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Telescope systems with distributed apertures are a well-established approach for boosting resolution in
astronomical imaging. However, theoretical limits on quantitative imaging precision, and the fundamentally
best possible mode-sorting, beam-combining, and detection schemes to use with such arrays, remain largely
unexplored. Using mathematical tools of the quantum and classical Crámer-Rao bounds, we perform analyses
showing the fundamental origins of the enhancement provided by distributed imaging systems, over and above
a single monolithic telescope, and consider the precision with which one can estimate any desired parameter
embedded in a scene’s incoherent radiation with a multi-aperture imaging system. We show how quantum-
optimal measurements can be realized via beam-combination strategies of two classes: (1) multi-axial, where
light from different apertures is directed to a common focal plane, e.g., of a segmented-aperture telescope; and
(2) co-axial, where light collected at each aperture, e.g., telescope sites of a long-baseline array, is routed to an
optical interferometer. As an example, we show an explicit calculation of the quantum Fisher information (QFI)
for estimating the angular separation between two-point emitters using two identical apertures separated by a
baseline distance. We show that this QFI splits instructively into additive contributions from the single apertures
and from the baseline. We quantify the relative benefits of intratelescope (e.g., spatial-mode) optical processing
and intertelescope beam combination. We show how both receiver designs can be used to capture both sources
of information and discuss how similar methods could be extended to more general imaging tasks. We discuss
translating QFI-attaining measurements to explicit receiver designs, and the use of preshared entanglement to
achieve the QFI when it is impractical to colocate and combine light collected by the apertures.
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I. INTRODUCTION

In recent years, studies based on quantum information the-
ory have started to shed new light on sub-Rayleigh imaging
and parameter estimation with interesting insights. At the
heart of these developments are the so-called classical and
quantum Cramer-Rao bounds. According to the former, the
inverse of a quantity known as the classical Fisher information
(CFI) gives the lower bound on the variance of an unbiased
estimator for estimating a parameter for a given measurement
on multiple copies of a physical system. It therefore serves
as a measure for precision [1]. The quantum Cramer-Rao
bound, in turn, introduces a quantity called the quantum Fisher
information (QFI), as the maximum possible CFI in a physical
system for estimating the same parameter [2]. In other words,
the QFI quantifies the amount of physically accessible infor-
mation about a parameter in a system that can be accessed
through any optical receiver measurement. If we can find a
receiver measurement whose CFI is equal to the QFI, then no
other method can outperform it for estimating that parameter.
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While the classical and quantum Cramer-Rao bounds have
been known for several decades, a major breakthrough for
sub-Rayleigh parameter estimation was made in [3], which
considers the problem of estimating the separation between
two equally bright incoherent light sources. If we employ
ideal direct imaging, where we measure the incoming pho-
tons for their position on the imaging screen through a pixel
array, we run into “Rayleigh’s curse”. This is reflected in
the classical Fisher information approaching zero as the sep-
aration goes to zero. However, Tsang et al. showed that
this is only an artifact of direct detection in the traditional
image plane, and that the quantum Fisher information for
the separation between two uniformly bright incoherently-
radiating quasi-monochromatic point sources is a constant
independent of the value of the separation, and does not
fall to zero even in the sub-Rayleigh limit. They went on
to show that for a Gaussian point spread function (PSF), a
spatial-mode demultiplexing (SPADE) measurement where
we sort the incoming photons in terms of Hermite-Gaussian
(HG) modes pointed at the center of the two-point constel-
lation and obtain their photon counts, attains this constant
QFI, i.e., its CFI is equal to the QFI. These results were
generalized to arbitrary (non-Gaussian) PSFs in [4] and [5],
where, among other things, it was shown that the sinc-
Bessel mode basis provides an optimal measurement for
two-point separation estimation for a one-dimensional hard
aperture.
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All this has sparked considerable interest in how the clas-
sical and quantum Cramér-Rao bounds can be employed to
evaluate the performance of various receiver designs and
come up with new approaches that can either surpass the per-
formance of traditional techniques or are easier to implement.
This perspective has led to the discovery of substantial quan-
titative performance improvements in estimating the size of
extended objects [6,7], estimating distances between sources
in two and three dimensions [8,9], simultaneously estimating
multiple parameters encoded in subdiffraction scenes [10–13],
estimating spatial moments of arbitrary objects [14–16], dis-
criminating between multiple candidate objects [17–19], and
adaptively estimating the locations and brightnesses of several
point emitters in a sub-Rayleigh field of view [20–22].

In light of all these exciting developments, it is worth
investigating how these quantum information theory methods
can offer us new insights on fundamental limits, and optimal
receiver techniques for long baseline interferometry, where
we combine the signals from distant receivers in a way that
creates the effect of a giant telescope whose size is equal
to the distances between the individual telescopes. An in-
teresting first step in this direction was taken in Ref. [23],
which considers a number of small light collectors in a plane
that can be thought of as pinholes. The light received by
these is then fed into a linear interferometer, whose outputs
are then measured with photodetectors. This set up is used
to estimate the three-dimensional positions of n emitters in
some arbitrary arrangement. They work out the theory for
such a system to attain the quantum limit, and also consider
the two equally bright point separation problem as a special
example. Other studies have compared the performance of
phase-sensitive interferometry between distant, pinhole-like
apertures against the quantum Crámer-Rao bound for estimat-
ing the separation between two-point sources in the context
of bright thermal emitters [24] and in a contextualized com-
parison against other standard astronomical interferometric
techniques [25], albeit under a quasi-monochromatic approx-
imation. Additional studies such as [26,27] take a hardcore
quantum mechanical approach, showing how shared entan-
glement between two distant point-like receivers can be used
to estimate the mutual coherence function of a subdiffraction
scene.

In this paper, we analyze the quantum-estimation-theoretic
limits of long-baseline interferometry for quantitative
imaging and evaluate various receiver designs that can be
employed for different regimes of baseline distances. Unlike
previous analyses that consider only point-like apertures,
our paper relaxes this assumption and accounts for the
additional information residing in the multispatial-mode
optical field within each aperture in a long-baseline
interferometric context. We quantify the relative value of
the aperture-local high-order modal information content
vis-a-vis the information content extractable from optimized
interferences among light from the multiple apertures, in
various regimes, in order to approach the quantum limit of
a multi-aperture imaging system—be it a segmented mirror
where light from the apertures can be diffractively co-located
in a common image plane, or of a long-baseline system where
light from the individual telescope must be brought together
via optical fibers or “light pipes” [28–30].

FIG. 1. Schematic diagram of receivers based on multi-axial
beam combination, e.g., between light reflected off of subapertures
of a segmented-aperture telescope.

We give the general framework for an arbitrary one-
dimensional parameter estimation problem with a multiple-
telescope system. As an example, we illustrate it in detail for
Tsang et al.’s problem of separation estimation between two
equally bright, quasi-monochromatic incoherent sources. A
full theoretical treatment accounting for broadband radiation
will be presented in a future work.

In the process of laying down the groundwork for ana-
lyzing the various receivers, we give a fully self-contained
introduction to all the relevant mathematical tools and con-
cepts, so that this study is completely accessible to readers
without any prior background in quantum estimation theory
or quantum imaging and sensing, such as researchers in the
astronomical imaging community who may be interested in
engaging with these methods.

In the remainder of this paper, we organize our proposed
long-baseline interferometric schemes into three different cat-
egories based on the distances between the telescopes:

(1) Multi-axial beam combination. When the different
apertures are sufficiently close to each other, we can focus
all the light collected at different apertures on to a common
imaging screen (see Fig. 1). This is often referred to as multi-
axial beam combination in the literature (i.e., bringing all
the spatial frequencies from multiple telescopes together at a
common screen at different angles or axes) [31]. One simple
form of this can be to have at each aperture, a carved out
piece of what would be a hypothetical giant parabolic mirror
covering the entire baseline region. We can then employ any
of the measurement schemes that can be used for a single
aperture system, such as ideal direct imaging or a SPADE. The
advantage of building such a system relates to the fact that it
would save the cost and effort associated with constructing a
full parabolic mirror spanning the entire baseline.
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FIG. 2. Schematic diagram of receivers based on co-axial beam
combination, e.g., between light collected at the telescope sites of a
long-baseline telescope system.

(2) Co-axial beam combination. When the individual tele-
scopes are too far from each other to allow focusing the light
on to a common imaging screen, we can bring the light col-
lected at the individual apertures through single-mode fibers
(SMFs) or multimode “light pipes” to a central location where
we combine it interferometrically through a linear-optical cir-
cuit made up of beamsplitters and phase shifters. This is often
referred to as co-axial beam combination in the astronomy
literature (i.e., bringing the beams from individual telescopes
together and combining them with an overlapping axis with a
beamsplitter) [31]. We can then obtain the photon counts at the
output of the interferometer. See Fig. 2 for a schematic. The
key is to use a beamsplitter arrangement that gives the optimal
performance for the parameter of interest. By “light pipes,” we
mean any method that can bring the entire (multispatial-mode)
beam from one location to another one with low loss; this is
usually done by most current optical interferometry systems
by using evacuated vacuum tubes.

(3) Predistributed entanglement-based receiver (no direct
optical interference). When the receivers are so far that even
bringing all the light to a central location through single-mode
fibers or light pipes is impractical, we can employ an entan-
glement based approach [26,27]. For example, if we wish to
combine the light collected at two separate locations, then one
possibility is to use a quantum protocol to transfer the part of
the quantum state from one of the telescopes to the other one
(via teleportation, which consumes preshared entanglement),
where the two can then be combined locally in a quantum
circuit that mimics what an actual interferometer would have
measured. Since any multiport interferometer can be broken
up into 50–50 two-port beamsplitters and single-mode phases
[33], and since we know how to mimic the action of a nonlocal
50–50 beamsplitter (meaning one acting on a pair of single
modes at distant telescope sites) using preshared Bell states,
without actually bringing light together at one location [27],
in principle any co-axial or multi-axial receiver design can
be realized using sufficient amount of preshared entanglement
between each pair of telescopes, without bringing light from

FIG. 3. Schematic diagram of receivers based on preshared
entanglement, where one can still in principle attain the full “quan-
tum limit” of precision of any quantitative imaging task, without
ever interfering light collected at different telescopes. But, such a
receiver system will require high-fidelity high-rate long-distance en-
tanglement distribution, e.g., using quantum repeaters or a satellite,
quantum-logic-capable memories, and a transducer (e.g., similar to
the scheme in Ref. [32]) to load the photons collected at each tele-
scope site, “compressed” efficiently into a quantum memory register.

the individual telescopes into an interferometer. See Fig. 3 for
an illustration.

Our paper is organized as follows. In Sec. II, we describe
the physical set up and Tsang et al.’s model for describing
the quantum state for the incoming photons, along with an
introduction to the classical and quantum Cramer-Rao bounds
for estimating a general parameter. We then outline the basics
of the separation estimation problem for two uniformly bright
point sources as a special example. In Sec. III, we develop our
mathematical foundation for working with multiple apertures
and obtain some results, which we use later for the study
of the various receiver designs. In Sec. IV, we discuss the
calculation of the quantum Fisher Information for the gen-
eral single-parameter estimation problem, and show where
the performance enhancement from combining multiple tele-
scopes arises from. In Sec. V, we describe the various types
of receivers for the three distance regimes outlined above
and how their performance can be calculated for the same
general parameter estimation problem in terms of the CFI,
again showing the enhancement from combining distant tele-
scopes. In Sec. VI, we illustrate the special example of the
equally bright two-point separation estimation problem with
our various receivers. In Sec. VII, we give our conclusions.

II. PHYSICAL MODEL AND PRELIMINARIES
FOR A SINGLE-APERTURE SYSTEM

A. The weak source model

We use the weak source model introduced in [3], where
we assume that our scene emits nearly monochromatic light
and that the average number of photons ε arriving in each
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coherence time interval is much less than one, requiring a
large number of photons to be measured over many such time
intervals to extract any useful information [26,34–37]. We can
write the quantum density operator in each time interval for
the photon field on the image plane as

ρ = (1 − ε)ρ0 + ερ1 + O(ε2), (1)

where ρ0 = |vac〉〈vac| is the zero-photon or “vacuum” state,
ρ1 is a one-photon state, and O(ε2) are higher-order terms,
which we can ignore since ε � 1.

The one-photon mixed state ρ1 is the sum of the contri-
butions from each of the emitters, which me model as point
sources. If we have a total of ne emitters, it is

ρ1 =
ne∑

s=1

bs |ψs,1ap〉〈ψs,1ap|. (2)

Here bs are relative brightnesses associated with each of
the sources satisfying the normalization property

∑ne
s=1 bs = 1,

and |ψs,1ap〉 are the corresponding kets,

|ψs,1ap〉 =
∫ ∞

−∞
dxψ1ap(x − xs)|x〉, (3)

where ψ1ap(x) is the point spread function (PSF) of our aper-
ture, xs is the position of the sth light source, and |x〉 is
the position x eigenket—the state of one photon in a delta-
function spatial mode located at position x on the image plane.
We have explicitly put “1ap” in the subscript of the ket and
PSF here because later we will be going to multiple aperture
configurations, and therefore we will need to distinguish be-
tween single and multiple aperture functions. We should also
point out that all our equations in this section will hold for any
PSF unless we explicitly state otherwise. Therefore, we will
for the most part not specify any specific PSF function here.
In later sections though, when we consider multiple aperture
configurations, we will specifically focus on hard rect shaped
apertures and will specify ψ1ap(x) accordingly.

