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Observation of weak localization in dual-gated bilayer MoS2
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We investigate the magnetoresistance of a dual-gated bilayer MoS2 encapsulated by hexagonal boron nitride.
At low magnetic fields (|B| < 0.5 T), we observe a negative magnetoresistance, which we identify as the weak
localization effect. We determine both the phase coherence length and mean free path as a function of electron
density and displacement field. Both characteristic lengths show a similar monotonic increase with electron
density, while they are not affected by the displacement field. We further investigate the dephasing mechanism
by measuring the temperature dependence of the phase coherence length. Our results suggest that when only
the lower spin-orbit split bands (K ↑, K ′ ↓) contribute to transport is Coulomb scattering the dominant source
of decoherence, while intervalley scattering seems not to play a relevant role in this regime. This observation is
consistent with the picture of spin-polarized valleys (spin-valley locking), where the intrinsic spin-orbit coupling
protects the spin states, rather than introducing an additional dephasing mechanism as in other materials.
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I. INTRODUCTION

In the diffusive transport regime, the magnetoresistance
(MR) of electronic systems deviates from Boltzmann theory
and displays an enhancement at zero field [1]. This mag-
netoresistance peak is a quantum effect that originates from
time-reversed paths of electrons interfering constructively in
scattering loops. This effect is referred to as weak localization
(WL) [2].

Transition metal dichalcogenide (TMDC) monolayers have
no inversion symmetry in the lattice sites [3,4]. Furthermore,
spin-orbit coupling is particularly strong in the valence band,
but also present in the conduction band. For example, molyb-
denum disulfide (MoS2) hosts an intrinsic spin-orbit coupling
(SOC) that behaves as an out-of-plane Zeeman field and pins
the two spins with opposite directions in K and K′ valleys
[5,6]. In contrast to other materials (e.g., Bernal stacked
bilayer graphene, bilayer or trilayer MoS2), the K-valley elec-
trons of different layers behave as independent systems owing
to the weak interlayer coupling [7,8].

In the presence of SOC effects, the spin of an electron
rotates as it is scattered between self-crossing paths, yielding
a destructive interference and a lower zero-field resistivity
called weak antilocalization (WAL) [9,10]. The study of
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W(A)L in two-dimensional (2D) systems in a magnetic field
perpendicular to the 2D plane allows us to assess some fun-
damental characteristics of the charge carriers, such as phase
coherence and scattering rates as well as the strength of SOC
[11–14].

Previous investigations about the W(A)L in monolayer
[15], bilayer [16], and few-layer MoS2 samples [17,18] lack
a dual-gated device structure. In addition, the influence of
carrier population of different spin-split bands in the presence
of W(A)L has not been presented yet. Also, in light of the lim-
itation that the Hikami-Larkin-Nagaoka (HLN) model [9] is
insufficient to allow interpretation of the spin splitting due to
the intrinsic SOC in TMDC [12], caution might be warranted
when extracting spin relaxation lengths from the spin-orbit
scattering in the HLN model.

In this paper, we show that electron transport in a dual-
gated bilayer MoS2 can be entirely described by WL, without
taking into account spin-orbit coupling. We observe a pro-
nounced WL peak when the electrons populate a single layer
(top layer), while it is not present when both layers are occu-
pied. We do not observe WAL, suggesting a minor effect of
SOC on quantum interference. We simplify the fitting model
by neglecting the SOC term in the HLN model and describe
our data with only two parameters, namely, the phase coher-
ence length and elastic mean free path. We determine the
mean free path from the zero-field conductivity and extract
the phase coherence length by fitting the weak localization
peak, taking the phase coherence length as the only fitting
parameter. Based on our evaluation, the phase coherence
length at a temperature of 1.3 K exceeds 100 nm for densities
>7×1012 cm−2 and it shows a linear dependence on the
density. On the other hand, when tuning the displacements
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FIG. 1. (a) Device schematics. The bilayer MoS2 is encapsulated between two h-BN flakes, with metallic contacts (Au) as the source/drain
(S/D) and dual gates (Au as top gate and graphite as bottom gate). (b) Phase diagram for the population of the carriers in different bands as
a function of top and bottom gates. The diagram is reconstructed from the measurement of the magnetoresistance at T = 1.3 K and B = 7 T
presented in Ref. [19]. The white-color regime refers to the insulating state. The colored regimes (from left to right, labeled by 1–4) indicate
the population of the lower band in the top layer, upper band in the top layer, lower band in the bottom layer, and upper band in the bottom
layer, respectively. (c) σxx − ns (top subfigure) and Le-ns (bottom subfigure) curves at T = 1.3 K and B = 0 T, based on the forms σ = nseμ
and Le = σ h̄/e2√4π/(gvns ) (where gv = 2 is the valley degeneracy in each spin-valley locked band). A kink in σxx-ns can be identified by the
intersection of the two linear fits. The onset of mobility in the upper spin-split band correspond to 3.8×1012 cm−2. (d) Normalized MR as a
function of B and ns populated in the first layer at T = 1.3 K. The overlaid linecut shows the normalized MR at ns = 3.3×1012 cm−2.

