize the
U (1)-slave spin (SS) method [69] to solve the effective Hamil-
tonian described in Eqs. (1) and (3). We introduce the slave
spin representation for a fermion operator as a product of
an auxiliary bosonic operator o† and an auxiliary fermionic
operator f †:

α
†
iατ = o†

iατ f †
iατ . (B1)

Here α† enumerates the creation operators of c orbitals c† or
d orbitals d†. The auxiliary bosonic field o†

iατ = P+
iατ S+

iατ P−
iατ

is represented by the product of a spin operator S+
iατ and

projection operators P±
iατ = 1√

1/2±Sz
iατ

, which is suitable for a

system away from half-filling. By introducing these auxiliary
operators, the physical Fock states can be mapped to the
enlarged Hilbert space of the slave fermion and slave spin
operators:

|niατ = 0〉 ↔ ∣∣n f
iατ = 0

〉∣∣Sz
iατ = ↓〉

,

|niατ = 1〉 ↔ ∣∣n f
iατ = 1

〉∣∣Sz
iατ = ↑〉

,

∅ ↔ ∣∣n f
iατ = 0

〉∣∣Sz
iατ = ↑〉

,

∅ ↔ ∣∣n f
iατ = 1

〉∣∣Sz
iατ = ↓〉

. (B2)

We notice that the introduction of the auxiliary operators
expands the Hilbert space. Therefore, the following constraint
is required to project out the unphysical states:

Sz
iατ + 1

2 = n f
iατ . (B3)

TABLE III. The numerical values of the largest direct interaction
terms.

Ṽd̂d̂ (0) Ṽĉĉ(0) Ṽĉd̂ (0) Ṽd̂d̂ (a1) Ṽĉĉ(a1)

Value (meV) 70.14 64.08 37.76 16.52 16.38
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At the mean-field level, we treat this constraint on aver-
age by introducing the Lagrange multipliers λiατ , such that
〈Sz

iατ 〉 + 1
2 = n f

iατ . Note that in the physical Hilbert space,

n f
iατ = niατ . Using the slave fermion and spin operators, the

kinetic Hamiltonian can be written as

H0 =
∑

〈〈i, j〉〉,ατ

tαeτ iφα
i j f †

iατ o†
iατ o jατ f jατ

+
∑

〈i, j〉,τ
(tcd f †

icτ o†
icτ o jdτ f jdτ + H.c.)

+ εD

2

∑
iτ

( f †
icτ ficτ − f †

idτ
fidτ ). (B4)

We can also decompose the product of auxiliary fermion and
slave spin operators by the following equation:

f †
iατ o†

iατ o jα′τ ′ f jα′τ ′ = f †
iατ f jα′τ ′ 〈o†

iατ o jα′τ ′ 〉
+ 〈 f †

iατ f jα′τ ′ 〉o†
iατ o jα′τ ′ + H.c. (B5)

Furthermore, products of auxiliary bosonic operators can
be decoupled via the single-site approximation o†

iατ o jα′τ ′ =
〈o†

iατ 〉o jα′τ ′ + o†
iατ 〈o jα′τ ′ 〉 − 〈o†

iατ 〉〈o jα′τ ′ 〉. By assuming that
the bosonic operator expectation values are translation invari-
ant 〈oiατ 〉 = 〈o jατ 〉 = 〈oατ 〉, the two mean-field Hamiltonians
for slave fermion and slave spin are given by

H f =
∑

〈〈i j〉〉,ατ

tαeτ iφα
i j 〈o†

ατ 〉〈oατ 〉 f †
iατ fiατ

+
∑

〈i, j〉,τ
(tcd〈o†

cτ 〉〈odτ 〉 f †
icτ f jdτ + H.c.)

+ εD

2

∑
iτ

( f †
icτ ficτ − f †

idτ
fidτ ),

HS =
∑
iατ

∑
k

(
ετ
α (k)〈 f †

kατ fkατ 〉〈oατ 〉o†
iατ + H.c.

