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Strain-engineered magnon states in two-dimensional ferromagnetic monolayers
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We systematically investigate the strain-engineered magnon states in two-dimensional (2D) ferromagnetic
monolayers. By suitable engineering of an inhomogeneous strain, we demonstrate the emergence of magnon
Landau levels and magnon snake states in 2D ferromagnetic monolayers. We show a magnon valley Hall effect
and valley filter without relying on any external fields. Our proposal offers us another way to manipulate magnon
valley transport and construct different types of flexible spintronic devices, and is experimentally feasible for 2D
ferromagnetic materials by using state-of-art techniques.
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I. INTRODUCTION

Strain engineering is an efficient strategy for tuning the
properties of materials and exploring new quantum states in
condensed matter physics [1]. In the case of an electronic
system, strain has been tailored to tune the electronic structure
[2–4], alter the topology [5–10], generate valley-polarized
currents [11–14], and develop next-generation devices for in-
formation [15,16].

Magnons, which are ideal information carriers that can
carry and process information over several millimeters with-
out Joule heat, are currently regaining attention due to the
experimental fabrication of various atomically thin magnetic
crystals [17–20]. Research on magnons has inspired a plethora
of interesting results, such as topological magnons [21–24],
magnon Bose-Einstein condensates [25], the magnon Hall
effect [26,27], and Dirac magnons [28,29].

Magnons in two-dimensional (2D) magnetic materials dis-
play unique characteristics, such as lower-energy dissipation,
terahertz frequencies, and strong anisotropy, making them
ideal candidates for flexible and high-frequency devices [30].
However, conventional periodic modulations, for example,
patterning, and thickness modification, are no longer appli-
cable for controlling the dynamic behavior of magnons in 2D
systems. Therefore, strain becomes the primary approach to
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engineer magnon states, which attracts increasing interest in
magnon straintronics in 2D van der Waals magnetic materials
[31,32].

In this paper, we systematically study the strain-engineered
magnon states for symmetric and antisymmetric strain in an
armchair or zigzag ribbon, as shown in Fig. 1. The strain
generates a pseudomagnetic field (PMF) and induces magnon
Landau levels (LLs). Magnon snake states can be realized
locally in the middle of a ferromagnetic ribbon by engineering
an inhomogeneous strain. In a zigzag ribbon, we demonstrate
a magnon valley Hall effect (VHE) under experimentally
available strain profiles. Inhomogeneous strain generates a
valley-dependent PMF at the K valleys, whose orientation is
opposite to the PMF at the K ′ valleys, resulting in valley-
dependent edge states. As such, strain can be employed as a
straightforward and efficient method for fabricating magnon
valley filters.

II. SPIN-WAVE THEORY

The Hamiltonian considered in this paper is based on
the magnetic description of a spin-3/2 ferromagnetic CrI3

monolayer, where the magnetic ions Cr3+ form a honeycomb
lattice and exhibit ferromagnetic long-range order with an
out-of-plane easy axis [33–35]. We consider the anisotropic
Heisenberg Hamiltonian

H = −1

2

∑
〈i, j〉

(JSi · S j + λSz
i S

z
j ), (1)

where 〈i, j〉 denotes a summation over the nearest-neighbor
sites. The first and second terms represent the isotropic and
anisotropic exchange interactions, respectively. We neglect
the contribution of single-ion anisotropic interactions and
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dipole-dipole interactions because they are small and only
slightly shift the magnon spectrum.

By applying the Dyson-Maleev transformation [36–38]
S+

i = √
2S(1 − a†

i ai/2S)ai, S−
i = √

2Sa†
i , Sz

i = S − a†
i ai, the

spatial-Fourier transformation, and canonical transformation,
the Hamiltonian can be expressed as

H = (J + λ)

2
NZS2 +

∑
k

(E+
k α

†
k αk + E−

k β
†
k βk ), (2)

with

E±
k = (J + λ)

2
SZ ± JSZ

4

√
3 + f (k), (3)

f (k) = 2 cos(
√

3a0ky) + 4 cos

(√
3

2
a0ky

)
cos

(√
3

2
a0kx

)
,

(4)

where a0 is the magnetic lattice constant, and Z = 3 is the co-
ordination number. The exchange interaction parameters, J =
2.7 meV and λ = 0.11 meV, are from experiments [39]. (The
spectrum is available in the Supplemental Material [40].) The
Hamiltonian is approximated to second order in the magnon
operators. Although the higher-order terms lead to softening
effects, they preserve the relevant symmetries and therefore do
not destroy the Dirac magnon properties [29,41,42]. We map
the magnonic system onto an effective Hamiltonian as

