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Dynamical decoupling is effective in reducing gate errors in most quantum computation platforms and is
therefore projected to play an essential role in future fault-tolerant constructions. In superconducting circuits,
however, it has proven difficult to utilize the benefits of dynamical decoupling. In this work, we present a
theoretical proposal that incorporates a continuous version of dynamical decoupling, namely, spin locking,
with a coupler-based CZ gate for transmons and provide analytical and numerical results that demonstrate its
effectiveness.
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I. INTRODUCTION

Qubit coherence time (T2) is a major limitation on gate fi-
delities and a bottleneck for realizing a fault-tolerant quantum
computer. Although the theoretical limit is T2 � 2T1 (where
T1 is the relaxation time), in most superconducting circuits
to date, this bound is not saturated, which leaves substantial
room for the improvement of dephasing time Tφ , which re-
lates to T2 via 1

T2
= 1

Tφ
+ 1

2T1
. The limiting factors for Tφ in

superconducting circuits [1] are flux fluctuations (in flux tun-
able qubits) [2], charge coupling to two-level systems (TLSs)
[3–6], dephasing due to the readout resonator [7–9], and ZZ
cross-talk with other qubits.

Pulsed dynamical decoupling is a well-known method to
enhance coherence time [10], utilized in various platforms
[11–16]. Its major use with superconducting qubits attempted
to improve the idling stage [17–19]. Dynamical decoupling
was also used to reduce unitary and spectator errors during
cross-resonance gates with superconducting qubits [20–23].
However, the embedding of pulses into this gate affects the
gate’s speed and therefore makes the gate more susceptible
to T1 errors. Additionally, in current implementations of this
gate, the qubits are required to be in the straddling regime
[1], which complicates frequency allocation in the device and
introduces strong unwanted ZZ interaction. On the other hand,
the CZ gate in superconducting qubits is fast but typically
utilizes an additional state outside the computational subspace
[24–27]. Thus dynamical decoupling during such a gate would
need to include the extra level, which is a major compli-
cation. Alternatively, one could use a gate from the iSWAP
family [28], which does not leave the computational subspace
and therefore could be integrated with dynamical decoupling
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pulses. However, this type of gate also requires working inside
the straddling regime and suffers from the same difficulties
explained above.

Another version of dynamical decoupling is spin locking,
where the qubit is driven continuously [29–34]. In order to
gain (in terms of fidelity) from a spin-locked two-qubit gate
between two qubits with coupling g in the presence of phase
noise with strength σ f , the drive Rabi frequency � must
satisfy � � g, σ f . While in trapped ions a two-qubit gate that
fulfills these requirements was proposed and experimentally
demonstrated [35–38], in superconducting transmon qubits
such a gate has remained elusive. The main difficulty in driv-
ing a transmon qubit with a large �, which is comparable to
the anharmonicity, is the increased leakage rate outside of the
computational basis.

Dressing superconducting qubits has been previously
demonstrated experimentally [39]. It was used for noise spec-
troscopy [9,40–42], was proposed for overcoming photon loss
to TLSs [43], was analyzed using flux drive of the fluxonuim
qubit [44], and was used to realize a two-qubit gate medi-
ated by a bus resonator [45,46]. However, to the best of our
knowledge, it has never been shown how to use spin locking
with a strong drive (� � g, σ f ) to protect superconducting
transmon qubits from dephasing during all relevant operations
and gates.

In this paper, we propose a method to incorporate a strong
spin locking drive into quantum computing architectures
based on superconducting transmon qubits, which in turn
enables high-fidelity one-qubit and two-qubit gates that are
protected from dephasing. Our proposed method is designed
to be incorporated into the coupler-based bus-below-qubit ar-
chitecture [47], and does not require working in the straddling
regime. Moreover, the proposed method is modular, which
means that using a chip that enables the bus-below-qubit
architecture, the experimentalist could select the qubits that
need protection, and spin lock only them. Our method does
not require the utilization of fixed-frequency transmons as in
Ref. [47], as it is not limited by the short dephasing time of
tunable transmons.
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(a) (b)

FIG. 1. Energy diagrams showing spin locking (a) of a two-level
system and (b) of a transmon, using a continuous drive with Rabi
frequency �. The two-level system is driven on-resonance to create
the protected dressed states |±〉. The transmon qubit must be driven
off-resonantly, with detuning δ > 0, to create the protected dressed
states |0̃〉 , |1̃〉. ω is the energy difference between the lowest two
levels of both systems, and η is the anharmonicity of the transmon.

The paper is organized as follows. First, in Sec. II, we
define the criteria that the drive needs to satisfy to reduce
sensitivity to phase noise from arbitrary sources. Then, in
Sec. III, we demonstrate the robustness of the spin-locked
qubit to phase noise in the idling regime, and discuss the
limitations of our method due to noise in the drive amplitude.
In Sec. IV, we explain how we used the full cosine model
of the transmon for gate simulations. We continue in Sec. V
with a recipe for performing one-qubit gates in the dressed
basis using the derivative-removal-by-adiabatic-gate (DRAG)
[48,49]. Then, in Sec. VI, we discuss the two-qubit gate, and
show how to implement the adiabatic ZZ gate in the dressed
basis using the bus-below-qubit architecture [47]. Then, in
Sec. VII we show that, in a surface code [50,51] context where
ancilla qubits are used to extract syndrome measurements
on data qubits, spin-locking only the data qubits is enough,
as the propagation of phase noise from the ancilla to the
data is suppressed. This reduces the experimental complexity
of driving both data and ancilla qubits, with only a small
change in the code’s threshold [52–54], and also avoids the
complication of frequent measurements of spin-locked qubits.
Lastly, in Sec. VIII, we show how to prepare and measure the
dressed states. In Sec. IX, we show how to detect leakage from
the computational dressed states. In Sec. X, we present the
discussion. Appendices present details omitted from the main
text.

II. SPIN LOCKING OF A TRANSMON

The difficulty in using spin-locking with transmon qubits
can be understood as follows. Suppose we realize the standard
spin-locking scheme by continuously driving the transmon on
resonance with the qubit frequency. For a two-level system,
that would make the dressed basis resilient to phase noise.
However, driving a transmon this way would also create pop-
ulations in the higher Fock states [42,55,56], which would
generally imply linear sensitivity to phase noise. While this
could be addressed using extensive coherent control, such
an approach would be experimentally challenging. Figure 1
shows the difference between standard spin locking for a
two-level system and the transmon case.

Therefore we start by deriving a more general condition for
minimizing phase-noise sensitivity of spin-locked supercon-
ducting qubits. The Hamiltonian of a transmon driven with
frequency ωd and Rabi frequency �, within the rotating-wave

approximation (� � ωd ) and in the rotating frame, is

H = −δa†a − η

2
a†2a2 + �

2
(a + a†). (1)

Here a† is a bosonic creation operator, η > 0 is the anhar-
monicity, and δ = ωd − ω, where ω is the qubit frequency.
Since η > 0, it is natural to order the dressed eigenenergies
(eigenstates) of this Hamiltonian {Ẽi} ({|ĩ〉}) from the highest
to the lowest. To have insensitivity to phase noise, we require
dẼ01
dδ

= 0 for Ẽ01 = Ẽ0 − Ẽ1. This translates to choosing δ

satisfying

〈0̃|a†a|0̃〉 = 〈1̃|a†a|1̃〉. (2)

We will refer to Eq. (2) as the clock condition [57] and
to |〈0̃|a†a|0̃〉 − 〈1̃|a†a|1̃〉| as the sensitivity measure (which is
proportional to | dẼ01

dδ
|). Under the clock condition, the dressed

qubit is insensitive to phase fluctuations to first order. We are
interested in finding a function δ(�) that, for any given �,
gives a detuning δ for which the clock condition holds. In
the limit η → ∞, we have δ(�) = 0, and the dressed states
are simply (|0〉 ± |1〉)/

√
2. Therefore, as long as � � η, we

expect to find small δ(�). Since conjugating H by a unitary
e−iπa†a results in � → −�, δ(�) must be an even function.
In particular, we find

δ(�)

η
= 1

2

(
�

η

)2

+ O
((

�

η

)4
)

. (3)

The term 1
2 ( �

η
)2 ensures that the |0〉 - |1〉 transition is driven

on resonance when the Stark shift �2

2η
of state |1〉 due to state

|2〉 is taken into account. By diagonalizing Eq. (1) under the
condition in Eq. (3), to second order in ε = �/η, we find

Ẽ0 = �

2
+ O(ε3),

Ẽ1 = −�

2
+ O(ε3),

Ẽ2 = η

(
−1 − 9

8
ε2 + O(ε3)

)
,

Ẽ3 = η

(
−3 − 37

24
ε2 + O(ε3)

)
. (4)

In Appendix A, we show the eigenstates of Eq. (1) under
Eq. (3), and the creation operator in the dressed basis. Fig-
ure 2(a) shows Ẽ01 as function of δ, for different �, while
δ = �2/(2η) is marked with black stars. We see that, for
|�| � 0.2η, δ = �2/(2η) approximates well the location of
the minimum, while for, larger |�|, higher orders in Eq. (3)
become important. Figure 2(b) shows the numerical values
of δ that fulfill the clock condition for various �, with good
agreement with Eq. (3) for small enough Rabi frequency.

We note that our method can also deal with phase noise
originating from another system that is dispersively coupled
to the qubit. We assume we can approximate the interac-
tion between the spin-locked qubit and the second system
as χa†ab†b + O(ε), where χ is the interaction strength and
b is the second-system annihilation operator. Therefore, to
zeroth order in ε, the clock condition [Eq. (2)] ensures pro-
tection from fluctuations in the second-system population. In
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FIG. 2. (a) Ẽ01 as a function of δ, for several Rabi frequencies
�. The numerical minima are marked with circles. The stars are the
analytical predictions (correct to order ε2) for the locations of the
minima: δ = �2/(2η) and Ẽ01 = �. (b) δ for the clock condition for
different �. The dashed line is a fit δ

η
= m( �

η
)2 to the points with

|�| � 0.03η, which yields m = 1
2 ± 0.002. (c) Tφ,ρ as function of δ,

as obtained for 1
f noise. The maximal Tφ,ρ scales linearly with �

(see inset, which shows T max
φ,ρ = Maxδ{Tφ,ρ} as a function of �). The

numerical results were obtained in (a)(b) with 10 Fock states and in
(c) with five Fock states. The precision in all of these results is better
than 1%.

