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Estimating many properties of a quantum state via quantum reservoir processing
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Estimating properties of a quantum state is an indispensable task in various applications of quantum informa-
tion processing. To predict properties in the postprocessing stage, it is inherent to first perceive the quantum state
with a measurement protocol and store the information acquired. In this paper, we propose a general framework
for constructing classical approximations of arbitrary quantum states with quantum reservoirs. A key advantage
of our method is that only a single local measurement setting is required for estimating arbitrary properties, while
most of the previous methods need an exponentially increasing number of measurement settings. To estimate
M properties simultaneously, the size of the classical approximation scales as ln M. Moreover, this estimation
scheme is extendable to higher-dimensional systems and hybrid systems with nonidentical local dimensions,
which makes it exceptionally generic. We support our theoretical findings with extensive numerical simulations.
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I. INTRODUCTION

Estimating properties of a quantum state plays a central
role in the implementation of various quantum technologies,
such as quantum computing, quantum communication, and
quantum sensing. This highlights that extracting information
from a quantum system to a classical machine lies at the heart
of quantum physics [1]. The prominent technique for this
task, quantum tomography, studies the reconstruction meth-
ods of a density matrix, which captures all the information
of a quantum system. However, the curse of dimensionality
has emerged with the advent of the noisy intermediate-scale
quantum era [2], which renders it infeasible to obtain a com-
plete description of quantum systems with a large number of
constituents. Moreover, a full description is often superfluous
in tasks where only key properties are relevant. As a conse-
quence, the concept of shadow tomography is proposed to
focus on predicting certain properties of a quantum system
[3].

Particularly important progress in the study of shadow
tomography is the advancement of randomized measurements
[4–6], the virtue of which is highlighted as “Measure first, ask
questions later” [7]. The randomized measurement protocols
proposed by Huang et al. construct approximate represen-
tations of the quantum system, namely, classical shadows,
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via Pauli group and Clifford group measurements [5]. The
single-snapshot variance upper bound of classical shadows is
determined by the so-called shadow norm, which is optimal
in the worst-case scenario. Nevertheless, variants of random-
ized measurements can achieve better performance in specific
cases [8–10]. For instance, the Hamiltonian-driven shadow
tomography achieves higher efficiency in predicting diagonal
observables [10]. In addition, the readout noise present in the
measurement protocol can be further suppressed by construct-
ing classical shadows with positive operator-valued measures
(POVMs) [11–13].

The classical shadows are highly efficient in the estima-
tion of various properties in the postprocessing phase, the
benefits of which extend to entanglement detection [14],
characterization of topological order [15], machine learning
for many-body problems [16], etc. However, the randomized
measurements protocols pose a challenge in experiments due
to the need for exponentially increasing measurement settings
to achieve an arbitrary accuracy. Hence, various techniques
are introduced to tackle this problem [17–20]. Moreover, the
theoretical results are based on the fact that multiqubit Clif-
ford groups are unitary 3-designs [21], which is not the case
for arbitrary qudit systems. The generalization of these results
to higher-dimensional systems typically require complex uni-
tary ensembles that are relatively hard to implement [22,23].
Therefore, a general method for direct estimation with a single
measurement setting is highly desirable.

Recently, quantum neural networks [24–26] have been
widely studied as promising artificial neural networks due to
their enhanced information feature space supported by the
exponentially large Hilbert space [27,28]. Unlike traditional
computing frameworks, neural networks learn to perform
complex tasks based on training rather than predefined al-
gorithms or strategies [29]. With the capacity to produce
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data that displays atypical statistical patterns, quantum neural
networks have the potential to outperform their classical coun-
terparts [25]. However, training a quantum neural network can
be equally hard [30]. Indeed, it has been shown that training
of quantum neural networks could be exceptionally difficult
owing to the barren plateaus or far local minima in the training
landscapes [31–34]. This is the reason that quantum neural
networks are often limited to shallow circuit depths or a small
number of qubits. A trending line of research that circumvents
this issue is quantum reservoir processing (QRP) or reservoir
computing [35–39], which studies the quantum analogy of
recurrent networks. Note that in this context, “reservoir” refers
to a type of neural network. In QRP, training is completely
moved out of the main network to a single output layer, such
that the training becomes a linear regression eliminating the
possibility of producing barren plateaus or local minima [35].
Such a quantum neural network retains its quantum enhanced
feature space while being trainable via a fast and easy mecha-
nism.

In this paper, we present a shadow estimation scheme on
the QRP platform, which overcomes the obstacles faced by
randomized measurement protocols by harnessing the rich-
ness of QRP. While QRP serves as a quantum analog of
reservoir computing, our focus in this paper is limited to
its role as a quantum state processing platform that extracts
properties of the input quantum system. Therefore, the train-
ing at the output layer maintains a straightforward approach
by utilizing linear inversion. A scheme of minimal quantum
hardware comprising pairwise connected quantum nodes is
developed to estimate many properties of a quantum state.
We highlight that only two-node training data is required,
which captures the pairwise interacting reservoir dynamics.
As major advantages, our scheme requires single-node mea-
surements, only in a single setting, and a linear reservoir size
2n with respect to the number of constituents n of the input
state. All of these are particularly favorable for actual physical
implementations.

Furthermore, we establish a rigorous performance guaran-
tee by adopting the mindset of shadow estimation. According
to Born’s rule, one measurement of a quantum state is anal-
ogous to sampling a probability distribution once. Thus,
learning properties of a quantum state involves measuring
identical and independently distributed (i.i.d.) samples of the
quantum state a certain number of times. To estimate M
observables of the state within an additive error ε and with
constant confidence, the number of i.i.d. input samples con-
sumed scales as O(Fres ln M/ε2). The factor Fres represents the
variance upper bound of the single sample estimator, which
depends solely on the observables and the reservoir dynamics,
and its magnitude is comparable to that of the shadow norm.
As a direct consequence of the pairwise reservoir dynamics,
Fres for a k-local tensor product observable is the product of
that for each single-qubit observable. We support the theoret-
ical results with extensive numerical simulations.

II. QUANTUM RESERVOIR PROPERTY ESTIMATION

In this section, we introduce the scheme of quantum reser-
voir property estimation (QRPE), which evaluates physical
properties of input quantum states based on a QRP device. Our

FIG. 1. Schematic illustration of predicting many properties with
quantum reservoir processing. A source prepares an n-qubit quantum
state σ which is taken as input by a pairwise reservoir network with
2n nodes. For the ith input copy, the local measurement operator
on the jth node is n̂ j = (1 − ς z

j )/2, and the readout is a bit string
si ∈ {0, 1}n, corresponding to one of the Nread readout operators.
Equipped with the training data, an unbiased estimator �̂ is con-
structed for the property O.

goal parallels that of shadow estimation: to devise a resource-
efficient classical representation of complex quantum states
that permits access to their properties through subsequent
classical processing.

A. Physical setting

As a proof of principle, we first consider a dynamical esti-
mation device based on pairwise connected interacting qubits,
as shown in Fig. 1, which are also known as quantum registers
[40,41]. Later, in Sec. IV we will demonstrate that our scheme
also works for continuous variable (CV) reservoir systems
evolving under open quantum dynamics. The connections be-
tween quantum nodes are obtained with transverse exchange
interactions [42] and each qubit is excited with an on-site
driving field. For n-qubit input states, there are n pairs of
reservoir nodes. The corresponding Hamiltonian of the device
is given by

Ĥ =
n∑

i=1

[
J
(
ς x

2i−1ς
x
2i + ς

y
2i−1ς

y
2i

) + P1ς
x
2i−1

+ E1ς
z
2i−1 + P2ς

x
2i + E2ς

z
2i

]
. (1)

The operators ς
x,y,z
i represent the Pauli operators on the ith

quantum node, which has a compatible dimension with the
context. The parameter J represents the strength of the pair-
wise transverse exchange interaction between the reservoir
nodes. The parameters P1,2 and E1,2 represent driving field
strength and on-site energy, respectively. Such a device can
be readily realized with superconducting qubits, where the
exchange interaction can be realized via a cavity quantum
bus [42]. Moreover, the form of Ĥ is of a quantum spin
Hamiltonian which can be realized in a variety of platforms
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such as NMR [43,44], quantum dots [45], and trapped ions
[46].