field while keeping the density constant, we do not observe
any evident dependence. The temperature dependence of the
phase coherence length shows T −α with α ≈ 0.5 in the single-
band regime. All these observations hint towards Coulomb
interaction as the main dephasing mechanism and a spin re-
laxation length much longer than the phase coherence length
in 2D MoS2.

II. RESULTS AND DISCUSSION

Our device schematics is shown in Fig. 1(a). The bilayer
MoS2 sample is encapsulated by two hexagonal boron nitride
flakes (h-BN) as the dielectric layers, which allows us to
tune the total carrier density (ns) from a top gate (Au) and a
bottom gate (graphite) by the parallel-capacitance model with
the form of ns = 1

e (CBVBG + CT VTG), where CB = ε0ε/dB and
CT = ε0ε/dT refer to the capacitances of the bottom BN and
top BN layers, respectively (ε0 and ε are the vacuum permit-
tivity and the dielectric constant ∼3.3, respectively; dB and dT

refer to the thicknesses of the bottom and top BN layers); VBG

and VTG refer to the back-gate and top-gate voltages, respec-
tively. The details of the device fabrication and measurement
are shown in Appendix A. Each MoS2 layer contributes with
two spin-split bands, where the spin and valley are locked
because of the intrinsic spin-orbit coupling [5]. As reported
in our previous work [19], the onset of the population in each
spin-split band is determined from Shubnikov–de Haas (SdH)

oscillation frequencies. To highlight the population of the
carriers in each band as a function of both gates, a schematic
phase diagram is presented in Fig. 1(b). The four colored
regimes (from left to right) indicate the population of the
carriers from the top layer (labeled by 1 and 2) to the bottom
layer (labeled by 3 and 4) as the dual gating effect increases.

The carrier density dependence of the conductivity
(σ ) and mean free path (Le) at zero field is shown in
Fig. 1(c). The longitudinal conductivity σxx is given by σxx =
ρxx/(ρxx

2 + ρxy
2), where ρxx and ρxy are the measured lon-

gitudinal and Hall resistivities, respectively (see more details
in Appendix B). We extract σxx ≈ 0.17 mS (over four times
of e2/h) at the lowest carrier density we could reach for the
WL analysis (ns = 2.3×1012 cm−2). An approximate linear
correlation between σxx and ns exists before and after a kink
point (at about ns = 3.8×1012 cm−2). The kink refers to the
onset of mobility (μ) in the upper band, which arises from the
onset of the population of carriers. The Le-ns curves at various
displacement fields (Dd ) show nearly identical patterns that
can be described by a power law. Therefore, we conclude that
the mean free path does not depend on the displacement field.
Figure 1(d) shows a map of the normalized magnetoresistance
[�MR = MR(B) − MR(B = 0 T)] as a function of B and ns

in the regime where only one layer is populated. At base
temperature, clear zero-field peaks in the MR are observed
in the entire single-layer regime (from ns = 2.3×1012 cm−2

to ns = 8.0×1012 cm−2), demonstrating the relevance of the
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quantum interference effect. The origin of the positive MR at
large field in the single-band regime is discussed separately in
our previous work [19].