H =
∑
〈i〉

t0(a†
i ai + b†

i bi ) +
∑
〈i, j〉

(ti jaib
†
j + H.c.), (5)

where t0 (ti j) represents the on-site energy (hopping integral).
An external mechanical strain that varies smoothly on the
scale of interatomic distances modifies the hopping integral
between different sites. This does not break the sublattice
symmetry but instead shifts the Dirac cones at points K and K ′
in opposite directions. An inhomogeneous strain can produce
a nonvanishing PMF, whereas a homogenous strain will not.
A 2D inhomogeneous strain leads to the gauge field [43]

A = τzβ

2a0

(
uxx − uyy

−2uxy

)
, (6)

where β ≈ 2 is a dimensionless constant for CrI3. τz = ±
denote two inequivalent valleys in the Brillouin zone. The
strain tensor components are given by

uxx = ∂ux

∂x
+ 1

2

(
∂h

∂x

)2

,

uxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
+ 1

2

(
∂h

∂x
+ ∂h

∂y

)
,

uyy = ∂uy

∂y
+ 1

2

(
∂h

∂y

)2

. (7)

The coordinate system is defined as the x axis along the zigzag
direction. We propose several strain forms, which can produce
a strictly uniform PMF in the armchair or zigzag edges. Here,
we choose the strain forms uy = Csx2 for the armchair ribbon
and uy = Csy2 for the zigzag ribbon, respectively. Cs is the
strength of the strain. By translating to a PMF, we get

Beff = −τzβCsez/a0. (8)

FIG. 1. Schematic diagram of strain-engineered magnon states.
The 2D magnetic monolayer, e.g., CrI3, is placed on a soft substrate.
By employing symmetric and antisymmetric strain, magnon Landau
levels and snake states arise in the armchair and zigzag ribbons. The
strain-induced pseudomagnetic fields point in the ±z direction for
different valleys in the zigzag ribbon. The magnon valley Hall effect
emerges, denoted by the blue and red arrows indicating the drift of
magnon wave packets to the upper and lower edges of the system,
respectively.

Note that the PMF has opposite sign at different valleys.
Magnon LLs are given by

En = SZ (J + λ)

2
+ sgn(n)ω

√
|n|, (9)

where n is the LL index, ω = 3ti j
√

2βCsa0/2. Both in magnon
systems and strained graphene, the PMF causes Landau-level
quantization. However, the real magnetic field behaves dif-
ferently in these two systems. In magnonic systems, the real
magnetic field shifts the magnon spectrum through the Zee-
man interaction, whereas in strained graphene it also produces
Landau levels.

III. MAGNON LLs AND VHE

We investigate valley-polarized magnons in an 800-nm-
wide zigzag ribbon of monolayer CrI3. Under a strain-free
condition shown in Fig. 2(a), the magnon spectrum exhibits
two Dirac cones connected by the flat edge states. Figure 2(b)
shows the magnon LLs generated by the PMF when the inho-
mogeneous strain is imposed on the ribbon. The magnons at
the K and K ′ valleys are pushed to different edges, forming the
valley magnon edge states. The upper branches are propelled
towards the Dirac frequency, and the corresponding wave
function [see the inset of Fig. 2(b)] indeed localizes at the
edge of the ribbon. The flat band corresponds to trivial edge
states associated with the zigzag edge, connecting the K and
K ′ valleys. The n = 0 magnon Landau level is degenerate with
trivial edge states on both zigzag edges. The zigzag edge states
remain unaltered by the implementation of inhomogeneous
strain. Away from the K and K ′ points, the n = 0 magnon Lan-
dau level evolves into two split bands. Higher-order (|n| > 0)
magnon LLs with a linear dispersion near the Dirac frequency
are also shown in Fig. 2(c). The blue circles represent the
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FIG. 2. The magnon spectrum of the zigzag ribbon with different
strain strengths (a) Cs = 0 and (b) Cs = 0.2 × 10−3/a0. Gray lines
depict numerical results for all the magnon bands, and the thick
yellow (green) line segments depict the representative bulk (edge)
state. The insets show the wave-function spatial distributions for
corresponding states. The blue and red lines represent the A sublattice
and B sublattice, respectively. (c) The magnon spectrum near the
Dirac frequency, where the magnon LLs emerge. The blue circles
indicate the magnon LLs n = ±1, ±2, ±3, and ±4. The symbols ⊗
and � denote the signs of the PMFs. (d) The energies of magnon LLs
depend on the index (n) of the LLs. The blue circles correspond to
the blue circles in (c), and the red dotted line is the theoretical fitting
by Eq. (9). (e) The wave-function spatial distributions for K and K ′

valleys of the first magnon LLs.

first few magnon LLs defined by Eq. (9). Note that there is
a tilt arising from the deformation potential. The tilt has the
opposite sign for the magnon LLs splitting off the upper and
lower branches. In addition, for the same branches with the
same magnon LL index n, magnon LLs at opposite valleys
are tilted in image orientations. We can see from Fig. 2(d) that
our results agree well with the square-root n relation, which is
the verification of the well-defined Landau quantization.