)

+
∑

iτ

∑
k

(εcd (k)〈 f †
kcτ fkdτ 〉

× (〈o†
cτ 〉oidτ + o†

icτ 〈odτ 〉) + H.c.) + HS
I , (B6)

where ετ
α (k) and εcd (k) are the Fourier transformation of

the intra- and interorbital hopping terms in the momentum
space, respectively. We further perform the Taylor expansion
of the projection operators P±

iατ and bosonic operators o†
iατ by

considering δSz
iατ = Sz

iατ − 〈Sz
ατ 〉 as a small parameter:

P±
iατ ≈ 1√

1
2 ± 〈

Sz
ατ

〉
⎛
⎜⎝1 ∓ δSz

iατ√
1
2 ± 〈

Sz
ατ

〉
⎞
⎟⎠,

o†
iατ ≈ 〈P+

ατ 〉S+
iατ 〈P−

ατ 〉 + 〈P+
ατ 〉〈S+

iατ 〉〈P−
ατ 〉

× 1

2

(
Sz

iατ − 〈
Sz

ατ

〉)(−1

nατ

+ 1

1 − nατ

)
,

= O†
iατ + 〈O†

ατ 〉ηατ

[
2Sz

iατ − (2nατ − 1)
]
, (B7)

where O†
iατ = 〈P+

ατ 〉S+
iατ 〈P−

ατ 〉, ηατ = 1
2

nατ −1/2
(1−nατ )nατ

, and 〈oατ 〉 =
〈Oατ 〉. Using these expansions, the slave spin Hamiltonian can

be written as follows:
HS =

∑
iατ

(
ε̃α〈Oατ 〉

(
O†

iατ + 〈O†
ατ 〉ηατ

× [
2Sz

iατ − (2nατ − 1)
]) + H.c.

)
+

∑
iτ

[
ε̃cd〈O†

cτ 〉
(
Oidτ + 〈Odτ 〉ηdτ

× [
2Sz

idτ − (2ndτ − 1)
])

+ ε̃cd
(
O†

icτ + 〈O†
cτ 〉ηcτ

[
2Sz

icτ − (2ncτ − 1)
])

× 〈Odτ 〉 + H.c.
] + HS

I , (B8)

in which ε̃α = ∑
k εα (k)〈 f †

kατ fkατ 〉 and ε̃cd =∑
k εcd (k)〈 f †

kcτ fkdτ 〉. We use the relationship 2Sz
iατ =

f †
iατ fiατ − 1 to replace terms proportional to Sz

iατ and move
them from HS to H f and combine the constraint Eq. (B3).
This procedure could completely decouple the slave fermion
and slave spin Hamiltonians:

H f =
∑

〈〈i, j〉〉,τ
(〈O†

cτ 〉〈Ocτ 〉tceiτφc
i j f †

icσ f jcτ + H.c.)

+
∑

〈〈i, j〉〉,τ
(〈O†

dτ
〉〈Odτ 〉td eiτφd

i j f †
idσ

f jdτ + H.c.)

+
∑
〈i, j〉τ

(〈O†
cτ 〉〈Odτ 〉tcd f †

icτ f jdτ + H.c.)

+
∑

iτ

(εD

2
− μ − λcτ + λ0

cτ

)
f †
icτ ficτ

+
(−εD

2
− μ − λdτ + λ0

dτ

)
f †
idτ

fidτ ,

HS =
∑

iτ

[ε̃c(〈Ocτ 〉O†
icτ + H.c.) + ε̃d (〈Odτ 〉O†

idτ
+ H.c.)

+ ε̃cd (〈Ocτ 〉O†
idτ

+ H.c.)]

+
∑
iτα

λατ

(
Sz

iατ + 1

2

)
+ HS

I , (B9)

where we further introduce the chemical potential μ to con-
trol the filling factor and λ0

ατ = 2(ε̄αα + ε̄αᾱ )ηατ , with ε̄αα′ =
(ε̃αα′ 〈Oατ 〉〈O†

α′τ 〉 + c.c.). The interaction part of the slave spin
Hamiltonian HS

I contains the on-site terms U , as well as the
NN and NNN terms treated on the mean-field level:

HS
I =

∑
i

(
U

2

∑
α

( ∑
τ

Sz
iατ

)2

+ V
∑
ττ ′

(
3Sz

icτ

〈
Sz

dτ ′
〉

+ 3
〈
Sz

cτ

〉
Sz

idτ ′
) + V ′ ∑

αττ ′
6Sz

iατ

〈
Sz

ατ ′
〉)