Appendix B, we give more details regarding the validity of
this approximation. There are two prominent examples of this
type of noise: dephasing due to the readout resonator [7,8] and
dephasing due to TLSs [58]. Additionally, photon loss due to
a near-resonant TLS [3,59,60] could also be addressed by spin
locking [43], and specifically with our method, by choosing �

to avoid the resonance with the TLS.

III. COHERENCE TIME OF THE DRIVEN QUBIT

In Fig. 2(c), we study the dephasing time Tφ,ρ of the spin-
locked qubit in the presence of 1

f noise [61], i.e., we simulate

the Hamiltonian in Eq. (1) with a stochastic term p(t )a†a,
where p(t ) is pink noise. We set the variance of the noise such
that the dephasing time Tφ of the bare transmon is Tφ ≈ 700 ns
(which is in the range of realistic values for a tunable transmon
operating on the slope of the cosine potential [1]). We see
that spin locking improves the dephasing time by a factor
of 300–600. Moreover, we see that, for �/η = 0.2, 0.3, it is
important to set δ 
= 0 to reach the best performances. Let
us analyze the curvature of the spin-locked qubit energy gap
Ẽ01 = Ẽ0 − Ẽ1 in the presence of phase noise. Consider vary-
ing δ [see Eq. (1)] away from the clock condition [Eq. (2)].
By definition of the clock condition, the first derivative of Ẽ01

vanishes: dẼ01
dδ

= 0. In the limit of small �, the second deriva-
tive can be found by analyzing only state |0〉 and the shifted
state |1〉. In this basis, the Hamiltonian is �

2 σx − δ′ |1〉 〈1|,
where δ′ is the deviation of δ from the clock condition. By
moving to the σx basis and treating δ′ as a perturbation,
we arrive at d2Ẽ01

dδ′2 = 1/� + O(�0). Therefore increasing �

decreases the sensitivity to both frequency error and phase
noise. Figure 2(a) shows that d2Ẽ01

dδ2 indeed decreases with
increasing �, and the inset in Fig. 2(c) shows the resulting
linear relation between the maximal Tφ,ρ and �.

The bare dephasing time Tφ is inversely proportional to
the noise standard deviation σ f . As we have just derived,
Ẽ01 depends only quadratically—with coefficient 1/�—on
frequency shifts away from the clock condition. The dressed
qubit thus effectively feels reduced noise ∼σ 2

f /�. Therefore,
in the absence of noise in the drive amplitude, the dressed
dephasing time obeys Tφ,ρ ∝ �

σ 2
f

= (�Tφ )Tφ . Thus we expect

the improvement factor of 300–600 to increase even further
with Tφ (see Sec. III A for a discussion of noise in �). In
our example [Fig. 2(c)], Tφ = 700 ns is near the minimum for
known systems, and thus we expect this improvement factor
to increase in relevant experimental systems (in the absence
of noise on the drive amplitude).

A. Limiting factors for the coherence time of the driven qubit

Spin locking reduces the noise effects as follows: The
transition rate between the dressed states (T −1

1ρ ) is dominated
by the power spectrum of the noise at the dressed states’
gap frequency, S(� + O(( �

η
)3)), and the original T −1

1 . We

expect T −1
1 to dominate over S(� + O(( �

η
)3)) (due to small

noise at high frequencies in superconducting systems [62,63])
and therefore determine T −1

1ρ , which provides the spin-locked
qubit robustness against phase noise and thus high degree
of tunability as it relaxes the restriction of operating in the
vicinity of the sweet spot. The dephasing rate T −1

φ,ρ of the
spin-locked qubit will be dominated by two factors: (1) drive-
amplitude noise; and (2) frequency noise, most likely due to
flux noise (for tunable transmons) and TLSs [3–6] and the
above-discussed second-order phase noise. Regarding (1), the
fractional noise amplitude is usually of order 10−3 which, for
�
2π

= 50 MHz, corresponds to Tφ,ρ ≈ 125 µs. Although this is
a significant coherence limitation, due to its long correlation
time, amplitude noise will only contribute to the infidelity
at the level of ( Tg

125µs )2 (where Tg is the time of the gate),
which is below the amplitude-damping contribution. More-
over, the long correlation time of this noise allows for the
utilization of efficient decoupling techniques [30,32,64]. With
extra effort, the fractional noise could be reduced to the 10−4

level [56,65,66], which will increase the dephasing time to
Tφ,ρ ≈ 1250 µs.

IV. FULL MODEL: COSINE POTENTIAL

In this section, we describe the Hamiltonian that we used
for our gate simulations. Since we excite higher levels of
the transmon, in order to examine the properties of the spin-
locked qubit correctly, we need to take into account the full
quantum description of the potential:

Hf c = 4ECn2 − EJ cos(φ), (5)

where n is the number of Cooper pairs that cross the Josephson
junction and φ is the magnetic flux in normalized units, which
obey the canonical commutation relation [φ, n] = i. In Fig. 3,
we compare δ(�) that fulfills the clock condition in Eq. (2) for
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FIG. 3. δ(�) that solves Eq. (2) for each of the three models
listed in the legend. For the “with RWA” and “without RWA” models
(where RWA stands for the rotating-wave approximation), we took
10 Fock states. For the full cosine potential, we used 401 charge
states, diagonalized the system, and then projected to the ten lowest
eigenstates. The error in the graph is less than 10−5. The system pa-
rameters are ω

2π
= 5 GHz (corresponding to the transition frequency

of the two first eigenstates of Eq. (5) for the full cosine model) and
η

2π
= 300 MHz (corresponding to the transition frequency of the

excited and doubly excited states of Eq. (5) for the full cosine model).

the Hamiltonian in Eq. (1), for the same Hamiltonian without
the rotating wave approximation,

H = ωa†a − η

2
a†2a2 − � sin(ωdt )

(a − a†)

i
, (6)

and for the Hamiltonian in Eq. (5) with a drive,

Hf c = 4ECn2 − EJ cos(φ) − � sin(ωdt )n. (7)

We note that, for the two models that are time-dependent,
the time-independent dressed states {|ĩ〉} are not defined (with-
out utilizing the rotating-wave approximation). Therefore, for
these two models, we define the dressed eigenbasis as the
(Floquet) eigenstates of U (T ), the unitary evolution for time
T = 2π

ωd
under the time-dependent Hamiltonian. This implies

that all the numerical simulations (i.e., gates and ramp pulses)
in these models project the state onto the eigenbasis only
in integer multiples of the period T = 2π

ωd
. We see that, for

sufficiently small Rabi frequencies, all three models give the
same result. However, for larger Rabi frequencies, the models
deviate from each other as higher levels of the transmon get
excited. The main difference between the full cosine model
and the Kerr Hamiltonian [Eq. (1)] without the rotating wave
approximation is that the matrix elements of the charge opera-
tor in the full cosine model do not exactly follow the harmonic
oscillator pattern [67]. To account for the higher levels in
the driven system, in all of the gate simulations and ramp
pulses, the driven qubit was simulated with the Hamlitonian
in Eq. (7).

We should note that, for the chosen parameters, the devi-
ations in δ(�) between the models are on the order of a few
MHz or less. In an experimental setting, similar deviations
in the detuning are expected due to spurious couplings and

parameter drifts. While we continue—in the one-qubit-gate,
two-qubit-gate, and ramp simulations—using the full cosine
potential and the Floquet basis, in practice, the detuning
should be scanned to maximize the dephasing time, and the
clock condition from Eq. (1) likely provides a sufficiently
good starting point for such a scanning procedure.

V. ONE-QUBIT GATE

To implement a one-qubit rotation, we use the DRAG
scheme [48,49]. One of the challenges in designing one-
qubit gate is that there are no selection rules when using
microwave pulses that couple to the charge operator: even
in the limit � → 0, the annihilation operator in the dressed
basis is highly nontrivial: a = 1

2 [(|0̃〉〈0̃| − |1̃〉〈1̃|) + (|1̃〉〈0̃| +
|0̃〉〈2̃| − H.c.)]. See Appendix A for order-ε and order-ε2 cor-
rections to this expression for a. Nevertheless, since DRAG is
designed to avoid leakage, we found this method quite robust,
even for the spin-locked qubit. We start from the Hamiltonian
with the full cosine potential with a drive [Eq. (7)]. To induce
rotations on the dressed qubit’s Bloch sphere, we add to the
Hamiltonian in Eq. (7) the two DRAG terms

(−�′
x(t ) sin(ω′

dt ) + �′
y(t ) cos(ω′

dt ))n, (8)

where we used the pulse shape

�′
x(t ) = A

Tgñ01
(1 − cos(2πt/Tg)),

�′
y(t ) = − lD

η

d

dt
�′

x(t ), (9)

where Tg is the gate time. ñ01 = 〈0̃| n |1̃〉 is the matrix element
of the charge operator between the spin-locked qubit states
(this matrix element was introduced into the definition of �′

x
to follow the convention of the original DRAG formulation
[48,49]). A, lD, and the drive frequency ω′

d are free parameters
for the optimization. For � = 0.2η, we obtain an X gate with
average infidelity of 3 × 10−6 [68], for a gate time Tg = 10 ns.
Figure 4 shows population graphs and the pulse shape of the
gate. In order to show that our gate can be realized with higher
Rabi frequencies, we also simulated the gate for � = 0.3η.
Additionally, we simulated the X π

4
= eiσx

π
4 gate, where σx is

the Pauli X matrix, for � = 0.2η. These two results have
similar gate times and infidelities to the gate presented above
and can be seen in Appendix C. We note that, since the gate is
fast, we expect that noise on the spin locking drive amplitude
or the additional drive will not limit the gate fidelity under
standard assumptions on the noise (see Sec. III A).