If we measure the incoming photons for some observ-
able Y , then we obtain random samples from the probability
distribution P(Y ) = 〈Y|ρ|Y〉 for each copy of the received
state ρ. If the measurement observable corresponds to a
passive-mode transformation (followed by photon counting
on the transformed modal basis), |Y〉 is the single photon
eigenket corresponding to the mode Y , and detection of a
photon—which happens with probability ε—heralds that ρ1

was received, and the measurement outcome, the appearance
of a single photon detection in mode |Y〉, is a random sample
from 〈Y|ρ|Y〉 [36,38–40]. If our incoming light has optical
bandwidth W and the integration time is T , then it has roughly
M ≈ W T mutually-orthogonal modes in that time-bandwidth
window. Since we are assuming nearly monochromatic light,
our W is very small, and therefore, all these M orthogonal
modes correspond to different temporal modes at nearly the
same frequency. The quantum description of the entire col-
lected light during the integration time will be taken to be
ρ⊗M . The average number of photons received over the inte-
gration time, N = Mε. If we constrain ourselves to SPADE
based receivers, where detection (of a single photon in a
coherence time interval) heralds ρ1, we can take the quantum
description of the collected light to be ρ⊗N

1 , with N = �Mε	.

B. The classical and Quantum Cramer-Rao bounds

Let us say that we have ρ⊗N
1 , i.e., N copies of a quantum

state ρ1 that depends on a set of parameters {θμ}, which we
wish to estimate by measuring some observable Ŷ on each
copy of ρ1. The error covariance matrix with a set of estima-
tors θ̃μ(Y ) is

�μν ≡
∫

dYP(Y )[θ̃μ(Y ) − θμ][θ̃ν (Y ) − θν]. (4)

If θ̃μ(Y ) are unbiased estimators, then this covariance ma-
trix obeys the Cramer-Rao bound

� � J −1, (5)

where Jμν is the classical Fisher Information matrix [1] (for
the measurement Ŷ) and is given, for measuring the same
observable on N copies of ρ1, by

Jμν ≡ N
∫

dY 1

P(Y )

∂P(Y )

∂θμ

∂P(Y )

∂θν

. (6)

The Cramer-Rao bound is saturated by the maximum
likelihood estimator for large N . If Y is continuous, then
P(Y ) becomes a probability density, with the sum over Y
in (6) being replaced by an integral.

The quantum Cramer-Rao bound gives us the maximum
possible CFI that can be achieved by any measurement
scheme for a given physical system and parameter,

� � J −1 � K−1, (7)

where K is the QFI [2]. For N measurements on a system with
a quantum density operator ρ1, the QFI is given by

Kμν

(
ρ⊗N

1

) ≡ N 1
2 tr(ρ1{Lμ(ρ1), Lν (ρ1)}), (8)

where Lμ(ρ1) is a symmetric logarithmic derivative (SLD) of
ρ1 with respect to θμ. It is a Hermitian operator defined by the
relation

∂ρ1

∂θμ

= 1
2 (ρ1Lμ(ρ1) + Lμ(ρ1)ρ1) (9)

If ρ1 = ∑
j D j |e j〉〈e j | is the decomposition of ρ1 in terms of

its eigenvalues Dj and eigenvectors |e j〉, then the SLD is given
by

Lμ(ρ1) =
∑

j,k;Dj+Dk �=0

2

Dj + Dk
〈e j |∂ρ1

∂θμ

|ek〉|e j〉〈ek|. (10)

Note that the QFI is independent of the measurement
choice and quantifies the amount of information available
in the quantum state of light (the physical system) about
a parameter. If the CFI for a given measurement is equal
to the QFI, then we know that measurement is optimal for
estimating the given parameter, since by the quantum Cramer-
Rao bound, no other measuring scheme can perform better.
Our goal is therefore to come up with a measurement that
comes as close to the QFI as possible with the least (physical-
implementation) cost.

It is worth noting that based on the above construction of
the QFI, a projective measurement in the eigenbasis of the
SLD will achieve the QFI [41–43], although it is not neces-
sarily the only optimal measurement. The problem, however,
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is that in general, the SLD depends on the unknown parameter,
which we are trying to estimate itself. One solution to this is a
two stage approach proposed by [42].

(1) First, use a small part of the total integration time with
a mean photon count of Nα with any 0 < α < 1, to obtain an
initial maximum likelihood estimate θ̂1 for the unknown pa-
rameter θ by employing any measurement that has a nonzero
CFI for estimating θ .

(2) Based on the estimate θ̂1 from stage one, measure each
of the remaining photons in the eigenbasis of the SLD of θ ,
evaluated at θ̂1. From the results of this measurement, we then
obtain a maximum likelihood estimate for θ .

We should mention that this procedure has also been de-
scribed in [44,45] and section 6.4 of [46], with the specific
choice of α = 1/2.

This two-stage method asymptotically reaches the QFI as
N tends to infinity. While a detailed proof for this can be
found in the above references, here is a short version of the
argument, which we also gave in [47]. If N is large, Nα (or√

N for α = 1/2) will also be large. Therefore, the variance
of the estimate θ̂1 scales as 1/(J1Nα ), where J1 > 0 is the
CFI of the stage-one measurement. With Nα photons, this
variance will therefore approach zero for large N . The Fisher
information in stage two will be (N − Nα )K, if we measure in
the eigenbasis of the SLD based on the exactly correct value
of θ . But in reality, since we will carry out this measurement
at the estimated value θ̂1 = θ + θ1,err, we need to replace K by
the CFI for the SLD eigenbasis measurement evaluated at this
value rather than the true θ . Taylor expanding this CFI around
the true value θ , we obtain

JSLD(θ + θ1,err ) = JSLD(θ ) + θ2
1,err

∂2JSLD(θ1)

∂θ2
1

+ · · · (11)

Here we do not have a first-derivative term because the CFI
JSLD is equal to the QFI at θ1, which is a maximum. There-
fore, the first derivative must be zero. Secondly, since this is
a maximum, the second derivative will be a negative constant
with respect to θ1,err. All in all, we can rewrite the stage-two
CFI as

JSLD(θ + θ1,err ) =K
(
1 − O

(
θ2

err

))
=K

(
1 − O

(
1

NαJ1

))
(12)

where in the last step, we have used the fact that the mean-
squared error of the initial centroid estimate is approximately
equal to the inverse of the CFI for stage-one. The total
CFI accumulated over stage-two is therefore (N − Nα )K(1 −
O( 1

NαJ1
)). And when N is large

1

(N − Nα )K
(

1 − O
(

1
NαJ1

)) ≈ 1

NK , (13)

the variance approaches that of the optimal measurement. In
reality since N will be a finite number, we could optimize
the choice of α such that the overall CFI attained at the
end of stage-two is maximized, for a given fixed N based
on the choice of the stage-one measurement and its CFI. A
multistage adaptive quantum estimation algorithm is given in
[48] where the result of each stage is used as input for the next

one, which could lead to further improved performance in this
nonasymptotic setting. Lastly, In case the SLD depends on
more than one unknown parameter, then we would need to get
an initial estimate for all such unknown parameters in stage
one.

C. How to calculate the CFI and QFI

Let us say that we wish to estimate some parameter θg on
which the brightnesses bs and positions xs in the scene depend
[49]. To calculate the CFI for a single scalar parameter θg

for a given receiver, we need to write down the probability
distribution of measurement outcome in terms of θg and then
apply (6). For ideal direct imaging, we measure the incoming
photons for their position on the image plane through a grid
of shot-noise limited photon counting detectors with infinites-
imally small pixellation, unity fill factor, and infinite spatial
extent; no direct imaging instrument could ever outperform
this idealized model. For this receiver measurement, the prob-
ability of finding a received photon to be at position x,

P(x) = 〈x|ρ1|x〉 =
ne∑

s=1

bs|ψ1ap(x − xs)|2. (14)

In the same spirit, consider a measurement in the im-
age plane in a spatial basis with normalized-mode functions
φ j (x) with j = 0, 1, 2, . . ., i.e., a spatial-mode demultiplexer
(SPADE) followed by photon detection on each of the φ j (x)
modes. The eigenket corresponding to an incoming photon
being in the jth mode is

|1 j〉 =
∫ ∞

−∞
dxφ j (x)|x〉. (15)

The probability amplitude for a photon originating from a
point source at position xs being measured and found to be in
mode φ j (x) is given by the correlation function,

� j (xs) ≡ 〈1 j |ψs,1ap〉 =
∫ ∞

−∞
dxφ∗

j (x) ψ1ap(x − xs). (16)

Naturally, the probability is the magnitude squared of this
amplitude, and the total probability for a photon from our
scene being found in the jth mode is

Pj = 〈1 j |ρ1|1 j〉 =
ne∑

s=1

bs|� j (xs)|2. (17)

The CFI for estimating our parameter θg from ideal direct
imaging or this SPADE basis is then given by (6)

JDI(θg) = N
∫ ∞

−∞
dx

1

P(x)

(
∂P(x)

∂θg

)2

,

JSPADE(θg) = N
∞∑
j=0

1

Pj

(
∂Pj

∂θg

)2

. (18)

The alert reader might have noticed that we are calculating
the CFI for N copies of the single-photon density matrix ρ1

instead of the full density matrix ρ, for which we have M
copies over our integration time. This is reasonable because
the latter effectively translates into the former. For example,
for direct imaging, the probability of obtaining a photon at
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position x for a given copy of the density matrix ρ (which
corresponds to a given temporal mode) is Pfull (x) = εP(x).
The total CFI for M copies of ρ is given by

M
∫ ∞

−∞
dx

1

Pfull (x)

(
∂Pfull (x)

∂θg

)2

= Mε

∫ ∞

−∞
dx

1

P(x)

(
∂P(x)

∂θg

)2

= N
∫ ∞

−∞
dx

1

P(x)

(
∂P(x)

∂θg

)2

. (19)

A somewhat similar argument holds for the QFI. The par-
tial derivative of the density matrix with respect to θg does not
contain any contributions from the vacuum term (1 − ε)ρ0,
and therefore,

∂ρ

∂θg
= ε

∂ρ1

∂θg
. (20)

Consequently, the symmetric logarithmic derivative L only
contains contributions from the single-photon part of the den-
sity matrix. Since the QFI is given by tr(ρL2), and the vacuum
states |vac〉 are orthogonal to single photon states, the QFI
only gets nonzero contributions from the single photon state
ρ1 and is proportional to N = Mε times tr(ρ1L2

1), where L1 is
the SLD calculated from (10).

Since ρ1 is a brightness-weighted sum of the contributions
from the individual point sources |ψs,1ap〉〈ψs,1ap|, it acts on
the ne dimensional vector space spanned by the states |ψs,1ap〉.
The eigenstates of ρ1 provide a natural basis for this purpose,
especially since the SLD is also computed in terms of these.
The SLD also involves the derivatives of the density matrix
with respect to θg, and therefore acts on the space spanned
by the |ψs,1ap〉 as well as their derivatives with respect to θg.
Therefore, the overall space we need is 2ne dimensional. If we
have only two-point sources, such as in Tsang et al.’s equally
bright two-point separation estimation problem, then we can
explicitly write down the four-dimensional orthogonal basis
kets [3]. However, this becomes increasingly difficult and
messy as the number of point sources in the scene increases.
Therefore, one alternative is to take a numerical approach and
expand the states |ψs,1ap〉 in terms of the spatial-mode kets
|1 j〉, and truncate at some maximum value that is large enough
to give us the desired level of precision [6]. The single-photon
density matrix ρ1 in the spatial-mode basis is given by

ρ1 =
ne∑

s=1

bs

∞∑
j,l=0

� j (xs) �∗
l (xs) |1 j〉〈1l |. (21)

The partial derivative of this with respect to θg is

∂ρ1

∂θg
=

⎛
⎝ ne∑

s=1

(
∂bs

∂θg

) ∞∑
j,l=0

� j (xs) �∗
l (xs) + bs

(
∂xs

∂θg

)

×
∞∑

j,l=0

�′
j (xs) �∗

l (xs) + � j (xs) �∗′
l (xs)

⎞
⎠|1 j〉〈1l |.

(22)

After that, calculating the QFI is a matter of truncating the
modes at some maximum number, and applying Eqs. (8) and
(10). Do, however, note that the entries of the density matrix
and its derivative given in (21) and (22) depend on the origin
where the zero of the mode functions is defined, and we will
typically want to take the origin either at the centroid of the
scene or somewhere close to it in order to get the best possible
convergence of our numerical calculations.

D. The equally bright two-point separation estimation problem

For two equally bright point sources, b1 = b2 = 1
2 . We will

follow the conventions of [4] to assume that the locations of
the two-point sources are

x1 = θc + θ, and

x2 = θc − θ, (23)

where θc is the centroid and we are taking the separation to
be 2θ . We will be interested in estimating θ instead of the
separation 2θ because it makes some of the formulas simpler.
This is different from the original paper by Tsang et al., where
the point sources were assumed to be at θc ± θ/2 and they
calculate the CFI and QFI for estimating the separation θ [3].
In light of this, our QFI for estimating θ will be four times
that obtained by Tsang et al. for the separation. We outline the
calculation in Appendix A, and the result is

Kθ = 4N
∫ ∞

−∞
dx

∣∣∣∣∂ψ (x)

∂x

∣∣∣∣
2

. (24)

Here we did not include the subscript 1ap with ψ (x)
because this will also hold for any multiple aperture configu-
ration, and we will revert to it later, so we wish to specifically
state this as a general result.

It is, however, convenient to express this in terms of the
autocorrelation function of the PSF introduced by [4],

�PSF(a) =
∫ ∞

−∞
ψ∗(x) ψ (x − a) dx. (25)

Using integration by parts, the QFI result in (24) can be
written in terms of the second derivative of the autocorrelation
function as

Kθ = −4N�′′
PSF(0). (26)

Here the double prime indicates the second derivative. As a
special example, for the specific case of a rect aperture with
PSF ψ1ap(x) =

√
σ sin(πx/σ )

πx , we obtain the QFI [4,5],

Kh,1ap,θ = 4π2N

3σ 2
, (27)

where h in the subscript denotes a hard aperture, and “1ap”
stands for single aperture. We will have a lot more to say on
the above PSF and where it comes from later in the paper.
However, for now, we should mention that this PSF as well
as its autocorrelation function and its derivatives give a 0/0
division when evaluated at x = 0, so they are evaluated as the
limit when x → 0.