In addition to Landau quantization, a strong PMF also
leads to magnon VHE, which originates from extra valley
edge states. Figure 2(e) displays the spatial distribution of
wave functions of magnon valley edge states along the ribbon.
Indeed, these valley-dependent edge states are confined within
a narrow area at different sides. The generated edge states
circulate in opposite directions, since PMF has opposite signs
in valleys K and K ′. Compared to the edge states from zigzag
edges, the pure valley edge currents are robust to disorders
such as defects and reconstructions.

In contrast to the zigzag ribbon, the armchair ribbon has
no edge state. Our calculation indicates that there would not
be any Landau quantization and edge states without strain.
Figure 3(a) shows the magnon spectra of the armchair ribbon
for two different widths in the region |k| � π/2a. The top of
the lower branches and the bottom of the upper branches are
located at k = 0. The ribbon width determines whether the
system is gapless, which is also a well-known phenomenon in
graphene. As shown in the right panel, the system is gapless
on N = 3M − 1, where M is an integer.

The strain drives the magnon states to the Landau quanti-
zation. Figure 3(b) shows the magnon spectra of the strained
822-nm-wide armchair ribbon. Well-resolved magnon LLs
can be found when the magnetic length lB = 1/

√
Beff is

smaller than the width of the ribbon. The red dots represent
the magnon LLs with n = 0, ±1, ±2, ±3, and ±4. The
magnon LL energy increases with increasing Landau-level
index and possesses a square-root relation with a Landau-
level index n. (For more details, see Supplemental Material
[40].) Unlike the zigzag ribbon, there is no linear tilt in the
magnon LLs. The right panel depicts the magnon density of
states, where the peaks correspond to the first few magnon
LLs.

An armchair ribbon does not exhibit magnon VHE and
valley-polarized edge states because the K ′ valley is degen-
erate with the K valley. However, the presence of PMF still
results in edge states. As clearly shown in Fig. 3(c), the wave
functions are propelled toward the edges as k increases. This
is because the magnon energy increases due to the potential
barrier imposed by the edges, once the magnon states meet
the edges.

IV. MAGNON SNAKE STATES

In the case of magnon LLs and VHE, the PMF conserves
cylindrical symmetry around the line along the y axis. How-
ever, we can construct antisymmetric strain with the distortion
vector given by

armchair ribbon : uy =
{

Csx2, x � 0,

−Csx2, x < 0,
(10)

zigzag ribbon : uy =
{

Csy2, y � 0,

−Csy2, y < 0.
(11)

In this case, the orientation of the PMF on the two sides of
the ribbon is opposite, which produces a PMF interface at the
middle of the ribbon. The magnon spectrum corresponding
to the antisymmetric strain is shown in Figs. 4(a) and 4(b)
for the armchair ribbon (zigzag ribbon). We find new magnon
states which have snake orbits arising from the PMF config-
uration. The magnon wave packets near the interface of the
PMF do not evolve into closed trajectories, but into snake-
like orbits. Furthermore, within the zigzag ribbon, magnons
originating from distinct valleys exhibit opposing snake-state
propagation directions at the interface. The snake states were
also found in an electronic system [13]. The features of the
snake states can be identified in the sublattice wave-function
distributions, illustrated by dots marked with S in the insets
of Figs. 4(a) and 4(b). The wave functions of snake states
exhibit a symmetric distribution with respect to the interface
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FIG. 3. (a) The magnon spectrum of the strain-free armchair ribbon with different widths N = 100 and 101. (b) The magnon spectrum and
density of states of an 822-nm-wide armchair ribbon at strain strength Cs = 0.3 × 10−3/a0, where t0 = 6.43. The red dots and dashed lines in
(b) indicate the magnon LLs n = 0, ±1, ±2, ±3, ±4 according to Eq. (9) with Beff = 2.53 T. (c) Distribution of zeroth magnon LLs at k = 0,
|k| = 0.1π/a0, and |k| = 0.2π/a0. At finite k, the magnons are pushed toward the edges due to the PMF induced by the inhomogeneous strain.

and are clearly spatially distinct from the edge states. In addi-
tion, the antisymmetric strain-induced PMF forces the guiding
centers to opposite edges at the same crystal momentum k.
These features can be identified in the spatial distribution of
magnon edge states, as illustrated by dots marked with E in the
insets. The dot marked with M is a quadruple-degenerate en-
ergy point, corresponding to mixed magnon states (the n = 0
magnon Landau level and edge states).