VI. TWO-QUBIT GATE

The main difficulty in using spin locking with supercon-
ducting qubits is the realization of a two-qubit gate. There are
two challenges. First, the spin-locked qubit should stay inside
the computational basis, since only the first two levels are
protected. Second, there are no selection rules, as discussed
in Sec. V. This means that, if we couple two transmons trans-
versely, the charge-charge interaction would result in many
coupled dressed levels, making it difficult to target a spe-
cific transition. An adiabatic ZZ gate in the bus-below-qubit
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FIG. 4. X gate for the dressed qubit with � = 0.2η. (a) and
(b) show populations of the dressed (Floquet) eigenstates. Although
the points were taken only at integer multiples of 2π

ωd
, the graphs

show smooth curves for readability. The initial state is (a) |0̃〉 or
(b) |1̃〉. (c) shows the pulse shape, which is explained in Eq. (9).
The parameters for this simulation are ω

2π
= 5 GHz, η

2π
= 300 MHz,

A = −1.7π , lD = −1.084, and
ω′

d
2π

= 5031.485 MHz. δ is chosen to
be on the δ(�) curve. The gate time is Tg = 10 ns, and the average
infidelity is 3 × 10−6.

architecture [47] (see Fig. 5) overcomes both of these chal-
lenges by staying within the computational basis and not
relying on targeting a specific transition. Another advantage of
the adiabatic ZZ gate is its relative robustness to multibody er-
ror terms arising from cross-talk, as we show in Appendix K.
We choose to spin-lock one qubit only, for reasons that will be
explained below. In the adiabatic ZZ gate, by controlling the
flux on the coupler, we create an effective two-qubit Hamilto-
nian, in a frame that rotates with the qubit frequencies:

Heff = g̃zz(t )σ̃ 1
z σ 2

z , (10)

where σ̃ 1
z is the Pauli Z matrix in the dressed basis

of the driven qubit 1 (q1), while σ 2
z is the Pauli Z matrix of

the undriven qubit 2 (q2). We define g̃zz(t ) as

g̃zz(t ) = 1
4 {E0̃0(t ) − E0̃1(t ) − E1̃0(t ) + E1̃1(t )}, (11)

where Eĩ j (t ) is the instantaneous (Floquet) energy for the
dressed qubit in state |ĩ〉, the second qubit in state | j〉, and the

Q1 Q2

C

FIG. 5. Bus-below-qubit architecture. Q1 and Q2 are transmons
(could be fixed or tunable) that serve as the qubits, while C is a
tunable coupler. Q1 is driven continuously.

coupler is in state |0〉. To implement the unitary U = e−i π
4 σ 1

z σ 2
z ,

which is equivalent to a CZ gate up to single-qubit Z rotations,
we require

∫ Tg

0 g̃zz(t )dt = π
4 , where Tg is the time of the gate.

The Hamiltonian of the bus-below-qubit with spin
locking is

H = Hf c,1 − � · sin(ωdt )n1 + g1cn1
c − c†

i
ω2q†

2q2

− η2

2
q†2

2 q2
2 + g2c

(q2 − q†
2 )

i

(c − c†)

i

+ ωc(t )c†c − ηc

2
c†2c2 + g12n1

(q2 − q†
2 )

i
, (12)

where Hf c,1 is the Hamiltonian with the full cosine potential
for qubit 1 (the driven qubit) and n1 is the charge operator.
q2 (c) is the second-qubit (coupler) annihilation operator. The
two systems that are not driven are described as anharmonic
oscillators since we do not excite their higher levels. We
require our system to have a ZZ-free point (g̃zz = 0) where
we could park the coupler, and adiabatically tune the coupler
frequency ωc(t ) to increase |g̃zz| to achieve a fast CZ gate,
without encountering any avoided crossings. Although spin
locking reduces the direct, second-order, ZZ interaction be-
tween the two qubits, there still could be a relatively strong
ZZ that originates from the coupler and manifests as a third-
or fourth-order effect.

A. Pulse shape and gate parameters

In our simulations, we choose the spin-locked qubit param-
eters ω

2π
= 5 GHz [corresponding to the transition frequency

between the lowest two eigenstates of Eq. (5)] and η

2π
=

300 MHz [corresponding to 2ω minus the transition frequency
between the ground state and the second excited state of
Eq. (5)], the drive Rabi frequency � = 0.2η, the second-
qubit parameters ω2

2π
= 4.55 GHz and η2

2π
= 200 MHz, and

the coupler anharmonicity ηc

2π
= 200 MHz. The couplings are

g1c

2π
= 190 MHz, g2c

2π
= 200 MHz, and g12

2π
= −30 MHz. We

use the following pulse shape to control the frequency of the
coupler:

ωc(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωs + ω f s

(
1 −

(
1 − sin

(
πt
2Tr

))m)n
t < Tr

ω f Tr � t � Tf r

ωs + ω f s

(
1 −

(
1 − sin

(
π (t−Tf )

2Tr

))m)n
t > Tf r

, (13)

where ωs is the coupler frequency during idling (i.e., the ZZ-
free point), Tf is the flat-top time, and Tg = Tf + 2Tr is the
total gate time. The ramp time Tr , the final frequency ω f , and
the shaping parameters m and n are free parameters for the
optimization. Tf r = Tf + Tr and ω f s = ω f − ωs. We set the
gate time to be Tg = 100 ns. The parameters that were found
by the optimization are ω f

2π
= 4310.552 MHz, Tr = 49.975 ns

(corresponding to Tf = 0.05 ns, which makes it negligible in
this realization, and we keep it for generality), m = 2.554,
and n = 4.716. Figure 6(a) shows | g̃zz

2π
| for different coupler

frequencies, while Fig. 6(b) shows the phase-noise sensitivity
of qubit 1. Thus, if we set ωc

2π
≈ 3.58 GHz, we effectively

013217-5



ZUK, COHEN, GORSHKOV, AND RETZKER PHYSICAL REVIEW RESEARCH 6, 013217 (2024)

3500 4000

wc/2π [MHz]

100

10−1

10−2

10−3

10−4|g̃ z
z
/2

π
|[

M
H

z]

(a)

3500 4000

wc/2π [MHz]

10−2

10−1

se
n
si

ti
v
it
y

(b)

0 20 40 60 80 100

time [ns]

3750

4000

4250

w
c(

t)
/2

π
[M

H
z]

(c)

FIG. 6. (a) g̃zz
2π

as function of ωc
2π

. (b) The phase-noise sen-
sitivity as a function of ωc

2π
. For a thorough discussion of the

sensitivity measure in a hybridized system, see Appendix D 1.
(c) The frequency of the coupler as a function of time during the
two-qubit gate.

get g̃zz ≈ 0 and minimize the sensitivity, thus ωs
2π

≈ 3.58. By
tuning the coupler to ωc

2π
≈ 4.31 GHz [Fig. 6(c)], we achieve

| g̃zz

2π
| ≈ 2.5 MHz, without crossing any resonances along the

adiabatic path, which would have manifested themselves as
dips in Fig. 6(b). Moreover, spin locking enables us to work
outside of the straddling regime [1] and still effectively cancel
the ZZ interaction. Our CZ gate has an average infidelity of
2 × 10−7 (which in practice means that the gate is coherence
limited). Most of the infidelity comes from leakage, which is
in turn related to the adiabaticity of the process set by the
gate time. The population graph for the gate can be found
in Appendix D 3. We note that our gate fidelity is mainly
T1-limited. For transmons with T1 = 100 µs, we should expect
gate fidelity of ≈ Tg

T1
= 10−3. Since we expect that noise on

the spin locking drive amplitude will contribute to the fidelity
quadratically (see Sec. III A), it will not limit the gate fidelity.
Furthermore, in Sec. VII, we show that the gate is protected
from dephasing, including dephasing of the coupler, which
means that noise on the flux drive will not limit the gate
fidelity.

B. Gates with different parameters

We note that small variations in the couplings and transmon
frequencies due to fabrication errors would yield different ZZ
curves [Fig. 6(a)] and thus mainly impact the gate speed. In
addition, in our scheme, we demand g̃zz = 0 at the resting
(idling) point of the coupler. This requirement can be relaxed
if we allow ZZ interaction during idling that is sufficiently
small to have a negligible contribution to the overall infi-
delity compared to T1. This compromise can help in choosing
gate parameters. As an example, we simulated the gate with
g1c

2π
= g2c

2π
= 150 MHz (smaller, and hence potentially easier

to realize experimentally, than g1c

2π
= 190 MHz and g2c

2π
=

200 MHz used in the previous section) and g12

2π
= −5 MHz.

The rest of the parameters are the same as described in

Sec. VI A. Using these parameters, we realized a CZ gate (up
to single-qubit Z rotations) with average infidelity ≈2 × 10−5

(although this infidelity is two orders of magnitude larger
than for the parameters for the gate in Sec. VI A, once T1 is
taken into account, it will dominate the infidelity and both
gates will perform similarly). As in the gate of Sec. VI A,
most of the infidelity is attributed to nonadiabaticity er-
rors. We used the same pulse shape as in Eq. (13) with
Tg = 100 ns.

Additionally, one may ask how fast can we perform this
gate. As we argued above, the main fidelity limitation of the
gate is due to T1 processes. Therefore we can reduce the time
of the gate down to the point where the infidelity due to
nonadiabatic errors is comparable to the infidelity from T1. As
an example, we simulated the gate using the same couplings
as in Sec. VI A for Tg = 80 ns, with average infidelity of
3 × 10−4, which is comparable to infidelity from T1 during the
gate time with current state-of-the-art transmons. Details re-
garding the optimized parameters for the two additional gates
are given in Appendix D 2, and the population graphs are in
Appendix D 3.

VII. PHASE NOISE AND DATA VERSUS
ANCILLA ERRORS

We have just discussed a CZ gate with only one of the
qubits spin-locked, thus leaving the second qubit unprotected
from dephasing. We propose using our CZ gate so that the
spin-locked qubit (q1) is a data qubit in a surface code archi-
tecture, while the second qubit (q2) is an ancilla. This offers
two advantages: lower experimental complexity in (a) driving
only one qubit and (b) making frequent ancilla measurements
in the computational (not dressed) basis. Since ancilla phase
noise, which couples to Z2, commutes with the CZ gate, the re-
sulting Z2 errors will not propagate from the ancilla to the data
before and after the gate. Thus such Z2 errors can only result
in measurement errors. However, Z2 errors could potentially
propagate to the data qubit during the gate itself. To under-
stand this propagation, we simulate the gate while adding a
constant shift ζq†

i qi , i ∈ {1, 2} to the Hamiltonian. For each
Ts = 2π

ζ
, we calculate the average infidelity and extract the

underlying Pauli channel under the Pauli-twirl approximation
[69–75], see Figs. 7(a) and 7(c).