. (B10)

The numbers 3 and 6 come from the coordination numbers of
NN and NNN interactions. Due to the mean-field treatment of
these interaction terms, different unit cells in the slave spin
Hamiltonian HS become completely decoupled from each
other:

HS =
∑

i

HS
i . (B11)

Thus the mean-field equations can be solved self-consistently
with effectively only one unit cell in the slave spin Hamilto-
nian, by assuming 〈Oατ 〉, λατ , and μ as variational parameters.
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The quasiparticle weight associated with orbital α is described
by Zατ = 〈Oατ 〉〈O†

ατ 〉 = |zατ |2 if the self-consistently solved
value of zατ is nonzero. If the expectation value zατ drops
to zero, the corresponding orbital ατ loses the quasiparticle
weight and becomes Mott insulating, and its orbital-resolved
filling factor is also enforced to be half-filled. In the numerical
calculation in the main text, we also assumed the expectation
value zατ is irrelevant to the valley (spin) index.

APPENDIX C: COHERENCE TEMPERATURE

We consider the coherence temperature scale Tcoh in the
heavy Fermi liquid state. This temperature characterizes the

finite-temperature onset of the initial Kondo screening. It can
be estimated in terms of the effective bandwidth of the d
orbitals in the saddle-point calculation at zero temperature.
Hence, a practical way [79] of estimating Tcoh is using the
inverse of the local density of states of the slave fermion:
kBTcoh = 1/A f

Mo(ω = 0), in which A f
Mo(ω) corresponds to the

“spectral function” of the d orbital slave fermion. Note that
it is different from the local density of states of the phys-
ical fermions d†, which will be discussed in Appendix D.
Since the slave fermion Hamiltonian H f is a quadratic
fermionic Hamiltonian, the local density of states of slave
fermions can be easily obtained via the inverse of its “Bloch
Hamiltonian”:

A f
ατ (ω) = − 1

π
Im

1

N

∑
k

(
1

ω + i0+ − h f (k)

)
ατ,ατ

, (C1)

h f (k) =
(

h f
+(k)

h f
−(k)

)
, (C2)

h f
τ (k) =

(
ZMoε

τ
d (k) − λd + λ0

d − εD
2 − μ

√
ZMoZWεcd (k)

√
ZMoZWε∗

cd (k) ZWετ
c (k) − λc + λ0

c + εD
2 − μ

)
, (C3)

in which ετ
d (k), ετ

c (k), and εcd (k) are the Fourier transfor-

mation of the real-space hoppings td eiτφd
i j , tceiτφc

i j , and tcd ,
respectively.

In particular, if we assume the d orbitals are exactly flat
with vanishing bandwidth [εd (k) → 0] and the c orbitals are
noninteracting (ZW = 1), the slave fermion Hamiltonian can
be approximately written in the following form:

h f
τ (k) ∼

(
0

√
ZMoεcd (k)

√
ZMoε

∗
cd (k) ετ

c (k) + Ec

)
. (C4)

Here Ec contains the contributions from Lagrange multipliers
λc, λ

0
c , chemical potential μ, and displacement field εD, such

that the dispersion of ετ
c (k) + Ec crosses the Fermi level with

the correct filling factor. We assume the off-diagonal elements
are perturbative, and the two eigenvalues of the matrix h f

τ (k)
are

ω+(k) ∼ εc(k) + Ec, (C5)

ω−(k) ∼ −ZMo|εcd (k)|2
εc(k) + Ec

, (C6)

in which the dominant component of the eigenvector for
ω−(k) corresponds to the d orbital. Thus, charge excitations
that exhibit a significant overlap with the d orbital are pre-
dominantly distributed within an energy interval with a width

denoted as kBTcoh ∼ ZMot2
cd

DW
, where DW is the bandwidth of the

conduction band. This expression resembles the definition of
the coherence temperature scale T ∗ ∼ r2/Dc introduced in
Ref. [78].