Coming to the CFI, if we are using ideal direct detection of
the incoming photons on a pixel array on the image screen,
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then the probability of finding an incoming photon to be
incident on the imaging screen at position x is

P(x) = 〈x|ρ1|x〉 = 1
2 [|ψ1ap(x − x1)|2 + |ψ1ap(x − x2)|2],

(28)

where the factor of 1/2 represents the equal probability for an
incident photon to have originated from one of the two-point
sources due to their equal brightness (i.e., namely b1 = b2 =
1
2 ), and |ψ (x − xs)|2 is the probability density for a photon
coming from source s (with s = 1, 2) to hit the image screen
at position x. Applying the formula (6) for the CFI with P(x)
as the probability density then gives the CFI. The integral over
x needs to be computed numerically at least for a Gaussian or
rect aperture.

Now, consider a SPADE measurement with mode func-
tions φ j (x) with j = 0, 1, 2, . . . as discussed in the previous
section. Assume that the SPADE is pointed perfectly at the
centroid such that the two positions are ±θ . This requires
prior knowledge of the centroid, for which we can use direct
imaging [3,47,50]. The probability for an incoming photon to
be found in mode j is then

Pj = 1
2 (|� j (θ )|2 + |� j (−θ )|2). (29)

If the aperture is symmetric and all the mode functions
are real-valued having definite parity, then the correlation
functions are also purely real valued with definite parity, so
this becomes

Pj = �2
j (θ ). (30)

It is straightforward to see that the CFI is then

Jθ = N
∞∑
j=0

1

Pj (θ )

(
∂Pj (θ )

∂θ

)2

= 4N
∞∑
j=0

(�′
j (θ ))2. (31)

Tsang et al. show that for a Gaussian PSF (with the SPADE
pointed at the centroid), the HG basis attains the QFI. This
was generalized to arbitrary PSFs in [4] and [5], with the
latter study proving that for a symmetric aperture, any basis of
purely real-valued orthonormal functions with definite parity
will attain the QFI. That is, for any symmetric aperture and
mode basis with definite parity, we obtain

Jθ = 4N
∑

j

(�′
j (θ ))2 = K1ap,θ = −4N�′′

PSF(0). (32)

E. CFI invariance under rotations of SPADE basis

Note that the formula (31), when summed over j, has
the form of an L2-norm dot product on a real-valued vector
space. Therefore, it must be invariant under a rotation of basis
with purely real-valued transformation coefficients that are
independent of the parameter θ . That is, let us say we have
a SPADE basis with purely real-valued functions φ j (x) with
j = 0, 1, 2, . . . jmax, where jmax may be finite or ∞. Now,

consider a change of basis of the form

φmod, j (x) =
jmax∑
l=0

Ujlφl (x), (33)

where the coefficients Ujl are real-valued and independent of
the parameter θ . The correlation functions � j (x) and their
derivatives �′

j (x) inherit the same change of basis coefficients,

�′
mod, j (θ ) =

jmax∑
l=0

Ujl�
′
l (θ ). (34)

Therefore, the CFI is invariant under this rotation of basis

Jθ = 4N
jmax∑
j=0

[�′
j (θ )]2 = 4N

n∑
j=0

[�′
mod, j (θ )]2. (35)

This invariance, however, does not hold if the change of basis
coefficients Ujl are complex (i.e., having both real and imag-
inary parts) or depend on θ . In the former case, the CFI for
mode j no longer has the nice form [�′

j (θ )]2, and in the latter
scenario, the derivatives of the modified correlation functions
in the new basis also contain derivatives of Ujl .

It is worth noting that this invariance result is not only valid
when jmax is infinite, but also holds if we have a SPADE where
we sort the incoming photons between modes φ j (x) with j =
0, 1 . . . jmax and their orthogonal complement. Such a SPADE
can be practically implemented using a physical device that
directs the specified modes up to j = jmax into their separate
photon detectors, while collecting and counting the remaining
modes in a bucket detector [51]. In that case, the total CFI
from the j = 0 . . . n modes is invariant as argued above, and
the orthogonal complement remains unchanged under rota-
tions within the j = 0 . . . n modes, so its contribution to the
CFI is trivially constant under such transformations. We will
consider such n + 1 SPADEs later in the paper.

Lastly, we would like to end this section by stating this
invariance result in its most general form that is not specific
to the two-point problem or even imaging. Consider a mixed
quantum state ρ that is an equal-probability sum of ne pure
states |ψs〉 depending on some parameter θ , with s = 1 . . . ne.
Assume that these pure states have a symmetry such that
measuring them in some basis |1 j〉 gives the same purely real-
valued probability coefficients � j (θ ) up to a possible minus
sign. The CFI for estimating θ from such a measurement is
then given by

Jθ =
∑

j

4(�′
j (θ ))2, (36)

and is invariant under any change of the |1 j〉 basis with purely
real valued transformation coefficients. Here we have not ex-
plicitly given the limits of the sum over j because the |1 j〉
basis could be of any dimensionality including ∞. The above
statement, of course, also equally well holds if the probability
amplitudes � j (θ ) are purely imaginary because we can absorb
the imaginary number i into the definition of the states |1 j〉 to
make the probability coefficients real-valued.

Note that our two-point separation problem satisfies the
conditions of this generally stated invariance result if the aper-
ture is symmetric so that the PSF is a symmetric real-valued
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function. Any point at the same distance from the origin
then has the same probability for even or odd spatial-mode
functions.

III. BASICS FOR WORKING WITH MULTIPLE
TELESCOPES

We are now ready to introduce our framework for pa-
rameter estimation with a multiple telescope system where
we generalize some of the tools introduced in the previous
section. We will do this in several steps.

A. The combined aperture function and PSF

If we have several separate telescopes, which we wish to
combine light from, then we can take the sum of the individual
aperture functions as our total aperture function, and take its
Fourier transform in order to obtain the combined PSF, just as
we get the PSF for a single telescope by Fourier transforming
its aperture function. Specifically, consider a hard aperture of
width d . It is convenient when working with angular object-
and image-plane coordinates to nondimensionalize the aper-
ture size by scaling with the wavelength λ, such that we obtain
δ = d/λ as the size of our aperture in momentum space (i.e.,
transverse axes of the aperture plane of the imaging system)
[52]. Our aperture function is then

ψ̃1ap(k) = 1√
δ

rect(k/δ). (37)

Here, we are defining the rect function such that rect(x) is
equal to unity in the interval −1/2 < x < 1/2 and therefore
gives unity if integrated over all x. Taking the inverse Fourier
transform of this aperture function gives the PSF

ψ1ap(x) = 1√
2π

∫
dk exp(ikx)ψ̃1ap(k) = √

σ
sin(πx/σ )

πx
,

(38)
where

σ = 2π/δ (39)

is the Rayleigh separation, and our convention is to have
1/

√
2π in the Fourier transform and its inverse in order to

maintain normalization.
If we place the same aperture at a shifted location, say at

position α in the momentum plane instead of the origin, then
we get the same PSF but with a phase factor exp(iαx). This
does not have any physical relevance as long as we only have
a single telescope. However, if we have several apertures at
separate locations, then they all acquire different phases, and
therefore, if we combine the light collected by them interfer-
ometrically in some form, then we get interference between
these phases. It is this interference that results in the gain from
combining the light collected at distant locations, creating the
effect of a giant telescope whose size is nearly equal to the
distance between the different apertures.

To study this phenomenon, we will take our aperture
function as the sum of all the individual aperture functions,
and define their combined PSF as the sum of their Fourier
transforms. Regardless of what measurement is used, this
combined PSF gives the profile of the incoming light falling
on an imaginary imaging plane and can be used for calculating

the QFI of our physical set up for parameter estimation as well
as the CFI for different measurement schemes. Consider n
apertures of equal size centered at locations αμ in momentum
space (i.e., aperture plane coordinates) with μ = 1 . . . n. We
assume that the average position of these apertures is zero,
that is, ∑

μ

αμ = 0. (40)

If we express αμ in terms of the single aperture size δ and
the ratio Rμ = αμ/δ, then we have

αμ = Rμδ = 2πRμ/σ, (41)

where in the second step, we have used (39). The full aperture
function for the entire set up is

ψ̃comp(k) = 1√
n

∑
μ

ψ̃1ap(k − αμ). (42)

The compound PSF, which is obtained by taking the in-
verse Fourier transform of this, is then

ψcomp(x) = 1√
n
ψ1ap(x) ×

∑
μ

exp(iαμx). (43)

Or if we like, we can express this in terms of the single
aperture Rayleigh scale σ and the ratios Rμ of the positions
of the individual apertures to the single telescope size, writing
the exponentials as exp(iαμx) = exp(2π iRμx/σ ).

As a specific example let us say we have two hard apertures
(n = 2) with their centers at positions ±b/2. In our aperture
plane coordinates, we obtain the positions α1 = −β/2. and
α2 = β/2, with β = b/λ. We thus have the aperture function

ψ̃2ap(k) = 1√
2δ

[
rect

(
k − β/2

δ

)
+ rect

(
k + β/2

δ

)]
. (44)

The inverse Fourier transform gives the combined PSF

ψ2ap(x) =
√

2σ cos(πxr/σ )
sin(πx/σ )

πx
, (45)

where

r ≡ β/δ, (46)

and hence,

β = 2πr/σ. (47)

B. Local modes for an aperture

The other ingredient we need for our analysis is a conve-
nient set of basis modes for a multiple aperture system. For
this, it is natural to think in terms of a basis of local-mode
functions defined on each aperture

φ̃ j (k) = f j (ik)√
δ

rect(k/δ), (48)

spanning the space of all functions f j (ik) defined on the
aperture, i.e., in the region −δ/2 < k < δ/2. [The reason for
writing f j (ik) as functions of the imaginary ik instead of just
k will become clearer in Sec. III D.] For each hard aperture at
αμ, we will get its set of mutually orthonormal “local” modes
φ̃ j (k − αμ). These will be (trivially) orthogonal to all the local
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modes of other apertures at different locations due to their rect
functions being zero in nonoverlapping regions,∫

dkφ̃ j (k − αμ) φ̃l (k − αν ) = δμνδ jl . (49)

These local modes thus form a complete orthonormal basis
on the union of all the apertures. This mutual orthogonality
will naturally also hold if we shift to the (joint) image plane,
where the modes will be given by the inverse Fourier trans-
forms of the aperture plane functions,

φ jμ(x) ≡ 1√
2π

∫ ∞

−∞
dk exp(ikx)φ̃ j (k − αμ)

= exp(iαμx)φ j (x), (50)

where φ j (x) is the jth mode function for an aperture located
at the origin of the aperture plane, and is given by the inverse
Fourier transform of the momentum space function

φ j (x) ≡ 1√
2π

∫ ∞

−∞
dk exp(ikx)φ̃ j (k). (51)

The functions φ jμ(x) will be defined on the entire imaging
screen, and will form a complete orthonormal basis for the
image plane, ∫ ∞

−∞
dx φ∗

jμ(x) φlν (x) = δμνδ jl . (52)

Now, let us say we wish to calculate the correlation func-
tion of the combined PSF ψcomp(x) given in (43) with some
arbitrary function, which can be expressed in terms of the
local-mode functions as

ψarb(x) =
n∑

μ=1

∞∑
j=0

a jμφ jμ(x)

=
n∑

μ=1

∞∑
j=0

a jμ exp(iαμx) φ j (x), (53)

where a jμ are some constant coefficients. Since each
exp(iαμx)φ j (x) term corresponds to a rect function centered
at αμ in momentum space, only products of terms from the
same aperture will give nonzero contributions to the corre-
lation function. These contributions will involve correlation
functions of the single aperture local modes φ jμ(x) with the
single aperture PSF phased shifted according to its location.
Therefore,

� jμ(a) ≡
∫ ∞

−∞
dx φ∗

jμ(x) exp (iαμ(x − a)) ψ1ap(x − a)

=
∫ ∞

−∞
dx [exp(−iαμx)φ∗

j (x)] (54)

× [exp (iαμ(x − a)) ψ1ap(x − a)]

= exp(−iαμa)� j (a), (55)

where

� j (a) =
∫ ∞

−∞
dxφ∗

j (x) ψ (x − a) (56)

is the correlation function between the jth mode and the PSF
for a single aperture located at the origin of the aperture plane,
as defined in (16).

The correlation function of our arbitrary function ψarb(x)
with the compound aperture PSF (43) is then given in terms
of the unshifted correlation functions � j (a) as

�arb =
∫ ∞

−∞
dxψ∗

arb(x) ψcomp(x − a)

= 1√
n

n∑
μ=1

∞∑
j=0

a∗
jμ � jμ(a)

= 1√
n

n∑
μ=1

∞∑
j=0

a∗
jμ exp(−iαμa) �αμ, j (a). (57)

As a special case, the autocorrelation function of the com-
pound aperture PSF will be

�PSF,comp(a) =
∫ ∞

−∞
dx ψ∗

comp(x) ψcomp(x − a)

= 1

n
�PSF,1ap(a)

∑
μ

exp(−iαμa), (58)

where �PSF,1ap(a) is the autocorrelation function for our single
hard aperture PSF (38)

�PSF,1ap(a) =
∫ ∞

−∞
dx ψ∗

1ap(x) ψ1ap(x − a) = σ sin(πx/σ )

πx
.