B. Measurement protocol

The quantum state of interest, which we denote by σ , is
injected into the quantum reservoir via an invertible map. For
simplicity, we consider the SWAP operations. For a pair of
interacting nodes 〈2i − 1, 2i〉, the (2i − 1)-th reservoir node
is connected to the input system. Thus, the initial state of
the network at time t = 0 is given by the density matrix:
ρ(0) = σ ⊗ [|0〉〈0|]rest, where the suffix“rest” indicates the
network nodes other than the ones connected to the input
qubits via the SWAP gates. The initial reservoir state evolves
in time as

ρ(t ) = Û †(t )ρ(0)Û (t ), (2)

where ρ(t ) is the density operator at time t and Û (t ) =
exp(−it Ĥ/h̄) is the evolution operator. After a sufficient time
evolution, we perform local Pauli-Z measurements on the
reservoir nodes (qubits). For each node there are two readouts,
+1 and −1, represented by the projectors onto the positive and
negative eigensubspace of Pauli-Z operator {ς z

i }, respectively.
The final readouts are provided by a set of commuting readout
operators

{ôi} =
Nnode∏
j=1

{
1 − ς z

j

2
,
1 + ς z

j

2

}

= {Ĉ∅} ∪ {Ĉ{i1}} ∪ {Ĉ{i′1,i′2}} ∪ . . . , (3)

where Nnode is the number of reservoir nodes. ĈS is an element
of the set {ôi}, which is related to the Pauli-Z operators as

ĈS =
∏
i∈S

1 − ς z
i

2

∏
j /∈S

1 + ς z
j

2
, (4)

so it represents the configuration of measurement outcomes
that only nodes in the set S result in −1 for local Pauli-Z mea-
surements. Hence, the readout for the ith input is recorded by
a bit string si ∈ {0, 1}n. The total number of readout operators
in {ôi} is given by

Nread =
Nnode∑
k=0

(Nnode

k

) = 2Nnode , (5)

where
(Nnode

k

)
is the combinatorial number.

Considering that {ôi} forms an orthogonal measurement
basis with a total number of 2Nnode elements, a reservoir with
a minimal of Nnode = 2 log2 d nodes is required to estimate
arbitrary quantum properties for input states supported on a
d-dimensional Hilbert space Hd . This observation agrees with
our proposal of pairwise connected reservoir networks. More-
over, the commutativity of the chosen readout operators leads
to quantum resource effectiveness. This is in sharp contrast to
the traditional quantum reservoir computing schemes where
either the required size of the quantum reservoir or the tem-
poral resolution in the measurement tend to be exponentially
large (∼d2). In either situation, these traditional schemes are
exponentially quantum-resource consuming.

C. Training

Here we introduce a training process that captures the
internal maps of QRP. In the context of QRP, the essential
condition is that we have reproducible reservoir dynamics.
However, the reservoir could be largely a black box, especially
when we consider open quantum dynamics. Thus, a training
process at a single output layer is required. The basic property
of a quantum state σ is the linear function in the form of
Tr(Oσ ), where O is a linear operator that is compatible with
σ . For instance, the expectation value of an arbitrary observ-
able O takes on this form. To estimate the linear function
Tr(Oσ ), the QRPE scheme essentially maps the input state σ

to a vector of probabilities for observing each readout operator

σ
QRP−−→ X̄ = [〈ô1〉; 〈ô2〉; . . . ; 〈ôNread〉], (6)

and the target observable O to a vector of weights

O QRP−−→ W = [w1, w2, . . . , wNread ], (7)

satisfying

W · X̄ = Tr(Oσ ). (8)

We note that similar maps have also been studied in the
context of analog quantum simulation [19,20]. Here each
readout in experiments requires only linear classical storage
with respect to the system size, owing to the tensor product
structure in Eq. (3). The relation given by Eq. (6) is achieved
by sampling from i.i.d. copies of the n-qubit state σ and
processing the reservoir readouts with statistical methods, as
addressed in Sec. II D, while Eq. (7) is achieved by a training
process described below.

For training, we require a one-time estimation of a known
set of training states {|ϕk〉}. Here we consider the training data
to be accurate, and present results that account for statisti-
cal noise occurring outside the training phase. The reservoir
dynamics are initialized by setting the parameters J , P1,2,
E1,2, and the evolution time t . Each training step starts with
inputting a training state |ϕk〉〈ϕk| into the reservoir to reach the
initial training state ρ(0) = |ϕk〉〈ϕk| ⊗ [|0〉〈0|]rest, which then
evolves to ρ(t ) at time t . From sufficiently many measurement
results of each input training state, we estimate the expectation
value 〈ôi(k)〉 of the readout operator. The training data is
stored by arranging 〈ôi(k)〉 into a column vector X̄|ϕk〉〈ϕk |. In
this way, we collect readout vectors X̄|ϕk〉〈ϕk | corresponding
to all the training states |ϕk〉 for k = 1, 2, . . . , Ntrain. For
the simplest qubit-node reservoir system as described in this
section, there is no setback in having a complete characteriza-
tion over the reservoir dynamics. However, when the reservoir
dynamics is much more complex, as discussed in Sec. IV, the
training process described here can still capture the reservoir
maps with a resource cost depending only on the dimension
of input quantum system. We note that the training process
is similar to a quantum process tomography over a small
quantum system.

Until this step, the whole procedure is completely indepen-
dent of the property to be estimated. The knowledge of O is
only required at the postprocessing level, where we set the
target output

Y tar
k = 〈ϕk|O|ϕk〉. (9)
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Let Y out
k = W · X̄|ϕk〉〈ϕk |, and the sum of squared deviations

between Y out
k and Y tar

k is

Etrain = |Y out − Y tar|2, (10)

where Y out is a row vector with elements Y out
k ,

k = 1, 2, . . . , Ntrain, and Y tar is defined similarly. For typical
quantum reservoirs, a total of d2 training states are needed to
estimate arbitrary properties for an input state supported on
Hd . The set of training states {|ϕk〉〈ϕk|} is a set of d2 vectors
which spans a d2-dimensional Hilbert space, i.e., forms an
informationally complete POVM. We choose the training
states as

|ϕk〉 = ⊗n
m=1|km〉, k =

n∑
m=1

4m−1km. (11)

where km ∈ {0, 1, 2, 3}, |0〉 = [1; 0], |1〉 = [0; 1], |2〉 =
(|0〉 + |1〉)/

√
2, and |3〉 = (|0〉 + i|1〉)/

√
2. Denote

T = X tM−1
t , (12)

where Mt = [|�1〉〉, |�2〉〉, . . . , |�d2〉〉], �k = |ϕk〉〈ϕk| is the
density matrix of the kth training state, |·〉〉 is the Louiville
superoperator representation, and the matrix of training data
is X t = [X̄|ϕ1〉〈ϕ1|, X̄|ϕ2〉〈ϕ2|, . . . ]. Then the expectation of reser-
voir readout for an input state σ is

X̄σ = T |σ 〉〉, (13)

as explained in Appendix A. If X t is full rank, there exists a
weight vector W that minimizes Etrain, i.e.,

W = Y tarX t
−1, (14)

which can be written as W = 〈〈O|T −1.
Leveraging pairwise reservoir dynamics in Eq. (1) lifts the

burden on training, given that the training data inherits a tensor
product structure. Once the training data of a single pair of
interacting reservoir nodes is collected as X p, then we have

X t =
n⊗

i=1

X p, (15)

where n is the number of node pairs. Also,

Mt =
n⊗

i=1

Mp, T =
n⊗

i=1

T p, (16)

where T p = X pM−1
p . Thus, the training task is effectively

reduced to that of a two-node reservoir, and the full-rank
requirement of X t is correspondingly reduced to that of X p.
Moreover, the vector of weights only necessitates polynomial
storage if the property O can be decomposed into a finite sum
of tensor products. See Appendix A for more details.

D. Reservoir estimator

In this section, we introduce the reservoir estimators for
linear functions. With the training data at our disposal, we
could analyze the sample efficiency of the reservoir estima-
tors.