A. Protection of the one-qubit gate

For the one-qubit X gate (the same parameters as in Fig. 4),
Fig. 7(a) shows that the shift causes only a small error
(even for Ts = 0.2 µs). We also plot the line Pz(Ts) = (π Tg

Ts
)2,

which is the expected Z error probability under the Pauli-twirl
approximation without spin locking, see Appendix E. We
see that Pr(Z ) is ≈ 14 times smaller than Pz(Ts). Thus the
one-qubit gate is robust against such noise. We note that,
during the gates, state |2̃〉, which is not protected by
the clock condition, is also populated. Nevertheless, since
the gate is fast, and the population outside the compu-
tational basis is ≈10%, dephasing of the transmon will
not affect the fidelity of the gates significantly, as shown
above.
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FIG. 7. The average infidelity and the Pauli probabilities as a
function of Ts for a one-qubit X gate (a) and a two-qubit CZ gate
(c). We define leakage as 1 − ∑

p∈P Pr(p), for P the Pauli group.∑
p∈P\I Pr(p) + leakage is a rough estimate for the average infi-

delity, since the latter also accounts for unitary errors. (a) one-qubit X
gate with � = 0.2η and Tg = 10 ns. Pz(Ts ) is the Z error probability
without spin locking. (c) Two-qubit CZ gate. The gate parameters
appear in Sec. VI A. The curves where the shift was added to the
data (ancilla) qubit are named “data” (“ancilla”). (b) The threshold
for the depolarizing channel in surface code simulations for different
probabilities of added Z errors for three models: Z errors on the an-
cilla (blue) and on the data (green), and the equivalent measurement
error (red). For more details on (b), see Appendix G.

B. Protection of the two-qubit gate

For the two-qubit CZ gate (The same parameters as in
Sec. VI A), Fig. 7(c) shows that, when we shift the ancilla,
almost all of the infidelity can be explained by Z2 errors.
When we shift the data, we see that the infidelity is ≈ 25
times lower than in the ancilla case, meaning that spin locking
significantly improves data qubit robustness to phase noise. In
Appendix F, we show that, because the hybridization of the
coupler with the other qubits is small, adding dephasing to the
coupler has an insignificant effect on the gate.

C. Phase noise in the surface code

Lastly, we show that the surface code is more robust
to ancilla Z errors than to data Z errors. We simulate the
surface code using Stim [76] and extract the threshold for
three different models. In all of the models, we apply a
depolarizing channel after every one-qubit operation and
before every measurement, and a two-qubit depolarizing
channel after every CZ, with the same error rate. For the
“Z-ancilla” (“Z-data”) model, we also apply after each CZ
a Pauli Z with probability Pr(Z ) to the ancilla (data) qubit.
In the “readout” model, before each ancilla measurement,
we apply a Pauli X with probability preadout = 4Pr(Z )(1 −
Pr(Z ))3 + 4Pr(Z )3(1 − Pr(Z )), to account for both cases
of one or three Z errors that lead to a measurement error.
Figure 7(b) shows that the “Z-ancilla” model and the “read-
out” model give the same result, while the “Z-data” model

has a much lower threshold [an order of magnitude lower than
the other models for Pr(Z ) ≈ 0.03]. Thus, even if the ancilla
qubit experiences strong phase noise, the code would still have
a reasonable threshold with respect to other sources of noise.

VIII. STATE PREPARATION AND MEASUREMENT
IN THE DRESSED BASIS

We propose preparing (measuring) the dressed states by
using standard preparation (measurement) in the computa-
tional basis and ramping up (down) the spin-locking drive
to dress (undress) the qubit state. Another option, which we
discuss in Appendix J, is to measure the dressed qubit while
it is still driven [77,78]. To engineer efficient ramps between
the undressed and dressed computational basis states, we use
Krotov’s method [79]. We used an ansatz of a DRAG-inspired
pulse as a starting point for Krotov’s optimization. The control
Hamiltonian is taken to be of the form

(−�x(t ) sin(ωdt ) + �y(t ) cos(ωdt ))n. (14)

We define Tr as the ramp time. During ramp-up, �x(0) =
�y(0) = 0, �x(Tr ) = �, and �y(Tr ) = 0. During ramp-down,
the initial and final conditions are reversed. Here � and ωd are
the final values for our spin-locking continuous drive. Using
these pulses, we reached average infidelity below 10−4 with a
50 ns ramp time. The population graphs during the pulse can
be seen in Appendix H.

Since optimal coherent control methods could generate
pulse envelopes with high frequencies, it is possible to in-
crease the time of the ramp pulse and achieve smoother pulses.
For example, with Tr = 200 ns, we can map between the
bare and the dressed computational basis with infidelity below
10−4, see Appendix H for the population graphs. That, in turn,
will make the qubit more sensitive to phase noise during the
ramp. However, since we suggest driving only the data qubits
in a surface code architecture, these errors are important only
for state preparation and measurement, at the beginning and
the end of the full quantum error correction experiment (or
algorithm). For the state preparation, any such error could be
detected using an error detection cycle of the surface code
(before starting the algorithm). For the measurement, since we
suggest doing a ramp down and then a standard measurement
along the bare σz axis, phase noise will not affect the final
result. T1 processes during the ramp down would increase
the measurement error for longer ramp time, but we expect it
to be comparable to gate errors using current state-of-the-art
hardware.

IX. LEAKAGE DETECTION AND CONVERSION
TO ERASURE

In Sec. II, we described how the spin-locked qubit is pro-
tected from the fluctuations of the population in a dispersively
coupled resonator. We can further exploit this property by
engineering a small dispersive shift of the resonator when the
spin-locked qubit is in the computational basis and a strong
shift when the spin-locked qubit leaked to the |2̃〉 state. In the
dispersive regime, we have the Hamiltonian

H =
∑

i

Ẽi|ĩ〉〈ĩ| + ωbb†b +
∑

i

g̃i|ĩ〉〈ĩ|b†b, (15)
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where b is the annihilation operator for the resonator, Ẽi are
the eigenenergies of the spin-locked transmon, and |ĩ〉 are the
eigenstates of the spin-locked transmon. g̃i are the cross-Kerr
shifts corresponding to different levels of the spin-locked
transmon. We simulated this system with the following pa-
rameters: the qubit frequency is ω

2π
= 5 GHz and the resonator

frequency is ωb
2π

= 6.1 GHz. The qubit anharmonicity is η

2π
=

300 MHz. The drive detuning is set to be δ = δ(�) + g2

w−ωb
,

to account for the Stark shift from the resonator. To make
sure that the contribution from higher levels of the spin-
locked qubit is taken correctly into account, the simulation
was done using the full cosine potential. Figure 8(a) shows
g̃i − g̃0 for i ∈ {1, 2}. We see that, although spin locking re-
duces significantly the relative shift between levels |0̃〉 and |1̃〉
(i.e., g̃1 − g̃0 ≈ 0), we still have a relatively strong shift for
level |2̃〉. In other words, |g̃2 − g̃i| � |g̃1 − g̃0| for i ∈ {0, 1}.
Thus the resonator could potentially distinguish between the
qubit subspace and the leakage subspace, but not within the
qubit subspace. This feature could be used to detect leakage,
by sending a pulse into the resonator that is resonant with
ωb + g̃2.

Another option, which we show in Fig. 8(b), is to choose
δ to completely nullify g̃1 − g̃0, for any given � [56]. This
way, we could have potentially perfect leakage detection for
any Rabi frequency. For this section only, we denote this δ

as δ(�)g̃2 and the standard δ that reduces sensitivity to phase
noise as δ(�)SL. Figure 8(b) shows that we can indeed find
a δ (i.e. δ(�)g̃2 ) that nullifies g̃1 − g̃0 while still resulting
in a strong shift when the spin-locked qubit is in state |2̃〉.
Figure 8(c) shows δ(�)SL and δ(�)g̃2 . We should note that
using δ(�)g̃2 means that the spin-locked qubit is less protected
from phase noise, and therefore there is typically a trade-off
between phase-noise protection and the ability to detect leak-
age. An interesting feature that can be seen both in Fig. 8(b)
and in Fig. 8(c) is that, for � ≈ 0.4η, δ(�)g̃2 = δ(�)SL and
there is thus no trade-off. Therefore we can potentially use

the leakage detection as a heralded erasure error in the surface
code [80].

X. DISCUSSION

In this work, we have introduced an efficient method to
incorporate spin locking into gate realizations with super-
conducting qubits and showed that our methods could be
used with different experimentally feasible parameters. As
we explained in the introduction, our method is modular, so
the experimentalist could choose which data qubit to spin
lock, depending on experimental considerations and the Tφ

of the qubit. Although our method could be used with fixed
transmons as well as tunable transmons, the latter are usually
more Tφ-limited and may therefore show larger improvements
in gate fidelities. Additionally, to understand the effect of
errors on the surface code, we suggested using a finer measure
than the infidelity to represent the noise channel accurately.
Specifically, by using the general Pauli channel, we designed
a method that exploits the asymmetry between the phase
noise on the protected data qubit and the unprotected ancilla
qubit.

An important question that could be asked is how classical
cross-talk due to the continuous microwave drive would affect
neighboring qubits. Since we suggest spin locking only the
data qubit in a surface code architecture, the cross-talk due
to the drive would only shift the frequency of the ancilla
qubit, which is dispersively coupled to the driven data qubit.
Moreover, as we showed in previous sections, since both the
data and the ancilla qubits could be tunable (where the data
is protected, and the ancilla suffers from phase noises), the
added degree of freedom would help reduce even further any
cross-talk effects.