FIG. 4. The magnon spectrum of (a) the armchair ribbon and
(b) the zigzag ribbon, with Cs = 0.3 × 10−3/a0, respectively. The
probability densities of the magnon states are illustrated in the insets,
where the dots marked with S, E1, E2, and M correspond to magnon
snake states, edge states, and mixed states. 	A (red line) and 	B (blue
line) represent the two sublattices.

V. MAGNON VALLEY FILTER

We can realize valleytronic device applications by valley-
polarized magnon current carrying a specific valley index, as
illustrated in Fig. 5(a). In our proposal, magnons from differ-
ent valleys feel the opposite PMF and propagate in opposite
directions. We neglect the contribution of the Dzyaloshinskii-
Moriya interaction in PMF. The Dzyaloshinskii-Moriya
interaction in our system is significantly smaller than both the
exchange interaction and the anisotropic exchange interaction,
measuring two and one orders of magnitude smaller, respec-
tively [44]. Only K-valley magnons can transmit through
the bump, whereas the K ′-valley magnons are immediately
reflected. Therefore, a K-valley-polarized magnon current is
generated at the opposite side of the bump. We can also gen-
erate a K ′-valley-polarized magnon current by reversing the
injection direction. Such a bump can be realized by magnetic
materials over patterned holes on a SiO2/Si substrate, where
a uniform pressure difference can be produced under the mag-
netic materials and the bump bulges upwards in a controllable
manner [45]. Figure 5(b) demonstrates the magnon valley
filter with the PMF distribution for a Gaussian bump. We show

FIG. 5. (a) Schematic drawing of a magnon valley filter in the
ferromagnetic monolayer with a Gaussian bump, where h0 is the
maximal deformation in the z direction and σ is the width of
the Gaussian bump. The blue (red) arrows represent the K-valley
(K ′-valley) polarized magnons. The inset shows a CrI3-sealed mi-
crocavity in the pressure chamber. (b) Profile of the pseudomagnetic
field induced by a Gaussian bump in the K valley, where height
h0 = 0.5 µm, and width σ = 3 µm. Blue (red) lines are the K- (K ′-)
valley magnon trajectories incident from the left.
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several typical magnon trajectories with different incidence
angles, exhibiting a remarkable valley dependence. We can
see that the K ′-valley magnons are backscattered, whereas
those from the K valley are transmitted.

VI. DISCUSSION AND CONCLUSION

Although challenging, we believe the proposed magnon
LLs, snake states, and magnon VHE can be observed with
present-day technology. Layered ferromagnetic monolayers,
such as CrI3, which have been prepared experimentally, can
be placed on a soft substrate to apply the designed strain.
The needed techniques have already been realized in graphene
and other nonmagnetic 2D materials [14,46–49]. A magnetic
field difference �B between the two sides of the system can
provide effective chemical potentials for the magnons, which
results in a magnon transport current. The magnon currents
can be calculated from the Landauer-Büttiker theory [50] as

Im =
∫ E+gμB�B/2

E−gμB�B/2
nB(E )�BdE = Gm�B, (12)

where nB(E ) = (eE/kBT − 1)−1 is the Bose-Einstein distribu-
tion, and Gm = (gμB)2nB(E )/h is the magnon conductance.
Because the magnon carries a spin degree of freedom, one
may detect the magnon transport by measuring the spin
conductance Gs = h̄Gm using Brillouin light scattering tech-
niques. The magnon spectrum can be measured with inelastic
neutron scattering.

In conclusion, we have systematically investigated the
strain-engineered magnon states in 2D strained ferromagnetic
ribbons, emphasizing the pivotal role of the type of strain and
edge in shaping the magnon spectrum. We demonstrated that
the magnon LLs and edge states emerge under symmetrical
strain in the zigzag and armchair ribbon. We found unique
magnon snake states by applying an antisymmetric strain
configuration. A symmetrical strain can also induce VHE
and valley-polarized edge states in a zigzag ribbon. However,
the VHE and valley-polarized edge states are absent in the
armchair ribbon due to the degeneracy of the K and K ′ valleys.
We can implement valley-filtering and valley-splitting devices
by utilizing the strain-engineered magnons. Our results en-
able a different scheme to control the magnon spectrum and
transport properties, shedding light on the design of flexible
magnonic devices.
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