Suppose the observed readout operator for the ith input
copy is ô j , then the so-called single snapshot Xi is a vector
where the jth element is 1 and the other elements are 0. For

a total of Nsample input copies, one obtains a set of snapshots
{Xi | i = 1, 2, . . . , Nsample}. The single-snapshot estimator is

�̂ ≡ W · X̂ , (17)

where X̂ is a random variable that conforms to the probability
distribution behind Xi. Equation (8) indicates that �̂ is an
unbiased estimator for Tr(Oσ ). Hence, in data processing, we
could apply the median of means (MoM) method to neutralize
the effect of outliers [5,8]. After processing Nsample = KN
input copies, we divide the snapshots into K equally sized
subsets {X v

i | i = 1, 2, . . . , N} and compute the mean value
of the single-snapshot estimators for each subset. The corre-
sponding estimators are

�̂v
M = 1

N

N∑
i=1

W · X̂ v
i , v = 1, 2, . . . , K . (18)

Then, the MoM estimator is given by

�̂MoM = median
{
�̂v

M

}
. (19)

With this, we have the following theorem:
Theorem 1. The number of quantum state inputs needed

for estimating a set of M properties {Oi | i = 1, 2, . . . , M} to
precision ε and confidence level 1 − δ scales in

Nsample ∼ O

(
ln

(2M

δ

)maxi F i
res

ε2

)
. (20)

The factor F i
res = ||Bi||∞ is the variance upper bound of the

single-snapshot estimator of Oi maximized over the possible
quantum state inputs, where || · ||∞ represents the spectral
norm, and Bi is defined by

〈〈Bi|T −1 = 〈〈Oi|T −1  〈〈Oi|T −1. (21)

Proof. This efficiency scaling results from the MoM
method, and we consider the worst-case scenario by maximiz-
ing F i

res over the set of observables. A more detailed proof is
included in Appendix B �.

The variance of a single-snapshot estimator for O is in-
variant for properties {O′ |O′ = O + c1, c ∈ C}. Thus, one
could use only the traceless part of O to compute the worst-
case variance upper bound. It is interesting to note that the
MoM estimator won’t have a visible significance in some
tested cases [47,48], where it could be replaced with the
sample mean estimator. The performance factor Fres allows
for an investigation of the reservoir parameters in Eq. (1).
To achieve tomographic completeness, it is essential to have
sufficiently large evolution time t and hopping strength J ,
ensuring effective information scrambling. We also find that
when both E1 and E2 equal 0 or both P1 and P2 equal 0, the
reservoir map will be tomographically incomplete, which is
closely related to the measurement setting. If we replace ςz

with ςx or ςy in Eq. (3), then the reservoir map can be tomo-
graphically complete when both P1 and P2 equal 0. However,
the reservoir settings with good performance seem to happen
without a pattern in numerical experiments. The performance
of one reservoir setting at different time and random reservoir
settings is illustrated in Figs. 8 and 9, respectively, in Ap-
pendix B. We also find that increasing more nodes or nonlocal
interactions is unlikely to improve the performance. On the
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contrary, in numerical experiments of reservoirs with random
nearest-neighbor interaction or fully connected interaction,
the average performance is worse than that of the pairwise
interacting reservoir by several orders of magnitude.

To further analyze the sample efficiency scaling of the
QRPE scheme, we have the following theorem:

Theorem 2. For a k-local tensor product observable, e.g.,

O =
k⊗

i=1

Oi

⊗n

i=k+1
1i, (22)

the worst-case variance upper bound ||B||∞ is the product of
that of each local observables Oi, i.e.,

||B||∞ =
k∏

i=1

||Bi||∞, (23)

where Bi satisfies

〈〈Bi|T p
−1 = 〈〈Oi|T p

−1  〈〈Oi|T p
−1. (24)

Proof. This theorem results from the pair-wise reservoir
dynamics. See Appendix B for the details. �

Theorem 2 indicates that for the k-local tensor product
property estimation, if a reservoir setting works well in the
single-qubit case, then it also works well in the multiqubit
case. Thus, our approach for evaluating the reservoir param-
eters J, P1,2, and E1,2 is based on the performance in the
single-qubit state overlap estimation task. To see why the
overlap estimation reflects the overall performance of ob-
servable estimation, note that the single-snapshot estimator’s
variance of an arbitrary property O′ satisfying O′ = c1σ +
c21 equals c2

1 times that of σ , where c1,2 are real numbers and
σ is a density matrix. We find several settings that lead to a
small average variance upper bound of random target states
and choose one of them as the reservoir setting used in this
paper.

In the task of pure state fidelity estimation, the efficiency of
the current reservoir estimator outperforms the random Pauli
measurements only in a fraction of target pure states. We note
that the optimal sample efficiency of shadow estimation with
local measurements is achieved with random Pauli measure-
ments [5,11]. Also, the ratio of the average variance upper
bound of shadow estimation and that of the QRPE scheme
is slightly larger than unity and almost invariant with the
system size. While the average efficiency of the current setting
only marginally differs from that of the shadow estimation,
the number of settings for the standard shadow estimation is
exponentially large compared to that of the present scheme.
These results are shown in Fig. 2. While one could obtain a
scaling independent of the system size with global Clifford
group measurements, it would require to implement complex
Clifford compiling [50,51].

Also, we could utilize random settings by probabilis-
tic time multiplexing (PTM), where the pairwise training
data X p(tk ) are collected at Ntime different time points
{tk | k = 1, 2, . . . , Ntime}, and the single-snapshot estimator
is constructed by measuring reservoir nodes at time tk with
probability pk , where

∑
k pk = 1. The optimization over

probability distributions aims to reduce the average variance

FIG. 2. Comparison with the shadow estimation with Pauli
measurements [5]. Top: Average variance upper bound of fidelity
estimation. For each system size, we randomly generate 1000 pure
states as the target states. The ratio of the average variance upper
bounds for QRPE and shadow estimation remains almost constant
as the number of qubits grows. Bottom: The average number of
measurement settings invoked to reach a given precision with con-
fidence level 0.90. For shadow estimation, we assume the variance in
single-snapshot estimator equals a tenth of the shadow norm on the
top figure. While QRPE requires only a single setting, the standard
shadow protocol with Pauli measurements [5,49] requires exponen-
tially increasing settings to reach an arbitrary precision. The reservoir
setting we choose for the qubit system is given by J = −0.41,
P1 = 4.0, P2 = 1.3, E1 = 0.71, E2 = 0.46, and t = 1. The unit for
the Planck’s constant is meV × ps.

upper bound of single-qubit state overlap estimation; see Ap-
pendix B for more details.

The QRPE protocol for linear functions is as follows:
(i) Perform a one-time estimation of the training states of a

two-node reservoir and load the training data {X p} to classical
memory.

(ii) Given properties {Oi}, calculate weights {Wi} with the
training data. Obtain the worst-case variance upper bound
maxi ||Bi||∞. Calculate Nsample with the given confidence 1 −
δ and additive error ε.
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(iii) Process i.i.d. copies of the unknown state σ with the
quantum reservoir network. Load Nsample snapshots {Xi} to
classical memory.

(iv) Calculate the estimated values {Õi} with the weights
and snapshots.

The reservoir estimators for nonlinear functions are based
on U statistics [5,52], which is a generalization of the sample
mean estimator. It is worth noting that the reservoir snapshots
are ready to be used to estimate future properties of the input
state σ .

III. APPLICATIONS

Here we provide a wide range of applications of the QRPE
scheme. The reservoir initialization and evolution time are
fixed for all applications. See Fig. 2 for the details of reservoir
settings.

A. Fidelity estimation

Quantum fidelity is a widely used distance measure for
quantum states, which is a linear function of the given state
when the target state is a pure state [53,54]. In Fig. 2, we
present an illustrative example of how the reservoir estima-
tion scheme works in fidelity estimation. Numerical results
indicate that for the average worst-case variance upper bound
for pure target states randomly generated from Haar measure,
the ratio between QRPE and the random Pauli measurement
is close to 1, while there exists an exponential improvement in
the number of measurement settings.

B. Entanglement detection

Entanglement is an indispensable resource in tasks ranging
from quantum computation to quantum communication [55].
Whether one can claim its existence for a given system has
aroused both theoretical and experimental interests [56–60].
However, the difficulty in describing the convex space of sep-
arable states poses a trade-off relation between the detection
ability and effectiveness of entanglement criteria [61]. With its
capability of estimating multiple observables simultaneously,
the QRPE scheme is a natural fit for the task of entanglement
detection with linear entanglement criteria.