(59)

Before closing this section, we would like to point out that
the individual aperture correlation functions � j (a) for an
unshifted hard aperture, i.e., one centered at k = 0 are pro-
portional to the mode functions φ∗

j (a). This follows from
writing out the correlation function integrals in terms of the
momentum space forms

� j (a) =
∫ ∞

−∞
dx φ∗

j (x) ψ1ap(x − a)

=
∫ ∞

−∞
dx dk d p exp (ik(x − a) − ipx)ψ̃1ap(k) φ̃∗

j (p)

=
∫

dk exp(−ika)ψ̃1ap(k) φ̃∗
j (k)

=
∫

dk exp(−ika)
f ∗

j (ik)

δ
rect2(k/δ)

= √
σφ∗

j (a). (60)

The third equation above was obtained by integrating over p
and x by using the Fourier representation of the delta function,
and the fourth one by writing ψ̃1ap(k) and φ̃ j (k) in terms of the
rect functions according to (37) and (48). In the last step, we
note that the square of the rect function gives the rect function
itself and compare with (48). Here we also use (39) to write δ

in terms of σ . Lastly, note that for real-valued mode functions,
such as in the sinc-Bessel basis, φ∗

j (a) = φ j (a).
Note that this property that the correlation functions for

a mode basis defined on a hard aperture is proportional to
the corresponding mode function (or its complex conjugate
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if the function is complex) will also hold for a hard aperture
in two dimensions. In that case, the exact same steps that
we wrote above will apply except that the rect function will be
replaced by our two-dimensional step function that is unity on
the aperture and zero everywhere else, and the proportionality
constant will arise from the square root of the area of the
aperture instead of length. For example, for a circular aperture,
we will have a circ function instead of the rect function.

C. The single-photon state of the PSF mode and local modes
in the bra-ket notation

We now summarize our results from the previous two sec-
tions on a multiple aperture system in a convenient bra-ket
notation. Recall from Sec. II that the single-photon den-
sity matrix is given by ρ1 = ∑ne

s=1 bs|ψs〉〈ψs|, where |ψs〉 =∫ ∞
−∞ dxψ (x − xs)|x〉. This still holds for the multiple aperture

case, except that the PSF is now the compound aperture func-
tion (43) associated with our multiple aperture system. Since
this compound PSF is a sum of the individual contributions
from all the apertures, the quantum state |ψs〉 is also a sum,

|ψs〉 =
∫ ∞

−∞
dxψ (x − xs)|x〉

= 1√
n

n∑
μ=1

∫ ∞

−∞
dx exp (iαμ(x − xs)) ψ1ap(x − xs)|x〉

= 1√
n

n∑
μ=1

|ψμ,s〉, (61)

where in the second line, we have used our formula for the
compound aperture function (43) and in the third line, we have
defined the contribution from each aperture to be the state

|ψs,μ〉 =
∫ ∞

−∞
dx exp (iαμ(x − xs)) ψ1ap(x − xs) |x〉. (62)

Physically, the state |ψs,μ〉 is the quantum state of a photon
originating from a point source at position xs and arriving at
the image plane through the μth aperture of our multiple-
telescope system.

As for our local modes, we have the states

|1 j,μ〉 =
∫ ∞

−∞
dx exp(iαμx) φ j (x) |x〉. (63)

That is, this is the quantum state for an incoming photon
to be found in the local-mode number j of the μth aperture of
our system. As discussed in the previous section, these local
modes are mutually orthonormal, that is

〈1 j,μ|1l,ν〉 = δ jl δμν. (64)

For the contributions of the single aperture pieces to correla-
tion functions, recalling (55) and the discussion around it, we
have

〈1 j,μ|ψs,ν〉 = δμν exp(−iαμa)� j (a). (65)

D. The sinc-bessel modes

So far, we have referred to local modes of apertures in
general terms without specifying a particular basis. It is worth

pointing out, however, that the sinc-Bessel modes provide
a natural basis for a rect aperture. In this basis, the zeroth
mode is simply the PSF (associated with a rect function), and
subsequent modes can be obtained by taking derivatives of
the PSF and carrying out a Gram-Schmidt orthogonalization
in order to subtract their overlap with the previous modes
[4,5]. For example, mode one is simply proportional to the
derivative of the PSF, since the latter is an even function
and the former is odd, and hence their inner product is zero.
The second derivative, however, does have a nonzero overlap
with the PSF, and therefore we need to subtract it to obtain
mode two. Likewise, the third derivative overlaps with the
first derivative (but not the PSF and the second derivative),
so we need to subtract that piece to get mode three. If we
instead carry out this procedure in the aperture plane, then
the rect aperture function (37) is the fundamental mode, and
the derivatives are replaced by moments on which we carry
out the Gram-Schmidt orthogonalization. We then obtain
functions of the imaginary ik and this is why we have been
writing the functions f j (ik) in (48) with i. It turns out that
these have the form of jth degree Legendre polynomials hav-
ing only even (odd) terms for even (odd) j [5].

E. Apertures other than hard ones

Most of the above discussion also holds for arbitrary aper-
tures, especially the phase shift in the PSF and the correlation
functions arising from the position of an aperture. The tricky
part may, however, arise when two apertures are close to
each other and the aperture functions overlap, thus not being
orthogonal. This is of course not exactly a realistic situation
and normally we have hard apertures. Smooth functions like
Gaussians are usually used as approximations or proxies for
hard apertures because that sometimes makes calculations
easier. Therefore, a realistic approximation should also cap-
ture the fact that two (hard) apertures at different positions
should not overlap with each other even when the distance
between them is small (i.e., the center to center distance is
larger than, but not much larger than the sum of their radii).
We can therefore make an ad hoc fix of this overlap problem
and assume that two apertures and their local modes will be
mutually orthogonal. With that done, we can use the rules of
Sec. III C with the amplitude functions � j (xs) being that of the
new aperture type and the basis functions being considered.
This makes sense when we are doing mode sorting on our
multiple aperture system. It is easy to see this for measure-
ment schemes where light collected at different receivers is
brought to a common location through single-mode fibers or
multimode “light pipes.” However, it also holds when the light
from different apertures is being focused on to a common
imaging screen, e.g., individual mirrors of a large segmented
telescope, and we apply a spatial-mode measurement on that
imaging screen. The key in the latter case is to express the spa-
tial modes on the common imaging screen in terms of the local
modes of the individual apertures, and drop the overlap con-
tributions involving products of terms arising from different
apertures. The situation will, however, be more complicated
for direct imaging on light focused on to a common imaging
screen. In that case, approximating the individual apertures
with Gaussians or some other smooth function type does not
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make sense to begin with, unless there is a really sound reason
to justify such an approach.

IV. THE QFI FOR THE GENERAL PARAMETER
ESTIMATION PROBLEM

We now show how to calculate the QFI for the general
parameter estimation problem for a multi-aperture baseline.
We provide a scaling argument for how the QFI of a multi-
aperture system improves compared to that of one constituent
aperture.

Recall from Sec. II C that the density matrix for ne emitters
has dimensions of ne × ne, and when we include the deriva-
tive of the density matrix, then we have a 2ne dimensional
Hilbert space. As the number of points increases beyond two
or three, calculating the density matrix and its derivative be-
comes increasingly complicated. As this happens, analytical
calculations become exceedingly hard, and one way to calcu-
late the QFI is to expand the density matrix in a modal basis as
in (21), truncate at some large enough mode number, and carry
out the calculations numerically. For the problem of localizing
multiple point emitters of apriori unknown brightnesses, the
QFI matrix was calculated analytically (for the 1D case) in
Ref. [53]. A numerical evaluation of the QFI matrix and its
Bayesian equivalent were instrumental in generalizing this
problem of quantum-inspired superresolution multi-emitter
localization to two dimensions [22].

We can follow the same numerical approach for calculating
the QFI for a multiple aperture system, but must now work

in terms of an appropriate basis of our multiple aperture
system. An obvious basis for this can be the local modes of
the individual apertures defined in Sec. III B. Recall that the
state associated with a photon in the local mode j of the μth
aperture is given by |1 j,μ〉, which we defined in (63). Also
recall the result (55) that the correlation functions of the PSF
of a shifted aperture at location αμ with its local modes is
given by the corresponding correlation function of an aperture
at the origin multiplied by a phase factor. The density matrix
in the basis of the local modes of all the individual apertures
is then given by

ρ1 =
ne∑

s=1

bs

n∑
μ,ν=1

∞∑
j,l=0

exp ( − i(αμ − αν )xs)

× � j (xs) �∗
l (xs) |1 j,μ〉〈1l,ν |. (66)

The QFI can then be calculated from this by using the
formula (8) and the SLD equation (10). To do this numerically,
we of course truncate the modes j, l at some maximum value
jmax. Like the single-aperture case, the entries in this expan-
sion in terms of the local modes depend on the position where
the mode functions are centered, and we will typically take
this to be close to the center of the scene if not the centroid
itself to optimize our numerical calculation.

To calculate the QFI, we need the SLD and can use (10)
to calculate it. The SLD involves the partial derivative of the
density matrix with respect to our unknown general parameter
θg. Taking the partial derivative of the individual entries of the
density matrix given by (66), we obtain three contributions

∂ρ1

∂θg
=

ne∑
s=1

[
∂bs

∂θg

∞∑
j,l=0

n∑
μ,ν=1

exp (−i(αμ − αν )xs)� j (xs) �∗
l (xs) |1 j,μ〉〈1l,ν |

− ibs
∂xs

∂θg

∞∑
j,l=0

n∑
μ,ν=1

(αμ − αν ) exp ( − i(αμ − αν )xs)� j (xs) �∗
l (xs) |1 j,μ〉〈1l,ν |

+ bs
∂xs

∂θg

∞∑
j,l=0

n∑
μ,ν=1

exp (−i(αμ − αν )xs)
∂
(
� j (xs) �∗

l (xs)
)

∂xs
|1 j,μ〉〈1l,ν |

]
. (67)

Here the second term, which has a (αμ − αν ) factor, arises
from the partial derivative acting on the exponential carrying
information about the locations of the different telescopes.
Since the QFI involves the square of the SLD, the QFI will
therefore obtain a term proportional to the square of the dis-
tance between two apertures. It is this term that gives us the
gain from baseline interferometry and creates the effect of
a giant telescope whose size is approximately equal to the
distance between the individual telescopes. In contrast, the
third term in (67), which involves the partial derivative of
� j (xs) �∗

l (xs), contains the effect of the individual apertures
and is proportional to the single aperture size. Its square in the
QFI is therefore proportional to the square of the individual
aperture size, i.e., 1/σ 2 = δ2/(4π2) just as the QFI for a
single-aperture system.

Note in (67), however, that if the emitter positions do not
depend on the parameter of interest (i.e., ∂xs/∂θg = 0 ∀ s ∈

[1, ne]), the (αμ − αν )2 contribution will vanish from the QFI.
This may mean that we do not get such an enhancement to
the QFI if only the brightnesses depend on the parameter
θg. However, the enhancement may still show up through an
implicit dependence between positions and brightnesses, but
investigating such a relationship is beyond the scope of this
paper.

On seeing (66), one may be tempted to write the density

matrix in the form of a tensor product (e.g., ρ1
?= ρ1,lb ⊗

ρ1,1ap) separating out the effect of baseline interferometry
(contained in the exponentials) and the single-aperture part
(residing in the single-aperture correlation functions), and that
this may allow some simplifications in the calculation of the
QFI. Unfortunately, this is not the case in general for two
reasons. First, the density matrix is an incoherent, brightness-
weighted sum over the contributions from the individual point
sources in the scene. Second, the state |1 j,μ〉 represents a
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single photon in spatial mode j at the μth aperture, which
cannot be decomposed into a tensor product between the two
indices. All this means that we cannot obtain a generic simpli-
fication of the QFI from the fact that the entries of the density
matrix corresponding to the individual point sources are prod-
ucts between the exponentials arising from multiple aperture
combination and the single-aperture correlation functions, al-
though the intuition of separating out these two contributions
will prove to be insightful for the two-point-source example
in Sec. VI.

We should, however, mention that the above density matrix
simplifies significantly when all of the sources are within a
deeply sub-Rayleigh region (i.e., xs � σ ∀ s ∈ [1, ne]). In this
limit, �0(xs) → 1 and � j (xs) → 0 for j �= 0. Therefore, in
this limit the density matrix only has contributions from the
0th spatial mode of each local aperture and becomes

ρ
(dsr)
1 =

ne∑
s=1

bs

n∑
μ,ν=1

exp (−i(αμ − αν )xs)|10,μ〉〈10,ν |. (68)

Here the superscript (dsr) denotes the deep sub-Rayleigh
regime. This is the limit considered in [23] and is the regime
of interest for diffraction-limited imaging, and it also makes
the calculation of the QFI relatively simpler. In this case, we
can even carry out some calculations analytically for a small
number of apertures (e.g., two apertures) for more complex
imaging problems, if we like.

Recall from Sec. II B that measuring in the eigenbasis
of the SLD of the density operator with respect to the un-
known parameter attains the QFI. But since the SLD generally
depends on the unknown parameter θ as well, we cannot
straightaway measure in the SLD basis. We described a two-
stage method where first we measure a small fraction of the
incoming photons in some other basis to obtain an initial esti-
mate θ̂1 for the parameter, and then measure in the SLD basis
obtained by setting θ equal to θ̂1. The performance of this
two-stage method asymptotically approaches the QFI for large
N . We can also apply this method for our multiple aperture
arrangement. This would require building an adaptive version
of one of the receiver designs described in the next section,
which would measure in some pre-determined basis in stage
one, and then switch to the SLD basis evaluated at the initial
estimate of the parameter in stage two.

V. MULTI-APERTURE RECEIVER DESIGNS

We are now in a position to discuss our different
multi-aperture receiver categories and the general parameter
estimation problem from Sec. II C.

A. Multi-axial beam combination

When the different apertures are sufficiently close to each
other, then we can use carved out mirror segments of a giant
parabolic mirror that we would use if we had a large telescope.
This situation is encountered in binocular telescopes, such as
the Large Binocular Telescope (LBT) in Arizona, and many
planned next-generation ground-based telescopes, such as the
Giant Magellan Telescope (GMT). These mirror segments
can focus the light on to a common imaging screen where
an appropriate measurement can be made using any of the
techniques employed for a single-aperture telescope. We will
consider ideal direct imaging, a SPADE and the so-called
SLIVER (Super Localization by Image Inversion Interferome-
try), which sorts the incoming light into even and odd parts, is
experimentally easier to implement than a SPADE, and attains
the QFI for the two-point problem in the small separation limit
[54].