While we have focused on a specific two-qubit gate [47],
our method is general and could potentially be incorporated
into a variety of two-qubit transmon gates. Furthermore, be-
cause changing various control parameters in time introduces
time-dependent Stark shifts, a potential improvement that we
leave for future research is to change the drive frequency
(or control the flux for tunable transmons) during one-qubit
gates, two-qubit gates, and ramp pulses, see Appendix I. Ad-
ditionally, the built-in ability to detect leakage reduces leakage
errors to erasures, which could remove the need to use a
leakage reduction unit in the surface code. Moreover, we can
utilize the fact that the Hamiltonians [Eq. (12)] of overlapping
qubit pairs commute to perform the corresponding gates si-
multaneously.

We expect that the projected efficiency of spin locking
[Fig. 2(c)] could push the coherence time to the 2T1 limit,
thus making the fidelities T1-limited only. This could motivate
the development of superconducting qubits with long T1 and
short Tφ . Additionally, this will favor the utilization of tunable
transmons over fixed ones in future architectures, and make
the frequency allocation task simpler.
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APPENDIX A: DIAGONALIZATION OF THE
SPIN-LOCKED QUBIT HAMILTONIAN

In this section, we present additional details regarding
the eigenstates spin-locked transmon. Recall that we label

the eigenvalues and eigenstates of Eq. (1) in the main text
as Ẽi and |ĩ〉, respectively, with i = 0, 1, . . . The eigen-
states |ĩ〉 are the columns of the change-of-basis unitary
matrix U , and the matrix of the annihilation operator in
the dressed basis can be written as U †aU , where a is the
matrix of the annihilation operator in the original Fock
basis.

We find that the first five rows of the first five columns of
U , to second order in ε, are

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
2

ε2

2
√

2
0 0

1√
2

− ε2

4
√

2
− 1√

2
+ ε2

4
√

2
− ε√

2
ε2

4
√

6
0

ε
2 − ε2

4 − ε
2 − ε2

4 1 − 11ε2

32 −
√

3ε
4

ε2

10
√

3
ε2

4
√

3
− ε2

4
√

3

√
3ε
4 1 − 43ε2

288 − ε
3

0 0
√

3ε2

20
ε
3 1 + O(ε2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O(ε3). (A1)

We further find that the first five rows of the first five columns of U †aU , to second order in ε, are

U †aU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1+ε
2 − 3ε2

8
−1−ε

2 − ε2

8
2−ε

2 − 7ε2

32
6ε−5ε2

8
√

3
ε2

10
√

3
1−ε

2 + ε2

8
−1+ε

2 + 3ε2

8
−2−ε

2 + 7ε2

32
−5ε2−6ε

8
√

3
−ε2

10
√

3

0 0 − ε
4

144−11ε2

48
√

3
ε

2
√

3

0 0 − ε2

80
√

3
− ε

12
288−23ε2

144

0 0 0 − 11ε2

90 − 2ε
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ O(ε3). (A2)

As we mentioned in the main text, the main implication
of Eq. (A2) is the absence of selection rules. We see that the
computational levels (i.e., the first two levels) are coupled to
the rest of the states. This means that gates that use a trans-
verse coupling, such as one-qubit gates that couple microwave
drive to the charge operator, or two-qubits gates that use a
charge-charge coupling, could be more prone to leakage. Thus
more care is needed to eliminate leakage during such gates.

APPENDIX B: TRANSVERSE COUPLING

In this section, we show how the clock condition in Eq. (2)
in the main text also implies protection from population
fluctuations of a system that is dispersively coupled to the
spin-locked qubit, as we mention in the main text. Assume
there is a harmonic system or a TLS (two-level system)
that is transversely weakly coupled to a transmon (i.e. via
charge-charge interaction). Using the Kerr Hamiltonian for
the transmon, within the rotating-wave approximation, we get

H = ωa†a − η

2
a†2a2 + �

2
(aeiωd t + H.c.) + g(a†b + H.c.)

+ ωbb†b, (B1)

where b is the creation operator for the parasitic system, either
a harmonic system or a TLS, ωb is the frequency of the
parasitic system, and g is the coupling strength between the
systems.

Moving to a rotating frame with respect to the drive fre-
quency, we get

HI = − δa†a − η

2
a†2a2 + �

2
(a + a†) + g(a†b + H.c.)

− b†b, (B2)

where δ = ωd − ω and  = ωd − ωb. Without spin locking,
in the limit of large |ωb − ω|, the effective interaction would
be gzza†ab†b. Therefore, to lowest nonvanishing order in g



and �
η

, spin locking also deals with this interaction. A more
detailed analysis requires moving to the dressed basis of the
driven transmon, so that the Hamiltonian becomes

HI =
∑

ñ

Ẽn|ñ〉〈ñ| − b†b + g(a†b + H.c.), (B3)

where, as in the main text, {Ẽi} ({|ĩ〉}) are the dressed energies
(states). Thus it is apparent that in the limit |Ẽn − Ẽm − | �
g, where |m̃〉 and |ñ〉 are the dressed states which are coupled
to the dressed states in the dressed computational subspace,
we could approximate the transverse coupling as a cross-Kerr
interaction g̃zz(|0̃〉〈0̃| − |1̃〉〈1̃|)b†b, where g̃zz � gzz. Figure 9
shows the exact ZZ strength for two types of systems, i.e., g̃zz

for the driven qubit coupled to a resonator and coupled to a
TLS. The point where the drive reaches zero shows the bare
gzz, i.e., g̃zz(� = 0) = gzz. We see a significant reduction of
the ZZ interaction strength in the presence of spin locking,
i.e., when � is away from zero. We note that due to the Stark
shift that is induced by the second system, the qubit’s fre-
quency is effectively ω → ω + g2

w−ωb
. To account for that, we
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| for the spin-locked qubit coupled to a TLS (blue) or
a resonator (green). The coupling is g

2π
= 70 MHz for the resonator

and g
2π

= 50 MHz for the TLS. The qubit’s frequency is ω

2π
= 5 GHz

and the second system’s frequency is ωb
2π

= 6.1 GHz. The qubit’s
anharmonicity is η

2π
= 300 MHz. The drive’s detuning is set to be

δ = δ(�) + g2

w−ωb
. To make sure that the contribution from higher

levels of the spin-locked qubit is taken correctly into account, the
simulation was done using the full cosine potential (see Sec. IV).
The numerical diagonalization presented here, as well as all of the
numerical simulations presented in the main text and in the supple-
mental material, were done using QUTIP [81].

change the drive’s detuning accordingly: δ = δ(�) + g2

w−ωb
,

where δ(�) is the function described in the main text, and
ω is the original qubit frequency.

1. Transverse coupling with a harmonic system

Let us now analyze transverse coupling to a harmonic
oscillator in more detail. Starting from Eq. (B3) and using
second-order perturbation theory, we find that the energy
Ej̃k of the | j̃〉 dressed basis state and Fock state |k〉 of the
resonator is

Ej̃k = g2
∑

ñ

|α j̃,ñ|2
(Ẽ j − Ẽn) − 

k + |αñ, j̃ |2
(Ẽ j − Ẽn) + 

(k + 1),

(B4)

where we defined αñ, j̃ = 〈ñ|a| j̃〉. Thus g̃zz is the part that
depends linearly on the Fock state k:

g̃zz = g2

2

∑
ñ

|α0̃,ñ|2
(Ẽ0 − Ẽn) − 

+ |αñ,0̃|2
(Ẽ0 − Ẽn) + 

− |α1̃,ñ|2
(Ẽ1 − Ẽn) − 

− |αñ,1̃|2
(Ẽ1 − Ẽn) + 

. (B5)

Further assuming that  is the largest energy scale in the
system, i.e., || � |Ẽ0 − Ẽn|, |Ẽ1 − Ẽn|, we obtain, to first
order in 1/:

g̃zz ≈ g2

2

∑
ñ

|α0̃,ñ|2 − |α1̃,ñ|2 − |αñ,0̃|2 + |αñ,1̃|2. (B6)

Let us now recall the clock condition from Eq. (2):

〈0̃|a†a|0̃〉 = 〈1̃|a†a|1̃〉 ⇒∑
ñ

α∗
ñ0̃αñ0̃ =

∑
ñ

α∗
ñ0̃αñ0̃ ⇒

∑
ñ

|αñ0̃|2 − |αñ1̃|2 = 0. (B7)

Furthermore, since the dressed states are normalized, we
have

〈0̃|a†a|0̃〉 = 〈1̃|a†a|1̃〉 ⇒
〈0̃|aa†|0̃〉 = 〈1̃|aa†|1̃〉 ⇒∑

ñ

|α0̃ñ|2 − |α1̃ñ|2 = 0. (B8)

Therefore we see that the clock condition from Eq. (2)
in the main text implies that g̃zz = 0 to first order in 1/.
However, the converse is not true. Moreover, it can be easily
seen that higher-order terms in 1/ do not generally vanish
as a result of Eq. (2), meaning that the condition || � |Ẽ0 −
Ẽn|, |Ẽ1 − Ẽn| is crucial for ensuring that Eq. (2) implies the
vanishing of g̃zz.

2. Transverse coupling with a two-level system

Now we assume the transmon is coupled to a two-level
system (TLS). The Hamiltonian is

H = ωa†a − η

2
a†2a2 + �

2
(aeiωd t + H.c.)g(a†σ− + H.c.)