We illustrate the QRPE scheme on the detection of an
intriguing and more targeted phenomenon, the entanglement
sudden death (ESD) [62,63]. Consider a three-qubit GHZ-
type state [64]

ρ = 1 − q

8
1 + qρG, (25)

where ρG = (|000〉 + |111〉)(〈000| + 〈111|)/2. The dephas-
ing channel is defined by the Kraus operators

K0 =
√

1 − p1, K1,2 =
√

p

2
(1 ± ς z ). (26)

Set p = 1 − exp (−κt ), then dephasing of the initial state
ρ reflects on a factor exp (−κt ) that times the off-diagonal
elements. In Fig. 3, we use the following optimal linear
entanglement witnesses for detecting genuine multipartite en-
tanglement (GME) and any multipartite entanglement (ME),

FIG. 3. Observation of entanglement sudden death. Top: Es-
timation of WGME. Bottom: estimation of WME. We use 6000
measurements for each {q, κt}, and the maximal estimation error for
estimating GME and ME witnesses are 0.11 and 0.13, respectively.
It can be observed that under a small dephasing noise, both the GME
and ME witnesses vanish at a finite time for some initially entangled
states, which indicates the emergence of ESD.

respectively [65]:

WGME = 1 − 2ρG,

WME = 1 − 4ρG + 2ρG−. (27)

where ρG− = (|000〉 − |111〉)(〈000| − 〈111|)/2. We normal-
ize the spectral norm of the two witnesses, and estimate both
of them simultaneously. With a total of 6000 snapshots for
each {q, κt}, the maximal difference from the true value is
0.13. We see that under a small dephasing noise, both the
GME and ME witnesses vanish at a finite time for some
initially entangled states, indicating the emergence of ESD.

C. Estimating expectation values of local and global observables

Estimating the values of observables is a fundamental task
in various quantum information processing tasks. For local
observables, we present the numerical results of estimating the
local Pauli observables of randomly chosen four-qubit states.
The numerical result is shown in Fig. 4. We observe that the
sample complexity required for achieving a given error rate of
estimating Pauli observables increases exponentially with the
locality, which agrees with Theorem 2.

For global observables, we consider the task of GHZ state
fidelity estimation. For an input GHZ state with 3, 6, 9, and 12
qubits, we present the results of the numerical experiment as
the number of input copies versus the average error in Fig. 5.
It can be seen that the sample complexity of identifying GHZ
states with a given error rate increases exponentially with the
number of qubits, which is similar to the case of local tensor
product observables.

D. Estimating nonlinear functions

The reservoir measurements only describe linear func-
tions in Eq. (8). Nevertheless, experimentally accessible
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FIG. 4. Numerical experiment for estimating Pauli observables
of randomly chosen one-, two-, three-, and four-qubit input states.
Each data point represents the average error of all the k-local
Pauli observables of a random k-qubit input state. The solid marks
represent the average performance of 30 independent experiments,
while the hollow marks represent a single experiment. The subfigure
shows the variance upper bound F̄res averaged over the k-local Pauli
observables. Numerical results indicate that the worst-case sample
complexity of estimating Pauli observables increases exponentially
with the locality.

nonlinear functions are typically measured by estimating lin-
ear functions that can be translated into the QRPE scheme. For
instance, the SWAP trick is widely used in purity estimation.
For two copies of the input state σ , the SWAP operator S obeys
Tr(Sσ ⊗ σ ) = Tr(σ 2). Numerical simulation of the purity

FIG. 5. Numerical experiment for identifying GHZ states with fi-
delity estimation. The solid marks represent the average performance
of 50 independent experiments, while the hollow marks represent a
single experiment. The subfigure shows the variance upper bound
for the k-qubit GHZ state. Numerical results indicate that the sample
complexity of identifying GHZ states increases exponentially with
the number of qubits.

FIG. 6. Saturation of the second Rényi entropy S2(ρA) of a small
region A consisting of NA qubits. The solid curves represent S2(ρA)
of a 14-qubit state generated by a VQE circuit with depth p, which
approaches the page entropy represented by the dashed line. For
reservoir estimation at each circuit depth, we use 2000 independent
snapshots. The shaded region is the fluctuation of estimated value in
ten independent estimations.

estimation of 10 000 random one-qubit input states shows that
the average variance upper bound is around 2.9.

The Rényi entropy is another important nonlinear factor
for characterizing entanglement, which is the logarithm of
subsystem purity. The estimator of second Rényi entropy is

Tr
(
ρ2

A

) = Tr(SAρ ⊗ ρ), (28)

where SA is the SWAP operator acting on subsystem A of two
copies of ρ. The second Rényi entropy of small subsystems is
useful in avoiding weak barren plateaus (WBPs) [66]. Here we
perform WBP diagnosis with the reservoir estimation scheme.
For an initial state |0〉⊗14, each gate sequence of the vari-
ational quantum eigensolver (VQE) circuit is composed of
random local rotations exp(− i

2θς ), where θ ∈ [π/20, π/20]
and ς ∈ {ςx, ςy, ςz}, and nearest-neighbor controlled-Z gates
with periodic conditions. We detect the emergence of WBP by
estimating the second Rényi entropy of a small region consist-
ing of NA qubits via 2000 measurements at each circuit depth.
The numerical experiment is shown in Fig. 6. We observe that
the shaded region created by ten independent estimations is
centered by the real value of the second Rényi entropy with a
small fluctuation, which grows with the size of the subsystem.
Within a circuit depth of 100, the QRPE scheme efficiently
detects the emergence of WBP by the clear phenomenon that
the estimated value of second Rényi entropy approaches the
page entropy.

E. Higher-dimensional and hybrid systems

Higher-dimensional systems and hybrid systems with non-
identical local dimensions are of fundamental importance as a
playground to reveal interesting quantum phenomena, such as
quantum steering [67,68] and the demonstration of contextu-
ality and nonlocality trade-off [69,70]. Here we demonstrate
the flexibility of our scheme beyond qubit systems.
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An intuitive generalization from the qubit case when the in-
put state exists in a higher-dimensional or hybrid system is to
design a quantum reservoir that has a compatible dimension.
For example, if the input state consists of a qubit and a qutrit,
then a quantum reservoir with two interacting pairs of qubits
and qutrits can readily estimate properties of it. The bosonic
Hamiltonian for a pair of interacting reservoir nodes 〈i, j〉 is
given by

Ĥ〈i, j〉 = J (â†
i â j + â†

j âi ) + P1(â†
i + âi )

+ P2(â†
j + â j ) + E1â†

i âi + E2â†
j â j

+ α1â†
i â†

i âiâi + α2â†
j â

†
j â j â j, (29)

where the operators â represent lowering operators of the
quantum nodes (qudits). The parameters J , P1,2, E1,2, and α1,2

represent hopping, on-site driving field, on-site energy, and
nonlinear strength, respectively. Similar to the qubit case, the
reservoir map will be tomographically incomplete when P1

and P2 both equal 0 or E1 and E2 both equal 0. For each
pair of reservoir nodes 〈i, j〉, the ith node is connected to the
input system and the number of pairs equals the number of
constituents of the input state. We consider the unitary time
evolution governed by the quantum Liouville equation.

For qudit systems with local dimension d , a superoper-
ator basis consists of the generalized Gell-Mann matrices
and the normalized identity [71]. The readout operators are
constructed in the same way as that of the qubit system,
the only difference is that there are d projection operators
instead of two, corresponding to the d possible population
numbers. Due to the tensor product structure of the mea-
surements and training states, the reservoir estimation scheme
can be naturally extended to hybrid systems with nonidentical
local dimensions, such as qubit-qutrit systems. The pairwise
reservoir setting for a pair of qudit nodes is the same with that
of qudit reservoirs.