We turn our attention to analysis of W(A)L. First, we
present the HLN model that includes the phase coherence,
spin orbit, and elastic scattering in the form [1,9,10]

�σ (B) = e2

2πh

[
ln

(
Bφ

B

)
− 	

(
1

2
+ Bφ

B

)]

+ e2

πh

[
ln

(
BSO + Be

B

)
− 	

(
1

2
+ BSO + Be

B

)]

+ 3e2

2πh

[
− ln

(
4/3BSO + Bφ

B

)

+ 	

(
1

2
+ 4/3BSO + Bφ

B

)]
,

where Bφ , BSO, Be refer to the field scales for the phase coher-
ence, spin-orbit coupling, and elastic scattering, respectively.
�σ (B) = σ (B) − σ (B = 0 T) represents the normalized con-
ductivity in the unit of e2/πh. 	 is the digamma function.

To understand the role of SOC on WAL, we simulate
the turnover from WL to WAL by varying BSO based on
the above HLN model. To satisfy the single-band structure
required in the HLN model [12], we choose the density ns =
3.3×1012 cm−2, for which we experimentally establish that
the carriers occupy only the lower spin-orbit split bands in
the top layer. In the simulation, a turnover from WL to WAL
appears only if the length scale satisfies LSO < Lφ , where
LSO and Lφ are the spin relaxation length and phase coher-
ence length, respectively (see Appendix B). However, in the
experiment, we do not observe WAL throughout the entire
tunable range of the carrier density (from 2.3×1012 cm−2

to 2.0×1013 cm−2). The crossover from WL to WAL was
observed at high carrier densities (∼1.0×1014 cm−2) with an
ionic liquid gate [18], and it was shown that the spin-orbit
length diverges at densities lower than 5.0×1013 cm−2 [18].
In our case, the absence of WAL implies LSO > Lφ and LSO �
Le. Consequently, the values of LSO deduced from WL are
less reliable than those deduced from WAL [18]. Moreover,
our observation suggests that the intrinsic SOC in MoS2 has
a minor consequence for quantum interference of conduction
electrons, in agreement with the reported surprisingly long-
lived and coherent spin dynamics in monolayer MoS2 [20,21],
and so it has little impact on the shape of the magnetoconduc-
tivity if LSO � Le, Lφ [2].

Therefore, we simplify the HLN model by leaving out the
SOC term, which allows us to accurately evaluate Lφ . By sub-
stituting Bφ = h̄/(4eLφ

2) and Be = h̄/(4eLe
2), we describe

the WL only with Lφ and Le in the form

�σ (B) = N
e2

πh

[
	

(
1

2
+ h̄

4eBLφ
2

)
− 	

(
1

2
+ h̄

4eBLe
2

)

+ 2ln

(
Lφ

Le

)]
,

where 	 is the digamma function and N is a coefficient that
implies the number of populated bands in the system. If the
electrons are populated in the single band and the spin-orbit
scattering is weak, N is equal to 1.

Next, it should be noted that the accuracy of fitting the
WL depends on the magnetic field scale. Specifically, L∅ is
determined by the curvature of the MR near zero field, while
Le is determined by the larger field scale Be = h̄/(2eLe

2),
where the WL disappears completely [2]. We observe a pos-
itive MR background at large magnetic field (consistent with
the observations in former studies [15,16]) that we attribute
to the strong localization effect [19]. The presence of this
background limits the magnetic field range that we consider
for the fits. As a result, Be cannot be accurately determined, so
we determine Le from the zero-field conductivity and use the
phase coherence term as the only fitting parameter to extract
Lφ . We select the MR section with the strongest curvature near
zero field (where both SOC and elastic scattering play a minor
role) with a scale Bφ = h̄/(4eLφ

2) [see Fig. 2(a)] and fix
Le = σ h̄/e2√4π/(gvns) with each ns for the fitting. Several
examples of our fitting curves are shown in Fig. 2(b). As ns in-
creases from 3.3×1012 cm−2 (lower band) to 4.3×1012 cm−2