However, the realistic Hamiltonian of the hetero-bilayer
TMDC does not have a vanishing d orbital dispersion. In
contrast, the bandwidth of the d orbital DMo is much larger
than the hybridization tcd . If the bandwidth of the heavy band

is taken into account, the coherent temperature scale has to be
estimated from the following matrix:

h f
τ (k) ∼

(
ZMoε

τ
d (k) + Ed

√
ZWZMoεcd (k)

√
ZWZMoε

∗
cd (k) ZWετ

c (k) + Ec

)
. (C7)

If the hybridization terms in the off-diagonal elements are still
treated as perturbations, the eigenvalue that is dominated by
the d orbital will be

ω−(k) ∼ ZMo[εd (k) + Ed ] − ZMoZW|εcd (k)|2
εc(k) + Ec

.

Consequently, the coherent temperature scale is different from
the case with exact flat heavy bands, and it can be estimated
as follows:

kBTcoh ∼ ZMoDMo + ZMoZWt2
cd

DW
. (C8)

When compared with the exact flat band case td = 0, it is
significantly increased by the bandwidth of the d orbital.

By calculating the local density of states of the slave
fermions, we are able to get the coherence temperature with
different displacement field strength values. The results can be
found in Fig. 8(b). Observing the plot, it becomes evident that
Tcoh closely resembles the curve of the quasiparticle weight
multiplied by a factor that is approximately equal to the d
orbital bandwidth, and Tcoh in the heavy Fermi liquid region
is strongly suppressed to kBTcoh ∼ 5 meV. In contrast, when
the d orbital filling factor is doped far away from νMo = 1,
the heavy fermion quasiparticle weight gets large and thus the
coherent temperature can approach Tcoh � 100 K.

As a reference, we also show the slave fermion local den-
sity of states for both orbitals at two points in the phase
diagram in Figs. 8(c) and 8(d). The local density of states in
Fig. 8(c) is obtained with εD = −50 meV and ν = 1.4, which
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FIG. 8. (a) The quasiparticle weights of both the c and d orbitals as functions of the displacement field with fixed total hole filling factor
ν = 1.4. (b) The coherent temperature scale Tcoh estimated by slave fermion local density of states with fixed total hole filling factor ν = 1.4.
Note that this figure is the same as Fig. 3(e) in the main text. (c) The slave fermion local density of states for both orbitals with displacement
field εD = −50 meV, at which the d orbital filling factor is very close to νMo ≈ 1. (d) The slave fermion local density of states with displacement
field εD = −20 meV, at which the d orbital filling factor νMo is away from half-filling. In these calculations, we choose the on-site interaction
strength U = 70 meV.

is in the heavy Fermi liquid region, while in Fig. 8(d) the local
density of states is obtained outside of the heavy Fermi liquid
region. The heavy Fermi liquid state has a narrower heavy
band and a higher slave fermion density of states at ω = 0,
and thus a much lower Tcoh.

APPENDIX D: LOCAL DENSITY OF STATES

The local density of states shown in the previous Ap-
pendix is obtained from the slave fermion operators f †

ĉ or
f †
d̂

, instead of the physical fermions c† or d†. Local charge
fluctuation is not considered, and hence the lower and upper
Hubbard bands are not captured. To correctly describe the
local charge fluctuation, slave spin excited states need to be
considered.

We write the physical fermion operators as the product
of slave fermion operator and slave spin operator, and
we write the many-body eigenstates as tensor products of
the local slave spin eigenstates and Slater determinants of
slave fermion states. Hence, the local density of states of
the physical degrees of freedom can be obtained from the
following expression, which has been derived in Ref. [88]:

Aατ (ω) = 1

N

∑
k

∑
m

( ∑
i,εk,i>0

δ(ω + Eg − Em

− εk,i )|uατ,i(k)|2 |〈m|S+
ατ |g〉|2

nατ (1 − nατ )
F+

ατ,m

+
∑

i,εk,i<0

δ(ω − Eg + Em

− εk,i )|uατ,i(k)|2 |〈m|S−
ατ |g〉|2

nα (1 − nατ )
F−

ατ,m

)
, (D1)

F+
ατ,m =

{
1, m = g,

1−Zατ

n−1
ατ −Zατ

, m �= g,
(D2)

F−
ατ,m =

{
1, m = g,

1−Zατ

(1−nατ )−1−Zατ
, m �= g.