For application, we apply virtual distillation (VD) [72–74]
to estimate the fidelity of a noisy state ρε ,

〈|ψ〉〈ψ |〉VD = Tr(ρm
ε |ψ〉〈ψ |)

Tr(ρm
ε )

, (30)

where

ρε = (1 − ε)|ψ〉〈ψ | + ε
1

Tr(1)
. (31)

The estimator for ρm
ε is chosen as

1

P(N, m)

∗∑ m∏
i=1

ρ̂si , (32)

where ρ̂si is the single-snapshot estimator of the noisy state
ρε , P(N, m) is the number of m permutations of N , and∑∗ denotes the summation over all distinct subscripts, i.e.,
s1, s2, . . . , sm is a m-tuple of indices from the set {1, . . . , N}
with distinct entries. The denominator is estimated simi-
larly. The estimation results are illustrated in Fig. 7 for the
following maximally entangled qubit-qutrit and two-qutrit

FIG. 7. The virtual distillation of maximally entangled states
mixed with depolarizing noise in 2 × 3 and 3 × 3 dimensional sys-
tems. The dashed curves represent the fidelity of the distilled states
with m = 2, while the solid curves represent the fidelity of physical
states with m = 1. The shaded region is the range of fluctuation of the
estimated value in ten independent estimations. For each reservoir
estimation, we use 10 000 independent measurement readouts. The
reservoir setting we choose for qutrit systems is J = 0.9, P1 = 2.1,
P2 = 1.1, E1 = 1.1, E2 = 0.4, α1 = 0.6, α2 = 0.7.

pairs:

|ψ1〉 = 1

2
(|10〉 + |12〉) + 1√

2
|01〉,

|ψ2〉 = 1√
3

(|00〉 + |11〉 + |22〉). (33)

We observe that the virtually distilled states exhibit a signifi-
cantly improved fidelity as compared to the nondistilled states.
Moreover, the statistical fluctuation for the 2 × 3 system is
smaller than that of the 3 × 3 system, which is consistent with
the performance in single-qudit pure state fidelity estimation.
In the given reservoir setting for qutrit systems, the average
Fres for estimating fidelity of randomly chosen single-qutrit
pure state is around 2.76, which is worse than the qubit case.

IV. CONTINUOUS VARIABLE QUANTUM RESERVOIRS

In this section, we study a bosonic quantum reservoir that
exists in CV systems, while the input state emitted by a source
still lies in discrete variable (DV) systems. The reservoir
consists of identical pairs of interacting nodes, as shown in
Fig. 1. A single pair of interacting reservoir nodes 〈k, l〉 is
represented by the Hamiltonian

Ĥ〈k,l〉 = J (â†
k âl + â†

l âk ) − iP
√

γk (â†
k − âk )

− iP
√

γl (â
†
l − âl ) + E1â†

k âk + E2â†
l âl

+ α1â†
k â†

k âk âk + α2â†
l â†

l âl âl , (34)

where âi is the field operator of the ith reservoir node, P
represents the strength of the coherent driving field, Ei is
the on-site energy, and α is the on-site interaction strength
(Kerr-type nonlinearity). We use essentially the same readout
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and training process as for the DV quantum reservoirs. Here
the readout operators are projectors of Fock basis states. For
instance, if the input state exists in a qubit system, then the
measurements at each reservoir node include the first Fock
state |0〉〈0| and its complementary operator 1 − |0〉〈0|.

For a single pair of CV reservoir nodes, the input single-
qudit system exists in a bosonic mode b̂1. The density matrix
ρ of the entire system is in both the quantum reservoir and
incident modes, which is governed by the quantum master
equation [35,75,76]

ih̄ρ̇ = [Ĥ〈1,2〉 + f (t )ĤI , ρ] +
2∑

l=1

iγl

2
L(âl )

+ i f (t )W in([b̂1ρ, â†
1] + [â1, ρb̂†

1])

+ f (t )
iη

2γ1
L(b̂1), (35)

where ĤI = ωb̂†
1b̂1 − iP

√
η/γ1(b̂†

1 − b̂1) is the input system
Hamiltonian, L(x̂) = 2x̂ρx̂† − x̂†x̂ρ − ρx̂†x̂ is the Lindblad
operator acting on the field operator x̂; γ represents the decay
rate, W in represents the input weight, and η = (W in)

2
is set to

remove the source photons that have excited the reservoir. On
the right side of Eq. (35), the first term is the coherent Hamil-
tonian evolution of the reservoir, the second term represents
the decay of reservoir modes, the second line represents the
cascade coupling between input mode b̂1 and reservoir mode
â1, and the last line represents the decay of the input mode. At
time t ∈ [t1, t1 + τ ], f (t ) = 1, and input mode b̂1 is connected
to the reservoir node. At other time points, f (t ) equals zero.
We measure the reservoir nodes at time t = t1 + τ + t2. The
quantum master equation can be solved with the numerical
method provided in Ref. [36]. Additionally, Eq. (35) can be
naturally generalized to the case where the input system has
multiple constituents, each of which undergoes the same dy-
namical process.

In numerical simulation, the truncated Fock space we use
has a maximal photon number of 10. Here we set t1 = 0.3,
τ = 1.4, t2 = 0, γ1 = 0.53, γ2 = 0.87, P = 0.95, W in = 0.56,
E1 = 0.94, E2 = 0.57, J = −0.22, and ω = 1. We choose
αi/γi = 0.15, a ratio consistent with the experiment results
[77]. The spectral radius [36], which is the largest eigenvalue
of the hopping part of the reservoir Hamiltonian, is set to
1.5. With this reservoir setting, the average Fres for estimating
fidelity of randomly chosen single-qubit pure state is around
9.16. With numerical results, we find that the reservoir map
becomes tomographically incomplete when the on-site driv-
ing field of the input system is missing. On the contrary,
tomographic completeness can still be achieved if we set Ei,
ω, and α equal to 0 or neglect the on-site driving field of the
reservoir system. Also, we observe that the impact of Kerr
nonlinearity on performance in numerical tests is not sub-
stantial. Given the infinite dimensionality of the CV reservoir
system, it has the capability to process any higher-dimensional
or hybrid input states. However, with the same reservoir set-
ting as described above, the average Fres for estimating fidelity
of randomly chosen single-qutrit pure states is around 490.
Thus, similar to the DV quantum reservoir, the performance

of CV quantum reservoir settings largely depends on the di-
mension of the input system.

V. CONCLUSION

We have presented a direct property estimation scheme,
where a classical representation of quantum states is con-
structed with QRP and used for property estimation in the
postprocessing phase. Unlike existing techniques of shadow
estimation that consider complex unitary ensembles and ran-
domized measurements, our scheme explores the versatility
of the quantum reservoir platform and requires only a sin-
gle measurement setting. The pairwise interacting reservoir
nodes considered in our scheme result in minimal quantum
hardware for the DV reservoir and minimal training cost that
depends only on the input system. The sample complexity has
been rarely addressed in previous works on quantum reser-
voir computing. In contrast, we have established a stringent
performance guarantee regarding the number of samples to be
processed by the reservoir network. Furthermore, our scheme
can be naturally extended to higher-dimensional systems and
hybrid systems with nonidentical local dimensions. We com-
plement the theoretical results with diverse applications.

For future research, reservoir computing is suitable for
temporal pattern recognition, classification, and generation
[37,78,79]. While we have proposed a method for analyz-
ing the statistical fluctuation of quantum reservoir outputs
in property estimation, it is important to do so in tempo-
ral information processing tasks such as temporal quantum
tomography [80] and nonlinear temporal machine learning
[81]. Also, it is important to further devise an operational
toolbox for optimizing the reservoir networks regarding the
sample complexity and investigate whether the efficiency
lower bound for local measurements [5,11] can be achieved
on the quantum reservoir platform. Moreover, there has been
extensive research conducted on the learning abilities of quan-
tum reservoir networks in tasks ranging from quantum to
real-world problems [82–85]. These studies explore various
network topologies and connectivities. While the pairwise
quantum reservoir construction is beneficial for property es-
timation, there lacks a general understanding of the role of
topology and connectivity in quantum reservoir computing
regarding sample complexity. In addition, quantum reservoir
computing can be carried out with a single nonlinear oscillator
[86], so it is important to analyze whether such a quantum
reservoir can perform shadow estimation as well. Another
topic is the noise effect. There are inspiring discussions on the
noisy training data [87], robustness in tomographic complete-
ness [88], and benefits of quantum noise [89]. In our scheme,
the influence of time-independent system noise on T cancels
out by a direct observation of Eq. (13). However, a complete
discussion on the noise effect and its mitigation in QRP is
important for future experiments.
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APPENDIX A: THEORETICAL INTERPRETATION OF
THE QRPE SCHEME

We start with the qubit input systems and reservoirs with
qubit nodes for conciseness, but our method can be naturally
extended to qudit input systems and hybrid input systems with
different local dimensions. To show how the QRPE scheme
works, some may find it beneficial to examine the reservoir
transformation from a geometric perspective. The weights for
an arbitrary property O and the readout probabilities for an
arbitrary input state σ are represented by vectors WO and X̄σ

in the flat Euclidean space Ed×d , as shown in Eqs. (6) and
(7), respectively. Since

∑d2

i=1 〈ôi〉σ = 1, the set C = {X̄σ | σ �
0, Tr(σ ) = 1} is a region on a (d2 − 1)-dimensional hyper-
plane. In addition, we have

Lemma 1. The reservoir transformation with pairwise
reservoir dynamics is an affine map from the (d2 − 1)-
dimensional state space to the (d2 − 1)-dimensional convex
region C.