(upper band), there is a prominent increase of the slope at
the field range within Bφ , revealing a general trend that Lφ

increases with ns.
We then plot the calculated Le and extracted Lφ from

the HLN model as a function of ns. As shown in Fig. 2(c),
both Lφ and Le present a positive correlation with ns. In
the double-band regime, we compare the estimated values of
Lφ with N equal to 1 and 2 (for degenerate double bands),
where qualitatively good fits are obtained in both cases for
the carrier density dependence, despite marginal differences
in the extracted Lφ . Also, the two subbands are not degenerate
due to the SOC. Once the upper spin-split band is populated,
additional scattering sources such as intravalley scattering are
involved. In such case, N should be less than 2 but the exact
value is unknown. Therefore, in the following text, we keep
the value of N equal to 1 for the consistency of our fitting. Cer-
tain limitations of our model for the double-band regime will
be drawn at the end of the section. Lφ increases from ∼60 nm
at ns = 3.3×1012 cm−2 to ∼105 nm at ns = 7.4×1012 cm−2,
which is among the largest reported for MoS2 [15–18]. This
is attributed to a higher sample quality, as confirmed by the
large electron mobility μ = 2300 cm2/Vs [19]. The ratio of
the coherence length over mean free path (Lφ/Le) decreases
from above 4.0 at ns < 3.6×1012 cm−2 to below 2.0 at ns >

6.3×1012 cm−2, where the WL peak disappears. Indeed, the
WL effect is expected to disappear if the coherence length is
on the order of the scattering length. In Fig. 2(d), we test the
role of the displacement field on the phase coherence length.
The displacement field can be used to tune the SOC strength
in material with an in-plane SOC such as Rashba [22,23].
However, in our case, the displacement field plays a minor role
in both Lφ and Le at fixed ns in both single-band and double-
band regimes. The weak tunability by the displacement field
suggests that extrinsic (Rashba-type) SOC, if present, plays
only a marginal role.

We finally investigate the dephasing mechanism by fitting
the Lφ as a function of temperature. Figure 3(a) shows the tem-
perature dependence of �σ (B) at ns = 3.0×1012 cm−2. As
temperature increases from 1.3 to 5.0 K, an obvious decrease
of the slope of �σ (B) within the interval |B| < Bφ is observed
due to the reduced Lφ , whereas Le remains roughly con-
stant in the temperature range considered in our experiment
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FIG. 2. (a) Symmetrized magnetoconductivity �σ (B), where �σ (B) = [σ (B) + σ (−B)]/2−σ (B = 0 T), in unit of e2/πh at ns =
3.3×1012 cm−2 and T = 1.3 K. The phase coherence field (Bφ) is scaled in the region with the strongest curvature. (b) Examples about
the fitting of �σ (B) curves for both the single-band and double-band regimes. The black lines at the range of Bφ are the fits using our redefined
HLN model. (c). Top subfigure: Lφ and Le as a function of ns. The dashed line represents the fitting result with N equal to 2 in the double band
regime as the lower limit for the extracted Lφ . Bottom subfigure: Lφ/Le as a function of ns. Data measured at fixed Dd = 1 V/nm and T = 1.3
K. (d) Lφ and Le as a function of Dd at ns = 2.5×1012 cm−2 (single band) and ns = 5.4×1012 cm−2 (double bands), measured at T = 1.3 K.
The error bars in (c) and (d) are measured by a confidence interval of 99.7%.

FIG. 3. (a) �σ (B) curves at different temperatures (from 1.3 to 5.0 K) in the lower band regime. (b) Le-T curves at different ns from
2.3×1012 cm−2 (lower band) to 6.6×1012 cm−2 (upper band). (c) Lφ-T curves at different ns. The red solid lines are the fits using Lφ ∝ T −α .
(d) The extracted α as a function of ns.

013216-4



OBSERVATION OF WEAK LOCALIZATION IN … PHYSICAL REVIEW RESEARCH 6, 013216 (2024)