+ ωσ

2
σz. (B9)

Defining  = ωd − ωσ and using the same procedure, we
find the energies Ej̃↑ and Ej̃↓ of the | j̃〉 dressed basis state
combined with the |↑〉 and |↓〉 states, respectively, of the two-
level system:

Ej̃↓ = g2
∑

ñ

|αñ, j̃ |2
(Ẽ j − Ẽn) + 

, (B10)

Ej̃↑ = g2
∑

ñ

|α j̃,ñ|2
(Ẽ j − Ẽn) − 

. (B11)

Therefore the ZZ interaction strength is

g̃zz = g2

4

∑
ñ

|αñ,0̃|2
(Ẽ0 − Ẽn) − 

− |αñ,1̃|2
(Ẽ1 − Ẽn) − 

− |α0̃,ñ|2
(Ẽ0 − Ẽn) + 

+ |α1̃,ñ|2
(Ẽ1 − Ẽn) + 

. (B12)

Again, assuming || � |Ẽ0 − Ẽn|, |Ẽ1 − Ẽn|, we find, to
first order in 1/,

g̃zz ≈ g2

4

∑
n

−|αñ,0̃|2 + |αñ,1̃|2 − |α0̃,ñ|2 + |α1̃,ñ|2. (B13)

Thus the clock condition from Eq. (2) in the main text again
implies the vanishing of gzz to first order in 1/.
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FIG. 10. X gate for the dressed qubit with � = 0.3η. (a) and
(b) show populations of the dressed (Floquet) eigenstates. Although
the points were taken only at integer multiples of 2π

ωd
, the graphs

show smooth curves for readability. The initial state is (a) |0̃〉 or
(b) |1̃〉. (c) shows the pulse shape, which is explained in Eq. (9).
The parameters for this simulation are ω

2π
= 5 GHz, η

2π
= 300 MHz,

A = −3.2π , lD = 7.88, and
ω′

d
2π

= 5157.761 MHz. δ is chosen to be
on the δ(�) curve. The gate time is Tg = 20 ns, and the average
infidelity is 5.53 × 10−5.

APPENDIX C: ONE-QUBIT GATE:
ADDITIONAL INFORMATION

In this section, we present the simulation results for the X
gate with � = 0.3η and the eiσx

π
4 gate with � = 0.2η. The X

gate simulation and details can be seen in Fig. 10 and similarly
for the eiσx

π
4 gate (Fig. 11). Both of the gates are fast (20

and 10 ns correspondingly) and with low average infidelity
(5.53 × 10−5 and 5.02 × 10−6 correspondingly).

APPENDIX D: TWO-QUBIT GATE

In this section, we provide more details regarding the two-
qubit gate and show the evolution of the populations during
the gate.

1. Sensitivity measure in a hybridized system

To understand how the gate performs under phase noise,
we want to track the sensitivity measure, as shown in Fig. 6.
As we explained in Appendix B, due to Stark shifts from the
other system (in this case, q2 and the coupler) the detuning
of the drive δ should be shifted accordingly. Moreover, due
to hybridization, higher-order corrections to the eigenstates
would create a difference between the sensitivity measure in
different configurations of the coupled systems. As an ex-
ample, denote the hybridized state by |ĩ jk〉, where q1 is in
state |ĩ〉, q2 in state | j〉, and the coupler in state |k〉. Due to
hybridization, the sensitivity measure where q2 and the cou-
pler are in the ground state, |〈0̃00|a†a|0̃00〉 − 〈1̃00|a†a|1̃00〉|,
will not be equal to the sensitivity measure where q2 is in
the first excited state and the coupler is in its ground state,
|〈0̃10|a†a|0̃10〉 − 〈1̃10|a†a|1̃10〉|.
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FIG. 11. X π
4

gate for the dressed qubit with � = 0.2η. (a) and
(b) show populations of the dressed (Floquet) eigenstates. Although
the points were taken only at integer multiples of 2π

ωd
, the graphs

show smooth curves for readability. The initial state is (a) |0̃〉 or
(b) |1̃〉. (c) shows the pulse shape, which is explained in Eq. (9).
The parameters for this simulation are ω

2π
= 5 GHz, η

2π
= 300 MHz,

A = −1.29π , lD = −0.62, and
ω′

d
2π

= 5080.096 MHz. δ is chosen to
be on the δ(�) curve. The gate time Tg = 10 ns, and the average
infidelity is 5.02 × 10−6. The gate was optimized for Z rotations
in the dressed basis, i.e., the gate is X π

4
(θ1, θ2) = eiθ1 σ̃z X π

4
eiθ2 σ̃z for

some θ1, θ2, where σ̃z is the Pauli Z matrix in the dressed basis. The
difference between X π

4
and X π

4
(θ1, θ2) can be taken into account in

software during circuit compilation [1].

We stress that we want the driven qubit to be protected
from arbitrary sources of phase noise, regardless of the config-
uration of the rest of the system. Since most of the contribution
of the other coupled systems to the driven qubit is described
by the Stark shift (which can be taken into account when
choosing δ(�)), the different sensitivities in different config-
urations would give similar results in terms of gate fidelity.
Additionally, in an experimental context, in order to minimize
the phase noise sensitivity originating from different noise
mechanisms, a more experimentally accessible metric would
be to maximize T2,ρ over the choice of δ.

In light of this discussion, we decided to choose a symmet-
ric sensitivity measure between q2 computational states:

1
2 {|〈0̃00|a†a|0̃00〉 − 〈1̃00|a†a|1̃00〉|

+ |〈0̃10|a†a|0̃10〉 − 〈1̃10|a†a|1̃10〉|}. (D1)

As explained above, this choice is not unique and gives
similar results to the cases when we only take into account the
Stark shift or choose only one of the computational states of q2

to define the sensitivity measure. We leave for future research
the quest to find the optimal sensitivity measure for hybridized
systems; such a measure will depend on how the systems
coupled to the driven qubit are used during the computation.

We point out that, during the idling stage (i.e., when we
are not applying a two-qubit gate), we would like to have
both minimal gzz and minimal sensitivity. Thus we choose the
drive frequency wd and the idling coupler frequency ωc(0) to
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FIG. 12. two-qubit gate operation graphs for g1c
2π

= g2c
2π

=
150 MHz and g12

2π
= −5 MHz. The figures are the same as in Fig. 6.

minimize both quantities simultaneously. In particular, we use
the steps in the following iterative approach to find ωd and
ωc(0). (1) We choose wd to be on the δ(�) curve, including
the Stark shift. (2) We find wc that minimizes g̃zz. (3) We
corrected wd to minimize the sensitivity in Eq. (D1). (4)
Returned to step 2 until convergence.

2. Details regarding gates with different parameters

In this section, we provide details regarding the simulation
of the gates in Sec. VI B.

Figures 12(a) and 12(b) show g̃zz and sensitivity curves for
the case of smaller couplings than in Sec. VI A. We see that,
if we set the coupler at ωc

2π
≈ 2680 MHz, we get small |g̃zz |

2π
≈

5 kHz, while an operation point of ωc
2π

≈ 4340 MHz would

still yield relatively strong ZZ interaction of |g̃zz |
2π

≈ 2.5 MHz,
as in Fig. 6(a). We used the same pulse shape as in Eq. (13)
with Tg = 100 ns, ωs

2π
= 2680 MHz, ω f

2π
= 4312 MHz, Tr =

49.952 ns, m = 2.906, and n = 1.777. We achieved an aver-
age infidelity of ≈2 × 10−5.

Similarly, we simulated a faster gate (Tg = 80 ns) with the
same couplings as in Sec. VI A, see Fig. 13. The optimized
parameters are ωs

2π
= 3580 MHz, ω f

2π
= 4310.27 MHz, Tr =

39.95 ns, m = 3.044, and n = 2.298. We achieved an average
infidelity of ≈3 × 10−4.

3. Populations graphs of the two-qubit gate

In this section, we show the population graphs for the two-
qubit gate simulations. Figures 14–16 show the population
graphs for the gate described in Sec. VI A, the gate with
smaller couplings and the fast gate described in Appendix D 2
correspondingly.

APPENDIX E: PAULI-TWIRL APPROXIMATION (PTA)
FOR Z ERRORS

In the main text, we use Pz(Ts) = (π Tg

Ts
)2 as the expected

Z-error probability under the Pauli-twirl approximation (PTA)
in the case of a bare transmon. In this section, we will derive
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FIG. 13. two-qubit gate operation graphs for Tg = 80 ns. The
couplings and the description of the subfigures are the same as in
Fig. 6.

this equation. Suppose that we have a frequency shift ζ = 2π
Ts

,
so that the Hamiltonian in a frame rotating with the qubit
frequency is

H = ζa†a − η

2
a†2a2, (E1)

where η is the transmon anharmonicity. Using a two-level
approximation, we arrive at

H = ζ

2
σz, (E2)

where σz is the Z Pauli matrix. Thus the time evolution opera-
tor is

U = e−iHt = e−it ζ

2 σz = cos (tζ/2) − i sin (tζ/2)σz. (E3)

Using PTA amounts to neglecting all the off-diagonal terms
of the channel, which means that

�(ρ) = UρU † →
PTA

cos2 (tζ/2)ρ + sin2 (tζ/2)σzρσz. (E4)

Setting the time t = Tg to be the time of the gate and
assuming π

Tg

Ts
� 1, we arrive at

�(ρ)PTA ≈ (1 − (πTg/Ts)2)ρ + (πTg/Ts)2σzρσz, (E5)

which concludes the derivation.

APPENDIX F: TWO-QUBIT GATE WITH DEPHASING
ON THE COUPLER

In this section, we study the performance of the two-qubit
gate (Sec. VI A) under phase noise on the coupler, using the
same method that we use to analyze noise in Fig. 7 in the main
text. As in the main text, we add a constant shift ζc†c, where
ζ = 2π

Ts
and c is the annihilation operator of the coupler, and

show in Fig. 17 the average infidelity and the Pauli channel
probability Pr(Z2) on qubit 2 (qubit 1 is the data qubit, while
qubit 2 is the ancilla) under the Pauli-twirl approximation. All
the other Pauli errors are below 10−6. As in the main text, the
Twirled-Pauli channel probability is calculated by numerically
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FIG. 14. State populations during the CZ gate presented in Sec. VI A in the main text. We use the basis |Q̃1, Q2,C〉, where Q stands
for qubit, C stands for coupler, and Q1 states have a ˜ on top to remind us that qubit 1 spin-locked. The states presented are the hybridized
states of the system that correspond to tensor product states |Q̃1, Q2,C〉. Although the points were calculated only at integer multiples of 2π

ωd
,

the graphs show smooth curves for readability. The initial state is (a) |0̃00〉, (b) |0̃10〉, (c) |1̃00〉, or (d) |1̃10〉. The gate was optimized for
single-qubit Z rotations in the dressed basis for the spin-locked qubit and in the bare basis for the nondriven qubit. The actual gate is therefore
eiθ1 σ̃ 1

z eiθ2σ 2
z CZeiθ3 σ̃ 1

z eiθ4σ 2
z for some θ1, θ2, θ3, θ4, where σ̃ 1

z is the Pauli Z operator for the dressed qubit and σ 2
z is the Pauli Z operator for the

nondriven qubit. The extra single-qubit Z rotations can be taken into account in software during circuit compilation [1].

building the process matrix (χ ) [82] of the gate (including the
shift ζc†c), where χ is written in Pauli basis for qubits 1 and
2. Then, we extract the Twirled-Pauli channel probabilities by
taking the diagonal values of χ . The parameters of the gate
are the same as in Sec. VI A. We see that the gate infidelity
due to coupler dephasing is small (≈10−4) and that most
of the infidelity is explained by the dephasing of the ancilla
(Z2 error). The contribution to the overall infidelity is small
because of the relatively small hybridization of the coupler
with the other qubits (which is around 1%), see Fig. 14. The
reason that the ancilla is affected more by the dephasing of
the coupler is that the hybridization of the ancilla is stronger,
since its frequency is closer to the coupler frequency [see also
Fig. 14(b)]. Thus, since most of the infidelity is attributed to

the dephasing of the ancilla, the surface code is less affected
by it, as explained in the main text.