Proof. From Eq. (2), we have Tr(ôiρ(t )) =
Tr(〈0|Û (t )ôiÛ †(t )|0〉restσ ), i.e.,

〈ôi〉σ = 〈〈T (ôi )|σ 〉〉, (A1)

where T (ôi ) = 〈0|Û (t )ôiÛ †(t )|0〉rest, and |·〉〉 is the Louiville
superoperator representation, i.e., to vectorize an operator by
expanding it on an orthonormal operator basis. Note that two
quantum states can always be related by a CPTP map. Thus,
there is a set of Kraus operators {Kk} such that

ρ(t ) =
∑

k

Kkσ ⊗ |0〉〈0|restK
†
k , (A2)

regardless of the method we apply to couple the input state
to the reservoir or the reservoir dynamics. So, Eq. (A1) also
holds in general QRP, where T (ôi ) = 〈0| ∑k K†

k ôiKk|0〉rest.
We observe that QRP is equivalent to a POVM measurement
on the input state, with ancilla qubits prepared in the |0〉 state.
Define the dynamics matrix,

T = [〈〈T (ô1)|; 〈〈T (ô2)|; . . . ; 〈〈T (ôd2 )|], (A3)

then for an arbitrary input state σ :

X̄σ = T |σ 〉〉. (A4)

We note that for pairswise interaction, the columns of T have
a tensor product structure. Since the pairwise evolution opera-
tor for n-qubit input states satisfies Û (t ) = ⊗n

i=1 Ûp.w.(t ), we
have

T (ĈS ) = 〈0|Û (t )ĈSÛ †(t )|0〉rest

= 〈0|Û (t )
∏
i∈S

1 − ς z
i

2

∏
j /∈S

1 + ς z
j

2
Û †(t )|0〉rest

=
n⊗

i=1

Ti(ĈS ), (A5)

where

Ti(ĈS ) = 〈0|Ûp.w.(t )MiÛ
†
p.w.(t )|0〉 (A6)

is a 2 × 2 matrix, Mi is one of the two-qubit Pauli-Z projec-
tion operators acting on the pair of interacting reservoir nodes
that connect to the ith qubit of the input state, and 〈0| · |0〉 acts
on the reservoir node that doesn’t connect to the input state
directly. There are only four distinct elements {T1, T2, T3, T4}
in the set {Ti(ô1), . . . , Ti(ôd2 )}, which correspond to the four
different two-qubit Pauli-Z projections {Mi}. In fact,

T =
n⊗

i=1

T p.w., (A7)

where T p.w. is the pairwise dynamics matrix for a single
qubit input state, i.e., T p.w. = [〈〈T1|; 〈〈T2|; 〈〈T3|; 〈〈T4|]. For
general QRP in Eq. (A2), the tensor product structure of
training data T persists if the coupling of the input state to
the reservoir and the reservoir dynamics are local, i.e., each
constituent of the input system undergoes independent dy-
namical processes. The training process ascertains that the set
of operators {T1, T2, T3, T4} is tomographically complete, i.e.,
T p.w. is invertible, then T is also invertible. So, the reservoir
transformation is an affine map from the state space to the
(d2 − 1)-dimensional region C. Also, we note that Eq. (A4)
indicates

λX̄σ0 + (1 − λ)X̄σ1 = X̄λσ0+(1−λ)σ1 , (A8)

where 1 � λ � 0. Since X̄λσ0+(1−λ)σ1 ∈ C, C is a convex
region. �

The basic QRPE model behind various scenarios that we
consider in this paper is as follows:

Theorem 3. For an unknown state σ in a d-dimensional
Hilbert space, one can linearly combine the readout operators
{ôi} of an Nnode = 2 log2(d ) reservoir into unbiased estimators
of arbitrary properties {Oi} if supplemented with the training
data from d2 linearly independent states.

Proof. First, we note that the d2 training points {X̄|ϕk〉〈ϕk |}
are not confined to any (d2 − 2)-dimensional subspace, i.e.,
they form a (d2 − 1)-simplex [90]. Linear independence in-
dicates that the training states in Eq. (11) form a (d2 −
1)-simplex in the state space, then Lemma 1 shows that the
training points also form a (d2 − 1)-simplex in C. Thus, an
arbitrary d2-dimensional target vector Y tar in Eq. (9) can be
realized by taking the inner product of the training vectors
{X̄|ϕk〉〈ϕk |} with a unique weight vector W , which is acquired in
the training phase. Also, one gets

X̄σ =
d2∑

k=1

cσ
k X̄|ϕk〉〈ϕk |, (A9)

where {cσ
k } is the set of unique barycentric coordinates for X̄σ .

We have

W · X̄σ =
d2∑

k=1

cσ
k W · X̄|ϕk〉〈ϕk |

= Tr

(
O

d2∑
k=1

cσ
k |ϕk〉〈ϕk|

)
= Tr(Oσ ), (A10)
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which proves that � in Eq. (B3) is an unbiased estimator of
O. Note that Lemma 1 draws forth the relation

X̄σ =
d2∑

k=1

cσ
k X̄|ϕk〉〈ϕk | ⇔ σ =

d2∑
k=1

cσ
k |ϕk〉〈ϕk|, (A11)

then the last equality in Eq. (A10) follows. �
The same results can be drawn with linear algebra. In the

training phase, the kth element of the target vector is

Y tar
k = 〈〈O|�k〉〉, (A12)

where �k = |ϕk〉〈ϕk| is the density matrix of the kth training
state. Denote

Mt = [|�1〉〉, |�2〉〉, . . . , |�d2〉〉], (A13)

which is an invertible matrix, then

Y tar = 〈〈O|M t. (A14)

Note that the matrix of training data satisfies

X t = [X̄�1 , X̄�2 , . . . , X̄�d2 ] = T M t. (A15)

Thus, the weight vector is

W = Y tarX t
−1 = 〈〈O|T −1, (A16)

where

T = X tM−1
t . (A17)

Finally, we obtain

W X̄σ = 〈〈O|σ 〉〉 = Tr(Oσ ). (A18)

In the training of pairwise interacting reservoirs, we do not
require the entire matrix T , instead we obtain the pairwise
matrix T p.w. and decompose the n-qubit observable O into a
tensor product structure:

O =
∑

i

n⊗
j=1

Oi, j . (A19)

Then the weight vector is

W = 〈〈O|T −1 =
∑

i

⊗
j

Wi, j, (A20)

where Wi, j = 〈〈Oi, j |T −1
p.w.. To reduce the complexity in clas-

sical postprocessing, one only stores the set of two-node
weights {Wi, j}. Note that the single copy readout X shares
the same tensor product structure, X = ⊗

j X j , where X j is a
4 × 1 dimensional vector. Denote

�̂i, j = Wi, j · X j, (A21)

then the single-copy estimator is

�̂ =
∑

i

∏
j

�̂i, j . (A22)

Thus, the classical storage consumption, i.e., {Wi, j} and {X j},
scales linearly with the number of qubits for observables that
can be expressed as low-rank tensors.

APPENDIX B: EFFICIENCY FOR ESTIMATING
LINEAR FUNCTIONS

Here we provide a method for analyzing the efficiency
of QRPE in the worst-case scenario, which relies on prior
knowledge of the training data and the target properties.

1. Single-snapshot estimator

For a single input copy σ , the corresponding readouts can
be combined into unbiased estimators of compatible proper-
ties. The efficiency of the QRPE scheme is characterized by
the variance of the estimators.