1. Ideal direct imaging

Direct imaging is a natural imaging strategy when using
multiple apertures in a multi-axial combination configura-
tion with a common Fourier-conjugate image plane, provided
that the telescope array can be precisely phased [31]. As in
Sec. II C, we will consider the idealized case with infinites-
imally small pixellation, unity fill factor, and infinite spatial
extent of the detection screen. The probability density for an
incoming photon to be found at position x on the imaging
screen will be calculated just as in Sec. II C, except that we
now use the combined PSF (43),

P(x) =
ne∑

s=1

bs|ψcomp(x − xs)|2

= 1

n

ne∑
s=1

bs

∣∣∣∣∣∣
n∑

μ=1

exp (iαμ(x − xs))

∣∣∣∣∣∣
2

ψ2
1ap(x − xs)

= 1

n

ne∑
s=1

bs

⎛
⎝n +

n∑
μ>ν,μ,ν=1

cos((αμ − αν )(x − xs))

⎞
⎠

× ψ2
1ap(x − xs). (69)

Here we are taking the square of the single-aperture PSF
since it is a purely real-valued function due to the individual
apertures being symmetric.

Just like the partial derivative of the density matrix in (67),
the partial derivative of the above probability with respect to
the unknown parameter θg has three parts,

∂P(x)

∂θg
= 1

n

ne∑
s=1

[
∂bs

∂θg

⎛
⎝n +

n∑
μ>ν,μ,ν=1

cos ((αμ − αν )(x − xs))

⎞
⎠ ψ2

1ap(x − xs)

+ bs
∂xs

∂θg

(
n∑

μ>ν,μ,ν=1

(αμ − αν ) sin ((αμ − αν )(x − xs)) ψ2
1ap(x − xs)

− 2
n∑

μ>ν,μ,ν=1

(n + cos ((αμ − αν )(x − xs))) ψ ′
1ap(x − xs)

)
ψ1ap(x − xs)

]
. (70)
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Here ψ ′
1ap(x − xs) is the partial derivative of ψ1ap(x − xs) with

respect to x.
Recall from (6) and the discussion around it that the CFI is

given by

JDI(θg) = N
∫ ∞

−∞
dx

1

P(x)

(
∂P(x)

∂θg

)2

. (71)

Therefore, just as in the QFI, (∂P(x)/∂θg)2 will have a
term proportional to the square of the distance between two
apertures (αμ − αν )2. This term gives us the gain from base-
line interferometry and creates the effect of a giant telescope
whose size is approximately equal to the distance between the
individual telescopes. In contrast, the (ψ ′

1ap(x − xs))2 contri-
bution is of the order of the square of the individual aperture
size, i.e., 1/σ 2 = δ2/(4π2). Again, as in case of the QFI, we
are only obtaining an explicit (αμ − αν )2 contribution to the
CFI from the partial derivative of the positions xs with respect
to the parameter θg and not in the derivative of the bright-
nesses. Therefore, if our unknown parameter only depends
on the brightnesses, then we will not get any advantage from
baseline interferometry in estimating it, modulo any implicit
dependencies as mentioned in the previous section.

2. SPADE

We can also carry out a SPADE measurement on our
common image plane, in lieu of the direct-detection imaging
screen. The details of this depend on the exact mode basis
and therefore cannot be written in general terms, except re-
producing the formulas for a SPADE from Sec. II C, where
now the correlation functions will be those associated with
the mode basis of our SPADE. Recall that correlation func-
tions between an arbitrary function and the PSF in a multiple
aperture set up have the form (57). Since the probability of
finding an incoming photon to be in a given mode function
in a SPADE measurement will involve the square of such
correlation functions, we will get terms with factors of the
form | exp (i(αμ − αν )xx )|2. Therefore, if xs depends on the
parameter θg, the derivative of the probability with respect
to θg will contain (the by now familiar) factors of the form
(αμ − αν )2, giving us the performance enhancement from
combining light from distant apertures just as we found for di-
rect imaging as well as the QFI. While both direct imaging and
SPADE achieve this quadratic advantage from the baseline,
it has been shown that independent of aperture configuration
SPADE has an additional performance advantage compared to
direct imaging for certain problems of interest in subdiffrac-
tion imaging [4,5,19].

3. SLIVER

The SLIVER, which was introduced in [54], is a simple
setup that separates the even and odd parts of the collected
light. The input light is first split into two parts using a
50–50 beamsplitter. One of the beamsplitter outputs is then
spatially inverted about the central axis of the apparatus.
The two beams are then recombined using a second 50–50
beamsplitter. The outputs then contain the sum and difference
of these beams, with the former being the even part of the
incoming signal, and the latter being the odd piece. These
are then measured using photon counters. The details of the

performance of a SLIVER for a general parameter estimation
problem are not very insightful, and therefore we will skip
them. The SLIVER, however, attains the QFI in the small
separation limit of the uniformly bright two-point problem,
and therefore we will calculate its performance during our
discussion of that problem in Sec. VI.

B. Co-axial beam combination

When the distances between the individual apertures get
larger, it is no longer feasible to focus the light on to a
common imaging screen. However, we can bring the light
collected at distant telescopes to a central location through
single-mode fibers that couple in light from the “local modes”,
or via multimode “light pipes”.

1. Receivers employing mode sorting

(a) Universal co-axial receiver. Recall from Sec. III that
the local-modes φ̃ j (k − αν ) associated with the different tele-
scopes form a complete orthonormal basis for all the regions
in the aperture plane covered by the apertures. Now, if we have
an incoming photon in some arbitrary state

ψ̃arb(k) =
n∑

μ=1

∞∑
j=0

a jμ φ̃ j (k − αμ), (72)

then the coefficients a jμ are the probability amplitudes asso-
ciated with measuring an incoming photon in this basis and
finding it to have arrived in aperture μ and been sorted into
the local-mode j. If we have a mode sorter at each aperture
coupling the light in φ̃ j (k − αμ) into the Gaussian mode T00

of a single-mode fiber, then we get the probability amplitude
a jμT00 in that fiber. If we bring a collection of such fibers to a
central location and feed them into a linear optical interferom-
eter with some combination of coefficients d∗

ξ jμ, where ξ is an
index for the different outputs of the interferometer, then we
obtain the amplitudes

∑n
μ=1

∑ jmax
j=0 d∗

ξ jμa jμT00 in the output
ports of that interferometer, where jmax is the maximum- j
local modes collected. The total photon probability associated
with output ξ is then

Pξ =
∣∣∣∣∣∣

n∑
μ=1

jmax∑
j=0

d∗
ξ jμa jμ

∣∣∣∣∣∣
2

. (73)

This is exactly the probability for finding a photon coming
into our multiple aperture system to be in the aperture-plane
mode

χ̃ξ (k) =
n∑

μ=1

jmax∑
j=0

dξ jμφ̃ j (k − αμ). (74)

Thus, measuring the outputs of the interferometer allows
us to obtain the (Poisson shot noise limited) photon counts
in the χ̃ξ (k) basis. We have therefore shown that coupling
the different local modes at the distant telescopes into single-
mode fibers (via local SPADEs), bringing them into a linear
interferometer at a central location, and measuring the outputs
with photon counters is equivalent to carrying out a SPADE
measurement on the multiple aperture system in the χ̃ξ (k)
basis. While we have explained all this in terms of the aperture
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plane functions, this remains equally valid in the image plane
where χ̃ξ (k) will be replaced by its Fourier transform

χξ (x) =
n∑

μ=1

jmax∑
j=0

dξ jμ exp(iαμx)φ j (x). (75)

(b) Groupwise receiver. While we can, in principle, com-
bine the various local modes from the different receivers in
any arbitrary combinations, one simpler approach is to bring
the light in each local mode together and interfere it in the
same linear combination. Specifically, for each local-mode
number j, we have n signals from the different apertures
labeled by the index μ. We can feed these into a beamsplit-
ter circuit with linear transformation coefficients c∗

γμ, where
γ = 0, 1, . . . n is an index denoting the n outputs of each such
interferometer. These coefficients c∗

γμ thus form a unitary ma-
trix describing the linear transformation between the n input
ports of the beamsplitters enumerated by the index μ and the
n outputs denoted by the index γ . We are thus mixing the
signals for each local-mode j from the different telescopes
in an identical beamsplitter circuit giving us the same unitary
transformation. The light in the output ports of these beam-
splitters can then be measured with photon counters. This
approach amounts to measuring the incoming photons in the
basis functions

φ jγ (x) =
⎛
⎝∑

μ

cγμ exp(iαμx)

⎞
⎠ φ j (x). (76)

To calculate the performance for estimating our general pa-
rameter θg by measuring in this basis, we need the correlation
functions of these modes with the n-aperture PSF as discussed
earlier. Recall from Sec. III B that the inner products of the
contributions from two different apertures are zero, and for the
same aperture, we get the single aperture correlation functions
up to a phase. Therefore, we obtain

� jγ (xs) ≡
∫ ∞

−∞
dxφ∗

jγ (x)ψcomp(x − xs)

= 1√
n

⎛
⎝ n∑

μ=1

c∗
γμ exp(−iαμxs)

⎞
⎠ � j (xs). (77)

The probability for an incoming photon to be measured in
a detector associated with basis function φ jγ is therefore

Pjγ = 1

n

ne∑
s=1

bs Bγ (xs) �2
j (xs), (78)

where we have taken the regular square for � j (xs) assuming
that it is purely real valued, hence the magnitude squared is
equal to the regular square, and

Bγ (xs) ≡
∣∣∣∣∣∣

n∑
μ=1

c∗
γμ exp(−iαμxs)

∣∣∣∣∣∣
2

=
n∑

μ,ν=1

c∗
γμcγν

exp ( − i(αμ − αν )xs). (79)

The CFI is then given by the usual formula

Jgw(θg) = N
n∑

γ=1

∞∑
j=0

1

Pjγ

(
∂Pjγ

∂θg

)2

. (80)

In a realistic setting, it will only be possible to collect up
to a certain number of local modes, so j will go from 0 to
some maximum number jmax. We can, however, deploy local
SPADEs at each telescope, which collect and fiber-couple
modes indexed 0 through jmax (for transmission to the central
location), and detect any photons in the remainder of higher-
order modes with a bucket detector. We will then only add
over j up to jmax in Eq. (80), and just add the CFI contribution
from the orthogonal complement of this modal subspace for
which the photon count is obtained from the local bucket
detectors. This will be given by

Pr =
ne∑

s=1

bs

⎛
⎝1 −

jmax∑
j=0

�2
j (xs)

⎞
⎠. (81)

The jmax = 0 case corresponds to the special situation
where we simply have a binary-mode sorter at each aperture
location, coupling the local PSF (zero) mode into a single-
mode fiber, while allowing the rest of the light to go into a
bucket detector. As the zero-mode signals from the n apertures
are combined in a beamsplitter circuit, we obtain n outputs
corresponding to different linear combinations of the zero
mode from each aperture. The total photon count from the
bucket detectors at the local sites give the number of photons
in the orthogonal complement of the function space, and thus
we have an effective n + 1 SPADE on the compound aperture.

One special example of a groupwise receiver would be a
pairwise measurement scheme involving two apertures. For
each mode j, we would have two signals from the two loca-
tions, and we would combine them in a 50–50 beamsplitter.
So the outputs would be the sum and difference of the in-
put signals. If the apertures are at locations α1 = −β/2 and
α2 = β/2 in the aperture plane, as we discussed in Sec. III A
starting around Eq. (44), then measuring the output with the
symmetric linear combination of the jth mode signals corre-
sponds to measuring in the mode

φ j+(x) = 1√
2

(exp(−iβx/2) + exp(iβx/2))ψh, j (x)

=
√

2 cos(πrx/σ )ψh, j (x), (82)

where we have used (46) and (39) to express the argument
in terms of the single aperture Rayleigh parameter σ . The
j = 0 case of this corresponds to measuring in the compound
aperture PSF. In the same way, measuring the antisymmetric
outputs of the 50–50 beamsplitter for mode j corresponds to
measuring in the spatial-mode function

φ j−(x) =
√

2 sin(πrx/σ )ψh, j (x). (83)

The functions Bγ (xs) for the symmetric and antisymmetric
combinations are then

B+(xs) = 2 cos2(πrxs/σ ), and

B−(xs) = 2 sin2(πrxs/σ ). (84)
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We will use this simplification in our treatment of the two-
point-source problem in Sec. VI.

We can also extend this pairwise scheme to more than two
apertures that are in a symmetric arrangement about the center
of our multiple aperture system. Say we have apertures at
±β1/2, ±β2/2, ±β3/2, and so on. Then for each equidistant
oppositely located pair, we can mix the signals for each local
mode using a 50–50 beamsplitter to obtain their symmetric
and antisymmetric combinations. We can of course also have
an odd number of apertures such that in addition to a bunch of
equidistant pairs, we also have one in the middle. In that case,
we would still combine the signals from all the equidistant
pairs as mentioned above, and the jth mode of the aperture at
the center will just be one other mode, which we will not mix
with any light collected at other locations.

2. Receivers without mode sorting: using light pipes

In this receiver type, we do not use any mode sorters.
Instead, we carry all the (full, multimode) light collected at the
individual apertures through “light pipes” to a central location
in a way that maintains the spatial structure of the collected
optical fields, combine the signals interferometrically through
a beamsplitter circuit, and count the total photons in each
output port through a photon detector.

The probability for an incoming photon to be found in
the γ th output of our beamsplitter circuit can be obtained by
summing (78) over all the local modes. Since

∑
j �

2
j (xs) = 1

from the normalization property, the sum over j will remove
the local-mode dependence from the probabilities, and we
obtain

Pγ =
∑

j

Pjγ

= 1

n

ne∑
s=1

bs Bγ (xs), (85)

where Bγ (xs) was defined in (79). The CFI is calculated from
this probability as

Jlp(θg) =
n∑

γ=1

1

Pγ

(
∂Pγ

∂θg

)2

. (86)

We should mention that this is also the CFI for a groupwise
receiver in the limit where the individual aperture size shrinks
to zero. In that case, �0(xs) → 1 and all the other � j (xs)
functions approach zero. This limit is the subject of [23].