[see Fig. 3(b)]. A weak temperature dependence of Le is
expected when the resistance is dominated by impurity scat-
tering. The slight decreasing trend with increased temperature
for all ns is attributed to the metallic phase of MoS2. In most
cases, the Le-T curve appears to be nonmonotonic at T < 2 K.
In fact, such an effect is more prominent the lower the den-
sity (ns � 3.6×1012 cm−2), which hints at other spurious
effects such as strong localization. Figure 3(c) depicts the
Lφ-T curves at different ns, which can fit into a power law in
the form of Lφ ∝ T −α , where α is a constant that depends on
the dephasing mechanism. We find that α is close to 0.5 when
only the lower spin-orbit split band (K ↑, K ′ ↓) is occupied,
whereas it decreases to around 0.35 when also the upper band
(K ↑, K ′ ↓) is filled with electrons [as shown in Fig. 3(d)]. In
the low carrier density regime, the α estimated by our fitting
approach hints towards e-e interaction as the main source
of decoherence [24]. In the higher carrier density regime,
our model is mainly limited by three factors. First, the exact
number of channels (or value of N) in our fitting model is
unknown because of the two nondegenerate spin-split bands.
Second, additional dephasing sources such as intervalley scat-
tering might play a role on the estimated value of Lφ . Third,
the change of the scale in Lφ from 1.5 to 5.0 K is not large
enough to extract the precise value of α. Though the exact
scattering mechanism cannot be extracted, our fitting shows
a reasonable estimation of Lφ (up to 100 nm) and reveals a
spin relaxation time much longer than the coherence time.
Our result suggests that the spins are well preserved despite
several possible scattering events (e.g., Coulomb interaction,
intravalley scattering) in atomically thin MoS2

III. CONCLUSION

In summary, we study weak localization with reliable con-
trol of the carrier population in different spin-split bands in
a dual-gated bilayer MoS2. We did not observe weak an-
tilocalization in the attainable carrier density range. This is
attributed to the pronounced intrinsic spin-orbit coupling in
MoS2, which gives rise to a spin relaxation length much
longer than the mean free path and the coherence length,
in agreement with the reported long-lived spin relaxation in
MoS2. Therefore, awareness should be warranted that HLN
model cannot reliably estimate the spin relaxation length only
in the presence of weak localization. Nevertheless, our model
can be expanded close to zero field to estimate the phase
coherence length. From our analysis, we could extract phase
coherence lengths of the order 100 nm, in agreement with
previous publications. At low densities, when only the lower
spin-orbit split bands are occupied, the coherence length is
limited by electron-electron scattering.
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APPENDIX A: DEVICE FABRICATION
AND MEASUREMENTS

First, we assemble the bottom hBN (as the bottom di-
electric layer) and graphite flake (as the bottom gate) onto
a Si/SiO2 substrate (with 285-nm-thick oxide layer), using
a standard dry-transfer method [7]. We then pattern metallic
contacts (made by Cr/Au: 5 nm/10 nm) through standard elec-
tron beam lithography and electron beam evaporation. The
residuals on the contact regions (due to lithography process)
are then thoroughly cleaned by the tip of an atomic force
microscope in contact mode. Next, we identify the bilayer
MoS2. We employ the mechanical exfoliation from bulk MoS2

crystals (obtained from SPI Supplies) onto a Si/SiO2 sub-
strate (with 285-nm-thick oxide layer) and then identify the
bilayer by its optical contrast, with a highly reliable method
[25,26]. Then, we assemble the second stack containing the
top hBN (as the top dielectric layer) and the selected bi-
layer MoS2. This stack is aligned and transferred onto the
contacts. The transfer is performed in a glove box with an
argon atmosphere, ensuring minimal exposure to H2O and
O2 (both <0.1 ppm). Finally, a metallic top gate (that covers
the entire MoS2 flake) is patterned using standard electron
beam lithography and electron beam evaporation. The final
stack is annealed in vacuum condition at 250 °C for 4 h to
reduce the bubbles and improve the quality of the contact
interface. The thicknesses for the bottom and top hBN layers
are determined by atomic force microscopy in tapping mode,
which yields dB = 13 nm and dT = 20 nm, respectively. The
device information is shown in Fig. 4.

According to a parallel plate capacitor model (C = εε0/d),
the thickness dB (dT ) yields the capacitance per area CB =
225 nF/cm2 (CT = 146 nF/cm2). These values are used in
the main text to determine the electron density as a function
of bottom and top gate voltages. The capacitance per area
obtained by the parallel plate capacitor model is then con-
firmed experimentally by measuring the electron density from
the SdH oscillations [see Fig. 2(b) of Ref. [19] for a direct
comparison].

The measurements are performed by lock-in techniques
(with excitation voltage at 100 µV and frequency at ∼30 Hz).
The temperature range is 1.3–10 K and magnetic-field range
is 0–7 T.