Lemma 2. For a property O, construct the single-snapshot
estimator �̂ with the training data. Then in the worst-case
scenario, we have

max
σ

Var(�̂) � Fres(O, X t ), (B1)

where the function Fres depends on the training data:

Fres(O, X t ) = max
σ�0

Tr(σ )=1

W  W X̄ . (B2)

Proof. The single-snapshot estimator �̂ is a linear com-
bination of the measurement results of mutually exclusive
readout operators {ôi} with the corresponding weights {wi},
i.e.,

�̂ ≡ W · X̂ =
Nread∑
i=1

wix̂i. (B3)

Thus, the expectation of �̂ is the inner product between W
and X̄ . The variance of �̂ is

Var(�̂) = Var
(∑

i

wix̂i

)
= W  W X̄ − (W X̄ )2, (B4)

where  represents the Hadamard product. Thus,

max
X̄∈C

Var(�̂) � max
σ�0

Tr(σ )=1

W  W X̄ , (B5)

�

where we have neglected the term −(W X̄ )2. The inequality
saturates when Tr(Oσ ) = 0.

Since we have W = 〈〈O|T −1 and X = T |σ 〉〉, we can
directly compute the factor Fres. Define an operator B such
that

〈〈B|T −1 = 〈〈O|T −1  〈〈O|T −1, (B6)

then

Fres = max
σ�0

Tr(σ )=1

Tr(Bσ ) = ||B||∞ (B7)

where || · ||∞ represents the spectral norm. Also, it is worth
noting that estimating identity operator doesn’t affect the vari-
ance. Define �̂′ = (W + cW1)X̂ , where W1 = [1, 1, . . . , 1] is
the weight operator for the identity observable, and c ∈ R.
Since c1WO1 + c2WO1 = Wc1O1+c2O2 , �̂′ is the estimator for
O′ = O + c1. Note that Var(�̂) = E[(�̂ − E(�̂))2], and by
construction

∑
i x̂i = 1, we have Var(�̂′) = Var(�̂). We ob-

serve that �̂0 results in a tighter worst-case variance upper
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FIG. 8. Average variance upper bound of single-qubit state fi-
delity estimation that varies with evolution time from t = 0 to t =
5.5. The parameters J, Pi, Ei are the same with main text. At each
evolution time, the variance upper bound for pure state fidelity esti-
mation F̄res is averaged over 1000 random target states. While there
are multiple local minimums with different slopes at neighboring
points, the performance of reservoir parameters remains stable for
a short time period at some local minimums.

bound on average in fidelity estimation of random pure target
states. Also, for properties that only differs by a product factor
c,

Fres(cO, X t ) = c2Fres(O, X t ). (B8)

With these properties, we note that if a reservoir setting works
relatively better for overlap estimation of a target state σ , one
could expect that it works better for estimating arbitrary linear
properties that can be decomposed as

O = c1σ + c21, c1,2 ∈ R. (B9)

An arbitrary normal matrix is related to a density matrix by
Eq. (B9). Thus, a well-trained reservoir setting for overlap
estimation of random target states is applicable to the future
estimation of multiple unknown normal matrices. To analyze
the search of good reservoir parameters, we fix the reservoir
parameters {J, Pi, Ei} and check the dependency of reservoir
performance on evolution time. For the evolution time from
t = 0 to t = 5.5, the variance upper bound of single-qubit
state fidelity estimation averaged for 300 random target pure
states varies, as shown in Fig. 8. It can be observed that the
average variance upper bound is stable around some local
minimums in a short time window.

Furthermore, we could analyze the efficiency scaling of
estimating k-local tensor product observables with the help
of pairwise reservoir dynamics. Here we present the detailed
proof for Theorem 2.

Lemma 3 (Theorem 2). For a k-local tensor product prop-
erty, e.g.,

O =
⊗k

i=1
Oi

⊗n

i=k+1
1i, (B10)

the worst-case variance upper bound is the product of that of
each local properties, i.e.,

||B||∞ =
k∏

i=1

||Bi||∞. (B11)

Proof. Suppose the property O has k-local tensor product
structure, without loss of generality, we have

O =
k⊗

i=1

Oi

⊗n

i=k+1
1i. (B12)

Note that W = 〈〈O|T −1, X̄ = T |σ 〉〉 and T = ⊗n
i=1 T p, and

there is

max
σ�0

Tr(σ )=1

W  W X̄ = max
σ�0

Tr(σ )=1

k⊗
i=1

〈〈Oi|T p
−1  〈〈Oi|T p

−1

×
n⊗

i=k+1

W1iT |σ 〉〉. (B13)

Suppose the observable corresponding to the weight operator
〈〈Oi|T p

−1  〈〈Oi|T p
−1 is Bi, i.e.,

〈〈Oi|T p
−1  〈〈Oi|T p

−1 = 〈〈Bi|T p
−1, (B14)

then

max
σ�0

Tr(σ )=1

W  W X̄ = max
σ�0

Tr(σ )=1

Tr

( k⊗
i=1

Bi

⊗n

i=k+1
1iσ

)

=
k∏

i=1

||Bi||∞, (B15)

where max σ�0
Tr(σ )=1

W  W X̄ is the worst-case variance upper

bound for the single-snapshot estimator. �

2. Multisnapshot estimator

The variance can be further suppressed by combining
single-snapshot estimators with statistical methods. The MoM
method is expected to reduce the effect of outliers [5,8], the
efficiency of which is given by the following lemma.

Lemma 4. For target properties {Oi|i = 1, 2, . . . , M} and
training data X t, set

Nsample = 68/ε2 ln(2M/δ) max
i

Fres(Oi, X t ). (B16)

Then, consuming Nsample i.i.d. copies of input states suffice to
construct MoM estimators {�̂MoM,i}, satisfying∣∣�̂MoM,i − Tr(Oiσ )

∣∣ � ε for i = 1, 2, . . . , M, (B17)

with probability no less than 1 − δ.
Proof. Divide the Nsample readouts into K batches, where

K = 2 ln(2M/δ). (B18)

Compute the sample mean estimator of each patch:

�̂
(k)
M,i = K

Nsample

N∑
j=1

WiX
(k)
j , k = 1, 2, . . . , K, (B19)

then the MoM estimator is

�̂MoM,i = median
(
�̂

(1)
M,i, �̂

(2)
M,i, . . . , �̂

(K )
M,i

)
. (B20)

Lemma 2 and the MoM method [5] guarantees that

Pr(|�̂MoM,i − Tr(Oiσ )| > ε) <
δ

M
. (B21)
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Algorithm 1. PTM.

Given properties {Oi | 1, 2, . . . , M}.
Load training data {X t (ti ) | i = 1, 2, . . . , Ntime}.
Generate jmax random probability distributions {Pj},
where Pj = {pj

i | i = 1, 2, . . . , Ntime}.
Calculate Fres,0 = maxi Fres(Oi,

∑
k p1

kX t (tk )).
Set PPTM = P1.
for j = 2, 3, . . . jmaxdo

Calculate Fres,1 = maxi Fres(Oi,
∑

k pj
kX t (tk )).

if Fres,1 < Fres,0them
Update PPTM = Pj and Fres,0 = Fres,1.

end if
end for

Finally, the union bound shows that the overall confidence
level to estimate M properties is no less than 1 − δ. �

3. Variance reduction via probabilistic time multiplexing

The dynamic nature of quantum reservoirs is exploited
with PTM. For each input copy of the unknown state,
the evolution time of the reservoir is randomly chosen
from the set {t1, t2, . . . , tNtime} with a probability distribution
{p1, p2, . . . , pNtime}. The probability vector of readout opera-
tors after PTM is

X̄ PTM =
Ntime∑
i=1

piX̄ (ti ). (B22)

Solving the following optimization:

F (O, X opt
t ) = min

{pi}
F (O, X t

PTM), (B23)

we are likely to reach a better variance upper bound. Note
that PTM does not require changing either the initialization
parameters of the reservoir or the measurement setting. Since
thePTM is a one-time optimization, in this paper we search
the good probability distributions with brute force, which is
achieved by the following algorithm.

One may find better heuristic methods for this optimiza-
tion.

The QRPE protocol with PTM is altered as
(i) Perform a one-time estimation of the training states of

a two-node reservoir and load the training data {X p(tk )} to
classical memory.

(ii) Given properties {Oi}, calculate weights {Wi} with the
training data. Run the PTM algorithm to obtain PPTM and Var0.
Calculate Nsample with the given confidence 1 − δ and additive
error ε.

(iii) Process Nsample i.i.d. copies of the unknown state σ

with QRP. For each copy the reservoir evolution time is ran-
domly chosen from {tk} with the probability distribution PPTM.
Load the readouts {Xi} to classical memory.