(D3)

Here we use Em and |m〉 to represent the eigenvalues and
eigenstates of the local slave spin Hamiltonian HS

i , and
the summation over |m〉 includes all the eigenstates of HS

i .
Specifically, the ground state of HS

i is denoted by |g〉. We
also use εk,i, uατ,i(k) to represent the ith eigenvalue and
eigenvector of the slave fermion Hamiltonian h f (k). The
factors F±

ατ guarantee that Eq. (D1) satisfies the following
sum rules of the spectral functions:∫ ∞

−∞
dωAατ (ω) = 1, (D4)

∫ 0

−∞
dωAατ (ω) = nατ . (D5)

Using the self-consistent solutions of the slave spin and
slave fermion Hamiltonians, we numerically evaluated the
local density of states for both the c and d orbitals with
the same parameters as in Figs. 8(c) and 8(d). The results
can be found in Fig. 9. In both the heavy Fermi liquid
state (a) and the normal Fermi liquid state (b), the spectral
peaks of the d orbital near ω = 0 are lower than the peak
in the slave fermion local density of states, which is a con-
sequence of a small ZMo. The incoherent upper and lower
Hubbard bands separated by U are clearly visible in both

FIG. 9. The local density of states of the physical fermions with
different displacement field. The parameters are chosen to be the
same as in Figs. 8(c) and 8(d).
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FIG. 10. (a) The filling factor of the d orbital as functions of displacement field strength with different interaction strength U = 70, 75, and
80 meV. (b) The quasiparticle weight of the d orbital with different interaction strength. (c) The d orbital quasiparticle weight as a function of
its filling factor with different interaction strength. The total filling factor is set to ν = 1.4.

cases. Since the bare bandwidth of the d orbital is not neg-
ligible when compared with U , the coherent peak of AMo(ω)
near the Fermi energy starts getting noticeably wider when the
upper Hubbard band moves close to ω = 0, even if it is still
obviously above ω = 0, as seen in Fig. 9(b). This indicates
a large quasiparticle weight and a reduced effective mass
for the heavy fermion. As a result, the width of the heavy
Fermi liquid region along the displacement field potential axis
�εD, in which the quasiparticle weight of the Mo orbital re-
mains very small (ZMo � 1), will be narrower than the on-site
interaction U .

APPENDIX E: ORBITAL-SELECTIVE MOTT TRANSITION
VIA STRONG INTERACTION

In the main text, we discussed the orbital-selective Mott
phase obtained by reducing the conduction electron density.
The orbital-selective Mott phase transition can be achieved
by increasing the interaction strength as well. The d orbital
filling factor at the same total filling factor ν = 1.4 with
different interaction strength up to U = 80 meV is shown in
Fig. 10(a). It is obvious that the “plateau,” in which the heavy
Fermi liquid state is situated, broadens as the interaction be-
comes stronger. However, the width of the “plateau” along
the εD axis is still much smaller than the on-site interac-
tion U . The quasiparticle weight of the d orbital, shown in
Figs. 10(b) and 10(c), also exhibits the orbital-selective Mott
phase at total filling ν = 1.4 when the interaction is increase
to U = 80 meV.

APPENDIX F: PHASE DIAGRAM IN EXPERIMENT

In Fig. 11 we show the experimentally observed electro-
statics phase diagram adapted from Ref. [3]. The two axes
of this phase diagram are the total filling factor ν and the
displacement field strength E , which effectively is a linear
function to its corresponding potential εD. The measurement

is performed with the presence of an out-of-plane magnetic
field. Therefore, quantum oscillation patterns can be observed
when ν is varied. The Landau fans are vertical within the
regions labeled by red dashed lines, which indicate the Fermi
surfaces are almost unchanged by the displacement field
when ν is fixed. This phenomenon indeed corresponds to the
plateaus in the filling factors of the two orbitals in Fig. 3(b),
marking the formation of the heavy Fermi liquid state. We also
note that the shape of this region in the (ν, E ) phase diagram
is qualitatively identical to Fig. 3(a). This phase diagram also
shows that, by controlling the total filling factor ν and the dis-
placement field E together, both νMo and νW can be indirectly
tuned in experiment.

FIG. 11. The experimental electrostatics phase diagram in the
parameter space (ν, E ), in which ν is the total electron density, and
E is the electric field strength. The heavy Fermi liquid regime with
filling factor ν = 1 + x is labeled by “II.” This figure is reproduced
from Fig. 2(a) in Ref. [3].
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