Like the groupwise mode sorter based design described
above, the simplest example of the light pipe receiver is to
combine the light pairwise when the apertures are in a sym-
metric configuration about the center of the baseline. That is,
for each pair of oppositely located telescopes, we just bring
the light collected at both locations and carried through light
pipes into a 50–50 beamsplitter and place photon counters at
the output ports. So the output of one port is the symmetric
sum of all the input from the two telescopes, and the other
output is the antisymmetric combination. The probabilities are
given in terms of the functions B+(xs) and B−(xs) given in
(84).

3. Obtaining a SLIVER: Adding a reflection in a pairwise
light pipe receiver

It turns out that we can obtain the SLIVER with inserting
a small tweak in the above-mentioned pairwise light pipe re-
ceiver. That is, consider having an even number of equidistant
oppositely located telescopes about the center of the baseline,
and are combining the signals pairwise without any spatial-
mode sorting. If we add a reflection to one of the input ports
of the beamsplitter for each such pair, then we can obtain the
SLIVER introduced in Sec. V A 3. This sifts the incoming
light into the even and odd parts of the electric field for each
telescope pair.

To see this explicitly, say we have two apertures of size
δ centered at locations α1 = −β/2 and α2 = β/2, and the
photon-unit field in the aperture plane is E (k). In the two
apertures, this field can be parameterized in terms of a
variable κ ,

E±(κ ) = E

(−δ ± β

2
+ κ

)
, 0 < κ < δ. (87)

The outputs of the 50–50 beamsplitter give 1/2 times the
sum and difference of these two. However, if we put a reflec-
tion on one of the interferometer inputs around its center, say
the one located at −β/2, then its signal becomes

E

(
δ − β

2
− κ

)
, 0 < κ < δ. (88)

Then the beamsplitter outputs contain

1

2

(
E

(
β − δ

2
+ κ

)
± E

(
−β − δ

2
− κ

))
, 0 < κ < δ.

(89)
That is, the even and odd parts of E (k) in the regions

covered by the two apertures. Hence adding a reflection on
one of the input ports of the 50–50 beamsplitter turns the light
pipe receiver into the equivalent of the so-called SLIVER,
which sorts the incoming light into its odd and even parts. The
generalization of this to any arbitrary number of equidistant
aperture pairs from the origin is trivial. In that case, we would
be combining the signals for each equidistant oppositely lo-
cated pair in a fifty-fifty beamsplitter with a reflection in one
of the input ports. The total photon cont of sum of the sym-
metric combination outputs of all the fifty-fifty beamsplitters
would then give the even part of the incoming light for the
whole system, and the sum of the antisymmetric outputs will
be the odd part. But since we will also have access to the
photon counts for each individual output port instead of just
the total sums of the symmetric and antisymmetric counts, this
receiver would have some additional information as well and
would therefore subsume the SLIVER. In case we also have
an aperture at the center, then we would not combine the light
received by it to any other aperture’s signal, and implement
just a local SLIVER there in order to get a complete SLIVER
for the compound aperture of our multiple aperture system.
Naturally, this connection with the SLIVER will not hold if
the aperture configuration is not symmetric about the center
of the origin in the k space.
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C. Entanglement based receivers

When the apertures are so far away that we cannot bring the
light collected by them to a central location through single-
mode fibers or multimode light pipes, we can still attain the
QFI, also known as the ultimate limit of the resolving power
of the multi-aperture baseline, but we would need to use
preshared entanglement among the telescope sites, a method
to couple the quantum state of the incoming light into a bank
of quantum memories, and local quantum operations at each
telescope site, along the lines of Refs. [26] and [27], but
(1) with the addition of local-mode sorters at each telescope
site, and (2) “compiling” the unitary corresponding to the
quantum-optimal interferometer—described in our receiver
designs above (where it was possible to bring the local modes
to a central location)—into an appropriate entanglement based
scheme that uses teleported logic on the so-called unary-
encoded (single-photon in many modes) qudit basis. Fully
fleshing out this idea for concrete imaging problems will be
left as the subject of future research.

VI. EXAMPLE: THE EQUALLY BRIGHT
TWO-POINT-SOURCE SEPARATION PROBLEM

We now illustrate some of the ideas developed in the
previous sections in terms of the equally bright two-point
separation problem. Here we remind the reader of Sec. II D
where we stated that we are assuming that our SPADEs are
pointed perfectly at the centroid and therefore we can take the
angular positions of the two-point sources to be ±θ .

A. The QFI

For simplicity, we will limit ourselves to considering
aperture arrangements that are symmetric about the origin.
Recalling (26), the QFI is −4N times the second derivative
of the autocorrelation function of the PSF evaluated at θ = 0.
From Sec. III B and specifically Eq. (58), the autocorrelation
function for the zero mode of our compound aperture will be

�PSF,comp(θ ) = 1

n
�PSF,1ap(θ )

∑
μ

exp(−iαμθ ). (90)

Calculating the second derivative of this combined aperture
correlation function and evaluating it at θ = 0, we obtain the
QFI,

Kfull,θ = − 4N�′′
PSF,comp(0)

= − 4N�′′
PSF,1ap(0) − 4iN

n
�′

PSF,1ap(0)
n∑

μ=1

αμ

+ 4N

n
�PSF,1ap(0)

n∑
μ=1

α2
μ

=K1ap,θ + Klb,θ . (91)

Here the first term is the single-aperture QFI we obtained
in Sec. II D [recall (32)],

K1ap,θ = −4N�′′
PSF,1ap(0). (92)

The term proportional to
∑n

μ=1 αμ is zero because we took
the mean position of the apertures to be zero [recall (40)].
The piece involving the sum of the squares of αμ is the
contribution arising from baseline interferometry

Klb,θ = 4N

n
�PSF,1ap(0)

∑
μ

α2
μ

= 4N

n

∑
μ

α2
μ, (93)

where we have used the normalization property of the single
aperture PSF to see that �PSF,1ap(0) = 1.

Note that if the aperture function is a Dirac delta func-
tion, i.e., ψ̃ (k) = δ(k), then the single-aperture term in the
QFI will be zero. This can be shown by rewriting the Dirac
delta aperture model as an infinitesimally small hard aperture
ψ̃ (k) = δ(k) ≡ limδ→0(1/

√
δ)rect(k/δ) (37) and evaluating

the QFI in (27) in the limit δ → 0, which is equivalent to
σ → ∞ via the definition in (39). This confirms that if the
imaging system is modeled with point-like apertures, as in
Refs. [23–25], the QFI will only depend on the positions of
the various apertures. However, this neglects the contribution
to the QFI that will depend on the sizes and features of the
individual apertures, which we include in our analysis.

For our special example of just two hard apertures at loca-
tions α1 = −β/2 and α2 = β/2, we obtain the QFI,

Kfull,2ap,θ = 4π2N

3σ 2
(3r2 + 1). (94)

In this, the single aperture QFI contribution is

K1ap,θ = 4π2N

3σ 2
, (95)

(recall (27)), and the contribution from long-baseline interfer-
ometry is

Klb,2ap,θ = 4π2N

3σ 2
(3r2), (96)

which scales quadratically with the baseline distance for a
constant aperture diameter [recall (46)]. We plot the QFI as
well as the contribution from the two constituent terms as
a function of r in Fig. 4. As the ratio between the baseline
and the aperture diameter increases, the relative information
contained in the structure of the individual apertures decreases
compared with that obtained by the long-baseline aperture
configuration.

If we have more than two apertures in a symmetric arrange-
ment, then we have many such pairs with their contributions
adding nicely in the same way. If n is odd where we also
have an aperture at k = 0 in addition to a bunch of equidistant
symmetric pairs, the middle aperture contributes zero to the
baseline term. In this way, the two-point-source problem is a
special case where the various contributions to the QFI sepa-
rate very nicely, additively, into a piece totally associated with
a single aperture and pairwise contributions from oppositely
located pairs of equidistant apertures.

B. Multi-axial receivers

In this category, we will consider three measurements:
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FIG. 4. QFI and constituent contributions from single-aperture
term and long-baseline term for estimating the separation θ

between two-point sources with two telescopes exhibiting baseline-
to-diameter ratio r.

(1) Ideal direct imaging in the compound aperture’s image
plane.

(2) A SPADE measurement. We will consider the Gram-
Schmidt recipe for obtaining a basis independently proposed
by Kerviche et al. and Rehacek et al. [4]. This, according to the
latter study, attains the QFI for the uniformly bright two-point
separation problem. We will also discuss two binary SPADEs
associated with the Gram-Schmidt basis, which attain the QFI
in the small separation limit.

(3) The SLIVER, which separates the incoming light
into its even and odd pieces, and was shown to overcome
Rayleigh’s curse for our two-point problem [54].

1. Direct imaging

For the performance of ideal direct imaging, we need the
probability function for an incoming photon to be detected at
position x on the imaging screen. This is given by

P(x) = 1
2 [|ψcomp(x − θ )|2 + |ψ (x + θ )|2], (97)

where ψcomp(x) is the compound aperture PSF associated with
our multiple apertures. The CFI is then

JDI =
∫ ∞

−∞
dx

1

P(x)

(
∂P(x)

∂θ

)2

. (98)

For the special case of two apertures at positions α1 =
−β/2 and α2 = β/2 in the aperture plane, we use the com-
pound aperture PSF (45), and plot the CFI for the special
case of two apertures for three different values of r. We also
show the performance we would obtain if we only used direct
imaging measurements at the two apertures locally without
any interferometry.

2. The Gram-Schmidt basis and associated binary SPADEs

We now work with the basis proposed independently by
Kerviche et al. and Rehacek et al. [4,5].

Focusing on aperture configurations that are symmetric
about the center of the baseline region, we will have a purely
real-valued and symmetric PSF. Therefore, we will derive our
formulas for a real-valued and symmetric PSF ψ (x). We take
the zeroth-mode function of the Gram-Schmidt basis to be the

PSF,

A0(x) = ψ (x). (99)

Moreover, since we are only considering aperture arrange-
ments that are symmetric around the origin of the aperture
plane, mode 1 will be proportional to the derivative. Applying
the normalization condition, it is straightforward to see that
mode 1 will be

a1(x) = 1√−�′′
PSF(0)

∂ψ (x)

∂x
, (100)

where �′′
PSF(0) is the second derivative of the autocorrela-

tion function of the PSF defined in (25). For a derivation of
(100), check Appendix B. For higher-order modes, we will get
nonzero overlap functions with previous modes of the same
parity, and we will therefore have to subtract the nonorthog-
onal parts by following the Gram-Schmidt orthogonalization
procedure.

Rehacek et al. proved that such a Gram-Schmidt basis or
for that matter, any other complete basis of functions with
definite parity, attains the QFI for our two-point separation
problem for any symmetric aperture function. Therefore, the
Gram-Schmidt basis will also be optimal for any symmetric
compound aperture set ups. However, since such a full SPADE
measurement is difficult to implement, Kerviche et al. have
proposed that in the small separation limit, we can also use a
binary SPADE that only sifts the incoming photons between
the zero or the first mode of the Gram-Schmidt basis and their
orthogonal complements. They call these binary SPADEs the
0-BinSPADE and the 1-BinSPADE, respectively, and show
that their CFIs reach a nonzero constant in the zero-separation
limit and hence bypasses Rayleigh’s curse. It turns out that
this constant equals the QFI, as we show in Appendix C.

Here, we obtain expressions for the CFI of these two binary
SPADEs. This was done by Kerviche et al., but we obtain
slightly simpler expressions as we are only considering aper-
ture arrangements that are symmetric about the origin. The
probability for finding an incoming photon to be in mode 0
will be

P0 = �2
PSF(θ ). (101)

The probability for the orthogonal complement will be

P0r = 1 − P0. (102)

The Fisher information for the 0-BinSPADE [when ψ (x)
is real] is given (after a bit of simplification) by

J0−Bin(θ ) = N
1

P0

(
∂P0

∂θ

)2

+ 1

P0r

(
∂P0r

∂θ

)2

= N

P0(1 − P0)

(
∂P0

∂θ

)2

= 4N
[�′

PSF(θ )]2

1 − �2
PSF(θ )

, (103)

where as previously defined, �′
PSF(θ ) is the derivative of

�PSF(θ ), and �2
PSF(θ ) = [�PSF(θ )]2.
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(a) (b) (c)

FIG. 5. CFI of multi-axial receivers normalized to QFI for (a) r = 1, (b) r = 2, and (c) r = 3.

For the 1-BinSPADE, the probability for finding an incom-
ing photon to be in mode A1 will be

P1 =
[∫ ∞

−∞
dxA0(x − θ ) A1(x)

]2

= − [�′
PSF(θ )]2

�′′
PSF(0)

, (104)

and the probability for an incoming photon to be in the or-
thogonal complement will be

P1r = 1 − P1. (105)

The Fisher information for the 1-BinSPADE is then given
by [again, this is for real ψ (x)]

J1−Bin(θ ) = N
1

P1

(
∂P1

∂θ

)2

+ 1

P1r

(
∂P1r

∂θ

)2

= N

P1(1 − P1)

(
∂P1

∂θ

)2

= − 4N[�′′
PSF(θ )]2

�′′
PSF(0) + [�′

PSF(θ )]2
. (106)

The proof that (103) and (106) approach the QFI as θ → 0
is given in Appendix C.

These are the general expressions for any symmetric aper-
ture. For our multiple aperture set up, we would use the
autocorrelation functions �PSF,comp(θ ) of the combined aper-
ture from (58) in place of �PSF(θ ). For two hard apertures
at positions α1 = −β/2 and α2 = β/2, we can calculate the
autocorrelation function either by brute force from the com-
pound aperture PSF (45) or from (58) and (59). We obtain

�PSF,comp(θ ) =
∫ ∞

−∞
dx ψ∗

2ap(x) ψ2ap(x − θ )

= σ
cos(πrθ/σ ) sin(πθ/σ )

πθ
. (107)

Applying (103) and (106), we obtain the CFI for the two
binary SPADEs. The expressions for these are rather tedious
and not very instructive, so we will not write them down
explicitly. However, we plot them in Fig. 5.