APPENDIX G: CALCULATING THE THRESHOLD
IN A SURFACE CODE

In this section, we provide more details regarding the
surface code threshold simulations we show in Fig. 7(b) in
the main text. Our method to extract the threshold follows
Refs. [80,83]. For the convenience of the reader, we repro-
duce here our noise model from the main text. We simulate
the surface code using STIM [76] and extract the threshold
for three different models. In all of the models, we ap-
ply a depolarizing channel after every one-qubit operation
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FIG. 15. State populations during the CZ gate for g1c
2π

= g2c
2π

= 150 MHz and g12
2π

= −5 MHz, that is described in Appendix D 2. The rest
of the figure is similar to Fig. 14.

and before every measurement, and a two-qubit depolariz-
ing channel after every CZ, with the same error rate. For
the “Z-ancilla” (“Z-data”) model, we also apply after each
CZ a Pauli Z with probability Pr(Z ) to the ancilla (data)
qubit. In the “readout” model, before each ancilla mea-
surement, we apply a Pauli X with probability preadout =
4Pr(Z )(1 − Pr(Z ))3 + 4Pr(Z )3(1 − Pr(Z )), to account for
both cases of one or three Z errors that lead to a measurement
error.

For each Pr(Z ), we extract the threshold pth as follows.
As shown in Fig. 18, our data consist of the logical error
probability PL at various distances d and various probabilities
of the depolarizing channel p. First, for every d and every p,
we compute a new scaled quantity x = (p − pth)dμ, where pth

and μ are to be determined.
Then we fit all data points [for this Pr(Z )] to

PL = A + Bx + Cx2, (G1)

where pth, A, B, C, and μ are free parameters for the fitting
and are independent of distance d . As in Ref. [83], we use
d = 7, 9, and 11 so as not to have small-distance effects.
Figure 18 shows the fit for Pr(Z ) = 0.01. All of the points
we present in Fig. 7(b) in the main text originated from a fit to
Eq. (G1). For each point in Fig. 7(b), the fit for each distance
separately, using the same parameters for all distances (that
were extracted using the scaled parameter x), gives R2 � 0.99.

APPENDIX H: RAMP-UP AND RAMP-DOWN PULSES

In this section, we provide more details regarding the ramp-
up and ramp-down processes. We describe the pulses we use
and show the evolution of state populations during the gate. In
our simulations, we use the full cosine potential and thus use
the Floquet states of the system as our eigenbasis. Therefore
the ramp-up and ramp-down pulses create a mapping between
the Floquet states with the drive off (in which case the Floquet
states are just the bare transmon states) and with the drive
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FIG. 16. State populations during the fast (Tg = 80 ns) CZ gate, that is described in Appendix D 2. The rest of the figure is similar to
Fig. 14. We see that the gate suffers more from nonadiabatic errors than the longer gates.

on (in which case the Floquet states are the spin-locked qubit
states). We denote the instantaneous Floquet states (energies)
for each point in time during the ramp pulse as {|î〉} ({Êi}).
These states are adiabatically connected to {|i〉}, the states of
the transmon.

As we describe in the main text, in order to prepare the cor-
rect computational Floquet states, we used Krotov’s method
[79] with the Hamiltonian in Eq. (5) and the DRAG-inspired
pulse as a starting point for the optimization. The control
Hamiltonian is taken to be of the form

(−�x(t ) sin(ωdt ) + �y(t ) cos(ωdt ))n. (H1)

We define Tr as the ramp time. During ramp-up, �x(0) =
�y(0) = 0, �x(Tr ) = �, and �y(Tr ) = 0. During ramp-down,
the initial and final conditions are reversed. Here � and ωd are
the final values for our spin-locking continuous drive.

Figures 19(a) and 20(a) show the pulses we found for
ramp-up and ramp-down, with Tr = 50 ns, respectively. We

also plot in Figs. 19(b) and 20(b) the instantaneous Floquet
energies, and in the corresponding (c) and (d) subfigures the
instantaneous Floquet-state populations during the process.
This means that, for each point in the graphs, we found
Floquet energies and states that correspond to the current
value of �x and �y in the pulse. We mark the instantaneous
states and energies with a ˆ sign. So, during ramp-up, for
example, if we start with |0〉, then |0̂(0)〉 = |0〉 and |0̂(Tr )〉 =
|0̃〉 (recall that the ˜ denotes the Floquet states of the driven
Hamiltonian).

Looking at the instantaneous populations and energies in
Figs. 19 and 20, we can understand better what the optimized
pulse sequence does. It starts by increasing the amplitude of
the spin-locking drive �x to increase the instantaneous energy
gap. Then, it recovers the population using the DRAG-like
pulse �y.

Additionally, Figs. 21 and 22 show the same figures for
Tr = 200 ns. We see that the pulses are much smoother, as
expected.
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FIG. 17. The average infidelity and the Pauli channel probability
Pr(Z2) (here qubit 2 is the ancilla) as a function of Ts of the coupler
(the coupler frequency is shifted by 2π/Ts), during the CZ gate that
is presented in the main text. All the other Pauli channel probabilities
for both qubits are smaller than 10−6 and are not shown.

APPENDIX I: SPIN LOCKING IN THE CASE OF
TIME-DEPENDENT TRANSMON FREQUENCY

In this section, we show that spin locking works seamlessly
even if transmon frequency is time-dependent.

Consider a situation when the transmon frequency has
known time dependence ω(t ). Such a situation may arise,
for example, if tuning a coupler alters the frequency of an
adjacent transmon. To spin-lock such a transmon, we drive
it as follows:

H = ω(t )a†a − η

2
a†2a2 + �

2
(aeiφ(t ) + H.c.), (I1)
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FIG. 18. An example for a simulation of the surface code for
the ‘‘Z-ancilla” model, with Pr(Z ) = 0.01. The probability of the
depolarizing channel is p, and the logical error probability is PL .
The stars are the values of the numerical simulation, and the 95%
confidence band of the fit is comparable to the thickness of each line.
The parameters of the fit (which are independent of distance d) are
pth = 0.00523 ± 0.00001 and μ = 0.89 ± 0.02.

0 20 40

time [ns]

−25

0

25

50

p
u
ls

e
[M

H
z]

(a)

Ωx

Ωy

0 20 40

time [ns]

−300

−200

−100

0

a
d
ia

b
a
ti

c
e
n
e
rg

ie
s

[M
H

z] (b)
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FIG. 19. Ramp-up pulse for Tr = 50 ns. (a) The pulse envelopes
�x (t ) and �y(t ), as defined in Eq. (H1). (b) The instantaneous Flo-
quet energies. [(c) and (d)] The population of instantaneous Floquet
states starting from (c) the ground state or (d) the first excited state of
Eq. (5). Although the points were evaluated only at integer multiples
of 2π

ωd
, the graphs show smooth curves for readability.

where the phase φ(t ) is chosen such that φ̇(t ) − ω(t ) = δ(�)
at all t , where δ(�) satisfied the clock condition in Eq. (2) in
the main text.

To analyze this Hamiltonian, we go into an interaction
picture defined by U = eiφ(t )a†a, so that the interaction-picture
state is |ψ̃〉 = U |ψ〉 and the interaction-picture Hamiltonian
is

H̃ = iU̇U † + UHU † (I2)

= (ω(t ) − φ̇(t ))a†a − η

2
a†2a2 + �

2
(a + H.c.) (I3)

= −δa†a − η

2
a†2a2 + �

2
(a + H.c.), (I4)

which is exactly Eq. (1) in the main text.
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FIG. 20. Ramp-down pulse for Tr = 50 ns. The figure is the same
as in Fig. 19.
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FIG. 21. Ramp-up pulse for Tr = 200 ns. The figure is the same
as in Fig. 19.

This means that, as long as we precisely know the time-
dependent frequency ω(t ) of the transmon and can precisely
engineer the drive to have the desired phase φ(t ), spin
locking works seamlessly even if transmon frequency is time-
dependent.

APPENDIX J: MEASUREMENT OF THE DRESSED QUBIT

In the main text, we assume that the dressed qubit is mea-
sured by first ramping down the dressing fields. In this section,
we show how to do the measurement of the dressed qubit
without turning off the dressing.

Suppose that our spin-locked transmon is coupled to a
one-sided cavity. The Hamiltonian of the system in the Kerr
approximation and in the rotating-wave approximation is

H = ωa†a − η

2
a†2a2 + �

2
(aeiωd t + H.c.)