APPENDIX B: SIMULATION ON THE TURNOVER
FROM WL TO WAL

The general form for weak location in thin films can be
written by [1]

σ (H ) = − e2

2π2h

[
	

(
1

2
+ B1

B
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− 	

(
1

2
+ B2

B
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+ 1

2
	

(
1

2
+ B3

B

)
− 1

2
	

(
1

2
+ B4

B
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,
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FIG. 4. (a) Optical micrograph of the stack without the top gate (TG). A multilayer graphite (outlined by the red line) acts as the back gate
(BG); the bottom BN (bBN, outlined by the red line) acts as bottom dielectric layer; the bilayer MoS2 (outlined by the blue line) is probed
by Au contacts (one outlined by the black line); the top BN (tBN, outlined by the purple line) acts as the top dielectric layer. (b) Optical
micrograph of the stack after forming the top gate. (c) Thickness profile (∼13.5 nm) of the bottom hBN flake (in the region denoted by the
purple box) measured by atomic force microscopy. (d) Thickness profile (∼20 nm) of the top hBN flake (in the region denoted by the green
box) measured by atomic force microscopy.

where

B1 = Bo + Bso + Bs,

B2 = 4
3 Bso + 2

3 Bs + Bi,

B3 = 2Bs + Bi,

B4 = 4
3 BSO + 2

3 Bs + Bi.

The terms o, i, s, and SO in the above formulae refer to
potential scattering (for mean free path), inelastic scattering
(for phase decoherence), magnetic scattering, and spin-orbit
scattering (for spin relaxation related to spin-orbit coupling),
respectively. 	 is the digamma function.

In pristine MoS2, the magnetic scattering should be left
out, leading to the Hikami-Larkin-Nagaoka (HLN) model
that includes the spin-orbit term, phase-coherence term, and
elastic-scattering term in the form

�σ (B) = e2

2πh

[
ln

(
Bφ

B

)
− 	

(
1

2
+ Bφ

B

)]

+ e2

πh

[
ln

(
BSO + Be

B

)
− 	

(
1

2
+ BSO + Be

B

)]

+ 3e2

2πh

[
− ln

(
4/3BSO + Bφ

B

)

+ 	

(
1

2
+ 4/3BSO + Bφ

B

)]
,

where BSO, Bφ , Be refer to the field scales for the spin-orbit
coupling, phase coherence, and elastic scattering, respec-
tively. �σ (B) = [σ (B) + σ (−B)]/2−σ (B = 0 T) represents
the normalized conductivity in the unit of e2/πh.

σ (B) can be calculated by the Drude model through the
following relations:

σxx(B) = ρxx(B)/
(
ρxx

2(B) + ρxy
2(B)

)
,

where ρxx and ρxy represent the longitudinal and transverse
resistivities, respectively. In 2D systems, ρxx(xy) is given by

ρxx(xy) = Rxx(xy)
W

L
,

where Rxx and Rxy represent the longitudinal and transverse
resistances, respectively. W and L are the width (8.5 µm) and
length (3.0 µm) of the characterized channel in MoS2.

BSO, Bφ, and Be can be determined by the spin-relaxation
length (LSO), phase coherence length (Lφ), and mean free path
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(Le), respectively:

BSO = h̄/(4eLSO
2),

Bφ = h̄/(4eLφ
2),

Be = h̄/(2eLe
2).

Lφ is extracted by the fitting the WL shown in
the main text, and Le can be calculated by Le =
σ (B = 0 T)h̄/e2√4π/(gvns), where gv = 2 is the valley de-
generacy in each spin-valley locked band and ns is total
carrier density. At ns = 3.3×1012 cm−2, we obtain Lφ = 60
nm (Bφ = 0.05 T) and Le = 14 nm (Be = 0.84 T).

We then simulate how the SOC plays a role on the turnover
from WL to WAL. We choose a range of BSO for the mod-
eling and obtain the simulation curves in Fig. 5, where a
turnover from WL to WAL can be observed. The turning
point corresponds to LSO

∼= 109 nm. This means that in the
single-band regime of MoS2, the spin relaxation is rather long
(LSO � Lφ > Le).

FIG. 5. Simulation on the turnover from WL to WAL by tuning
the SOC in the single-band regime in MoS2.
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