3. The SLIVER

As explained in Sec. V A 3, the SLIVER sorts the incoming
light into its even and odd parts [54].

It is a simple exercise to calculate the CFI for our two-
point separation problem using a SLIVER. While this was
done in [54] for the two-dimensional case, we rederive the
same expression for the one-dimensional problem using our
conventions and the language of correlation functions.

The (image plane) amplitudes associated with the two-
point sources are ψ (x ± θ ). If we split it into two parts, and
spatially invert one of them, then it means taking x → −x,
which gives

ψcomp(x ± θ ) → ψcomp(−x ± θ ) = ψcomp(x ∓ θ ), (108)

where in the last step, we have assumed ψcomp(x) =
ψcomp(−x) since we are limiting ourselves to symmetric aper-
ture configurations. Now, when we recombine the beams
through the second 50–50 beamsplitter, then the normalized
outputs will be

ψE,comp(x,±θ ) = 1
2 [ψcomp(x ± θ ) + ψcomp(x ∓ θ )]

= 1
2 [ψcomp(x + θ ) + ψcomp(x − θ )], and

ψO,comp(x,±θ ) = 1
2 [ψcomp(x ± θ ) − ψcomp(x ∓ θ )]

= ± 1
2 [ψcomp(x + θ ) − ψcomp(x − θ )],

(109)

for the light emanating from the two-point sources.
The probability for finding an incoming photon to be in

these even or odd modes will be the (brightness-weighted)
sum of the contributions from the two-points

PE = 1

2

∫ ∞

−∞
dx ψ2

E,comp(x, θ ) + ψ2
E,comp(x,−θ )

= 1 + �PSF,comp(2θ )

2
, (110)

PO = 1

2

∫ ∞

−∞
dx ψ2

O,comp(x, θ ) + ψ2
O,comp(x,−θ )

= 1 − �PSF,comp(2θ )

2
, (111)

where we have simply expanded both ψE,comp(x,±θ ) and
ψO,comp(x,±θ ) in terms of ψcomp(x ± θ ) and written out the
integrals in terms of the autocorrelation function of ψcomp(x)
defined in (58). The unity terms arise from the inner product
of the same function with itself.
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The CFI is then

JSliv(θ ) = 1

PE

(
∂PE

∂θ

)2

+ 1

PO

(
∂PO

∂θ

)2

= 4N[�′
PSF,comp(2θ )]2

1 − �2
PSF,comp(2θ )

. (112)

This is equivalent to the result in [54], and it is straightfor-
ward to see from L’hopital’s rule that in the θ → 0 limit, it
approaches the QFI given in (26). We can calculate the above
CFI for the SLIVER explicitly by recalling (107).

In Fig. 5 we plot the relative CFIs for our multi-axial
receivers for three values of r, corresponding to three different
baselines, for point source separation estimation. We focus
on sub-Rayleigh separations θ < σ , which corresponds to the
regime where the canonical Rayleigh criterion is violated for
the single-aperture case. We see that while direct imaging
achieves zero information in the limit θ → 0, the other three
receivers we analyze all converge to the QFI in this limit, sup-
porting their utility for subdiffraction imaging with multiple
apertures. Of the three multi-axial receivers, the 0-BinSPADE
has the best performance for highly sub-Rayleigh sources,
although all of the receivers exhibit oscillatory behavior in
their CFIs such that no one receiver is superior for all values
of θ < σ .

C. Co-axial receivers

1. Receiver employing mode sorting

For the two-point source problem, as we show below, the
groupwise receiver (dubbed “pairwise receiver” for this spe-
cial case) achieves the QFI. Therefore, in this subsection, we
will only consider the pairwise receiver.

Sticking to the case of symmetric aperture arrangements,
we can attain the QFI in a number of ways, the simplest of
which is to build the pairwise receiver described in Sec. V B 1.
Let us say that we have a total of n = 2npairs apertures at
locations α2i−1 = −βi/2 and α2i = βi/2 with i = 1 . . . npairs.
At each aperture, we collect mode j, couple it into a single-
mode fiber to transport the signals to a central location, and
combine them in a 50–50 beamsplitter, which gives the sym-
metric and antisymmetric combinations of the jth modes from
each equidistant aperture pair, for which we obtain the photon
count. Let us denote the photon probabilities for the jth mode
from the aperture pair at ±βi as Pji±. Just as in Sec. II D, we
assume that our SPADEs are pointed perfectly at the centroid
so that the two positions are x1 = θ and x2 = −θ , and the
brightnesses are both b1 = b2 = 1

2 . Recalling the discussion
of the groupwise and pairwise receivers from Sec. V B 1, we
obtain the photon probabilities

Pji+ = 1

npairs
cos2(βiθ/2) �2

j (θ ),

Pji− = 1

npairs
sin2(βiθ/2) �2

j (θ ). (113)

Here we have used Eqs. (78) and (84) tailored for the two-
point problem. The total CFI for all the aperture combinations

i± for local-mode j is

J j,θ = N

npairs∑
i=1

1

Pji+

(
∂Pji+
∂θ

)2

+ 1

Pji−

(
∂Pji−
∂θ

)2

= 4N (�′
j (θ ))2 + N

npairs

npairs∑
i=1

β2
i �2

j (θ ). (114)

Transforming indices in the second term, this translates to

J j,θ = 4N (�′
j (θ ))2 + 4N

n

n∑
μ=1

α2
μ �2

j (θ ). (115)

We have derived this for an even number of apertures. It
turns out that this equation is equally valid if we also add
another one at the origin of the aperture plane, so that we have
n = 2npairs + 1 apertures located at 0,±β1/2, . . . ± βnpairs/2.
In that case, we simply measure each local-mode j from the
central telescope without interfering it with the signals from
the other apertures. The photon probabilities are then

Pji+ = 1

2npairs + 1
2 cos2(βiθ/2) �2

j (θ ),

Pji− = 1

2npairs + 1
2 sin2(βiθ/2) �2

j (θ ),

Pj0 = �2
j (θ ). (116)

It is a straightforward exercise to add all the CFI contribu-
tions from these and see that the sum gives (115).

The first term in (115) is equal to the CFI contribution from
the jth mode for a single aperture, and the second term is
associated with baseline interferometry. This means that the
total CFI for our groupwise receiver is equal to the QFI given
in (91), as we will argue shortly,

Jfull,θ =
∑

j

Jj,θ

= K1ap,θ + Klb,θ

= Kfull,θ , (117)

where we have recalled (32) to identify the first term as the
single aperture QFI, and used the normalization property to
take

∑∞
j=0 �2

j (θ ) = 1 for the second term. Specifically, �2
j (θ )

is the probability for a photon coming into a single aperture
to be in the jth mode, and adding over j gives unity. So like
the QFI, the CFI also has two parts, one equal to the single-
aperture CFI, and the other associated with long-baseline
interferometry, which is independent of the shape and features
of the individual apertures (as long as all the apertures are of
the same size and shape).

It is worth mentioning that the pairwise combinations are
not the only way to attain the QFI. From the invariance result
in Sec. II E, any other linear combinations of the pairwise
modes involving purely real-valued coefficients will give the
same CFI and hence also achieve the QFI.

As mentioned earlier, in a realistic application, we will not
be able to measure all the infinite modes individually. Let us
say that we are only collecting up to mode number jmax from
the different apertures into single-mode fibers for combina-
tion in a beamsplitter circuit and subsequent measurement.
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We can still count the total number of photons that are in
the orthogonal complement (i.e., in local-mode jmax + 1 or
higher of the individual apertures) by placing a bucket detector
at each location. The sum of the photon counts from these
bucket detectors will give us the total photon count for the
orthogonal complement. It is easy to see that the probability
for an incoming photon to be found in the global orthogonal
complement (i.e., in any one of the bucket detectors at each
aperture site) will be

Pr, jmax =
n∑

μ=1

1

n

∞∑
j= jmax+1

| exp(±iαμθ ) � j (θ )|2

=
∞∑

j= jmax+1

�2
j (θ ). (118)

We can calculate the CFI contribution of this or-
thogonal complement from the usual formula Jr, jmax,θ =

N
Pr, jmax

( ∂Pr, jmax

∂θ
)2. The total CFI for such a truncated groupwise

receiver will be

J jmax,θ =Jr, jmax,θ +
jmax∑
j=0

Jj,θ

= N
jmax∑
j=0

4(�′
j (θ ))2

+ 4N

1 − ∑ jmax
j=0 �2

j (θ )

⎛
⎝ jmax∑

j=0

� j (θ )�′
j (θ )

⎞
⎠

2

+ Klb,θ

jmax∑
j=0

�2
j (θ ). (119)

Here the first two terms are equal to the CFI for a truncated
SPADE with just a single aperture, and the last term involves
the contribution from baseline interferometry. As jmax gets
larger,

∑
�2

j (θ ) becomes progressively closer to 1, and the
long-baseline term gets closer to the QFI term associated with
baseline interferometry. In the same way, the first part (i.e.,
the single-aperture truncated SPADE) also gets closer to the
single aperture QFI as we increase jmax.

The jmax = 0 case corresponds to a receiver where we
simply take a binary-mode sorter at each telescope cite that
couples the zero mode into single-mode fibers for combina-
tion at a central location, with the rest going into a bucket
detector. For our special example of two apertures at positions
±β/2 with our pairwise scheme, and taking the local modes
to be the sinc-Bessel functions, this means a trinary SPADE
sorting the incoming photons between the following three
modes or subspaces:

(1) The symmetric combination of the zero mode from
the two apertures, corresponding to the compound aperture
PSF mode

√
2 cos(πrx/σ )ψ0(x). For hard apertures, this was

given in (45).
(2) The antisymmetric combination of the zero mode

from the two apertures, corresponding to the state√
2 sin(πrx/σ )ψ0(x). For hard apertures, this was given in

(45). That is, the same as the PSF mode but with cos(πrx/σ )
replaced by a sine.

(3) The orthogonal complement of the above two func-
tions.

This trinary SPADE is therefore an improvement over
the 0-BinSPADE discussed in Sec. VI B 2 since it also has
the antisymmetric combination of the fundamental mode.
Putting together the various pieces such as (59) with �0(a) ≡
�PSF,1ap(a) and (119), we obtain the CFI for this trinary
SPADE

Jtri,θ = 4N
(�′

0(θ ))2

1 − �2
0 (θ )

+ 4π2Nr2

σ 2
�2

0 (θ )

= 4N

( cos(πθ/σ )
θ

− σ sin(πθ/σ )
πθ2

)2

1 − σ 2 sin2(πθ/σ )
π2θ2

+ 4π2Nr2

σ 2
σ 2 sin2(πθ/σ )

π2θ2
. (120)

In Fig. 6, we plot the CFI of this trinary SPADE for point
source separation estimation in the sub-Rayleigh regime and
observe that it approaches the QFI in the limit θ → 0. Com-
paring the trinary SPADE against a multi-axial 0-BinSPADE,
we see the advantage obtained by collecting the antisymmet-
ric combination between the two apertures: the oscillatory
0-BinSPADE CFI is enveloped by that of the trinary SPADE,
with the latter always obtaining a CFI at least as large as the
former.

2. Receiver without mode sorting: using light pipes

Based on Sec. V B 2, if instead of single-mode fibers car-
rying individual local spatial modes, we bring all of the light
from each aperture to a central location through multimode
light pipes and let it interfere pairwise through one bulk 50–50
beamsplitter, then we simply attain the long-baseline piece of
the QFI for the two-point separation problem Klb,θ given in
(93), i.e.,

Klb,2ap,θ = 4π2N

3σ 2
(3r2) (121)

= 4π2r2N/σ 2. (122)

In this scenario, the information K1ap,θ contained in the
structure of the individual apertures is lost.

D. SLIVER: Lightpipe receiver with a reflection

Recall from Sec. V B 3 that if we add a reflection to one
of the input ports of a fifty-fifty beamsplitter in a light pipe
receiver, then we obtain the so-called SLIVER. For the two-
point problem, the performance of the SLIVER will be given
by (112), which we obtained in Sec. VI B 3 while discussing
multi-axial beam combination. Recall that in the θ → 0 limit,
this approaches the full QFI, rather than just the long-baseline
contribution achieved by the lightpipe receiver without a re-
flection.

In Fig. 6, we show the optimality of this co-axially imple-
mented SLIVER receiver as θ → 0, although the performance
at larger angular separations is worse than the trinary SPADE.
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(a) (b) (c)

FIG. 6. CFI of co-axial receivers normalized to QFI for (a) r = 1, (b) r = 2, and (c) r = 3.

E. Discussion

Our receiver designs in this paper can be thought of as
attempts to capture not only the quantum information arising
from the presence of distant apertures but also the information
contained in the spatial structure of the individual apertures. In
Fig. 7(a). we plot for 1 � r � 3 the percent reduction in the
MSE of estimating the two-point source separation, accord-
ing to the quantum Crámer-Rao bound MSE � (NK)−1, that
could be obtained by capturing this additional information.
This plot directly relates to Fig. 4 and shows that a maximum
of 25% of the information about θ is contained in the single-
aperture term of (94) when r = 1 (i.e., when the apertures are
touching each other) and this relative contribution decreases
quadratically as the baseline distance increases. For reference,
the LBT has mirror diameters of d = 8.408 m and a center-to-
center baseline distance of b = 14.4 m [55], giving r ≡ b/d =
1.71. This corresponds to a relative reduction of 10.23% in the
quantum-limited MSE if the information contained within the
individual apertures was fully captured along with the baseline
interferometry information. We conclude that more carefully
designing an imaging receiver to capture both of the two

(a) (b)

FIG. 7. (a) Percentage of reduction in MSE obtained by
saturating the QCRB for the full QFI Kfull,2ap,θ as opposed
to the long-baseline QFI Klb,θ [computed as 100% × (K−1

lb,θ −
K−1

full,2ap,θ )/(K−1
lb,θ )]. (b) Maximum value of θ for which each of our

receivers achieves a CFI greater than Klb,θ for a given baseline-to-
diameter ratio r (e.g., Trinary SPADE outperforms the long-baseline
QFI for any combination of parameters in the purple shaded region).
In both (a) and (b) the dashed lines correspond to the LBT with
r = 1.71.

components of the quantum Fisher information represented
in (91) can provide a modest but notable boost to the ultimate
limits for subdiffraction imaging in a real-world, two-aperture
telescope system used for extrasolar astronomical observa-
tion. In the case of the LBT, which already uses multi-axial
beam combination in a Fizeau interferometry configuration as
its primary mode of operation, the actual improvement over
current methods (which are not optimized for the quantum
limit of estimating the distance between two equal-brightness
stars) can actually be much larger than 10%.