+ ωcb†b + g(a†b + H.c.), (J1)

0 100 200

time [ns]

0

20

40

60

p
u
ls

e
[M

H
z]

(a)

Ωx

Ωy

0 100 200

time [ns]

−300

−200

−100

0

a
d
ia

b
a
ti

c
e
n
e
rg

ie
s

[M
H

z] (b)
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Ê1(t)
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FIG. 22. Ramp-down pulse for Tr = 200 ns. The figure is the
same as in Fig. 19.

where a is the annihilation operator for the transmon (as in
the main text) and b is the annihilation operator for a cavity
of frequency ωc. Here g is the coupling between the transmon
and the cavity. The Heisenberg-Langevin equation of motion
for b is

ḃ = −κ

2
b − √

κbin + i[H, b], (J2)

where bin is the input field and κ is the cavity linewidth. The
input-output relation expresses the output field bout in terms of
the input field and the cavity field:

bout = bin + √
κb. (J3)

Moving, as in the main text, into a frame rotating with
frequency ωd , we get

HI = − δa†a − η

2
a†2a2 + �

2
(a + a†) − δ′b†b

+ g(a†b + ab†), (J4)

where δ = ωd − ω and δ′ = ωd − ωc.
Let’s assume that κ � g � �. We then start by diago-

nalizing the dressed transmon to obtain dressed eigenstates
|ĩ〉 and eigenenergies Ẽi with i = 0, 1, 2, . . . , where i = 0, 1
correspond to the dressed qubit insensitive to phase fluctua-
tions to first order. Recall that the energies are sorted from
the highest to the lowest. The Hamiltonian can therefore be
written as

HI =
∑

i

Ẽi |ĩ〉〈ĩ| − δ′b†b + g(a†b + H.c.), (J5)

where the original transmon annihilation operator a, when
written in the dressed basis, has all entries being generically
nonzero.

Let’s now choose the cavity frequency ωc such that δ′ =
Ẽ1 − Ẽ2, i.e. we assume the cavity is resonant with the |1̃〉 →
|2̃〉 transition. Let’s now send into the cavity (via bin) weak
light resonant with the cavity. Let’s further assume that g �
Ẽ1 − Ẽ2 and that all other transitions involving dressed states
|0̃〉 and |1̃〉 (i.e., Ẽ0 − Ẽ j>0 and Ẽ1 − Ẽ j>2) differ in frequency
from Ẽ1 − Ẽ2 by an amount much larger than g. This allows us
to keep in the Hamiltonian only one resonant term generated
by a†:

HI =
∑

i

Ẽi |ĩ〉〈ĩ| − δ′b†b + (g̃ |2̃〉〈1̃| b + H.c.), (J6)

where g̃ = g 〈2̃| a† |1̃〉.
If the dressed transmon is in state |0̃〉, then the cavity

essentially does not see the transmon (because we assumed
all transitions involving |0̃〉 are far off-resonance from the
cavity). Therefore incoming light bin scatters essentially from
an empty cavity. Changing the frequency of the rotating
frame from ωd to ωc and treating b, bin, and bout as complex
numbers describing classical coherent states, the resulting
equations are

ḃ = −κ

2
b − √

κbin, (J7)

bout = bin + √
κb. (J8)
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Solving the first equation in steady state for b and plugging
into the second equation, we find

bout = −bin, (J9)

which shows that the light picks up a phase of π by reflecting
off an empty resonant cavity.

Now suppose the dressed transmon is in state |1̃〉. Since
we assumed that the |0̃〉 - |1̃〉 transition is far off-resonance
from the cavity, the presence of the cavity in the vacuum
state |0〉 does not affect the dressed qubit. On the other hand,
when we probe the cavity with weak light, we need to con-
sider the Hilbert space associated with the one-photon Fock
state |1〉 of the cavity. Since we assumed g � κ and since
〈2̃| a† |1̃〉 is of order 1, we have g̃ � κ and should there-
fore first diagonalize the g̃ interaction between the dressed
transmon and the cavity. The coupling g̃ resonantly cou-
ples |1̃〉 |1〉 to |2̃〉 |0〉 resulting in eigenstates |1̃〉 |1〉 ± |2̃〉 |0〉
shifted by ±g̃. Since g̃ � κ , the light that is resonant with
an empty cavity can thus no longer enter the cavity. Treat-
ing again b, bin, and bout as complex numbers describing
classical coherent states, we therefore have b = 0, which in
turn means

bout = bin, (J10)

which shows that the light does not pick up the π phase if it
scatters off an off-resonant cavity.

By detecting the phase of the scattered light, we can there-
fore detect whether the dressed transmon is in state |0̃〉 (which
gives a π phase shift) or in state |1̃〉 (which gives no phase
shift).

APPENDIX K: FOUR-BODY TERMS DUE TO ZZ
CROSS-TALK IN A NONCOMMUTING GATE

REALIZATION

In this section, we will explain how four-body terms (i.e.,
Pauli strings with weight four) could arise in a surface code
context due to ZZ cross-talk, and why the adiabatic ZZ gate
is robust to such errors. In this discussion, we assume there
is some residual ZZ cross-talk between any two neighboring
qubits. Although this cross-talk has already been studied nu-
merically [84], here we show a qualitative simplified analysis
that concentrates on calculating the error probabilities under
the Pauli-twirl approximation. The structure of the surface
code enables performing some of the gates simultaneously,
thus reducing time overhead, as can be seen in Ref. [85].
As a consequence, there are “chains” of gates that operate
simultaneously and reside on the diagonals of the code, as
can be seen in the bright yellow area in Fig. 23, which shows
an example of a distance-3 rotated surface code [86]. Due
to ZZ cross-talk in the system, the links in the chains are
connected through the residual interaction. Figure 23 shows
such an example chain. The ancilla qubit X1 is connected
via a gate (orange arrow) with data qubit D1, which is in
turn connected via a ZZ interaction (curved purple arrow)
with ancilla qubit X2, which is in turn connected via a gate
(orange arrow) with data qubit D2. We will limit our discus-
sion only to chains of four qubits, for reasons that will be
clear below.

D1

D2

X2

X1

FIG. 23. An example for a distance-3 surface code. The red cir-
cles are the data qubits, and the blue (green) are the ancilla qubits
associated with the X (Z) stabilizers. The relevant qubits are in the
bright yellow area. The orange arrows represent a gate between the
qubits, while the curved purple arrow represents the ZZ cross-talk.

Assume that the gate interaction is a Hermitian operator
G, the gate strength is ξ , and the ZZ strength is gzz. Assume
that we want to realize a CZ gate, so that the gate unitary is
e−itξG = CZ for some predetermined time t . We can model
the chain Hamiltonian as

H = ξGX1,D1 + gzzσ
D1
z σ X2

z + ξGX2,D2, (K1)

where GX1,D1 is the gate interaction between X1 and D1
(similarly for X2 and D2). Therefore the time evolution of the
system is

U (r) = e−itH = e−iθ (GX1,D1+GX2,D2+rσ D1
z σ X2

z ), (K2)

where we introduced r = gzz

ξ
and θ = ξ t being the rotation

angle of the gate. Here r = 0 would correspond to two ideal
CZ gates. For example, in the adiabatic ZZ gate with G = ZZ ,
the rotation angle is θ = π

4 . On the other hand, in a gate
that utilizes a full rotation around the |02〉 state using G =
|11〉〈02| + H.c., the rotation angle is θ=π . Assuming r�1,
we wish to understand the error channel that arises due to
the cross-talk. Thus, to factor out the desired dynamics, we
multiply U (r) by U −1(r = 0), where U (r = 0) = U0 is the
ideal unitary. Thus

U −1
0 U = eiθ (GX1,D1+GX2,D2 )e−iθ (GX1,D1+GX2,D2+rσ D1

z σ X2
z ). (K3)

Assuming we could expand U −1
0 U using a Taylor expan-

sion in r, and denoting H0 = GX1,D1 + GX2,D2, we get

U −1
0 U ≈ 1 − iθr

∫ 1

0
eiθ (1−α)H0σ D1

z σ X2
z e−iθ (1−α)H0 dα

= 1 − iθr
∫ 1

0

∞∑
m=0

(iθ (1 − α))m

m!
Lm

H0
(σ D1

z σ X2
z )dα,

(K4)
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where L0
H0

(A) = A and Lm
H0

(A) = [H0, L(m−1)
H0

(A)] for any op-
erator A and m � 1 [87], and the integral comes from the
derivative of the exponential map [88]. To calculate the result-
ing Pauli error channel under the Pauli-twirl approximation,
we need to calculate

pi jkl =
∣∣∣∣ 1

24
Tr

(
σ

X1
i σ

D1
j σ

X2
k σ

D2
l U −1

0 U
)∣∣∣∣

2

, (K5)

where pi jkl is the probability for a σ
X1
i σ

D1
j σ

X2
k σ

D2
l error under

the Pauli-twirl approximation, where σm ∈ {I, σx, σy, σz}. If
we want to consider only errors that have a probability of
order r2 (which is the first nonvanishing order), it is clear
from Eqs. (L4) and (K5) why we need to take into account
in this model no more than 4 qubits. Any interaction that
involves more than four qubits under this model results in
using two different ZZ links (two purple arrows in Fig. 23),
and thus would result in error probabilities that are O(r3).
From Eq. (K3), it can be seen that, if [H0, σ

D1
z σ X2

z ] = 0, then
U −1

0 U = e−irθσ D1
z σ X2

z . Thus the only nontrivial error would be
pIZZI , and the maximal weight of any erroneous Pauli string
under this analysis throughout the full surface code would be
two (up to order r2, since four qubits may not be sufficient
at higher order). On the other hand, if [H0, σ

D1
z σ X2

z ] 
= 0, that

would not be necessarily true, and also three- or four-body
error probabilities could arise up to order r2, as can be seen
from Eq. (K4).

As an example, assume G = |11〉〈02| + H.c. and θ = π ,
i.e., the gate is a full rotation around the |02〉 state to create a
CZ gate. Thus, using Eq. (K5), we get, up to order r2,

pZZZZ = 9π2

4096
r2. (K6)

Moreover, the total amount of errors is 1 − pIIII =
2519π2

4096 r2, but pIZZI = 1849π2

4096 r2. That means that approximately
25% of the error probability is distributed on different non-
trivial Pauli strings with weights up to 4. This example shows
that gates that commute with the cross-talk operator would
limit the creation of multibody error terms, which could be
harmful, especially for low-distance codes, where two of these
four-body Pauli strings are supported on data qubits. As future
research, a more thorough and numerical analysis could be
made to understand the impact of these errors on the code.
We note that the adiabatic ZZ gate commutes with the noise
operator only in the effective Hamiltonian picture, while the
full model would still give rise to such multibody errors, but
those are expected to be smaller than in the case where the
native gate does not commute with ZZ in the effective picture.
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