(iv) Calculate the estimated values {Õi} with the weights
and readouts.

Numerical result shows that for random reservoir dynam-
ics, the variance could be suppressed by PTM. For each target
state, we use the training data collected at two different time
points with a random reservoir initialization and optimize the

FIG. 9. Variance reduction via PTM. For each random test, we
use the training data collected at t = 1 and t = 10 of a two-node
reservoir with parameters J, Pi, Ei uniformly generated at random
from [0,5]. The variance upper bound for overlap estimation F̄res is
averaged over 300 random target states. The green bars uncovered by
blue bars indicate the improvement in average variance upper bound
achieved by PTM.

variance upper bound with PTM. After that, we could achieve
a more efficient estimation performance, as shown in Fig. 9.

APPENDIX C: ESTIMATION OF NONLINEAR FUNCTIONS

In this Appendix, we analyze the estimation of nonlinear
functions with the QRPE scheme.

1. Unbiased estimator for nonlinear functions

The estimation of higher order moments, as stated in the
main text, is reduced to estimating a linear function with
respect to the tensor product of the input state σ , i.e.,

Tr(Oσ⊗m) = 〈〈O|σ⊗m〉〉 = 〈〈O|(|σ 〉〉)⊗m, (C1)

where the second equality follows from the property of trace
operation:

Tr(A ⊗ B) = Tr(A)Tr(B). (C2)

We estimate the expectation values of readout operators at an
evolution time t :

X = [X̄�1 , X̄�2 , . . . , X̄�d2 ] = T Mt. (C3)

The combined training data for estimating Eq. (C1) is

X⊗m = T ⊗mM⊗m
t , (C4)

and the target readout vector is

Y tar = 〈〈O|M⊗m
t . (C5)

Thus, the weight vector is

W (m) = Y tar(X⊗m)−1 = 〈〈O|(T ⊗m)−1
, (C6)

and the readout vector of an arbitrary input state σ satisfies

X̄σ⊗m = T ⊗m|σ 〉〉⊗m = X̄ ⊗m
σ . (C7)

In conclusion, we obtain

W (m)X̄ ⊗m
σ = 〈〈O|σ 〉〉⊗m = Tr(Oσ⊗m). (C8)

For simplicity, we will neglect the superscript of W (m) when
there is no ambiguity.
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For pair-wise interaction, the classical resources consumed
in the training phase is significantly reduced. Suppose the
property is decomposed into

O =
∑

i

n⊗
j=1

m⊗
k=1

Oi, j,k, (C9)

then the weight vector is

W = 〈〈O|(T ⊗m)−1 =
∑

i

⊗
j

Wi, j, (C10)

where Wi, j = ⊗m
k=1〈〈Oi, j,k |T −1

s . Due to the tensor product
structure of the single snapshot readout X , only Wi, j,k that
correspond to nontrivial Oi, j,k are required in the classical
postprocessing.

2. Variance of U-statistics estimators

Suppose N copies of σ are injected to the reservoir and the
corresponding readout vectors are {Xi|i = 1, 2, . . . N}. The
uniformly minimal-variance unbiased estimator (U-statistics
estimator) for estimating W X̄ ⊗m

σ is

�̂(m) = 1

P(N, m)

∗∑
i1, i2, ..., im

W
m⊗

j=1

Xij , (C11)

where P(N, m) is the m permutation of N ,
∑∗ denotes the

summation over all distinct subscripts, i.e., {i1, i2, . . . , im} is
an m-tuple of indices from the set {1, 2, . . . N} with distinct
entries. The kernel of �̂ is a symmetric function

h(Xi1 , Xi2 , . . . , Xim ) = 1

m!

∑
{l1, l2, ..., lm}∈P (i1, i2, ..., im )

W
m⊗

j=1

Xlj ,

(C12)

where P (i1, i2, . . . , im) is the set that contains all permuta-
tions of i1, i2, . . . , im. Let

hk (x1, x2, . . . , xk ) = E[h(x1, x2, . . . , xk, Xk+1, . . . , Xm)].
(C13)

The variance for �̂(m) in Eq. (C11) is given by Hoeffding’s
theorem [52]:

Var(�̂(m) ) = (N
m

)−1
m∑

k=1

(m
k

)(N−m
m−k

)
Var[hk (X1, X2, . . . , Xk )].

(C14)

To estimate quadratic functions, the variance upper bound is
given by Lemma S5 of Ref. [5]. Here we rephrase it as

Lemma 5. The variance associated with �̂(2) satisfies

Var(�̂(2) ) � 8A(2)

N
, (C15)

where

A(2) = max(Var[W (X1 ⊗ X̄ )], Var[W (X̄ ⊗ X2)],

×
√

Var[W (X1 ⊗ X2)]). (C16)

Proof.

Var(�̂(2) ) = 2

N (N − 1)
[2(N − 2)Var[h1(X1)]

+ Var[h2(X1, X2)]]

= 1

N (N − 1)
[(N − 2)Var[W (X1 ⊗ X̄ + X̄ ⊗ X2)]

+ 1

2
Var[W (X1 ⊗ X2 + X2 ⊗ X1)]] (C17)

Note that Var(A + B) � 2[Var(A) + Var(B)], and we have

Var(�̂(2) ) � 2(N − 2)

N (N − 1)
[Var[W (X1 ⊗ X̄ )]

+ Var[W (X̄ ⊗ X2)]]

+ 2

N (N − 1)
Var[W (X1 ⊗ X2)]

� 4

N2
Var[W (X1 ⊗ X2)] + 2

N
Var[W (X1 ⊗ X̄ )]

+ 2

N
Var[W (X̄ ⊗ X1)]. (C18)

Then we have

Var(�̂(2) ) � 4A(2)

N
+ 4A(2)2

N2
. (C19)

It is reasonable to assume N > A(2), so we have Var(�̂(2) ) �
8A(2)/N . �

Next, we could compute upper bounds for A(2) with nu-
merical methods. Defining the matrix W 12 as

W · (X1 ⊗ X2) = X T
1 W 12X2 =

Nread∑
i=1

Nread∑
j=1

wi jX1(i)X2( j),

(C20)

we have

Var
[
W (X1 ⊗ X2)

] = Var
Nread∑
i=1

Nread∑
j=1

wi j x̂ix̂ j � W  W · X̄ ⊗ X̄ .

(C21)

Also, there is

Var[W (X1 ⊗ X̄ )] = Var
Nread∑
i=1

Nread∑
j=1

wi j〈ô j〉x̂i

� X̄ T (W 12X̄ )  (W 12X̄ ), (C22)

and, similarly,

Var[W (X̄ ⊗ X2)] �
∑

i

∑
k

∑
h

wkiwhi〈ôk〉〈ôh〉〈ôi〉

= (X̄ T W 12)  (X̄ T W 12)X̄ . (C23)

To conclude this section, we illustrate the median of U-
statistics estimators [5] by the following lemma:

Lemma 6. For target properties {Oi|i = 1, 2, . . . , M} and
training data X t, set

Nsample = 544

ε2
ln

(
2M

δ

)
max

i
A(2)(Oi, X t ). (C24)
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Then, consuming Nsample i.i.d. copies of input states suffice to
construct median of U-statistics estimators {�̂(2)

i }, satisfying

|�̂(2)
i − Tr(Oiσ

⊗2)| � ε for i = 1, 2, . . . , M, (C25)

with probability no less than 1 − δ.
Proof. We divide the copies into K = 2 ln(2M/δ) equal-

sized sets, and compute the U-statistics estimators for each
set. Then, the medians of U-statistics estimators are the final
estimation results for the properties. The property of median
estimator ensures that if each U-statistic estimator has a vari-

ance no larger than ε2/34, then

Pr
[|�̂(2)

i − Tr(Oiσ
⊗2)| � ε

]
� 1 − 2e−K/2. (C26)

�
Thus, for each �̂

(2)
i the confidence level is no less

than 1 − δ/M. The union bound ensures that the
overall confidence level for estimating M properties
is no less than 1 − δ. From Lemma. 5, we choose
the size for each set as 272/ε2 maxi A(2)(Oi, X t ).
Consequently, the total number of copies consumed is
Nsample = 544/ε2 ln(2M/δ) maxi A(2)(Oi, X t ).
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