In Fig. 7(b) we ask the natural next question: Can we
design receivers to successfully access this additional single-
aperture information and beat the quantum limit of standard
long-baseline interferometry? We plot the maximum point
source separation at which each of the receiver designs we
analyzed outperforms the simple long-baseline receiver that
retains no spatial information beyond the phase delay be-
tween distant point-like apertures. This maximum value of
θ corresponds to the intersections with the horizontal dashed
lines in Fig. 6. Equivalently, Fig. 7(b) can be interpreted as a
parametrized region of improvement over long-baseline inter-
ferometry: Any point down and to the left of the curve for a
given receiver (e.g., the purple shaded region for the Trinary
SPADE) indicates a pair of values for θ and r for which that
receiver’s CFI is greater than the QFI of long-baseline interfer-
ometry. We see that the information in the individual aperture
structure will have the largest effect over the largest range of
object geometries when the baseline is moderate relative to
the diameter of the individual apertures. For example, for the
LBT, the standard astronomical diffraction limit at a wave-
length of λ = 1.65 µm is λ/d = 40.5 milliarcseconds, so σ =
2πλ/d = 254.3 milliarcseconds. We find that the distance
between two-point sources with angular separation smaller
than θmax < 0.195σ = 49.6 milliarcseconds (which includes
all unresolved two-point-source objects) will be estimable
to a higher precision with a Trinary SPADE measurement
that leverages the spatial structure of the apertures compared
against a baseline-interferometric measurement that does not
take the spatial structure of the apertures into account.

Lastly, if we are operating in the large distance regime
where we cannot use light pipes or single-mode fibers and
must use an entanglement based approach, then we would
be combining the signals from distant locations modewise,
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and this will mean the truncated groupwise receiver discussed
above.

VII. CONCLUSIONS

Recent and ongoing developments in quantum information
theory hold interesting possibilities for the field of baseline
interferometry. In this paper, we have given a description
of several approaches for receiver designs for achieving
quantum-optimal precisions for well-defined quantitative
imaging tasks, that are appropriate for different distance
regimes. We have used the example of two-point-source sepa-
ration estimation for two uniformly bright incoherent sources
as a toy problem to illustrate these ideas. In the process, we
have also developed a mathematical framework for analyzing
multiple aperture systems in terms of a combined aperture
function or its Fourier transform, which can be thought of as
the compound PSF if we had a (possibly hypothetical) giant
imaging screen spanning the entire baseline.

This framework allows to extend the analysis presented
herein to imaging more complex scenes—at their respective
quantum-limited precision—made up of extended objects or
constellations of point emitters. For example, for localizing
multiple stars within a tight sub-Rayleigh angular field of
view, one would apply the algorithm from Ref. [22] to the
multi-aperture system’s compound-aperture PSF, and trans-
late the mathematical description of the adaptive predetection
mode sorting to either a co-axial, multi-axial (or even an
entanglement-assisted) receiver, by “compiling” the spatial-
mode demultiplexer (SPADE) to be applied to the entirety
of the multispatial-mode light collected by all the apertures,
using the tools from Ref. [33] into a collection of pairwise
two-mode Mach-Zehnder Interferometers (MZIs).

Our first distance regime is when the different telescopes’
apertures are close enough to each other that we can reflect
the light on to a common imaging screen. This way, instead
of building a large, prohibitively expensive parabolic mirror
spanning the entire baseline, we only need to have carved out
segments of such a mirror in the locations of our different
apertures. Once the light is reflected on to a common imaging
screen, we can carry out ideal direct imaging, or implement
some SPADE basis measurement. For the specific problem
of two-point separation estimation, the Gram-Schmidt (GS)
basis independently introduced by Kerviche et al. and Re-
hacek et al. attains the QFI. In the small separation limit, a
binary SPADE separating the zeroth (compound PSF) or the
first GS mode from the rest of the modal span also approaches
the QFI. Moreover, another simple receiver that realizes the
QFI in the small separation limit is the so-called SLIVER
(image-inversion interferometry) introduced by Nair et al.

Our intermediate regime is when we can bring the light
collected at different locations to a central location through
single-mode fibers or light pipes, feed them into a linear
interferometer, and measure the outputs with photon counters.
For this case, a complete basis of orthogonal modes associated
with all the individual apertures together can serve as a full
basis for the whole set of functions involving the multiple
aperture system. Any general SPADE measurement can then
be implemented in terms of these local modes by choosing

the appropriate combination coefficients to mix the different
mode signals coming from the various apertures.

For our equally bright two-point separation problem, we
have shown that a pairwise combination scheme, in which
we only mix the same modal signals from oppositely located
equidistant pairs through a 50–50 beamsplitter and obtain the
photon counts for in the output ports, attains the QFI. We
have also shown that the QFI for the two-point problem for a
physically symmetric aperture configuration can be expressed
as a sum of the QFI for a single aperture and a second term
associated with the long-baseline effect involved in combining
light from distant receiver. Moreover, the latter term is pro-
portional to the sum of the squares of the positions of all the
individual apertures.

If instead of single-mode fibers, we bring the light to a
central location through multimode light pipes and do not
use any local-mode sorters, then the pairwise scheme, or
for that matter any other equally optimal one, is shown to
attain the second QFI term, that is, the one associated with
the long-baseline effect. With a small tweak in the form of
the introduction of a reflection, the light pipe based receiver
can also be effectively turned into a SLIVER for a multiple
aperture system.

Lastly, we have discussed the large distance regime where
bringing the light to a common location through single-mode
fibers or light pipes is practically impossible or prohibitively
expensive. In this case, we can use a protocol based on
quantum entanglement to transfer the signal received at one
location to another one. By doing so, the signals that need to
be combined in an interferometer can be brought to a common
location. This way, we can in principle use an entanglement
based protocol in place of single-mode fibers to carry out
SPADE measurements. Our pairwise scheme seems tailor-
made for such an approach.
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APPENDIX A: THE QFI FOR TWO-POINT
SEPARATION ESTIMATION

This calculation was originally done by Tsang et al. in
[3]. Here we summarize their method and closely follow their
treatment and notation, but with the difference that we are
calculating the QFI for twice the separation instead of the
separation. Specifically, we are taking our two points to be at
positions x1 = θ and x2 = −θ and are calculating the QFI for
estimating θ . For this reason, our QFI result will be four times
the separation estimation QFI found by Tsang et al. as they
take the points to be x1 = θ1 + θ2/2 and x2 = θ1 − θ2/2.
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From (2), the single-photon part of the density matrix for
the equally bright two-point problem is

ρ1 = 1
2 (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|). (A1)

Here we have written the contributions as |ψs〉〈ψs| instead
of |ψs,1ap〉〈ψs,1ap| because here we are calculating the general
expression that does not depend on the number of apertures.
The only constraint we will consider is that our aperture is
symmetric, giving an real-valued and even PSF function ψ (x),
giving the ket |ψs〉 = ∫ ∞

−∞ dxψ (x − xs)|x〉.
For the QFI, we will need this density matrix as well as

its symmetric logarithmic derivative (SLD). For this, we first
need to find an orthonormal eigenbasis spanning the whole
space spanned by |ψ1〉 and |ψ2〉 as well as their partial deriva-
tives with respect to θ . First note that |ψ1〉 and |ψ2〉 are not
mutually orthogonal, and

δ ≡ 〈ψ1|ψ2〉

=
∫ ∞

−∞
ψ∗(x − x1)ψ (x − x2)

=
∫ ∞

−∞
ψ∗(x − θ )ψ (x + θ )

=
∫ ∞

−∞
ψ∗(x − 2θ )ψ (x)

= 〈ψ2|ψ1〉
�= 0 (A2)

for a real valued ψ (x).
To express ρ1 in a diagonal form in an orthonormal ba-

sis, we first write down a 2×2 matrix of the inner products
〈ψi|ψ j〉, (

1 δ

δ 1

)
. (A3)

The normalized eigenvectors of this matrix give us an orthog-
onal set of functions, and the square roots of the eigenvalues
give us the normalization factors. We find that the eigenvalues
are 1 ± δ, with the eigenvectors 1√

2
(1,±1). Therefore, our

orthonormal basis of states spanning |ψ1〉 and |ψ2〉 is

|e1〉 = 1√
2(1 − δ)

(|ψ1〉 − |ψ2〉), (A4)

|e2〉 = 1√
2(1 + δ)

(|ψ1〉 + |ψ2〉). (A5)

It is a straightforward exercise to see that these are also the
eigenstates of our density operator ρ1, and that the eigenvalues
Di of ρ1 are the corresponding eigenvalues of the matrix of
inner products (A3) divided by 2,

D1 = 1 − δ

2
, (A6)

D2 = 1 + δ

2
. (A7)

This division by 2 is simply the 1/2 factor in front of
|ψ1〉〈ψ1| + |ψ2〉〈ψ2|. Our density matrix is then

ρ1 = D1|e1〉〈e1| + D2|e2〉〈e2|, (A8)

with the above definitions.

However, ∂ρ1

∂θ
also contains the derivatives of |ψ1〉 and |ψ2〉.

Therefore, we need to extend our eigenbasis to span these
states too. We therefore include the derivatives of |ψi〉 and
carry out a Gram-Schmidt orthogonalization. This gives us the
additional states

|e3〉 = 1

c3

[
�k√

2
(|ψ11〉 + |ψ22〉) − γ√

1 − δ
|e1〉

]
, (A9)

|e4〉 = 1

c4

[
�k√

2
(|ψ11〉 − |ψ22〉) + γ√

1 + δ
|e2〉

]
, (A10)

where

�k2 =
∫ ∞

−∞
dx

[
∂ψ (x)

∂x

]2

(A11)

and

γ =
∫ ∞

−∞
dx

∂ψ (x)

∂x
ψ (x − θ2). (A12)

The other quantities defined here are

|ψ11〉 ≡ 1

�k

∫ ∞

−∞
dx

∂ψ (x − x1)

∂x1
|x〉, (A13)

|ψ22〉 ≡ 1

�k

∫ ∞

−∞
dx

∂ψ (x − x2)

∂x2
|x〉, (A14)

c3 ≡
(

�k2 + b2 − γ 2

1 − δ

)1/2

, (A15)

c4 ≡
(

�k2 − b2 − γ 2

1 + δ

)1/2

, (A16)

b2 ≡
∫ ∞

−∞
dx

∂ψ (x − x1)

∂x1

∂ψ (x − x2)

∂x2
, (A17)

and δ was defined in (A2).
We now have a full four-dimensional eigenbasis for our

vector space spanned by the density operator ρ1 and its
derivatives. It is now a simple exercise to use the formula (10)
for the SLD and compute the QFI.

After a bit of algebra, we find that the nonzero entries of
the SLD with respect to the parameter θ in the |ei〉 (i = 1 . . . 4)
basis are

L2,11 = − 2γ

1 − δ
, (A18)

L2,13 = − 2c3√
1 − δ

, (A19)

L2,22 = 2γ

1 + δ
, (A20)

L2,24 = − 2c4√
1 + δ

. (A21)
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From these, it is a straightforward exercise to calculate the
QFI using (8). We obtain

Kθ = 4N�k2

= 4N
∫ ∞

−∞
dx

∣∣∣∣∂ψ (x)

∂x

∣∣∣∣
2

.

APPENDIX B: NORMALIZATION COEFFICIENT
FOR MODE 1 OF THE GRAM-SCHMIDT BASIS

The normalization coefficient for mode 1 is the inverse
square root of ∫ ∞

−∞
(ψ ′(x))2 dx. (B1)

If we integrate by parts and use the fact that ψ (x) goes to
zero at ±∞, then this is equal to

= −
∫ ∞

−∞
ψ (x) ψ ′′(x) dx = −�′′

PSF(0), (B2)

where �′′
PSF(0) is the second derivative of �PSF(0). The nor-

malized first mode is therefore given by

a1(x) = 1√−�′′
PSF(0)

∂ψ (x)

∂x
. (B3)

APPENDIX C: PROOF THAT THE 0- AND 1-BinSPADEs
ATTAIN THE QFI

We will take the θ → 0 limit in (103). For the numerator,
note that �′

PSF(θ ) → 0 since �PSF(θ ) is maximum at θ = 0.
But the denominator also goes to zero since �PSF(0) = 1.
Therefore, we apply L’Hopital’s rule. For the numerator, we
then get

lim
θ→0

8N�′
PSF(θ ) �′′

PSF(θ ). (C1)

And for the denominator, we obtain

lim
θ→0

−2�PSF(θ ) �′
PSF(θ ) = lim

θ→0
−2�′

PSF(θ ), (C2)

where we have used the normalization property �PSF(0) = 1.
Dividing the numerator term by the denominator one, and
simplifying, we get

lim
θ→0

I0-BinSPADE(θ ) = −4N�′′
PSF(0), (C3)

which is equal to the QFI according to (26).
For the 1-BinSPADE, we have (106). In the numerator,

taking the θ → 0 limit gives [�′′
PSF(0)]2. The denominator

goes to �′′
PSF(0) since �′

PSF(θ ) approaches 0 as θ → 0. On
simplifying, we get

lim
θ→0

I1-BinSPADE(θ ) = −4N�′′
PSF(0), (C4)

which is the QFI.
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